Science.gov

Sample records for lateral photovoltaic effect

  1. Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures

    PubMed Central

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  2. Size-dependent magnetic tuning of lateral photovoltaic effect in nonmagnetic Si-based Schottky junctions

    PubMed Central

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Xia, Yuxing; Wang, Hui

    2017-01-01

    In this article, we report a magnetic tuning lateral photovoltaic effect (LPE) in a nonmagnetic Si-based Schottky junctions. In the magnetic field intensity range of 0 to 1.6 T, the variation amplitude of LPE sensitivity is as high as 94.8%, the change of LPV is and the change rate of lateral photo-voltage even reaches 520 mV/T at 1.5 T, which is apparently higher than the results of previous reported researches in magnetic materials. This effect is attributed to the combined result of the influence of magnetic field on diffusion current and the rectification property of our anisotropic structure. This work may expand the application of LPE in magnetism field such as magnetic sensor and magnetoresistance, and it suggests a new way to investigate the carrier transport in Schottky junctions under magnetic field. PMID:28397819

  3. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    NASA Astrophysics Data System (ADS)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo

    2016-07-01

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  4. Large lateral photovoltaic effect observed in nano Al-doped ZnO films.

    PubMed

    Lu, Jing; Wang, Hui

    2011-07-18

    Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

  5. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    SciTech Connect

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu; Tang, Jinke; Song, Bo

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  6. Lateral photovoltaic effect in p-type silicon induced by surface states

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  7. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection

    PubMed Central

    Moon, In Kyu; Ki, Bugeun; Yoon, Seonno; Oh, Jungwoo

    2016-01-01

    Lightweight, simple and flexible self-powered photodetectors are urgently required for the development and application of advanced optical systems for the future of wearable electronic technology. Here, using a low-temperature reduction process, we report a chemical approach for producing freestanding monolithic reduced graphene oxide papers with different gradients of the carbon/oxygen concentration ratio. We also demonstrate a novel type of freestanding monolithic reduced graphene oxide self-powered photodetector based on a symmetrical metal–semiconductor–metal structure. Upon illumination by a 633-nm continuous wave laser, the lateral photovoltage is observed to vary linfearly with the laser position between two electrodes on the reduced graphene oxide surface. This result may suggest that the lateral photovoltaic effect in the reduced graphene oxide film originates from the built-in electric field by the combination of both the photothermal electric effect and the gradient of the oxygen-to-carbon composition. These results represent substantial progress toward novel, chemically synthesized graphene-based photosensors and suggest one-step integration of graphene-based optoelectronics in the future. PMID:27634110

  8. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection

    NASA Astrophysics Data System (ADS)

    Moon, In Kyu; Ki, Bugeun; Yoon, Seonno; Oh, Jungwoo

    2016-09-01

    Lightweight, simple and flexible self-powered photodetectors are urgently required for the development and application of advanced optical systems for the future of wearable electronic technology. Here, using a low-temperature reduction process, we report a chemical approach for producing freestanding monolithic reduced graphene oxide papers with different gradients of the carbon/oxygen concentration ratio. We also demonstrate a novel type of freestanding monolithic reduced graphene oxide self-powered photodetector based on a symmetrical metal–semiconductor–metal structure. Upon illumination by a 633-nm continuous wave laser, the lateral photovoltage is observed to vary linfearly with the laser position between two electrodes on the reduced graphene oxide surface. This result may suggest that the lateral photovoltaic effect in the reduced graphene oxide film originates from the built-in electric field by the combination of both the photothermal electric effect and the gradient of the oxygen-to-carbon composition. These results represent substantial progress toward novel, chemically synthesized graphene-based photosensors and suggest one-step integration of graphene-based optoelectronics in the future.

  9. Large lateral photovoltaic effect in µc-SiOx:H/a-Si:H/c-Si p-i-n structure

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Chen, Jianhui; Liu, Jihong; Zhang, Xinhui; Wang, Shufang; Fu, Guangsheng

    2016-03-01

    In this paper, we report on a large lateral photovoltaic effect (LPE) in a hydrogenated microcrystal silicon-oxygen (µc-SiOx:H)-based p-i-n structure. Compared with LPE in a hydrogenated amorphous silicon (a-Si:H)-based p-i-n structure, this structure showed an abnormal current-voltage (I-V) curve with a lower photoelectric conversion efficiency, but exhibited a much higher LPE with the highest position sensitivity of 64.3 mV/mm. We ascribe this to the enhancement of the lateral gradient of excess transmitted carriers induced by increasing both Schottky barrier and p-type layer body conductivity. Our results suggest that this µc-SiOx:H-based p-i-n structure may be a promising candidate for position-sensitive detectors (PSDs). Moreover, our results may also imply that solar cell devices with abnormal I-V curves (or low efficiency) could find their new applications in other aspects.

  10. Improved lateral photovoltaic effect of Ti and carbon films by interface modification with single-walled carbon nanotubes

    SciTech Connect

    Lu, Jing; Wang, Hui

    2014-01-21

    An efficiently improved lateral photovoltaic effect (LPE) has been successfully observed in Ti/Si and amorphous carbon (a-C) film/Si structures by introducing single-walled carbon nanotubes (SWNTs) as modifying interface instead of native SiO{sub 2} layer grown on Si substrate. The largest lateral photovoltage (LPV) position sensitivity achieved is 67.02 mV/mm for the Ti/Si system and 2.23 mV/mm for the a-C/Si system. This corresponds to an improvement of 40% for the Ti/Si system and 2600% for the a-C/Si system. Besides, the SWNTs modified interface also induced a well-marked shift of optimal film thickness in both materials. An additional novel phenomenon is that the directly observed LPV is much larger in SWNTs/Si system compared to the improved a-C/SWNTs/Si structure. A mechanism based on the change of interface states is given to interpret these results, which not only suggests a new common modulation method for LPE, but also a new potential application of SWNTs for photo-electronic device.

  11. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-11

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  12. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  13. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  14. Origin of the Ultrafast Response of the Lateral Photovoltaic Effect in Amorphous MoS2/Si Junctions.

    PubMed

    Hu, Chang; Wang, Xianjie; Miao, Peng; Zhang, Lingli; Song, Bingqian; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu; Tang, Jinke; Yang, Yanqiang; Song, Bo; Xu, Ping

    2017-05-31

    The lateral photovoltaic (LPV) effect has attracted much attention for a long time because of its application in position-sensitive detectors (PSD). Here, we report the ultrafast response of the LPV in amorphous MoS2/Si (a-MoS2/Si) junctions prepared by the pulsed laser deposition (PLD) technique. Different orientations of the built-in field and the breakover voltages are observed for a-MoS2 films deposited on p- and n-type Si wafers, resulting in the induction of positive and negative voltages in the a-MoS2/n-Si and a-MoS2/p-Si junctions upon laser illumination, respectively. The dependence of the LPV on the position of the illumination shows very high sensitivity (183 mV mm(-1)) and good linearity. The optical relaxation time of LPV with a positive voltage was about 5.8 μs in a-MoS2/n-Si junction, whereas the optical relaxation time of LPV with a negative voltage was about 2.1 μs in a-MoS2/p-Si junction. Our results clearly suggested that the inversion layer at the a-MoS2/Si interface made a good contribution to the ultrafast response of the LPV in a-MoS2/Si junctions. The large positional sensitivity and ultrafast relaxation of LPV may promise the a-MoS2/Si junction's applications in fast position-sensitive detectors.

  15. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  16. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  17. Lateral photovoltaic effect observed in doping-modulated GaAs/Al0.3Ga0.7As.

    PubMed

    Liu, Ji Hong; Qiao, Shuang; Liang, BaoLai; Wang, ShuFang; Fu, GuangSheng

    2017-02-20

    For photovoltaic effect (PE), both barrier height and carrier lifetime are all very important factors. However, how to distinguish their contributions to the PE is very difficult. In this paper, we prepared a series of GaAs/Al0.3Ga0.7As two dimensional electron gas (2DEG) with typical Al0.3Ga0.7As doping concentration of 0.6 × 1018/cm3, 1.2 × 1018/cm3, and 2.5 × 1018/cm3, respectively (sample number: #1, #2, #3), and studied their lateral photovoltaic effects (LPEs). It is found that their position sensitivities all increase with both laser wavelength and laser power. However, the position sensitivity exhibits a non-monotonic behavior with increasing doping concentration, which can be mainly ascribed to the doping concentration-dependent carrier lifetime, especially in the low power regime. With increasing laser power gradually, the position sensitivity difference between sample #1 and sample #2 is still large and increases a little, while the position sensitivity of sample #3 approaches to that of sample #2, suggesting that the doping concentration-dependent barrier height also starts to play an important role in the high power regime. Our results will provide important information for the design and development of novel and multifunctional PE devices.

  18. Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions.

    PubMed

    Song, Bingqian; Wang, Xianjie; Li, Bo; Zhang, Lingli; Lv, Zhe; Zhang, Yu; Wang, Yang; Tang, Jinke; Xu, Ping; Li, Bingsheng; Yang, Yanqiang; Sui, Yu; Song, Bo

    2016-10-17

    In this paper, we report a sensitive lateral photovoltaic effect (LPE) in Fe3O4/3C-SiC Schottky junctions with a fast relaxation time at near-ultraviolet wavelengths. The rectifying behavior suggests that the large build-in electric field was formed in the Schottky junctions. This device has excellent position sensitivity as high as 67.8 mV mm-1 illuminated by a 405 nm laser. The optical relaxation time of the LPE is about 30 μs. The fast relaxation and high positional sensitivity of the LPE make the Fe3O4/3C-SiC junction a promising candidate for a wide range of ultraviolet/near-ultraviolet optoelectronic applications.

  19. Tracking integration in concentrating photovoltaics using laterally moving optics.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  20. Designing a metallic nanoconcentrator for a lateral multijunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Wang, Trudie; Peumans, Peter

    2011-06-01

    A lateral multijunction photovoltaic (PV) concept is introduced that explores the unique ability of plasmonic nanoantennas to locally concentrate optical energy and spectrally filter incoming light at the subwavelength level. This electromagnetic field enhancement near the localized plasmon resonance modes of the metallic nanoantennas can be used to selectively increase light absorption in semiconductor nanowires at specific spectral and spatial regions. In our geometry, we take advantage of the ring antenna's ability to excite two distinct plasmon modes in order to carry out spectral splitting and concentration of the electromagnetic field. A localized dipolar surface plasmon mode near the material resonance of the silver nanoantenna results from the ring behaving as an effective disk in the visible region and focuses the field on the external surface of the ring while a dipolar bonding resonance mode dependent on the coupling of modes excited on the inner and outer surface of the ring geometry in the near infrared (NIR) region focuses energy in the cavity of the ring. Using finite difference time domain (FDTD) simulations, we describe the basic mechanisms at work and demonstrate that the subwavelength ring antennas can couple incident light into semiconductor nanowires placed both inside and outside the ring through the two modes with minimal loss in the metal. The modes are used to laterally split different spectral regions of broadband incident light optimized to the material bandgap of the nanowires located in the regions of field enhancement to produce the lateral multijunction effect. We demonstrate that, for example, a ring antenna with both an internal diameter and a thickness of 40 nm can enhance absorption by 6x in the visible region for a 100 nm tall AlAs nanowire placed just outside the ring and by 380x in the NIR region for a geometrically similar GaAs nanowire placed inside the ring. Both enhancements occur just above the material band gaps of the

  1. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  2. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zahidur R.; Kherani, Nazir P.

    2014-12-01

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  3. Nonlinear photovoltaic effect in Sillenite photorefractive crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, Ivan; Capovilla, Danilo Augusto; Moura, André L.; Timóteo, Varese S.; Carvalho, Jesiel F.; Frejlich, Jaime

    2017-04-01

    We report on the presence of photovoltaic effect in some Sillenite photorefractive crystals and compare their behavior with that of the well known photovoltaic LiNbO3:Fe crystal. Nonlinear photovoltaic behavior of these Sillenites are also reported here for the first time and explained by the presence of shallow along with deep photovoltaic centers.

  4. Photovoltaic effect in Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Katiyar, Rajesh K.; Panwar, Neeraj; Morell, G.; Katiyar, Ram S.

    2010-03-01

    Photovoltaic effect in ferroelectric materials is of much interest due to the anomalously large open circuit photovoltages when illuminated. It is concluded that this unprecedented high value of photovoltaic effect is due to the presence of non-centrosymmetry in the ferroelectric materials which gives rise to electron excitation, relaxation, and scattering processes. The photovoltaic efficiencies are, however, limited due to small current densities and the large band gap values of the ferroelectric materials. We have synthesized thin films of BiFeO3 (a low band gap material ˜2.67eV) and ferroelectric material SrBi2Ta2O9(SBT) on silicon substrates with ITO as the bottom electrode. The band gap of the SBT has been decreased by incorporating metallic particles Ag, Pt. in the ferroelectric matrix. The results will be presented.

  5. Diffractive Optical Element design for lateral spectrum splitting photovoltaics

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.

    In this work, two distinct types of Diffractive Optical Elements (DOEs) are designed to laterally distribute the solar spectrum across multiple photovoltaic (PV) cells. Each PV cell receives a spectral band near its bandgap energy to maximize overall solar-to-electric conversion efficiency of the system. The first DOE is an off-axis volume holographic lens. Design parameters include lateral grating period and slant angle, index modulation, film thickness, and control of swelling and index modulation attenuation in the film development process. Diffraction efficiency across the holographic lens is simulated using Rigorous Coupled Wave Analysis (RCWA). A full system model is created, and non-sequential ray tracing is performed. Performance is evaluated under AM 1.5 conditions and annual insolation in Tucson, AZ, and Seattle, WA. A proof-of-concept off-axis holographic lens is fabricated and its performance is measured to confirm the optical properties of this system. The second DOE is an algorithmically-designed freeform surface relief structure. The Gerchberg-Saxton design algorithm is expanded to consider multiple wavelengths, resulting in a Broadband Gerchberg-Saxton (BGS) algorithm. All design variables are evaluated in a parametric study of the algorithm. Several DOE designs are proposed for spectrum splitting, and two of these designs are fabricated and measured. Additional considerations, such as finite sampling of the discrete Fourier transform, fabrication error, and solar divergence are addressed. The dissertation will conclude with a summary of spectrum splitting performance of all proposed DOEs, as well as a comparison to ideal spectrum splitting performance and discussion of areas for improvement and future work.

  6. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGES

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; ...

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by themore » formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  7. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm-1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm-2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  8. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    SciTech Connect

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  9. Giant switchable photovoltaic effect in organometal trihalide perovskite devices.

    PubMed

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm(-1). The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm(-2) under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  10. Lateral photovoltaic measurements of electrical properties of SiAl:H/n-type Si structures

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Okada, Y.; Hamana, T.; Niu, H.; Matsuda, T.; Takai, M.

    1984-12-01

    A modified lateral photovoltaic method is developed to measure p-n junction characteristics as exemplified by those of the junction formed by an amorphous-microcrystalline SiAl:H film on a crystal Si. The junction is biased at a forward voltage, V, by uniform irradiation by a He-Ne/laser beam, and the lateral-photovoltage (LPV) induced by the laser beam is measured with a lock-in amplifier for various V. It is shown that I0 and m in the I-V equation of the junction, I = I0 exp (qV/mkT - 1), are determined with high accuracy when the leakage conductance at the periphery of a junction is reduced to a negligible value. If the leakage conductance is not negligible, its existence is confirmed by the LPV method.

  11. Substantial bulk photovoltaic effect enhancement via nanolayering.

    PubMed

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  12. Substantial bulk photovoltaic effect enhancement via nanolayering

    SciTech Connect

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  13. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE PAGES

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; ...

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  14. Substantial bulk photovoltaic effect enhancement via nanolayering

    PubMed Central

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1−x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  15. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.

    PubMed

    Nowzari, Ali; Heurlin, Magnus; Jain, Vishal; Storm, Kristian; Hosseinnia, Ali; Anttu, Nicklas; Borgström, Magnus T; Pettersson, Håkan; Samuelson, Lars

    2015-03-11

    We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices.

  16. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    PubMed

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  17. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects

    PubMed Central

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm2) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials. PMID:23811832

  18. Effects of solar photovoltaic technology on the environment in China.

    PubMed

    Qi, Liqiang; Zhang, Yajuan

    2017-08-31

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  19. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    PubMed

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials' bandgap.

  20. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  1. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect

    Perez, R.; Seals, R.

    1997-11-01

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  2. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  3. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO3 and paraelectric SrTiO3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO3. The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  4. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.

    PubMed

    Chen, Jing-Jing; Wang, Qinsheng; Meng, Jie; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Bie, Ya-Qing; Liu, Junku; Liu, Kaihui; Liao, Zhi-Min; Sun, Dong; Yu, Dapeng

    2015-09-22

    Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metal-graphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics.

  5. The laterality effect: myth or truth?

    PubMed

    Cohen Kadosh, Roi

    2008-03-01

    Tzelgov and colleagues [Tzelgov, J., Meyer, J., and Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 166-179.], offered the existence of the laterality effect as a post-hoc explanation for their results. According to this effect, numbers are classified automatically as small/large versus a standard point under autonomous processing of numerical information. However, the genuinity of the laterality effect was never examined, or was confounded with the numerical distance effect. In the current study, I controlled the numerical distance effect and observed that the laterality effect does exist, and affects the processing of automatic numerical information. The current results suggest that the laterality effect should be taken into account when using paradigms that require automatic numerical processing such as Stroop-like or priming tasks.

  6. Centrifugal photovoltaic and photogalvanic effects driven by structured light

    NASA Astrophysics Data System (ADS)

    Wätzel, J.; Berakdar, J.

    2016-02-01

    Much efforts are devoted to material structuring in a quest to enhance the photovoltaic effect. We show that structuring light in a way it transfers orbital angular momentum to semiconductor-based rings results in a steady charge accumulation at the outer boundaries that can be utilized for the generation of an open circuit voltage or a photogalvanic (bulk photovoltaic) type current. This effect which stems both from structuring light and matter confinement potentials, can be magnified even at fixed moderate intensities, by increasing the orbital angular momentum of light which strengthens the effective centrifugal potential that repels the charge outwards. Based on a full numerical time propagation of the carriers wave functions in the presence of light pulses we demonstrate how the charge buildup leads to a useable voltage or directed photocurrent whose amplitudes and directions are controllable by the light pulse parameters.

  7. Centrifugal photovoltaic and photogalvanic effects driven by structured light

    PubMed Central

    Wätzel, J.; Berakdar, J.

    2016-01-01

    Much efforts are devoted to material structuring in a quest to enhance the photovoltaic effect. We show that structuring light in a way it transfers orbital angular momentum to semiconductor-based rings results in a steady charge accumulation at the outer boundaries that can be utilized for the generation of an open circuit voltage or a photogalvanic (bulk photovoltaic) type current. This effect which stems both from structuring light and matter confinement potentials, can be magnified even at fixed moderate intensities, by increasing the orbital angular momentum of light which strengthens the effective centrifugal potential that repels the charge outwards. Based on a full numerical time propagation of the carriers wave functions in the presence of light pulses we demonstrate how the charge buildup leads to a useable voltage or directed photocurrent whose amplitudes and directions are controllable by the light pulse parameters. PMID:26900105

  8. Impurity photovoltaic effect: Fundamental energy conversion efficiency limits

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Green, Martin A.

    2002-08-01

    In the past, minimal improvements have been predicted for efficiency enhancement of solar cells using the impurity photovoltaic (IPV) effect, where optical excitation through midgap defect levels allows the use of long wavelength photons to increase the conversion efficiency of sunlight to electricity. In the present work, the principle of detailed balance is used to calculate the limiting efficiency of solar cells with the inclusion of the impurity photovoltaic effect, in the idealized case when all transitions are assumed to be radiative. Based on these calculations, the limiting efficiency of the IPV device with a large number of different defect species is determined to be 77.2%. The terrestrial performance of the IPV device is also investigated by comparing its spectral sensitivity with that of tandem solar cell designs.

  9. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  10. Photovoltaic effect in Bi{sub 2}TeO{sub 5} photorefractive crystal

    SciTech Connect

    Oliveira, Ivan de Capovilla, Danilo Augusto

    2015-10-12

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi{sub 2}TeO{sub 5} crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material.

  11. Intertemporal cumulative radiative forcing effects of photovoltaic deployments.

    PubMed

    Ravikumar, Dwarakanath; Seager, Thomas P; Chester, Mikhail V; Fraser, Matthew P

    2014-09-02

    Current policies accelerating photovoltaics (PV) deployments are motivated by environmental goals, including reducing greenhouse gas (GHG) emissions by displacing electricity generated from fossil-fuels. Existing practice assesses environmental benefits on a net life-cycle basis, where displaced GHG emissions offset those generated during PV production. However, this approach does not consider that the environmental costs of GHG release during production are incurred early, while environmental benefits accrue later. Thus, where policy targets suggest meeting GHG reduction goals established by a certain date, rapid PV deployment may have counterintuitive, albeit temporary, undesired consequences. On a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood, particularly when PV manufacturing utilizes GHG-intensive energy sources (e.g., coal), but deployment occurs in areas with less GHG-intensive electricity sources (e.g., hydroelectric). This paper details a dynamic CRF model to examine the intertemporal warming impacts of PV deployments in California and Wyoming. CRF payback times are longer than GHG payback times by 6-12 years in California and 6-11 years in Wyoming depending on the PV technology mix and deployment strategy. For the same PV capacity being deployed, early installations yield greater CRF benefits (calculated over 10 and 25 years) than installations occurring later in time. Further, CRF benefits are maximized when PV technologies with the lowest manufacturing GHG footprint (cadmium telluride) are deployed in locations with the most GHG-intensive grids (i.e., Wyoming).

  12. Photovoltaics for municipal planners. Cost-effective municipal applications of photovoltaics for electric power

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  13. Pattern Effects of Soil on Photovoltaic Surfaces

    SciTech Connect

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observed $I_{{rm SC}}$. Angular losses were significant at angles as low as 25°.

  14. Pattern Effects of Soil on Photovoltaic Surfaces

    SciTech Connect

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observed $I_{{rm SC}}$. Angular losses were significant at angles as low as 25°.

  15. Pattern Effects of Soil on Photovoltaic Surfaces

    DOE PAGES

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; ...

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less

  16. Electrochemical aging effects in photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1986-01-01

    Leakage currents were experimentally measured in PV modules undergoing natural aging outdoors, and in PV modules undergoing accelerated aging in laboratory environmental chambers. The significant contributors to module leakage current were identified with a long range goal to develop techniques to reduce or stop module leakage currents. For outdoor aging in general, module leakage current is relatively insensitive to temperature fluctuations, but is very sensitive to moisture effects such as dew, precipitation, and fluctuations in relative humidity. Comparing ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB), module leakage currents are much higher in PVB as compared to EVA for all environmental conditions investigated. Leakage currents proceed in series along two paths, bulk conduction followed by interfacial (surfaces) conduction.

  17. Antistatic effect of power-enhancement coating for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Narushima, D.; Takanohashi, H.; Hirose, J.; Ogawa, S.

    2011-09-01

    Photovoltaic (PV) modules are periodically cleaned, particularly in large grid-connect photovoltaic plants, in order to avoid losses caused by dust accumulation. However, this maintenance task is often expensive, especially in those areas with water shortage. A hydrophilic coating on the surface of PV modules is one of typical methods to reduce the dust accumulation. But it is not commonly used yet, because the electrical performance of PV modules with conventional hydrophilic coating was slightly degraded by the decrease of transmittance. We have already developed a new hydrophilic power enhancement coating and reported its fundamental characters and results of several ISO/IEC standard tests in SPIE Solar Energy + Technology in 2010. One of the important characters was an antistatic effect. It was showed that the surface resistances of the coated glass and the uncoated glass were 1.3 × 1010Ω and 5.3 × 1014Ω, respectively. It would be understood that lower surface resistance of the coated glass resulted in the antistatic characteristics, which reduce the dust attraction on the coated glass. With the surface resistance result, it could be elucidated that the 3% additional energy production resulted from the antistatic effect of the coating on PV modules in the exposure test after several months without rain in Spain. In this paper, it is shown the results of the antistatic effect performed under the several dust accumulation tests.

  18. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2014-12-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I-V) characteristic results, we observed a certain transition voltage (Vth) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, Vth is 3.9 V whereas for COOH-SWCNT mixed with this dye, Vth drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers.

  19. On the photovoltaic effect in local field potential recordings.

    PubMed

    Mikulovic, Sanja; Pupe, Stefano; Peixoto, Helton Maia; Do Nascimento, George C; Kullander, Klas; Tort, Adriano B L; Leão, Richardson N

    2016-01-01

    Optogenetics allows light activation of genetically defined cell populations and the study of their link to specific brain functions. While it is a powerful method that has revolutionized neuroscience in the last decade, the shortcomings of directly stimulating electrodes and living tissue with light have been poorly characterized. Here, we assessed the photovoltaic effects in local field potential (LFP) recordings of the mouse hippocampus. We found that light leads to several artifacts that resemble genuine LFP features in animals with no opsin expression, such as stereotyped peaks at the power spectrum, phase shifts across different recording channels, coupling between low and high oscillation frequencies, and sharp signal deflections that are detected as spikes. Further, we tested how light stimulation affected hippocampal LFP recordings in mice expressing channelrhodopsin 2 in parvalbumin neurons (PV/ChR2 mice). Genuine oscillatory activity at the frequency of light stimulation could not be separated from light-induced artifacts. In addition, light stimulation in PV/ChR2 mice led to an overall decrease in LFP power. Thus, genuine LFP changes caused by the stimulation of specific cell populations may be intermingled with spurious changes caused by photovoltaic effects. Our data suggest that care should be taken in the interpretation of electrophysiology experiments involving light stimulation.

  20. On the photovoltaic effect in local field potential recordings

    PubMed Central

    Mikulovic, Sanja; Pupe, Stefano; Peixoto, Helton Maia; Do Nascimento, George C.; Kullander, Klas; Tort, Adriano B. L.; Leão, Richardson N.

    2016-01-01

    Abstract. Optogenetics allows light activation of genetically defined cell populations and the study of their link to specific brain functions. While it is a powerful method that has revolutionized neuroscience in the last decade, the shortcomings of directly stimulating electrodes and living tissue with light have been poorly characterized. Here, we assessed the photovoltaic effects in local field potential (LFP) recordings of the mouse hippocampus. We found that light leads to several artifacts that resemble genuine LFP features in animals with no opsin expression, such as stereotyped peaks at the power spectrum, phase shifts across different recording channels, coupling between low and high oscillation frequencies, and sharp signal deflections that are detected as spikes. Further, we tested how light stimulation affected hippocampal LFP recordings in mice expressing channelrhodopsin 2 in parvalbumin neurons (PV/ChR2 mice). Genuine oscillatory activity at the frequency of light stimulation could not be separated from light-induced artifacts. In addition, light stimulation in PV/ChR2 mice led to an overall decrease in LFP power. Thus, genuine LFP changes caused by the stimulation of specific cell populations may be intermingled with spurious changes caused by photovoltaic effects. Our data suggest that care should be taken in the interpretation of electrophysiology experiments involving light stimulation. PMID:26835485

  1. Optical cleaning owing to the bulk photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Kösters, M.; Haertle, D.; Becher, C.; Buse, K.

    2009-12-01

    It is shown within the conventional photovoltaic charge-transport model that photoexcitable electrons, localized at deep impurity levels, can be effectively removed by light from the exposed area at sufficiently high temperatures. This allows to modify strongly the absorption and photoelectric properties of the material and, in particular, to suppress “optical damage” in LiNbO3 and LiTaO3 crystals. This optical cleaning method is applicable to numerous pyro- and piezo-electric optical materials. It employs the photovoltaic drift of electrons and ionic charge compensation at elevated temperatures. The physics of the optical cleaning is very rich; it has strong links to nonlinear dynamics and offers important handles for improvement of the cleaning performance. The use of properly moving light beams leads, e.g., to a strong enhancement of the cleaning rate and allows to reduce the electron concentration by several orders of magnitude. The theoretical predictions are supported by the data of our cleaning experiments with LiNbO3 crystals. In particular, the intensity threshold of optical damage is increased by three orders of magnitude.

  2. Bulk photovoltaic effect in monodomain BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Min; Luo, Zheng-Dong; Kim, Dong Jik; Alexe, Marin

    2017-05-01

    The bulk photovoltaic effect of ferroelectric semiconductors is increasingly being studied for potential applications in solar energy harvesting thanks to their unique charge separation mechanism and the resultant anomalous photovoltage. However, the intrinsic properties regarding the temperature dependence of photovoltaic current and its correlation with the ferroelectric polarization in such systems still require proper understanding. Here, by studying monodomain BiFeO3 thin films with only a single ferroelectric variant, we demonstrate that the photovoltaic current of BiFeO3 ferroelectric semiconductors possesses a preferred direction depending on the light polarization direction and working temperature, which is not along the ferroelectric polarization direction. The results indicate that the bulk photovoltaic effect originates from non-centrosymmetry of ferroelectric semiconductors but is independent of the ferroelectric polarization. Moreover, we showed that the bulk photovoltaic effect can be tailored by modifying the activity of sub-band gap levels via chemical doping, thus enhancing the power conversion efficiency in ferroelectric semiconductors.

  3. Auditory lateralization: an effect of rhythm.

    PubMed

    Buxton, H

    1983-03-01

    Recall of monaurally presented semantically anomalous sentences, which had either neutral or rhythmic timing, was tested at the right ear, at the left ear, and on transfer from one ear to the other. The component words, being computer stored digitized waveforms, had identical acoustic structure in the two conditions. In the rhythmic condition there was not only an overall advantage in the second half of the experiment but also an asymmetric transfer effect such that this advantage did not appear when the left ear was tested after the right. It is proposed that functional lateralization be viewed as an adaptive, dynamic, organizational factor.

  4. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets.

    PubMed

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian

    2015-03-21

    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm(2) V(-1) s(-1). Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials.

  5. Photovoltaic effect in small superconducting{endash}normal-metal systems

    SciTech Connect

    Bartolo, R.E.; Giordano, N.

    1996-08-01

    We have observed an unusual photovoltaic effect in small metallic systems in which some portion of the sample is superconducting. In these systems, an applied microwave field can induce a dc voltage (the {open_quote}{open_quote}photovoltage{close_quote}{close_quote}), {ital V}{sub dc}. We have found that this voltage can be an antisymmetric function of magnetic field, i.e., {ital V}{sub dc}(+{ital H})={minus}{ital V}{sub dc}({minus}{ital H}). It also exhibits aperiodic fluctuations as a function of both {ital H}, and the strength of the microwave field. Results for several different sample geometries suggest that it is due to the inverse Josephson effect, although the samples are not obviously reminiscent of weak link structures. {copyright} {ital 1996 The American Physical Society.}

  6. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    DOE PAGES

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predictedmore » to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.« less

  7. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    SciTech Connect

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

  8. Effects of nanostructure geometry on nanoimprinted polymer photovoltaics.

    PubMed

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2014-07-07

    We demonstrate the effects of nanostructure geometry on the nanoimprint induced poly(3-hexylthiophene-2,5-diyl) (P3HT) chain alignment and the performance of nanoimprinted photovoltaic devices. Out-of-plane and in-plane grazing incident X-ray diffraction techniques are employed to characterize the nanoimprint induced chain alignment in P3HT nanogratings with different widths, spacings and heights. We observe the dependence of the crystallite orientation on nanostructure geometry such that a larger width of P3HT nanogratings leads to more edge-on chain alignment while the increase in height gives more vertical alignment. Consequently, P3HT/[6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) solar cells with the highest density and aspect ratio P3HT nanostructures show the highest power conversion efficiency among others, which is attributed to the efficient charge separation, transport and light absorption.

  9. Non-volatile memory based on the ferroelectric photovoltaic effect

    PubMed Central

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  10. Progress in piezo-phototronic effect modulated photovoltaics

    NASA Astrophysics Data System (ADS)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-01

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  11. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    NASA Astrophysics Data System (ADS)

    Katti, Aavishkar; Yadav, R. A.

    2017-01-01

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping.

  12. Simultaneous verbal and affective laterality effects.

    PubMed

    Bulman-Fleming, M B; Bryden, M P

    1994-07-01

    By analyzing the error scores of normal participants asked to identify a specific word spoken in a specific tone of voice (for example, the word "tower" spoken in a happy tone of voice), we have been able to demonstrate concurrent verbal and affective cerebral laterality effects in a dichotic listening task. The targets comprised the 16 possible combinations of four two-syllable words spoken in four different tones of voice. There were 128 participants equally divided between left- and right-handers, with equal numbers of each sex within each handedness group. Each participant responded to 144 trials on the dichotic task, and filled in the 32-item Waterloo Handedness Questionnaire. Analysis of false positive responses on the dichotic task (responding "yes" when only the verbal or only the affective component of the target was present, or when both components were present but were at opposite ears) indicated that significantly more errors were made when the verbal aspect of the target appeared at the right ear (left hemisphere) and the emotional aspect was at the left ear (right hemisphere) than when the reverse was the case. A single task has generated both effects, so that differences in participants' strategies or the way in which attention is biased cannot account for the results. While the majority of participants showed a right-ear advantage for verbal material and a left-ear advantage for nonverbal material, these two effects were not correlated, suggesting that independent mechanisms probably underly the establishment of verbal and affective processing. We found no significant sex or handedness effects, though left-handers were much more variable than were right-handers. There were no significant correlations between degree of handedness as measured on the handedness questionnaire and extent of lateralization of verbal or affective processing on the dichotic task. We believe that this general technique may be able to provide information as to the nature and

  13. Linear Photovoltaic Effect in a Semiconductor with a Camel's Back Band Structure with Allowance for a Coherent Saturation Effect

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2017-08-01

    The Shift Linear Photovoltaic Effect current in a semiconductor with a camel's back band structure caused by the current carriers' shift in real space under direct optical transitions is calculated. The contribution of the coherent saturation of the final state of current carriers to the Shift Linear Photovoltaic Effect current is taken into account.

  14. Photovoltaic materials.

    PubMed

    Perez-Albuerne, E A; Tyan, Y S

    1980-05-23

    Solid-state photovoltaic cells are feasible devices for converting solar energy directly to electricity. Recent cost reductions have spurred an incipient industry, but further advances in materials science and technology are needed before photovoltaic cells can compete with other sources for the supply of large amounts of energy. In this article energy loss mechanisms in solid-state photovoltaic cells are examined and related to materials properties. Various systems under development are reviewed which illustrate some key concepts, opportunities, and problems of this most promising emerging technology. Areas where contributions from innovative materials research would have a significant effect are also indicated.

  15. Cost effective flat plate photovoltaic modules using light trapping

    NASA Technical Reports Server (NTRS)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  16. Effect of formulas of titanoxide compositions on the photovoltaic characteristics of solar cells

    NASA Astrophysics Data System (ADS)

    Aimukhanov, A. K.; Ibrayev, N. Kh.; Serikov, T. M.

    2016-12-01

    The effect the chemical composition of semiconductor titanium compositions (titanium pastes) has on the photovoltaic characteristics of dye-sensitized solar cells is investigated. It is established that the efficiency of solar energy conversion by a photovoltaic cell made with Ti-nanooxide D paste is 5.3%, while that of one made with Degussa P25 paste is 4.7%. These data correlate with the specific surface and sorption ability of semiconductor films.

  17. Response format, magnitude of laterality effects, and sex differences in laterality.

    PubMed

    Voyer, Daniel; Doyle, Randi A

    2012-01-01

    The present study examined the evidence for the claim that response format might affect the magnitude of laterality effects by means of a meta-analysis. The analysis included the 396 effect sizes drawn from 266 studies retrieved by Voyer (1996) and relevant to the main effect of laterality and sex differences in laterality for verbal and non-verbal tasks in the auditory, tactile, and visual sensory modality. The response format used in specific studies was the only moderator variable of interest in the present analysis, resulting in four broad response categories (oral, written, computer, and pointing). A meta-analysis analogue to ANOVA showed no significant influence of response format on either the main effect of laterality or sex differences in laterality when all sensory modalities were combined. However, when modalities were considered separately, response format affected the main effect of laterality in the visual modality, with a clear advantage for written responses. Further pointed analyses revealed some specific differences among response formats. Results are discussed in terms of their implications for the measurement of laterality.

  18. Design and Fabrication of Monolithically-Integrated Laterally-Arrayed Multiple Band Gap Solar Cells using Composition-Graded Alloy Nanowires for Spectrum-Splitting Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Caselli, Derek

    This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems. Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single

  19. A Photoferroelectric Perovskite-Type Organometallic Halide with Exceptional Anisotropy of Bulk Photovoltaic Effects.

    PubMed

    Sun, Zhihua; Liu, Xitao; Khan, Tariq; Ji, Chengmin; Asghar, Muhammad Adnan; Zhao, Sangen; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-05-23

    Perovskite-type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite-type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner-sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>10(4) ), which compete with the most active photovoltaic material CH3 NH3 PbI3 . In 1 the temperature-dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices.

  20. Modeling lateral acceleration effects on pilot performance

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinan, D. L.

    1982-01-01

    Attendant to the direct side force maneuver of a Vectored Force Fighter is the transverse acceleration imposed on the pilot. This lateral acceleration (Gy), when combind with a positive Gz stress, is a potential source of pilot tracking performance impairment. A research effort to investigate these performance decrements includes experimental as well as anaytical pilot performance modeling using the Optimal Control Model.

  1. Cerebral Lateralization and Its Effect on Drawing.

    ERIC Educational Resources Information Center

    Thomas, Yvonne A.; Thomas, Stephen B.

    1983-01-01

    Discusses the importance of both sides of the brain for the development of drawing skills but notes that the left brain can inhibit the action of the right brain. Provides a discussion of cerebral lateralization and child development. Suggests five drawing exercises to help develop hemispheric cooperation. (SB)

  2. Cerebral Lateralization and Its Effect on Drawing.

    ERIC Educational Resources Information Center

    Thomas, Yvonne A.; Thomas, Stephen B.

    1983-01-01

    Discusses the importance of both sides of the brain for the development of drawing skills but notes that the left brain can inhibit the action of the right brain. Provides a discussion of cerebral lateralization and child development. Suggests five drawing exercises to help develop hemispheric cooperation. (SB)

  3. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  4. The Effects of Cells Temperature Increment and Variations of Irradiation for Monocrystalline Photovoltaic

    NASA Astrophysics Data System (ADS)

    Fuad Rahman Soeharto, Faishal; Hermawan

    2017-04-01

    Photovoltaic cell technology has been developed to meet the target of 17% Renewable Energy in 2025 accordance with Indonesia Government Regulation No. 5 2006. Photovoltaic cells are made of semiconductor materials, namely silicon or germanium (p-n junction). These cells need the light that comes from solar irradiation which brings energy photons to convert light energy into electrical energy. It is different from the solar heater that requires heat energy or thermal of sunlight that is normally used for drying or heating water. Photovoltaic cells requires energy photons to perform the energy conversion process, the photon energy can be derived from sunlight. Energy photon is taken from the sun light along with the advent of heat due to black-body radiation, which can lead to temperature increments of photovoltaic cells. Increment of 1°C can decreased photovoltaic cell voltage of up to 2.3 mV per cell. In this research, it will be discuss the analysis of the effect of rising temperatures and variations of irradiation on the type monocrystalline photovoltaic. Those variation are analyzed, simulated and experiment by using a module of experiment. The test results show that increment temperature from 25° C to 80° C at cell of photovoltaic decrease the output voltage of the photovoltaic cell at 4.21 V, and it also affect the power output of the cell which decreases up to 0.7523 Watt. In addition, the bigger the value of irradiation received by cell at amount of 1000 W / m2, produce more output power cells at the same temperature.

  5. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect

    Lubin, Barry T.

    2012-02-02

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focused on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for

  6. Improving the effectiveness of photovoltaic devices by light guiding optical foils

    NASA Astrophysics Data System (ADS)

    Leiner, C.; Wenzl, F. P.; Sommer, C.; Peharz, G.

    2016-09-01

    A photovoltaic device comprising of areas which are partly covered by solar cells and a light guiding film is investigated. In particular results on the feasibility of combined daylighting and photovoltaic energy generation are presented. Optical simulations have been conducted for a device-design optimized to redirect most of perpendicular impinging light rays onto photovoltaic areas. Two application cases are investigated for integrating the photovoltaic device into windows and/or glazings in middle (northern) latitudes. The first application case deals with an overhead glazing and the second deals with a window integrated in a roof tilted by 30° towards south. For the latter case encouraging results have been derived. In particular it is calculated that during summer time more than 70% of the direct sunlight is absorbed by photovoltaic areas and less than 10% is transmitted. Consequently, effective shading in summer against direct sunlight can be achieved and most of the shaded solar irradiation can be used for photovoltaic energy conversion. In contrast, in winter time about 40% of the direct sunlight is transmitted through the device and enables decent daylighting.

  7. Photovoltaic effect in organic polymer-iodine complex

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Rembaum, A.

    1967-01-01

    Certain charge transfer complexes formed from organic polymers and iodine generate appreciable voltages at relatively low impedances upon exposure to light. These films show promise in applications requiring chemically and electrically stable films as detectors of optical radiation and as energy converters in photovoltaic cells.

  8. Organic photovoltaics: potential fate and effects in the environment.

    PubMed

    Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe F-X; Lenz, Markus

    2012-11-15

    In times of dwindling fossil fuels it is particularly crucial to develop novel "green" technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.

  9. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  10. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

  11. Low earth orbit environmental effects on the Space Station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, H. K.

    1988-01-01

    A summary of the low earth orbital environment, its impact on the photovoltaic power systems of the Space Station and the solutions implemented to resolve the environmental concerns or issues are described. Low earth orbital environment (LEO) presents several concerns to the photovoltaic power systems of the Space Station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the Space Station with the desired life are also summarized.

  12. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  13. Photovoltaic and photo-capacitance effects in ferroelectric BiFeO3 thin film

    NASA Astrophysics Data System (ADS)

    Biswas, Pranab Parimal; Chinthakuntla, Thirmal; Duraisamy, Dhayanithi; Nambi Venkatesan, Giridharan; Venkatachalam, Subramanian; Murugavel, Pattukkannu

    2017-05-01

    A polycrystalline BiFeO3 film on Pt/Ti/SiO2/Si was fabricated using the spin coating technique. The film shows diode-like characteristics with and without poling measured under dark conditions. However, it exhibits a switchable photovoltaic effect with light illumination under poled conditions. The measured photovoltaic effect revealed an open circuit voltage of ˜0.47 V and a short circuit current of 3.82 μA/cm2 under the illumination of 165 mW/cm2 irradiance. The studies clarified the dominant role of the depolarization field rather than the interface in the photovoltaic characteristics of the BiFeO3 film. Significantly, the photo-capacitance effect was demonstrated with a substantial enhancement in capacitance (˜45%) in Au/BiFeO3/Pt geometry, which could open up a new window for BiFeO3 applications.

  14. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    The basic mechanism associated with the photovoltaic phenomena observed in the R.F. sputtered BaTiO3/silicon system is presented. Series of measurements of short circuit photocurrents and open circuit photovoltage were made. The composition depth profiles and the interface characteristics of the BaTiO3/silicon system were investigated for a better understanding of the electronic properties. A Scanning Auger Microprobe combined with ion in depth profiling were used.

  15. Laterality patterns of brain functional connectivity: gender effects.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  16. Laterality Patterns of Brain Functional Connectivity: Gender Effects

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

  17. Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO3 Films.

    PubMed

    Lu, Zengxing; Li, Peilian; Wan, Jian-Guo; Huang, Zhifeng; Tian, Guo; Pan, Danfeng; Fan, Zhen; Gao, Xingsen; Liu, Jun-Ming

    2017-08-16

    Recently, the ferroelectric photovoltaic (FePV) effect has attracted great interest due to its potential in developing optoelectronic devices such as solar cell and electric-optical sensors. It is important for actual applications to realize a controllable photovoltaic process in ferroelectric-based materials. In this work, we prepared well-ordered microarrays based on epitaxially tetragonal BiFeO3 (T-BFO) films by the pulsed laser deposition technique. The polarization-dependent photocurrent image was directly observed by a conductive atomic force microscope under ultraviolet illumination. By choosing a suitable buffer electrode layer and controlling the ferroelectric polarization in the T-BFO layer, we realized the manipulation of the photovoltaic process. Moreover, based on the analysis of the band structure, we revealed the mechanism of manipulating the photovoltaic process and attributed it to the competition between two key factors, i.e., the internal electric field caused by energy band alignments at interfaces and the depolarization field induced by the ferroelectric polarization in T-BFO. This work is very meaningful for deeply understanding the photovoltaic process of BiFeO3-based devices at the microscale and provides us a feasible avenue for developing data storage or logic switching microdevices based on the FePV effect.

  18. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search.

    PubMed

    Constable, Merryn D; Becker, Stefanie I

    2017-03-27

    According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.

  19. Magnetic field effects in a polymer/fullerene blend photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Basham, James I.; Gundlach, David J.; Richter, Curt A.

    Organic photovoltaic (OPV) systems based on blends of conjugated polymers and fullerene derivatives have shown great promise for low-cost and efficient photovoltaic applications. Recent findings suggest that a weak external magnetic field can disturb the spin configuration of excited states and subsequently change properties of OPV cells such as photocurrent. These changes are referred to as magnetic field effects (MFEs). In order to have a better understanding of the underlying mechanisms responsible for the MFEs in polymer/fullerene blend photovoltaic systems, we fabricated poly-3-hexylthiophene (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) cells and carried out photovoltaic device performance and impedance spectroscopy measurements with and without an externally applied magnetic field. A significant reduction in short circuit current (JSC) as well as open circuit voltage (VOC) was observed with an applied magnetic field of a 0.1 tesla compared to those measured without a magnetic field under the same intensity of illumination. Impedance spectroscopy data gives insights into the influence of an external magnetic field on charge generation and recombination near normal photovoltaic operating conditions.

  20. Exchange striction driven magnetodielectric effect and potential photovoltaic effect in polar CaOFeS

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Lin, Lingfang; Zhang, Jun-Jie; Huang, Xin; An, Ming; Dong, Shuai

    2017-08-01

    CaOFeS is a semiconducting oxysulfide with a polar layered triangular structure. Here a comprehensive theoretical study has been performed to reveal its physical properties, including magnetism, electronic structure, phase transition, magnetodielectric effect, as well as optical absorption. Our calculations confirm the Ising-like G-type antiferromagnetic ground state driven by the next-nearest neighbor exchanges, which breaks the trigonal symmetry and is responsible for the magnetodielectric effect driven by exchange striction. In addition, a large coefficient of visible light absorption is predicted, which leads to promising photovoltaic effect with the maximum light-to-electricity energy conversion efficiency up to 24.2 % .

  1. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Rappe, Andrew M.

    2016-06-01

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI3 under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  2. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators.

    PubMed

    Tan, Liang Z; Rappe, Andrew M

    2016-06-10

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI_{3} under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  3. Angle-dependent photovoltaic effect in Al-Si multilayers

    NASA Astrophysics Data System (ADS)

    Kyarad, A.; Lengfellner, H.

    2005-10-01

    Al-Si multilayer stacks have been prepared by an alloying process from aluminum and silicon platelets. Irradiation of a stack with infrared to visible laser radiation generates photovoltaic signals depending on the angle of incidence of the laser beam with respect to the layer planes, with zero signal and a polarity reversal for beam and layers in parallel. Results are explained in terms of photoactive layers connected in series and symmetrically aligned along the stack axis. For light beams inclined with respect to the layer planes, asymmetry is introduced by fractional shadowing of photoactive regions due to the intransparent metallic layers.

  4. Effect of doping on photovoltaic characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Deepshikha

    2016-12-01

    Chemical doping of CVD grown graphene by introducing PTSA ( n-type) and NBD ( p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.

  5. The Effects of Enriched Neonatal Experiences Upon Later Cognitive Functioning

    ERIC Educational Resources Information Center

    Wachs, Theodore D.; Cucinotta, Pattiann

    1971-01-01

    The data reported in this small study confirm previous research indicating that early stimulation, though initially affecting human behavior, has little permanent effect upon later functioning. (Author/WY)

  6. Photovoltaic and photostrictive effects in lanthanum-modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Poosanaas, Patcharin

    Photostriction is the light induced strain in a material, arising from the combination of photovoltaic and converse-piezoelectric effects. The possibility of directly producing strain by light illumination, without any electrical lead wire connection, makes the photostrictive materials very attractive for potential usage in future generation wireless remote controlled micro-actuator and micro-sensor. However, for the fabrication of these devices, materials exhibiting higher photovoltaic effect and higher response speed must be developed. This research was aimed towards investigating the mechanism of photovoltaic effect, developing photostrictive materials with enhanced performance, and exploring the limits of the photostriction. A new model based on the optical nonlinearity in ferroelectrics having noncentric symmetry has been proposed to explain the mechanism of photovoltaic effect. This model provides a better understanding of photostrictive phenomenon and agrees well with the experimental measurements carried out on PLZT ceramics. Among the various processing routes attempted, coprecipitation route was found to be most suitable for the fabrication of PLZT ceramics. High purity homogeneous powders with stoichiometric compositions obtained from this method yielded compacts with high density, fine grain size and uniformly distributed dopants. These desirable properties resulted in enhancement of photostrictive response. Photovoltaic and photoinduced strain were found to increase with decreasing grain size and increasing relative density. The composition, especially near the morphotropic phase boundary (MPB) of PLZT ceramics, was optimized for photovoltaic characteristics. The maximum photocurrent was observed in tetragonal phase 4/48/52 PLZT, while the maximum photovoltage was observed in 5/54/46 PLZT, which is around the MPB of the PLZT phase diagram. The photostriction was found to be strongly influenced by the surface characteristics (namely, sample thickness

  7. The effect of lateral interaction on traffic flow

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; Kenz, A.

    2016-10-01

    We propose an extended cellular automaton model for traffic flow, taking into account lateral interactions with defects and between vehicles. The fundamental diagram for a given defects density on the road is studied. It is found that the plateau size increases linearly with the decreasing road width for little defects densities. Furthermore, the capacity increases linearly with the increasing road width. However, for a fixed road width, the capacity decreases exponentially with the increasing defects density. The lateral effects for non-mutual interactions between lanes and for the same maximal velocity is also investigated. It is found that the lateral effects on one lane are meaningful only when the density on the other lane is above the critical density. However, the lateral effects are always present if fast and slow lanes exist. Little differences have been found for the mutual interactions.

  8. Thermal effect on the morphology and performance of organic photovoltaics.

    PubMed

    Kawashima, Eisuke; Fujii, Mikiya; Yamashita, Koichi

    2016-09-29

    The morphology of organic photovoltaics (OPVs) is a significant factor in improving performance, and establishing a method for controlling morphology is necessary. In this study, we propose a device-size simulation model, combining reptation and the dynamic Monte Carlo (DMC) algorithm, to investigate the relationship between the manufacturing process, morphology, and OPV performance. The reptation reproduces morphologies under thermal annealing, and DMC showed morphology-dependence of performance: not only short-circuit current density but also open-circuit voltage had optimal interfacial areas due to competition between exciton dissociation and charge collection. Besides, we performed transient absorption spectroscopy of various BHJ morphologies under realistic conditions, which revealed prompt and delayed dynamics of charge generation-the majority of the charges were from excitons that were generated on interfaces and dissociated within a few picoseconds, and the others from excitons that migrated to interfaces and dissociated on the order of sub-nanoseconds.

  9. Effects of windblown dust on photovoltaic surface s on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Moinuddin, Alia M.

    1991-01-01

    Photovoltaic (PV) coverslip material was subjected to Maritan dust storm conditions using basaltic dust flowing through the Martian Surface Wind Tunnel at NASA-Ames. Initially dusted and clear coverslips were held at angles from 0 to 90 deg., and the dust laden wind velocity was varied from 20 to 97 m/s. Blowing dust was found to adhere more to the coverslips as the angle was increased. However, dust was partially cleared from surfaces that were initially dusted at substantially lower velocities in dust laden wind than in clear wind. Thus, an equilibrium amount of dust accumulated which was dependent only upon angle and wind velocity and not upon initial concentration of dust. Abrasion was also evident in the coverslips. It increased with wind velocity and angle of attack. It appears that an initial dust layer may help to protect PV surfaces from abrasion.

  10. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (Jsc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance.

  11. On the effects of lateral gauge misalignment in shocked targets.

    PubMed

    Appleby-Thomas, G J; Hazell, P J; Wood, D C; Wilgeroth, J M; Leighs, J A

    2012-06-01

    Plate-impact experiments have been used to interrogate the influence of gauge alignment on the shock response of wire-element lateral manganin stress gauges in PMMA and aluminium targets. Embedded gauges were progressively rotated relative to the target impact face. Peak stress and lateral gauge rise-times were found be proportional (negatively and positively, respectively) to the resolved angle of the embedded gauge element. However, lateral stress gradients behind the shock were found to be relatively insensitive to gauge alignment. In addition, investigation of the effects of release arrival showed no connection to either peak stress or behaviour behind the shock.

  12. On the effects of lateral gauge misalignment in shocked targets

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Wood, D. C.; Wilgeroth, J. M.; Leighs, J. A.

    2012-06-01

    Plate-impact experiments have been used to interrogate the influence of gauge alignment on the shock response of wire-element lateral manganin stress gauges in PMMA and aluminium targets. Embedded gauges were progressively rotated relative to the target impact face. Peak stress and lateral gauge rise-times were found be proportional (negatively and positively, respectively) to the resolved angle of the embedded gauge element. However, lateral stress gradients behind the shock were found to be relatively insensitive to gauge alignment. In addition, investigation of the effects of release arrival showed no connection to either peak stress or behaviour behind the shock.

  13. Effects of a continuous lateral turning device on pressure relief

    PubMed Central

    Do, Nam Ho; Kim, Deog Young; Kim, Jung-Hoon; Choi, Jong Hyun; Joo, So Young; Kang, Na Kyung; Baek, Yoon Su

    2016-01-01

    [Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites. PMID:27065531

  14. Effects of a continuous lateral turning device on pressure relief.

    PubMed

    Do, Nam Ho; Kim, Deog Young; Kim, Jung-Hoon; Choi, Jong Hyun; Joo, So Young; Kang, Na Kyung; Baek, Yoon Su

    2016-01-01

    [Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites.

  15. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (Ec) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (Vth) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current-voltage (I-V) characteristics Vth and Ec is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes Vth is reduced by about 30% in presence of SWCNT. The trap energy Ec also reduces in case of all the dyes. The relation between Vth, Ec and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  16. Photovoltaic effects as the physical basis of a new generation of microelectromechanical sensors and systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Oskolkov, Boris; Filonov, Oleg; Prussak, Nikolay

    2016-09-01

    The paper analyzes the prospects for the creation of a fundamentally new class of MEMS, which are based on the use of the photovoltaic effects of Dember, Kikoin - Noskov, photopiezoelectric effect in semiconductors for measuring various physical quantities. Different variants of designs of sensors, which are allowing their technical implementation without making fundamental changes in the existing technology have been reviewed. It is shown that the sensors based on photovoltaic effects are high-tech products, which is provided including extreme simplicity of the construction and technological route of their manufacture. An experiment proves the consistency was conducted photopiezoelectric effect and its use in sensor design based on it. The main problems that will require considerable effort on the part of developers and constructors of these products are likely to be associated with the processing of the output signal and increasing the sensitivity of the sensor to the measured physical quantities.

  17. Social Effectiveness Therapy for Children: Five Years Later

    ERIC Educational Resources Information Center

    Beidel, Deborah C.; Turner, Samuel M.; Young, Brennan J.

    2006-01-01

    Social Effectiveness Therapy for Children (SET-C) is a comprehensive behavioral treatment combining social skills training, peer generalization experiences, and individualized in vivo exposure for the treatment of social phobia in youth. SET-C results in positive treatment outcome and its effects are maintained at least 3 years later. In this…

  18. Effect of asymmetric deformation on capsule lateral migration

    NASA Astrophysics Data System (ADS)

    Nix, Stephanie; Imai, Yohsuke; Matsunaga, Daiki; Ishikawa, Takuji; Yamaguchi, Takami

    2013-11-01

    In a Stokes flow, lateral migration is the movement of a particle perpendicular to the flow direction due to the presence of a wall and/or shear gradient. Lateral migration has an effect on microscale flows in a number of fields. For example, in the cardiovascular system, the presence of a cell-free layer in blood vessels near the vessel wall is caused by the lateral migration away from the wall. In this study, we use the boundary integral method to investigate the wall-induced lateral migration of a capsule, which consists of a hyperelastic membrane enclosing an inner fluid. The boundary integral equation can be separated into two terms that represent contributions due to the capsule shape and wall. We find that the extent of the asymmetrical deformation of the capsule works to decrease the rate of migration perpendicular to the wall by up to 30% compared to the far-field analytical solution. Additionally, the effect of the asymmetrical deformation persists for distances up to ten times the capsule radius. Since the effect of asymmetrical deformation is only weakly dependent on the membrane properties, this type of analysis could be useful towards the understanding of lateral migration of other particles, such as drops and vesicles. Supported by JSPS Research Fellowships for Young Scientists.

  19. Lateral masking effects on contrast sensitivity in rats.

    PubMed

    Kurylo, Daniel D; Yeturo, Sowmya; Lanza, Joseph; Bukhari, Farhan

    2017-09-29

    Changes in target visibility may be produced by additional stimulus elements at adjacent locations. Such contextual effects may reflect lateral interactions of stimulus representations in early cortical areas. It has been reported that the organization of orientation preference found in primates and cats visual cortex differs from that found in rodents, suggesting functional distinctions across species. In order to examine effects of lateral interactions at a perceptual level, contrast sensitivity in rats was measured for Gabor patches masked by two additional patches. Rats responded to target onset, and perceptual indices were based upon reaction time distributions across levels of luminance contrast. It was found that contrast sensitivity of targets without lateral masks corresponded to levels previously reported. For all measurements, the presence of sustained lateral masks systematically reduced sensitivity to targets, demonstrating interference by adjacent elements across levels of contrast. Effects of mask orientation or separation were not observed. These results may reflect reported non-systematic topography of orientation tuning across the cortex in rodents. Results suggest that intrinsic lateral connections in early processing areas play a minimal role in stimulus integration for rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of lateral osteotomy on surgically assisted rapid maxillary expansion.

    PubMed

    Oliveira, T F M; Pereira-Filho, V A; Gabrielli, M A C; Gonçales, E S; Santos-Pinto, A

    2016-04-01

    This study aimed to assess the potential effects of two different osteotomy designs of the maxillary lateral wall on dental and skeletal changes after surgically assisted rapid maxillary expansion (SARME). Thirty adult patients were divided into two groups according to the lateral osteotomy design: group 1 (n=16) underwent lateral osteotomy performed in a horizontal straight fashion, and group 2 (n=14) underwent lateral osteotomy performed in parallel to the occlusal plane with a step at the zygomatic buttress. Cone beam computed tomography scans were obtained preoperatively (T1), immediately after expansion (T2), and 6 months after expansion (T3). Mixed analysis of variance (ANOVA) was used for the statistical analysis. The results showed no significant interaction effect between groups and time points. Therefore, maxillary expansion was effective in both groups. Statistically significant increases in all dental and skeletal measurements were observed immediately after expansion (P<0.001). Relapse of the nasal floor width, tipping of the supporting teeth, and an increase in root distance in molars occurred at T3 (P<0.05). In summary, the maxillary lateral osteotomy design did not influence the results of SARME, which occurred mainly through the inclination of maxillary segments.

  1. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.

    PubMed

    Groenendijk, Dirk J; Buscema, Michele; Steele, Gary A; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-10-08

    Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

  2. Pilot opinions of sampling effects in lateral-directional control

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Miller, G. E.

    1982-01-01

    Flight experiments with a microprocessor control system were conducted to determine the effects of variations in sampling parameters on several pilots' opinions of lateral-directional flying qualities. Princeton's variable-response research aircraft (VRA), which is equipped with a microprocessor based digital flight control system (Micro-DFCS), was the test vehicle. Two U.S. Navy pilots evaluated the effects of sampling rate, quantization, and pure time delay during tracking, approach, and landing. Aircraft carrier approach tasks were conducted using a Navy approach mirror. Acquisition and tracking of fixed objects on the ground provided additional information related to the Navy misson. The longitudinal controls were implemented with analog electronics, while the lateral-directional pilot inputs (stick and rudder) were fed to the Micro-DFCS, which commanded the ailerons and rudder. The conceptual relationship between the evaluation pilot's lateral-directional inputs, the flight computer, and the aircraft are illustrated.

  3. Effective deployment of photovoltaics in the Mediterranean countries: Balancing policy risk and return

    SciTech Connect

    Luethi, S.

    2010-06-15

    Although the Mediterranean region is blessed with abundant solar resources, photovoltaic energy currently represents a very small share of power production. In Germany however, a much less sunny country, the photovoltaic (PV) industry is booming. This country has become a front runner in the adoption of PV because of effective policy incentives. Based on a cross-case study analysis of the German, Spanish and Greek PV markets, this paper investigates factors determining the effectiveness of PV policies. Our analysis shows that, above a certain level of return, risk-related factors (such as policy instability and administrative hurdles) play a more important role in influencing investment decisions than return-related factors (such as the level of a feed-in tariff). (author)

  4. Contribution of Jahn-Teller and charge transfer excitations to the photovoltaic effect of manganite/titanite heterojunctions

    NASA Astrophysics Data System (ADS)

    Ifland, Benedikt; Hoffmann, Joerg; Kressdorf, Birte; Roddatis, Vladimir; Seibt, Michael; Jooss, Christian

    2017-06-01

    The effect of correlation effects on photovoltaic energy conversion at manganite/titanite heterojunctions is investigated. As a model system we choose a heterostructure consisting of the small polaron absorber Pr0.66Ca0.34MnO3 (PCMO) epitaxially grown on single-crystalline Nb-doped SrTi0.998Nb0.002O3 (STNO) substrates. The high structural and chemical quality of the interfaces is proved by detailed characterization using high-resolution transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) studies. Spectrally resolved and temperature-dependent photovoltaic measurements show pronounced contributions of both the Jahn-Teller (JT) excitations and the charge transfer (CT) transitions to the photovoltaic effect at different photon energies. A linear temperature dependence of the open-circuit voltage for an excitation in the PCMO manganite is only observed below the charge-ordering temperature, indicating that the diffusion length of the photocarrier exceeds the size of the space charge region. The photovoltaic response is compared to that of a heterojunction of lightly doped Pr0.05Ca0.95MnO3 (CMO)/STNO, where the JT transition is absent. Here, significant contributions of the CT transition to the photovoltaic effect set in below the Neel temperature. We conclude that polaronic correlations and ordering effects are essentials for photovoltaic energy conversion in manganites.

  5. Photovoltaic effect in YBa2Cu3O7-δ/Nb-doped SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Hao, F. X.; Zhang, C.; Liu, X.; Yin, Y. W.; Sun, Y. Z.; Li, X. G.

    2016-09-01

    The photovoltaic properties of YBa2Cu3O7-δ/Nb-doped SrTiO3 (SNTO) heterostructures were investigated systematically under laser irradiation of different wavelengths from 365 nm to 640 nm. A clear photovoltaic effect was observed, and the photovoltage Voc ranged from 0.1 V to 0.9 V depending on the wavelength. The Voc appeared under laser illumination with a photon energy of 2.4 eV, far below the band gap (3.2 eV) of Nb-doped SrTiO3. The temperature dependencies of the Voc and short-current density showed kinks near the structural phase transition of the Nb-doped SrTiO3. Our findings are helpful for understanding the photovoltaic effect in transition-metal oxide based heterojunctions and designing such photovoltaic devices.

  6. Assessing the Performance of the Photovoltaic Cells on the Effects of Yellow Dust Events and Haze in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Kim, Yong Pyo; Wee, DaeHyun

    2016-04-01

    We analyze the potential effects of the Asian yellow dust Events and haze on the performance of Korean photovoltaic systems. Particulate matters from the Asian yellow dust outbreaks in the deserts of Mongolia and northern China are typically transported to Korea. Haze is an atmospheric phenomenon where dust, smoke and other dry particles obscure the clarity of the sky. Hence, we conjecture that the effects of the Asian yellow dust and haze block the incident solar irradiance. The potential reduction of the solar spectral irradiance due to Asian yellow dust events and haze in Korea is investigated using a clear-sky spectral radiation model, and the performance of photovoltaic systems under reduced irradiance is estimated by using a simple analytic model representing typical photovoltaic cells. Comparison of photovoltaic performance under Asian dust events, haze and that under a clear condition is made to evaluate overall influence of the particulate air pollution, respectively.

  7. Lateral vibration effects in atomic-scale friction

    SciTech Connect

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E.; Gnecco, E.

    2014-02-24

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superimposed at finite temperature. Nevertheless, the peak values of the lateral force, and the total energy losses, are expected to increase with the excitation amplitude, which may limit the practical relevance of this effect.

  8. Classical ratchet effects in heterostructures with a lateral periodic potential

    NASA Astrophysics Data System (ADS)

    Olbrich, P.; Karch, J.; Ivchenko, E. L.; Kamann, J.; März, B.; Fehrenbacher, M.; Weiss, D.; Ganichev, S. D.

    2011-04-01

    We study terahertz radiation induced ratchet currents in low dimensional semiconductor structures with a superimposed one-dimensional lateral periodic potential. The periodic potential is produced by etching a grating into the sample surface or depositing metal stripes periodically on the sample top. Microscopically, the photocurrent generation is based on the combined action of the lateral periodic potential, verified by transport measurements, and the in-plane modulated pumping caused by the lateral superlattice. We show that a substantial part of the total current is caused by the polarization-independent Seebeck ratchet effect. In addition, polarization-dependent photocurrents occur, which we interpret in terms of their underlying microscopical mechanisms. As a result, the class of ratchet systems needs to be extended by linear and circular ratchets, sensitive to linear and circular polarizations of the driving electromagnetic force.

  9. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  10. Band alignment and photovoltaic effect of epitaxial α-PbO thin films

    NASA Astrophysics Data System (ADS)

    Majima, Eishi; Kozuka, Yusuke; Uchida, Masaki; Nakamura, Masao; Kawasaki, Masashi

    2015-07-01

    To explore a p-type semiconductor lattice-matched with perovskite transition-metal oxides, we have grown α-PbO(001) thin films on (Nb-doped) SrTiO3(001) and GdScO3(110) substrates by pulsed laser deposition. The photovoltaic effect in a Au/α-PbO/Nb:SrTiO3 heterojunction is enhanced compared with that in a Au/Nb:SrTiO3 Schottky junction. The band alignment is deduced from photocurrent action spectra. We conclude that α-PbO facilitates the separation of electron-hole pairs generated at the interface of the SrTiO3 side in the ultraviolet light region and of the α-PbO side in the visible light region. Our results indicate that α-PbO is a promising candidate for photovoltaic heterojunctions involving strongly correlated oxides.

  11. Surface states and photovoltaic effects in CdSe quantum dot films

    SciTech Connect

    Kronik, L.; Ashkenasy, N.; Leibovitch, M.; Fefer, E.; Shapira, Y.; Gorer, S.; Hodes, G.

    1998-05-01

    Photovoltaic effects in CdSe quantum dot (QD) films have been studied using surface photovoltage spectroscopy and complementary methods. The results show that, contrary to previous studies, nonnegligible electric fields can exist in QD films. As a result, driftlike currents must be considered, in addition to the well-known diffusion like currents. However, it is found that the specific case of photovoltage sign reversal, observed after etching highly quantized CdSe QD films, is governed by diffusion like transport. The latter is highly influenced by preferential trapping of one type of charge carrier. The preferential trapping is shown to be surface localized and is strongly ambient dependent. It is shown that the photovoltaic properties of these CdSe QD films are dominated by their surface state distribution.

  12. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite.

    PubMed

    Young, Steve M; Zheng, Fan; Rappe, Andrew M

    2012-12-07

    We compute the bulk photovoltaic effect (BPVE) in BiFeO(3) using first-principles shift current theory, finding good agreement with experimental results. Furthermore, we reconcile apparently contradictory observations: by examining the contributions of all photovoltaic response tensor components and accounting for the geometry and ferroelectric domain structure of the experimental system, we explain the apparent lack of BPVE response in striped polydomain samples that is at odds with the significant response observed in monodomain samples. We reveal that the domain-wall-driven response in striped polydomain samples is partially mitigated by the BPVE, suggesting that enhanced efficiency could be obtained in materials with cooperative rather than antagonistic interaction between the two mechanisms.

  13. Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance.

    PubMed

    Russo, Juan M; Zhang, Deming; Gordon, Michael; Vorndran, Shelby; Wu, Yuechen; Kostuk, Raymond K

    2014-03-10

    During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.

  14. Terahertz ratchet effects in graphene with a lateral superlattice

    NASA Astrophysics Data System (ADS)

    Olbrich, P.; Kamann, J.; König, M.; Munzert, J.; Tutsch, L.; Eroms, J.; Weiss, D.; Liu, Ming-Hao; Golub, L. E.; Ivchenko, E. L.; Popov, V. V.; Fateev, D. V.; Mashinsky, K. V.; Fromm, F.; Seyller, Th.; Ganichev, S. D.

    2016-02-01

    Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction.

  15. Basic photovoltaics

    SciTech Connect

    Zweibel, K.

    1984-01-01

    Here is a photovoltaics guide that converts highly technical information into language that can be understood by both scientists and non-scientists. It provides an introduction to solar cell technology, explaining how PV cells work, how they are manufactured, and how they are put together into effective energy-producing systems. The authors investigate a new PV technology based on an altered form of silicon capable of producing conversion efficiencies of 10% to 15%. They explain the PV effect, loss mechanisms, and advances in fabrication methods.

  16. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  17. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  19. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  20. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  1. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  2. Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors

    SciTech Connect

    King, D.L.; Kratochvil, J.A.; Boyson, W.E.

    1997-11-01

    Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation.

  3. Photovoltaic properties of polymer films

    NASA Astrophysics Data System (ADS)

    Reucroft, P. J.; Ullal, H.

    1980-03-01

    The effect of metal electrode and film thickness on the photovoltaic energy conversion efficiency in (1:1) mole ratio films of poly (N-vinylcarbazole) (PVK) and 2,4,7-trinitrofluorenone (TNF) has been investigated. Low work function metals increase the Schottky barrier height which leads to increases in the photovoltaic energy conversion efficiency. A ten-fold decrease in film thickness produces a thousand-fold increase in photovoltaic energy conversion efficiency. A theoretical model which assumes that the photovoltaic current is limited by Child's law predicts photovoltaic efficiencies which are in good agreement with the measured efficiencies.

  4. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  5. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  6. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  7. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1981-01-01

    The photoelectric effect in structures consisting of metal deposited barium titanate film silicon is described. A radio frequency sputtering technique is used to deposit ferroelectric barium titantate films on silicon and quartz. Film properties are measured and correlated with the photoelectric effect characteristics of the films. It was found that to obtain good quality pin hole free films, it is necessary to reduce the substrate temperature during the last part of the deposition. The switching ability of the device with internal applied voltage is improved when applied with a ferroelectric memory device.

  8. Photogalvanic and photovoltaic effects in systems based on metal complexes of Schiff bases

    NASA Astrophysics Data System (ADS)

    Smirnova, E. A.; Besedina, M. A.; Karushev, M. P.; Vasil'ev, V. V.; Timonov, A. M.

    2016-05-01

    The nature of the processes that occur when electrodes modified with complexes [M(Schiff)] (M = Ni, Pd, Pt; Schiff denotes four-dentate Schiff base ligands) are irradiated with visible light for the potential use of these electrodes in photoelectrochemical energy conversion devices is considered. The factors responsible for shifts in the electrode potential upon photoexcitation, i.e., the nature of the metal site, the nature of the substituents in the sensitizer, and the oxygen concentration are discussed. Tentative mechanisms of the photovoltaic effects observed for conventional and semiconductor electrodes modified with [M(Schiff)] complexes are determined.

  9. Update: Effective Load-Carrying Capability of Photovoltaics in the United States; Preprint

    SciTech Connect

    Perez, R.; Margolis, R.; Kmiecik, M.; Schwab, M.; Perez, M.

    2006-06-01

    This paper provides an update on the U.S. distribution of effective load-carrying capability (ELLC) for photovoltaics by analyzing recent load data from 39 U.S. utilities and time-coincident output of PV installations simulated from high-resolution, time/site-specific satellite data. Results show that overall regional trends identified in the early 1990s remain pertinent today, while noting a significant increase in PV ELCC in the western and northern United States, and a modest decrease in the central and eastern United States.

  10. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  11. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  12. Photovoltaic concepts inspired by coherence effects in photosynthetic systems.

    PubMed

    Brédas, Jean-Luc; Sargent, Edward H; Scholes, Gregory D

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder - structural and energetic - and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  13. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  14. Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots

    SciTech Connect

    Zhang, Y. Nagai, N.; Shibata, K.; Hirakawa, K.; Ndebeka-Bandou, C.; Bastard, G.

    2015-09-07

    We have observed a terahertz (THz) induced single electron photovoltaic effect in self-assembled InAs quantum dots (QDs). We used a single electron transistor (SET) geometry that consists of a single InAs QD and nanogap electrodes coupled with a bowtie antenna. Under a weak, broadband THz radiation, a photocurrent induced by THz intersublevel transitions in the QD is generated even when no bias voltage is applied to the SET. The observed single electron photovoltaic effect is due to an energy-dependent tunneling asymmetry in the QD-SET. Moreover, the tunneling asymmetry changes not only with the shell but also with the electron number in the QD, suggesting the manybody nature of the electron wavefunctions. The THz photovoltaic effect observed in the present QD-SET system may have potential applications to nanoscale energy harvesting.

  15. Evaluation of outcomes: the effects of continuous lateral rotational therapy.

    PubMed

    Washington, Georgita Tolbert; Macnee, Carol Leslie

    2005-01-01

    Research on continuous lateral rotational therapy (CLRT) has demonstrated mixed results, but there have been definite benefits described in its use for the prevention and treatment of nosocomial and ventilator-acquired pneumonia. Several studies have shown decreased hospital and intensive care unit costs and lengths of stay, and ventilator days when used appropriately. The intent of this study was to develop a protocol for initiating and discontinuing CLRT and to determine if the protocol would result in more effective and efficient use of this therapy.

  16. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  17. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics

    PubMed Central

    Yang, F.; Han, M. Y.; Chang, F. G.

    2015-01-01

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727

  18. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating.

    PubMed

    Buscema, Michele; Groenendijk, Dirk J; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-08-28

    In conventional photovoltaic solar cells, photogenerated carriers are extracted by the built-in electric field of a semiconductor PN junction, defined by ionic dopants. In atomically thin semiconductors, the doping level can be controlled by the field effect, enabling the implementation of electrically tunable PN junctions. However, most two-dimensional (2D) semiconductors do not show ambipolar transport, which is necessary to realize PN junctions. Few-layer black phosphorus (b-P) is a recently isolated 2D semiconductor with direct bandgap, high mobility, large current on/off ratios and ambipolar operation. Here we fabricate few-layer b-P field-effect transistors with split gates and hexagonal boron nitride dielectric. We demonstrate electrostatic control of the local charge carrier type and density in the device. Illuminating a gate-defined PN junction, we observe zero-bias photocurrents and significant open-circuit voltages due to the photovoltaic effect. The small bandgap of the material allows power generation for illumination wavelengths up to 940 nm, attractive for energy harvesting in the near-infrared.

  19. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics.

    PubMed

    Yang, F; Han, M Y; Chang, F G

    2015-06-23

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10(-8) mV at 50 K with a laser intensity of 502 mW/cm(2). Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface.

  20. Effects on Photovoltaic Performance of Dialkyloxy-benzothiadiazole Copolymers by Varying the Thienoacene Donor.

    PubMed

    Kini, Gururaj P; Oh, Sora; Abbas, Zaheer; Rasool, Shafket; Jahandar, Muhammad; Song, Chang Eun; Lee, Sang Kyu; Shin, Won Suk; So, Won-Wook; Lee, Jong-Cheol

    2017-04-12

    A series of four donor-acceptor alternating copolymers based on dialkyloxy-benzothiadiazole (ROBT) as an acceptor and thienoacenes as donor units were synthesized and tested for polymer solar cells (PSCs). These new polymers had different donor units with varied electron-donating ability (thieno[3,2-b]thiophene (TT), dithieno[3,2-b:2',3'-d]thiophene (DTT), benzo[1,2-b:4,5-b']dithiophene (BDT), and naphtha[1,2-b:5,6-b']dithiophene (NDT)) in the polymer backbone. To understand the effect of these thienoacenes on the optoelectronic and photovoltaic properties of the copolymers, we systematically analyzed and compared the energy levels, crystallinity, morphology, charge recombination, and charge carrier mobility in the resulting polymers. In this series, optimized photovoltaic cells yielded power conversion efficiency (PCE) values of 6.25% (TT), 9.02% (DTT), 6.34% (BDT), and 2.29% (NDT) with different thienoacene donors. The introduction of DTT into the thienoacene-ROBT polymer enabled the generation of well-ordered molecular packings with a π-π stacking distance of 3.72 Å, high charge mobilities, and an interconnected nanofibrillar morphology in blend films. As a result, the PSC employing the polymer with DTT exhibited the highest PCE of 9.02%. Thus, our structure-property relationship studies of thienoacene-ROBT-based polymers emphasize that the molecular design of the polymers must be carefully optimized to develop high efficient PSCs. These findings will help us to understand the impact of the donor thienoacene on the optoelectronic and photovoltaic performance of polymers.

  1. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  2. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    NASA Astrophysics Data System (ADS)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  3. Effects of lateralized light flash and color on unilateral neglect.

    PubMed

    Fan, Yang-Teng; Wu, Ching-Yi; Tsai, Wen-Chung; Lin, Keh-Chung

    2015-05-01

    Bottom-up-based sensory stimulation has been useful in promoting recovery from post-stroke neglect. Light and color are salient stimuli for guiding our orienting behaviors and influence the degree of spatial bias. This study evaluated the effects of lateralized light flash and color on spatial bias in unilateral neglect (UN). We enrolled 15 individuals with UN as a consequence of a right hemispheric stroke of less than 65 d. This was a 3 × 3 design study with three conditions of lens color (colorless, red, and blue) and three conditions of flash light locations (no flash, left, and right). All participants showed a decrease in ipsilesional spatial bias under left-side light flash and a red lens. Right-side light flash and a blue lens induced more rightward bias than other conditions. This evidence confirms the use of sensory stimulation to complement post-stroke UN remediation. Lateralized light flash to the contralesional space and red-colored lenses have beneficial effects on amelioration of UN, whereas ipsilesional light flash and the color blue may exacerbate ipsilesional spatial bias in stroke survivors with UN. Implications for Rehabilitation Contralesional light flash and the color red may ameliorate ipsilesional spatial bias in stroke survivors with unilateral neglect (UN). Ipsilesional flash of light and the color blue may worsen ipsilesional spatial bias in stroke survivors with UN.

  4. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    PubMed

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  5. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  6. Transport Effects on Capacitance-Frequency Analysis for Defect Characterization in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Wang, Jian; Hsu, Julia W. P.

    2016-12-01

    Using capacitance-frequency (C -f ) analysis to characterize the density-of-states (DOS) distribution of defects has been well established for inorganic thin-film photovoltaic devices. While C -f analysis has also been applied to bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices, we show that the low carrier mobility in the BHJ material can severely alter the C -f behaviors and lead to misinterpretations. Because of the complicated nature of disorders in organic materials, artifacts from an erroneous C -f analysis are difficult to identify. Here we compare drift-diffusion simulations with experiments to reveal situations when the validity of C -f analysis for defect characterization breaks down. When a flat-band region is present in the low-mobility active layer, the capacitive response cannot follow the electrical modulation and behaves as if the active layer is a dielectric at frequencies higher than the characteristic frequency determined by carrier mobility and thickness. The transition produces a fictitious shallow defect when defect analysis is applied. Even in fully depleted devices, the defect distributions derived from C -f analysis can appear at spuriously deeper energies if the mobility is too low. Through simulations, we determine the ranges of mobility and thickness for which the C -f analysis can effectively yield credible defect DOS information. Insight from this study also sheds light on transport limitation when using capacitance spectroscopy for defect characterization in general.

  7. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Yao, Kui; Wang, John

    2014-10-01

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In2O3-SnO2/ZnO/BiFeO3/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (Jsc) of 340 μA/cm2 and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n+-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  8. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Zheng, Fan; Young, Steve M.; Wang, Fenggong; Liu, Shi; Rappe, Andrew M.

    2016-08-01

    The bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorly understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.

  9. Analysis of mismatch and shading effects in a photovoltaic array using different technologies

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.

    2014-06-01

    In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.

  10. Effects of silicates from scaps of photovoltaic industries on powdery mildew of zucchini.

    PubMed

    Pugliese, M; Alvarez, M T Moreno; Gullino, M L; Garibaldi, A

    2012-01-01

    Silicon is the second most abundant element on earth's surface and its use can stimulate natural defense mechanisms in plants. The effect of silicate from scraps of photovoltaic industries against powdery mildew on zucchini (Cucurbita pepo) was evaluated under greenhouse conditions. Potted plants were inoculated with a spore suspension containing 1 x 10(5) cfu/ml. The following treatments have been carried out, 3 and 10 days after pathogen inoculation: chemical fungicide (propiconazole, TILT 25 EC, Syngenta); Bacillus subtilis (250 g/hl, Serenade, Intrachem); 1% and 0.1% sodium silicate (r = 1); 1% and 0.1% sodium silicate (r = 2); tap water as control. Disease incidence and severity were assessed 7, 14 and 21days after pathogen inoculation. Results showed that the application of 1% sodium silicate (r = 1) significantly reduced the powdery mildew to a level similar to chemical control. The other treatments, including Bacillus subtilis, reduced disease severity compared to water control, but were less efficient. The use of silicates from photovoltaic industries is a valid alternative for the control of powdery mildew on zucchini, in particular in organic farming. However, silicates might not be sufficient at higher disease incidence levels, and their use is more suitable within an integrated disease control strategy.

  11. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  12. Concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Dupas, A.

    1982-11-01

    Various configurations for concentrating photovoltaic systems are described and their operating principles are explained. The effects of temperature and series resistance on system efficiency are discussed. As an example, the french family of photovoltaic concentrating systems, SOPHOCLE, is described. The SOPHOCLE family of generators is characterized by the use of a heliostat with altazimuth mounting and by the choice of medium concentration (C=45) by fresnel lenses on silicon cells.

  13. Investigation of High-Voltage Photovoltaic Effect and Piezoeffect in Thin CdTe Films Depending on Their State,

    DTIC Science & Technology

    The article studies the dependence of the high-voltage photovoltaic effect (HVPVE) and piezoeffect on the state of the thin CdTe film crystalline ... structures . The properties of the macro- and microstructure of thin CdTe films with different polarities of the HVPVE are established. The change of

  14. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  15. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  16. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  17. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

  18. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  19. Beneficial effects of the aluminum alloy process as practiced in the photovoltaic device fabrication laboratory

    SciTech Connect

    Schubert, W.K.

    1995-07-01

    The aluminum alloy process implemented in Sandia`s Photovoltaic Device Fabrication Laboratory (PDFL) has major beneficial effects on the performance of commercial multicrystalline-silicon (mc-Si) substrates. Careful analysis of identically processed cells (except for the alloyed layer) in matched mc-Si substrates clearly indicates that the majority of the benefit arises from improved bulk minority carrier diffusion length. Based on spectral response measurements and PC-1D modeling the authors have observed improvements due to the alloy process of up to 400% in the average diffusion length in moderate-area cells and around 50% in large-area cells. The diffusion length is dramatically improved in the interior of the silicon grains in alloyed substrates, resulting in the majority of the recombination occurring at the grain boundaries and localized areas with high defect densities.

  20. Effects of expiration of the Federal energy tax credit on the National Photovoltaics Program

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Projected 1986 sales are significantly reduced as a direct result of system price increases following from expiration of the Federal energy tax credits. There would be greatly reduced emphasis on domestic electric utility applications. Indirect effects arising from unrealized economies of scale and reduced private investment in PV research and development (R&D) and in production facilities could have a very large cumulative adverse impact on the U.S. PV industry. The industry forecasts as much as fourfold reduction in 1990 sales if tax credits expire, compared with what sales would be with the credits. Because the National Photovoltaics Program is explicitly structured as a government partnership, large changes in the motivation or funding of either partner can affect Program success profoundly. Reduced industry participation implies that such industry tasks as industrialization and new product development would slow or halt. Those research areas receiving heavy R&D support from private PV manufacturers would be adversely affected.

  1. Effect of Isomeric Structures on Photovoltaic Performance of D-A Copolymers.

    PubMed

    Xie, Fangyuan; He, Dan; Pan, Han; Jiang, Jiaxing; Ding, Liming

    2017-06-01

    Two donor-acceptor copolymers based on isomeric acceptor units, [7,7'-bithieno[2',3':4,5]thieno[2,3-d]thieno[3,2-b]pyridine]-5,5'(4H,4'H)-dione (BTTP) and [2,2'-bithieno[2',3':4,5]thieno[2,3-d]thieno[3,2-b]pyridine]-5,5'(4H,4'H)-dione (iBTTP), are developed to study the effect of isomeric structures on photovoltaic performance. Compared with PBDTBTTP, PBDTiBTTP possesses a smaller bandgap for good light harvesting and a better π-π stacking for higher hole mobility. PBDTiBTTP solar cells present balanced mobilities and good nanoscale phase separation, giving a power conversion efficiency (PCE) of 6.51%, with higher short-circuit current (Jsc ) and fill factor (FF). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-01

    The internal quantum efficiency ( ϕ IQ) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ IQ can be experimentally decomposed into carrier formation ( ϕ CF) and carrier transfer ( ϕ CT) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ CF in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C61-butyric acid methyl ester blend film. We found that ϕ CF ( = 0.55 ) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ CF indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  3. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices.

    PubMed

    Wang, Jian; Xu, Liang; Lee, Yun-Ju; De Anda Villa, Manuel; Malko, Anton V; Hsu, Julia W P

    2015-11-11

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron-exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer doping low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. These understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.

  4. Degradation analysis of photovoltaic modules based on operational data: effects of seasonal pattern and sensor drifting

    NASA Astrophysics Data System (ADS)

    Li, X. Y.

    2016-08-01

    Degradation analysis of photovoltaic (PV) modules based on real operational data is essential to the future development of the PV industry. Weather conditions and system drifting often lead to large uncontrollable fluctuations in operational data, which present great challenges for calculating degradation rates of PV modules. In this paper, we propose a new numerical two-step approach to overcome these difficulties. In particular, we will show that our method is able to eliminate effects of seasonal patterns and systematic sensor drifting in evaluating degradation rates of PV modules. The method is applied to the six-year operational data of a solar PV system installed at CA United States. We demonstrate that our approach can greatly improve the degradation calculations, compared with other widely used methods.

  5. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (ϕ{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ{sub IQ} can be experimentally decomposed into carrier formation (ϕ{sub CF}) and carrier transfer (ϕ{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ϕ{sub CF} (=0.55) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  6. Emotion word recognition: discrete information effects first, continuous later?

    PubMed

    Briesemeister, Benny B; Kuchinke, Lars; Jacobs, Arthur M

    2014-05-20

    Manipulations of either discrete emotions (e.g. happiness) or affective dimensions (e.g. positivity) have a long tradition in emotion research, but interactive effects have never been studied, based on the assumption that the two underlying theories are incompatible. Recent theorizing suggests, however, that the human brain relies on two affective processing systems, one working on the basis of discrete emotion categories, and the other working along affective dimensions. Presenting participants with an orthogonal manipulation of happiness and positivity in a lexical decision task, the present study meant to test the appropriateness of this assumption in emotion word recognition. Behavioral and electroencephalographic data revealed independent effects for both variables, with happiness affecting the early visual N1 component, while positivity affected an N400-like component and the late positive complex. These results are interpreted as evidence for a sequential processing of affective information, with discrete emotions being the basis for later dimensional appraisal processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Effect of Lateralized Temporal Fringes on Fundamental Frequency Discrimination

    NASA Astrophysics Data System (ADS)

    Gockel, H.; Carlyon, R. P.; Micheyl, C.

    Fundamental frequency (FO) discrimination can be impaired substantially by the presence of another complex (the "fringe") immediately before and after the target complex. It has been shown [2] that for the impairment to occur (i) target and fringes have to be in the same frequency region; (ii) if all harmonics of target and fringes are unresolved then they may differ in F0; otherwise, they have to be similar. The present experiments investigated the effect of fringes lateralized differently from the target. In a 21-2AFC procedure, difference limens for FO for a 100-ms harmonic target complex were measured in the presence and absence of 200-ms harmonic fringes. The nominal FO was 88 Hz or 250 Hz. Stimuli were bandpass filtered between 125-625 Hz, 1375-1875 Hz, or 3900-5400 Hz. The target was presented monaurally, while the fringes were: (i) contralateral with the same level as the target, (ii) contralateral with a level increased by 20 dB, (iii) dichotic (ILD of +20 dB contralateral), (iv) diotic, and (v) ipsilateral. The effect of the fringes was reduced when their subjective location differed from that of the target. This reduction depended on the resolvability of both the fringes and the target. The results are consistent with the idea that the fringes produce interference when the listeners have difficulty segregating the target from the fringes.

  8. Laterality effects in cross-modal affective priming.

    PubMed

    Harding, Jennifer; Voyer, Daniel

    2015-08-25

    The present study pursued M. P. Bryden's legacy by investigating how contextual factors can affect laterality effects. Specifically, a cross-modal affective priming paradigm was used in two experiments to determine whether priming with facial expressions would affect responses to emotional sounds. Experiment 1 established that cross-modal priming could be obtained when presenting the emotional sounds binaurally by showing more accurate responses when prime and target were congruent than when they were incongruent, although this extended to response time only for the happy emotion. This priming effect justified Experiment 2, in which the priming paradigm was integrated into a dichotic listening task. The central finding of Experiment 2 was a congruency by ear interaction on number of correct reports, showing that presentation of a facial emotion congruent with a left target produced a large left ear advantage that was reduced when a right ear congruent prime or an incongruent pairing was used. Implications of these findings for emotion processing in the context of Bryden's legacy are discussed.

  9. Laterality effects for musical structure processing: a dichotic listening study.

    PubMed

    Hoch, Lisianne; Tillmann, Barbara

    2010-09-01

    Our study investigated hemispheric lateralization for musical structure processing using a dichotic listening paradigm with music and speech. Eight chord sequences and 8 spoken syllable sequences were simultaneously presented, each to 1 ear. For the musical sequences, the final chord was expected (i.e., tonic) or less expected (i.e., subdominant). In addition to tonal function, which was task irrelevant, we manipulated the final syllable and the final timbre of the sequences for the experimental task: Participants were asked to identify the final syllable (/di/, /du/) or the timbre of the final chord (Timbre A or B). Our experiment revealed a left-ear advantage for the tonal function effect on spoken syllable identification. For syllables presented to the right ear, identification was faster when the final chord of the musical sequence was a tonic chord rather than a subdominant chord (i.e., musical sequences presented to the left ear). The present finding extends the effect of musical structure previously observed for sung and visual syllable processing to spoken syllable processing. It further suggests a right-hemispheric specialization for the processing of musical structures in healthy listeners, as previously reported for split-brain patients (Tramo & Bharucha, 1991). Copyright 2010 APA, all rights reserved.

  10. The effects of bilateral presentations on lateralized lexical decision.

    PubMed

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-06-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the stage of the process in which the distractor is affecting the decision about the target; and third, to determine whether the interaction between the lexicality of the target and the lexicality of the distractor ("lexical redundancy effect") is due to facilitation or inhibition of lexical processing. Unilateral and bilateral trials were presented in separate blocks. Target stimuli were always underlined. Regarding our first goal, we found that bilateral presentations (a) increased the effect of visual hemifield of presentation (right visual field advantage) for words by slowing down the processing of word targets presented to the left visual field, and (b) produced an interaction between visual hemifield of presentation (VF) and target lexicality (TLex), which implies the use of different strategies by the two hemispheres in lexical processing. For our second goal of determining the processing stage that is affected by the distractor, we introduced a third condition in which targets were always accompanied by "perceptual" distractors consisting of sequences of the letter "x" (e.g., xxxx). Performance on these trials indicated that most of the interaction occurs during lexical access (after basic perceptual analysis but before response programming). Finally, a comparison between performance patterns on the trials containing perceptual and lexical distractors indicated that the lexical redundancy effect is mainly due to inhibition of word processing by pseudoword distractors.

  11. Effects of alcohol consumption on lateralized aggression in Anolis carolinensis.

    PubMed

    Deckel, A W

    1997-05-09

    Previous work has suggested that the lizard Anolis carolinensis, like many other reptiles, has a functionally split brain. Specifically, the left eye of this species projects primarily to the right hemisphere (and vice versa), there is no corpus callosum, and the physical placement of the eyes restricts their field(s) of vision to one region of hemispace. The current experiment used this preparation to examine the effect of alcohol administration and withdrawal on lateralized brain functioning during territorial aggression. Thirteen adult males were divided into control (CON) or alcohol (ETOH) groups. Baseline territorial aggression was assessed, following which ETOH subjects were then given twice daily solutions of 19% alcohol. After 19 days of ETOH consumption, territorial aggression was again assessed. Eye use during aggressive encounters was measured either following short periods (24 h) of alcohol withdrawal, or 90 m following alcohol consumption. Control subjects were found to have a predominance of left eye/right hemisphere-mediated aggressive responses, as has previously been reported. Alcohol withdrawn subjects were found to have a suppression of left eye/right hemisphere-mediated aggression. This reached statistical significance on several measures of aggression, including the number of dewlaps and headbob (P < 0.001) and the total number of aggressive responses (P = 0.001). Consumption of ETOH reversed this pattern and reinstated the normal pattern of left eye/right hemisphere dominance during aggression. Conversely, right eye/left hemisphere mediation of aggression was found to be increased, or not affected, during alcohol withdrawal, and to show no differences from CON following ETOH administration. Extrapolating from other recent findings in this species, these results suggest that the stress caused by ETOH withdrawal on the CNS may differentially effect the right hemisphere of the brain while having little effect on the left.

  12. The effect of lateral confinement on gravel bed river morphology

    NASA Astrophysics Data System (ADS)

    Garcia Lugo, G. A.; Bertoldi, W.; Henshaw, A. J.; Gurnell, A. M.

    2015-09-01

    In this paper, we use a physical modeling approach to explore the effect of lateral confinement on gravel bed river planform style, bed morphology, and sediment transport processes. A set of 27 runs was performed in a large flume (25 m long, 2.9 m wide), with constant longitudinal slope (0.01) and uniform grain size (1 mm), changing the water discharge (1.5-2.5 L/s) and the channel width (0.15-1.5 m) to model a wide range of channel configurations, from narrow, straight, embanked channels to wide braided networks. The outcomes of each run were characterized by a detailed digital elevation model describing channel morphology, a map of dry areas and areas actively transporting sediment within the channel, and continuous monitoring of the amount of sediment transported through the flume outlet. Analysis reveals strong relationships between unit stream power and parameters describing the channel morphology. In particular, a smooth transition is observed between narrow channels with an almost rectangular cross-section profile (with sediment transport occurring across the entire channel width) and complex braided networks where only a limited proportion (30%) of the bed is active. This transition is captured by descriptors of the bed elevation frequency distribution, e.g., standard deviation, skewness, and kurtosis. These summary statistics represent potentially useful indicators of bed morphology that are compared with other commonly used summary indicators such as the braiding index and the type and number of bars.

  13. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  14. Photovoltaic cell with thin CS layer

    SciTech Connect

    Jordan, J.F.; Albright, S.P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick CdS layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the CdS layer. 4 figures.

  15. Cost-effective applications of photovoltaics for electric utilities: An overview

    SciTech Connect

    Bigger, J.E.

    1993-12-31

    Cost targets for the large-scale entry of photovoltaic (PV) systems keep moving, subject to the vagaries of global oil prices and the economic health of the world. Over the last four decades since a practical PV device was announced, costs have come down by a factor of 20 or more and this downward trend is expected to continue, albeit at a slower pace. Simultaneously, conversion efficiencies have nearly tripled. There are many applications today for which PV is cost-effective. In recognition of this, utility interest in PV is increasing and this is manifested by projects such as PVUSA and Central and South West`s renewable resource development effort. While no major technical barriers for the entry of PV systems have been uncovered, several key issues such as power quality, system reliability, ramp rates, spinning reserve requirements, and misoperation of protection schemes will have to be dealt with as the penetration of this technology increases. PV is still in the evolutionary phase and is expected to grow for several decades to come. Fueled by environmental considerations, interest in PV is showing a healthy rise both in the minds of the public and in the planning realms of the electric power community. In recognition of this, the Energy Development Subcommittee of the IEEE Energy Development and Power Generation Committee organized a Panel Session on photovoltaics applications at the 1993 International Joint Power Generation Conference held in Kansas City, Missouri. Summaries of the four presentations are assembled here for the benefit of the readers of this Review.

  16. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    PubMed Central

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  17. Effect of Lateral Epicondylosis on Grip Force Development

    PubMed Central

    Chourasia, Amrish O.; Buhr, Kevin A.; Rabago, David P.; Kijowski, Richard; Irwin, Curtis B.; Sesto, Mary E.

    2012-01-01

    Introduction While it is well known that grip strength is adversely affected by lateral epicondylosis (LE), the effect of LE on rapid grip force generation is unclear. Purpose The purpose of this study was to evaluate the effect of LE on the ability to rapidly generate grip force. Methods Twenty-eight participants with LE (13 unilateral and 15 bilateral LE) and 13 healthy controls participated in this study. A Multi-Axis Profile dynamometer was used to evaluate grip strength and rapid grip force generation. The ability to rapidly produce force is comprised of the electromechanical delay and rate of force development. Electromechanical delay is defined as the time between the onset of electrical activity and the onset of muscle force production. The Patient Rated Tennis Elbow Evaluation (PRTEE) questionnaire was used to assess pain and functional disability. Magnetic resonance imaging was used to evaluate tendon degeneration. Results LE-injured upper extremities had lower rate of force development (−50 lbs/sec, CI [−17, −84]) and less grip strength (−7.8 lbs, CI [−3.3, −12.4]) than non-injured extremities. Participants in the LE group had a longer electromechanical delay (+59%, CI [29,97]) than controls. Peak rate of force development had a higher correlation (r=0.56)(p<0.05) with PRTEE function than grip strength (r=0.47) (p<0.05) and electromechanical delay (r=0.30)(p>0.05) for participants with LE. Conclusion In addition to a reduction in grip strength, those with LE had a reduction in rate of force development and an increase in electromechanical delay. Collectively, these changes may contribute to an increase in reaction time, which may affect risk for recurrent symptoms. These findings suggest that therapists may need to address both strength and rapid force development deficits in patients with LE. PMID:22137195

  18. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-10-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3-4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  19. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    NASA Astrophysics Data System (ADS)

    Allen, N.; Minor, R. L.; Pavao-Zuckerman, M.; Barron-Gafford, G.

    2016-12-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a "heat island" (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants likely alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated as latent or sensible heat because PV plants change the albedo, vegetation, and structure of the terrain. Prior synthetic work on the PVHI has been mostly theoretical or simulated models, and past empirical work has been limited in scope to a single biome. Thus, there are large uncertainties surrounding the potential for a PHVI effect, so we examined the PVHI in empirical and experimental terms. We found temperatures over a PV plant were regularly 3-4oC warmer than wildlands at night, which is in direct contrast to modeling studies suggesting PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  20. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    PubMed Central

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-01-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations. PMID:27733772

  1. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures.

    PubMed

    Barron-Gafford, Greg A; Minor, Rebecca L; Allen, Nathan A; Cronin, Alex D; Brooks, Adria E; Pavao-Zuckerman, Mitchell A

    2016-10-13

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a "heat island" (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3-4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  2. Review of the environmental effects of the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  3. Cost effective flat plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  4. Review of the environmental effects on the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low earth orbit (LEO), the interaction of this environment with the photovoltaic (PV) power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interaction of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  5. The photovoltaic effect and charge carrier mobility in layered compositions of bithiophene or related rotaxane copolymer with C70 fullerene derivative

    NASA Astrophysics Data System (ADS)

    Kostromin, S. V.; Malov, V. V.; Tameev, A. R.; Bronnikov, S. V.; Farcas, A.

    2017-02-01

    Organic photovoltaic cells with a bulk heterojunction have been manufactured in which the photoactive layer consists of a mixture of bithiophene copolymer or related rotaxane with a fullerene derivative (PC70BM). The mobility of charge carriers in photoactive layers has been determined, the current-voltage characteristics of photovoltaic cells have been measured, and the energy level diagram of cell components has been constructed. It is established that the polyrotaxane component (macrocycle) insulates a part of thiophene fragments of the macromolecule, thus hindering the transport of carriers and leading to large energy losses for exciton dissociation, which results in a decreasing photovoltaic effect.

  6. Cerebral Laterality Effects in the Dual Processing of Prose.

    ERIC Educational Resources Information Center

    Dean, Raymond S.

    1984-01-01

    The degree to which concreteness of prose material presented in an auditory fashion would interact with learners' lateral preference under different right hemispheric presentation conditions was investigated with 96 adults. Subjects recalled a greater number of ideas when the passage was concrete. Abstractness interacted with cerebral dominance.…

  7. The Effects of Bilateral Presentations on Lateralized Lexical Decision

    ERIC Educational Resources Information Center

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-01-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the…

  8. A laterality effect in isometric and isotonic labial tracking.

    PubMed

    Sussman, H M; Westbury, J R

    1978-09-01

    Hemispheric dominance for sensorimotor control of lip activity was investigated by use of a pursuit auditory tracking task. This task involves continuous frequency matching of a computer-generated target tone and a subject-controlled cursor tone. Thirty right-handed subjects were tested under isometric lip and hand control, and 20 right-handed subjects under isotonic lip control. Subjects tracked 10 1-min trials under each laterality condition--cursor/right ear, target/left ear, and vice versa. In both experiments tracking performance was better when the lip-controlled cursor tone was presented to the right ear (hence direct contralateral route to left hemisphere). A significant (p less than 0.05) cursor/right-ear advantage was found under isometric hand-tracking. Analysis routines examined relative laterality advantages across several time intervals within each 1-min trial. Consistent lateralization scores in favor of cursor/right-ear presentations (REAs) were independent of the time interval measured. For isometric tracking, 58% of subjects having laterality advantages (p less than 0.10) revealed REAs. For isotonic tracking, 71% of subjects revealed REAs. Implications of the latter finding are discussed relative to a left hemisphere mechanism specialized to integrate movement-generated auditory feedback with dynamic kinesthetic information from the articulators.

  9. Effects of moving cloud shadows on electric utilities with dispersed solar photovoltaic generation

    SciTech Connect

    Jewell, W.T.

    1986-01-01

    Residential utility-interactive solar photovoltaic (PV) generators were simulated throughout the southeast Tulsa, Oklahoma area. As cloud shadows pass over such PV systems, their generation varies with the incident solar radiation (insolation), and the electric utility must follow these changes with its own generators, similar to how it now follows continuous changes in electrical loads. A two-dimensional simulation of time-varying incident solar radiation was developed and used to study the effect of moving cloud shadows on the Public Service Company of Oklahoma (PSO) electric utility system, to which the PV generator were connected. The insolation simulation was first combined with a distribution feeder model to estimate possible changes in PV generation over several time periods. The insolation and feeder models were then used to provide data to the PSO power-flow simulation to estimate the effects on the PSO system. During the worst cumulus cloud pattern at peak-solar-radiation times, PSO will begin to see significant effects from the dispersed PV generation when PV installed penetration in southeast Tulsa reaches approximately 15% (when PV represents approximately 15% of the installed generation in southeast Tulsa.

  10. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  11. An Approximation of the Smoothing Effect on the Output Variation of Photovoltaic Generation Systems Installed Densely in a Bounded Area

    NASA Astrophysics Data System (ADS)

    Murata, Akinobu; Yamaguchi, Hiroshi; Otani, Kenji

    The purpose of this study is to propose a method to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area. This paper comprises two parts. The first part shows the result of analysis about output fluctuation, which is observed during four months in summer at ten groups of photovoltaic generation systems, located in AIST Tsukuba Central and totaling 844kW, and presents findings about a geographical smoothing effect on output fluctuation in the light of statistical characteristics such as the standard deviation of output variation and correlation factors between the output variations of different systems. The second part contains a mathematical modeling of a geographical smoothing effect in a bounded area based on the findings presented in the previous part and proposes a set of formulas to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area only using geometrical information about the area.

  12. Effect of row-to-row shading on the output of flat-plate south-facing photovoltaic arrays

    SciTech Connect

    Goswami, D.Y.; Hassan, A.Y.; Collis, J. ); Stefanakos, E.K. )

    1989-08-01

    When solar arrays (photovoltaic, thermal, etc.) are arranged in multiple rows of modules, all but the first row suffer reduction in (power) output, even when sufficient spacing between rows is provided. The reduction in output power occurs because the first row prevents some of the diffuse and reflected radiation from reaching the row directly behind it. This work presents estimates of the effect of shading on the amounts of solar radiation received by consecutive rows of flat-plate arrays.

  13. Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokhande, A. C.; Gurav, K. V.; Jo, Eunjin; He, Mingrui; Lokhande, C. D.; Kim, Jin Hyeok

    2016-04-01

    Copper tin sulfide (CTS) is an emerging candidate for solar application due to its favorable band gap and higher optical absorption coefficient. Kuramite-Tetragonal Cu3SnS4 (CTS) monodisperse nanoparticles are prepared by hot injection technique involving cost effective sulfate metal precursor source. A protocol for controlled crystal structure has been demonstrated by variation of cationic Cu:Sn ratio. The crystal structure, size, phase purity, atomic composition, oxidation state and optical properties of the nanoparticles are confirmed from X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and UV-visible spectroscopy, respectively. Hexagonal shaped particles within the size distribution of 7-9 nm with an optimal band gap of 1.28 eV are obtained. XPS study shows the Cu1+, Sn4+ and S2- oxidation states. The effects of influential factors such as metal precursor ratio, metal precursor source, reaction time, heating rate and solvents have been demonstrated systematically on the synthesis of CTS nanoparticles. The plausible mechanism of the formation of CTS nanoparticles has been proposed. The obtained results provide new insight for applying CTS nanoparticles in photovoltaic applications.

  14. Investigation of the effect of beta source and phosphors on photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yürük, Reyyan Kavak; Tütüncüler, Hayriye

    2017-02-01

    In this study, conversion of kinetic energy from the decay of a radioactive isotope to electricity is investigated by using the direct and the indirect conversion methods. In this context, simple nuclear battery models are designed. Analysis for the effect of low-activity radiation from Pm147 and Sr90 beta sources on photovoltaic Si solar cell is presented. Beta radioluminescence nuclear battery models consist of a beta source, a phosphor layer and a solar cell. Phosphor layers with different mass thicknesses are prepared from ZnS:CuCl and SrAl2O4:Eu2+,Dy3+ phosphors. Both the influence of beta sources and the phosphor layers on battery performance is analyzed separately. Effect of beta sources, phosphors are observed on solar cell by measuring the short circuit current and open circuit voltage. The efficiency of the battery models is determined with the obtained results. Furthermore, short circuit current values are analyzed at various times during the irradiation.

  15. Photothermoelectric and photovoltaic effects both present in MoS2

    PubMed Central

    Zhang, Youwei; Li, Hui; Wang, Lu; Wang, Haomin; Xie, Xiaomin; Zhang, Shi-Li; Liu, Ran; Qiu, Zhi-Jun

    2015-01-01

    As a finite-energy-bandgap alternative to graphene, semiconducting molybdenum disulfide (MoS2) has recently attracted extensive interest for energy and sensor applications. In particular for broad-spectral photodetectors, multilayer MoS2 is more appealing than its monolayer counterpart. However, little is understood regarding the physics underlying the photoresponse of multilayer MoS2. Here, we employ scanning photocurrent microscopy to identify the nature of photocurrent generated in multilayer MoS2 transistors. The generation and transport of photocurrent in multilayer MoS2 are found to differ from those in other low-dimensional materials that only contribute with either photovoltaic effect (PVE) or photothermoelectric effect (PTE). In multilayer MoS2, the PVE at the MoS2-metal interface dominates in the accumulation regime whereas the hot-carrier-assisted PTE prevails in the depletion regime. Besides, the anomalously large Seebeck coefficient observed in multilayer MoS2, which has also been reported by others, is caused by hot photo-excited carriers that are not in thermal equilibrium with the MoS2 lattice. PMID:25605348

  16. PASP Plus: An experiment to measure space-environment effects on photovoltaic power subsystems

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostic experiment (PASP Plus) was accepted as part of the APEX Mission payload aboard a Pegastar satellite to be orbited by a Pegasus launch vehicle in late 1992. The mission's elliptical orbit will allow us to investigate both space plasma and space radiation effects. PASP Plus will have eleven types of solar arrays and a full complement of environmental and interactions diagnostic sensors. Measurements of space-plasma interactions on the various solar arrays will be made at large negative voltages (to investigate arcing parameters) and at large positive voltages (to investigate leakage currents) by biasing the arrays to various levels up to -500 and +500 volts. The long-term deterioration in solar array performance caused by exposure to space radiation will also be investigated; radiation dosage will be measured by an electron/proton dosimeter included in the environmental sensor complement. Experimental results from PASP Plus will help establish cause-and-effect relationships and lead to improved design guidelines and test standards for new-technology solar arrays.

  17. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    SciTech Connect

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  18. Photovoltaic fundamentals

    SciTech Connect

    Pitchford, P.; Jones, J.; Glenn, B.; Cook, G.; Billman, L.; Adcock, R.

    1991-09-01

    This booklet describes how PV devices and systems work. It also describes the specific materials and devices that are most widely used commercially as of 1990 and those that have the brightest prospects. Students, engineers, scientists, and others needing an introduction to basic PV technology, and manufacturers and consumers who want more information about PV systems should find this booklet helpful. We begin with an overview and then explain the rudimentary physical process of the technology, the photovoltaic effect. Next, we consider how scientists and engineers have harnessed this process to generate electricity in silicon solar cells, thin-film devices, and high-efficiency cells. We then look at how these devices are incorporated into modules, arrays, and power-producing systems. We have written and designed this book so that the reader may approach the subject on three different levels. First, for the person who is in a hurry or needs a very cursory overview, in the margins of each page we generalize the important points of that page. Second, for a somewhat deeper understanding, we have provided ample illustrations, photographs, and captions. And third, for a thorough introduction to the subject, the reader can resort to reading the text.

  19. Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption

    NASA Astrophysics Data System (ADS)

    Tatapudi, Sai Ravi Vasista

    Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module’s glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60°C and 85°C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity

  20. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices

    NASA Technical Reports Server (NTRS)

    Cho, Pak S.; Goldhar, Julius; Lee, Chi H.; Saddow, Stephen E.; Neudeck, Philip

    1995-01-01

    The optoelectronic properties of high-resistivity p-type hexagonal silicon carbide (6H-SiC) have been investigated using lateral photoconductive switches. Both photovoltaic and photoconductive effects are reported, measured at 337 nm, which is above the 6H-SiC absorption edge. These photoconductive switches have been fabricated with dark resistances of up to 1 M omega; photoconductive switching efficiencies of more than 80% have been achieved. In addition, these devices displayed a high-speed photovoltaic response to nanosecond laser excitations in the ultraviolet spectral region; in particular, the observed photovoltaic response pulse width can be shorter than the exciting laser pulse width. This subnanosecond photovoltaic response has been modeled and good qualitative agreement with experiment has been obtained.

  1. Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures

    NASA Astrophysics Data System (ADS)

    Gao, Rongli; Fu, Chunling; Cai, Wei; Chen, Gang; Deng, Xiaoling; Cao, Xianlong

    2017-04-01

    BiFeO3 (BFO) thin films with different layers were deposited on Pt/Ti/SiO2/Si substrates via the sol-gel method, and the effect of nonuniform electric field formed by asymmetry electrodes on the photovoltaic properties has been investigated through experimental approaches. The Au/BFO/Pt heterostructures show 1.3 V open-circuit voltages and ˜0.242% photovoltaic power conversion efficiency when illuminated under sunlight (AM 1.5), this high efficiency is at least one order of magnitude larger than many other values thus far reported for BFO-based devices prepared by the spin coated method. The film layer dependence of the photovoltaic effect suggests that the large open-circuit voltage and high efficiency are contributed by both the ferroelectric polarization and the asymmetric structures formed by top and bottom electrodes. Theoretical analysis indicates that the efficiency may be further significantly improved by increasing the number of film layers and the nonuniform depolarization field, implying potential applications.

  2. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    SciTech Connect

    Jiang, Y. C.; Gao, J.

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed a reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.

  3. Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction

    PubMed Central

    An, Hyunji; Han, Jun Young; Kim, Bongjae; Song, Jaesun; Jeong, Sang Yun; Franchini, Cesare; Bark, Chung Wung; Lee, Sanghan

    2016-01-01

    Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1 eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500 nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350 nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications. PMID:27313099

  4. The effects of lunar dust accumulation on the performance of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Katzan, Cynthia M.; Brinker, David J.; Kress, Robert

    1991-01-01

    Lunar base activity, particularly rocket launch and landing, will suspend and transport lunar dust. From preliminary models, the resulting dust accumulation can be significant, even as far as 2 km from the source. For example, at 2 km approximately 0.28 mg/sq cm of dust is anticipated to accumulate after only 10 surface missions with a 26,800 N excursion vehicle. The possible associated penalties in photovoltaic array performance were therefore the subject of experimental as well as theoretical investigation. To evaluate effects of dust accumulation on relative power output, current-voltage characteristics of dust-covered silicon cells were determined under the illumination of a Spectrolab X-25L solar simulator. The dust material used in these experiments was a terrestrial basalt which approximated lunar soil in particle size and composition. Cell short circuit current, an indicator of the penetrating light intensity, was found to decrease exponentially with dust accumulation. This was predicted independently by modeling the light occlusion caused by a growing layer of dust particles. Moreover, the maximum power output of dust-covered cells, derived from the I-V curves, was also found to degrade exponentially. Experimental results are presented and potential implications discussed.

  5. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  6. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  7. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions

    PubMed Central

    Fontana, Marcio; Deppe, Tristan; Boyd, Anthony K.; Rinzan, Mohamed; Liu, Amy Y.; Paranjape, Makarand; Barbara, Paola

    2013-01-01

    Semiconducting molybdenum disulfphide has emerged as an attractive material for novel nanoscale optoelectronic devices due to its reduced dimensionality and large direct bandgap. Since optoelectronic devices require electron-hole generation/recombination, it is important to be able to fabricate ambipolar transistors to investigate charge transport both in the conduction band and in the valence band. Although n-type transistor operation for single-layer and few-layer MoS2 with gold source and drain contacts was recently demonstrated, transport in the valence band has been elusive for solid-state devices. Here we show that a multi-layer MoS2 channel can be hole-doped by palladium contacts, yielding MoS2 p-type transistors. When two different materials are used for the source and drain contacts, for example hole-doping Pd and electron-doping Au, the Schottky junctions formed at the MoS2 contacts produce a clear photovoltaic effect. PMID:23567328

  8. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions.

    PubMed

    Fontana, Marcio; Deppe, Tristan; Boyd, Anthony K; Rinzan, Mohamed; Liu, Amy Y; Paranjape, Makarand; Barbara, Paola

    2013-01-01

    Semiconducting molybdenum disulfphide has emerged as an attractive material for novel nanoscale optoelectronic devices due to its reduced dimensionality and large direct bandgap. Since optoelectronic devices require electron-hole generation/recombination, it is important to be able to fabricate ambipolar transistors to investigate charge transport both in the conduction band and in the valence band. Although n-type transistor operation for single-layer and few-layer MoS2 with gold source and drain contacts was recently demonstrated, transport in the valence band has been elusive for solid-state devices. Here we show that a multi-layer MoS2 channel can be hole-doped by palladium contacts, yielding MoS2 p-type transistors. When two different materials are used for the source and drain contacts, for example hole-doping Pd and electron-doping Au, the Schottky junctions formed at the MoS2 contacts produce a clear photovoltaic effect.

  9. Effects of Lateral Loads on a Single Pile

    NASA Astrophysics Data System (ADS)

    Phanikanth, V. S.; Choudhury, D.

    2012-09-01

    Design of piles under lateral loads requires estimation of ultimate load carrying capacity of the pile and also, the pile deflections need to be evaluated to determine the allowable loads. For estimating the pile response, structural engineers invariably utilize the simplified method prescribed in the Indian code IS 2911-2002 (Indian Standard Code of Practice for Design of Pile Foundations, 2002). The method is based on replacing the pile soil system by an equivalent cantilever, the length of which is a function of subgrade reaction of the surrounding soil and the pile geometry. However, the method described is applicable only for flexible piles, where the maximum depth coefficient L/ T is equal to or exceeds 4.0. To estimate the pile response for rigid piles, simplified procedures are not suggested and hence in the present study, an attempt has been made to evaluate the pile response under lateral loads using detailed soil-pile analysis. Parametric studies are carried out for various pile lengths and various soil stiffness. The pile responses thus obtained are compared with the method given in IS 2911-2002. It was observed that the pile response based on IS 2911-2002 compared reasonably well with the detailed soil-pile model even for L/ T ≥ 2.5. However IS 2911-2002 underestimates the pile head deflections for L/ T < 2.5 for both free headed and fixed head piles and hence detailed soil-pile analysis is essential for such situations. The variation of pile response with soil stiffness is also evaluated using these methods and the results are presented. The soil-pile analysis is carried out using subgrade modulus approach. The soil stiffness is assumed to vary linearly along the pile depth and hence the study is applicable for cohesionless soils which can be used for practical design of single pile subjected to lateral loads.

  10. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  11. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  12. Photovoltaic systems overview

    NASA Technical Reports Server (NTRS)

    Hesse, J. L.

    1981-01-01

    Selected photovoltaic systems currently under user-environment field test by the U.S. Department of Energy Photovoltaics Program are discussed, and operational results are summarized. There are many systems in the stand-alone sector that are cost effective now. As proven products become available, distributed residential, commercial, institutional and industrial on-site systems should be able to displace significant amounts of centrally-generated electricity throughout most of the United States. Finally, utilities should ultimately be able to augment their generating capacity with larger-scale systems. Field experience and industry interface has led to excellent overall product performance.

  13. Cost-effective flat-plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in thick films is extended to form a design guide for photovoltaic engineers. Details of the methods, techniques, and considerations that are used in the definition and analysis of light trapping photovoltaic panels are provided. Assumptions, sources of data, optical and cost modeling methods and the techniques used in the analysis are included. The ways to use light trapping are discussed, and methods are described to use simplified design and costing equations to predict performance and cost benefits. Four significant ways to use the findings presented are: a minimum design change module; an optimum packing factor module concept; roof or wall integrated panels; and modules using light trapping from cell grids. Finally, a design guide is included which shows how to construct photovoltaic modules to exploit light trapping. It is claimed that up to 20% improvements in standard module performance can be expected. (LEW)

  14. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films.

    PubMed

    Guo, Yiping; Guo, Bing; Dong, Wen; Li, Hua; Liu, Hezhou

    2013-07-12

    The diode and photovoltaic effects of BiFeO3 and Bi0.9Sr0.1FeO(3-δ) polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi0.9Sr0.1FeO(3-δ) thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.

  15. DNA-quantum dot sensing platform with combined Förster resonance energy transfer and photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Qi, Huijie; Wang, Lixiang; Wong, Ka-wai; Du, Zuliang

    2009-04-01

    A special DNA sensing platform based on a network of hybrid DNA-quantum dot system was designed and fabricated. Upon attachment of hybridized complementary DNA sequences, the molecular switch system can exhibit both photoinduced Förster resonance energy transfer (FRET) and photovoltaic (PV) effects simultaneously, but will give much weakened or no effect for the capture of hybridized products from "mismatched" DNA sequences. This dual sensing scheme based on combined FRET and PV effects can safeguard the accuracy of sensing, as FRET and PV can be singly induced even in the case of mismatch.

  16. Photovoltaic energy

    NASA Astrophysics Data System (ADS)

    1990-01-01

    In 1989, the U.S. photovoltaic industry enjoyed a growth rate of 30 percent in sales for the second year in a row. This sends a message that the way we think about electricity is changing. Instead of big energy projects that perpetuate environmental and economic damage, there is a growing trend toward small renewable technologies that are well matched to end-user needs and operating conditions. As demand grows and markets expand, investment capital will be drawn to the industry and new growth trends will emerge. The photovoltaic industry around the world achieved record shipments also. Worldwide shipments of photovoltaic (PV) modules for 1989 totaled more than 40 megawatts (MW), nearly a 20 percent increase over last year's shipments. The previous two years showed increases in worldwide shipments of 23 and 25 percent, respectively. If this growth rate continues through the 1990s, as industry back orders would indicate, 300 to 1000 MW of PV-supplied power could be on line by 2000. Photovoltaic systems have low environmental impact and they are inexpensive to operate and maintain. Using solid-state technology, PV systems directly convert sunlight to electricity without high-temperature fluids or moving parts that could cause mechanical failure. This makes the technology very reliable.

  17. Photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Boes, E. C.

    1980-01-01

    A status report on photovoltaic (PV) concentrators technology is presented. The major topics covered are as follows: (1) current PV concentrator arrays; designs, performances, and costs; (2) current PV concentrator array components; cells and cell assemblies, optical concentrators, support structures, tracking, and drive; (3) design of PV concentrator arrays; and (4) array manufacturing technology.

  18. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  19. The Immediate Effect of Lateral Wedge Insoles, With and Without a Subtalar Strap, on the Lateral Trunk Lean Motion in Patients With Knee Osteoarthritis

    PubMed Central

    Esfandiari, Elham; Kamyab, Mojtaba; Yazdi, Hamid Reza; Foroughi, Nasim; Sanjari, Mohammad Ali

    2013-01-01

    Background: Orthotic interventions for knee osteoarthritis (OA) aim to reduce mechanical loading on the medial compartment of the knee and may lessen the lateral trunk lean as the most important compensatory gait strategy. The lateral wedge insole is a known orthotic intervention for knee OA. However, the question whether the addition of a subtalar strap to the wedge improves its effect has not been addressed in the literature. Objective: To compare the effects of lateral wedge insoles, with and without a subtalar strap, on the lateral trunk lean in patients with knee OA. Methods: Twenty-three patients aged over 40 years, with grade I or II OA of the medial compartment of one knee, based on the American College of Rheumatology criteria, were included in this study. The patients were diagnosed with OA based on a clinical examination, and the diagnosis was confirmed with radiographs. A 3-dimensional motion measurement system was used to collect the gait data for 3 different conditions: (1) with no insole, (2) with a lateral wedge insole, and (3) with a lateral wedge insole and a subtalar strap. The immediate effect of the 3 test conditions on the lateral trunk lean was compared during a gait cycle a stance phase and at the point of midstance. Results: Based on the laboratory coordinate system, the 3 conditions had no significant effect on the lateral trunk lean during a gait cycle and a stance phase and at the point of midstance in patients with knee OA. Conclusion: The results of this study demonstrated that the lateral wedge insoles, with and without a subtalar strap, had no immediate effect on the lateral trunk lean in patients with knee OA. However, the long-term effect of lateral wedge insoles on the lateral trunk lean in these patients requires further investigation. PMID:24600533

  20. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  1. An investigation of the effect of wind cooling on photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1982-01-01

    Convective cooling of photovoltaic modules for different wind conditions, including steady state controlled testing in a solar simulator and natural test environments in a field was investigated. Analytical thermal models of different module designs were used to correlate experimental data. The applicability of existing heat transfer correlations is confirmed. Reasonable agreement is obtained by applying a power law wind profile.

  2. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.

    PubMed

    Heintges, Gaël H L; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-01-04

    The impact of branching in a diketopyrrolopyrrole polymer on the performance of polymer-fullerene photovoltaic cells is investigated. Compared to the linear polymer, the branched polymer affords a more finely dispersed fibrillar network in the photoactive layer and as a result a large enhancement of the photocurrent and power conversion efficiency.

  3. Acenes, Heteroacenes and Analogous Molecules for Organic Photovoltaic and Field Effect Transistor Applications

    NASA Astrophysics Data System (ADS)

    Granger, Devin Benjamin

    donor molecules for bulk heterojunction organic photovoltaics based on anthrathiophene and benzo[1,2-b:4,5-b']dithiophene central units like literature molecules containing fluorene and dithieno[2,3-b:2',3'-d]silole cores. The synthetic strategies of developing reduced symmetry benzo[1,2-b:4,5-b']dithiophene to study the effect of substitution around the central unit is also described. The optical and electronic properties of the donors and acceptors are described along with the performance and characteristics of devices employing these molecules. The final two data chapters focus on new nitrogen containing polycyclic hydrocarbons containing indolizine and (2.2.2) cyclazine units. The optical, electronic and other physical properties of these molecules are explored, in addition to the synthetic strategies for incorporating the indolizine and cyclazine units. By use of alkylsilylethynyl groups, crystal engineering was investigated for the benzo[2,3-b:5,6-b']diindolizine chromophore described in chapter 4 to target the 2-D "brick-work" packing motif for application in field effect transistor devices. Optical and electronic properties of the cyclazine end-capped acene molecules described in chapter 5 were investigated and described in relation to the base acene molecules. In both cases, density functional theory calculations were conducted to better understand unexpected optical properties of these molecules, which are like the linear acene series despite the non-linear attachment.

  4. A Test for Lateralization of the Mozart Effect.

    ERIC Educational Resources Information Center

    Bates, Angela; Cagle, Stacy; Rideout, Bruce

    The Mozart effect involves the enhancement of spatial processing after listening to a Mozart piano sonata (Rauscher, Dhaw, and Ky, 1993). Efforts to replicate the Mozart effect have been mixed, possibly due to differences in dependent variable operationalization across studies or large individual differences in magnitude of effect. Chabria and…

  5. Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Lentine, Anthony L.; Sweatt, William C.; Gupta, Vipin P.; Nelson, Jeffrey S.

    2012-06-01

    Current solar power systems using crystalline silicon wafers, thin film semiconductors (i.e., CdTe, amorphous Si, CIGS, etc.), or concentrated photovoltaics have yet to achieve the cost reductions needed to make solar power competitive with current grid power costs. To overcome this cost challenge, we are pursuing a new approach to solar power that utilizes micro-scale solar cells (5 to 20 μm thick and 100 to 500 μm across). These micro-scale PV cells allow beneficial scaling effects that are manifested at the cell, module, and system level. Examples of these benefits include improved cell performance, better thermal management, new module form-factors, improved robustness to partial shading, and many others. To create micro-scale PV cells we are using technologies from the MEMS, IC, LED, and other micro and nanosystem industries. To date, we have demonstrated fully back-contacted crystalline silicon (c-Si), GaAs, and InGaP microscale solar cells. We have demonstrated these cells individually (c-Si, GaAs), in dual junction arrangements (GaAs, InGaP), and in a triple junction cell (c-Si, GaAs, InGaP) using 3D integration techniques. We anticipate two key systems resulting from this work. The first system is a high-efficiency, flexible PV module that can achieve greater than 20% conversion efficiency and bend radii of a few millimeters (both parameters greatly exceeding what currently available flexible PV can achieve). The second system is a utility/commercial scale PV system that cost models indicate should be able to achieve energy costs of less than $0.10/kWh in most locations.

  6. Photovoltaic Systems Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Ali, Mir Shahed

    2010-11-01

    This thesis deals with the implementation of generalized photovoltaic model and integration of the same with 7-bus electrical utility system to evaluate the impact that the photovoltaic generator have on the utility system. Among all the impacts that the photovoltaic generator have on the utility system, voltage rise of the power distribution line at the position where the Photovoltaic generator is connected due to reverse power flow from the photovoltaic model has been one of the major problem. Therefore, this thesis proposes the steady-state simulations to evaluate the effectiveness of battery-integrated PV system on avoiding the over voltage problem. Further, fault analysis is done to study the effect of the PV model on the utility network during faults and it is deduced that the impact of the PV model on the utility system voltage during faults is nominal. The photovoltaic model/generator and the 7-bus utility system is developed using Matlab/Simulink software package. The developed photovoltaic model can be represented as PV cell, module or an array. The model is developed with icons that are easy to understand. The developed model takes into consideration cell's working temperature, amount of sunlight (irradiance) available, voltage of the circuit when the circuit is open and current of the circuit when it is shorted. The developed Photovoltaic model is then integrated with a Li-ion battery, over here battery serves two purposes first it will store the excess power from the Photovoltaic generator if any, during the day time and in night the battery acts as an generator and deliver the power to the utility or connected load with the help of an invertors.

  7. Communication Effectiveness of Individuals with Amyotrophic Lateral Sclerosis

    ERIC Educational Resources Information Center

    Ball, Laura J.; Beukelman, David R.; Pattee, Gary L.

    2004-01-01

    The purpose of this study was to examine the relationships among speech intelligibility and communication effectiveness as rated by speakers and their listeners. Participants completed procedures to measure (a) speech intelligibility, (b) self-perceptions of communication effectiveness, and (c) listener (spouse or family member) perceptions of…

  8. Communication Effectiveness of Individuals with Amyotrophic Lateral Sclerosis

    ERIC Educational Resources Information Center

    Ball, Laura J.; Beukelman, David R.; Pattee, Gary L.

    2004-01-01

    The purpose of this study was to examine the relationships among speech intelligibility and communication effectiveness as rated by speakers and their listeners. Participants completed procedures to measure (a) speech intelligibility, (b) self-perceptions of communication effectiveness, and (c) listener (spouse or family member) perceptions of…

  9. Perinatal dioxin exposure and later effects--a review.

    PubMed

    ten Tusscher, Gavin W; Koppe, Janna G

    2004-03-01

    Negative effects of perinatal exposure to background levels of dioxins and PCBs in Europe and the USA have been documented. Four facets of development are reviewed in this paper: 1. Brain development and thyroid hormone metabolism. 2. Hepatic effects. 3. Hematopoietic system effects. 4. Lung function. Effects on IQ and behaviour have been documented in children on both sides of the Atlantic Ocean. Non-dioxin-like PCBs, measured in maternal and cord blood and current plasma samples have been implicated. Interference with thyroid hormone metabolism in the mother, in the foetus and in the newborn baby could be responsible for these effects on brain development. During early gestation the foetus is completely dependent on maternal thyroxine (T4). Lower T4 levels in the mother, caused by dioxins and PCBs, might negatively influence (early) brain development. It is plausible that the intrauterine dependency on maternal T4 and the high T4 need shortly after birth makes both these periods vulnerable for environmental influences. Effects of dioxin exposure on thyroid hormone metabolism have been described in the period shortly after birth. These effects are no longer found after two years of age indicating a transient effect. In animal studies, in utero exposure has led to effects on brain development due to abnormal induction of liver enzymes. This induction resulted in lower testosterone and estrogen levels, interfering with brain development in the vulnerable period of language development and the development of visuo-spatial abilities. In humans this developmental period occurs around the thirtieth week of pregnancy. Follow-up studies in puberty and adolescence of the different cohorts studied is necessary to evaluate these negative influences. Damaging effects on the liver found shortly after birth have proven to be transient. Effects on the haematopoietic system are clear immediately after birth, for instance on white blood cells and thrombocytes. An increase in

  10. Lateral topography for reducing effective dose in low-dose chest CT.

    PubMed

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p < 0.001). The mean effective radiation dose for the lateral topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  11. Sex Specific Effect of Prenatal Testosterone on Language Lateralization in Children

    ERIC Educational Resources Information Center

    Lust, J. M.; Geuze, R. H.; Van de Beek, C.; Cohen-Kettenis, P. T.; Groothuis, A. G. G.; Bouma, A.

    2010-01-01

    Brain lateralization refers to the division of labour between the two hemispheres in controlling a wide array of functions and is remarkably well developed in humans. Based on sex differences in lateralization of handedness and language, several hypotheses have postulated an effect of prenatal exposure to testosterone on human lateralization…

  12. Sex Specific Effect of Prenatal Testosterone on Language Lateralization in Children

    ERIC Educational Resources Information Center

    Lust, J. M.; Geuze, R. H.; Van de Beek, C.; Cohen-Kettenis, P. T.; Groothuis, A. G. G.; Bouma, A.

    2010-01-01

    Brain lateralization refers to the division of labour between the two hemispheres in controlling a wide array of functions and is remarkably well developed in humans. Based on sex differences in lateralization of handedness and language, several hypotheses have postulated an effect of prenatal exposure to testosterone on human lateralization…

  13. Proceedings of the 15th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila (Compiler)

    2004-01-01

    Reports from the 15th Space Photovoltaic Research and Technology Conference included topics on space solar cell research, space photovoltaics, multibandgap cells,thermophotovoltaics,flight experiments, environmental effects; calibration and characterization; and photovoltaics for planetary surfaces.

  14. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  15. Photovoltaic fabrics

    DTIC Science & Technology

    2015-04-22

    during wire fabrication. Weaving was demonstrated for both military-type nylon -cotton blend (NYCO) warp fibers and cotton-polyester warp fibers. A...Lowell, MA 01852 14. ABSTRACT This report describes a project to improve photovoltaic fabrics. It had four objectives: 1) Efficiency – make PV wires on...a continuous basis that exhibit 7% efficiency; 2) Automated Welding – demonstrate an automated means of interconnecting the electrodes of one wire

  16. Polarity correspondence effect between loudness and lateralized response set

    PubMed Central

    Chang, Seah; Cho, Yang Seok

    2015-01-01

    Performance is better when a high pitch tone is associated with an up or right response and a low pitch tone with a down or left response compared to the opposite pairs, which is called the spatial-musical association of response codes effect. The current study examined whether polarity codes are formed in terms of the variation in loudness. In Experiments 1 and 2, in which participants performed a loudness-judgment task and a timbre-judgment task respectively, the correspondence effect was obtained between loudness and response side regardless of whether loudness was relevant to the task or not. In Experiments 3 and 4, in which the identical loudness- and timbre-judgment tasks were conducted while the auditory stimulus was presented only to the left or right ear, the correspondence effect was modulated by the ear to which the stimulus was presented, even though the effect was marginally significant in Experiment 4. The results suggest that loudness produced polarity codes that influenced response selection (Experiments 1 and 2), and additional spatial codes provided by stimulus position modulated the effect, generating the stimulus eccentricity effect (Experiments 3 and 4), which is consistent with the polarity correspondence principle. PMID:26052305

  17. Effects of later-occurring nonlinguistic sounds on speech categorization.

    PubMed

    Wade, Travis; Holt, Lori L

    2005-09-01

    Nonspeech stimuli influence phonetic categorization, but effects observed so far have been limited to precursors' influence on perception of following speech. However, both preceding and following speech affect phonetic categorization. This asymmetry raises questions about whether general auditory processes play a role in context-dependent speech perception. This study tested whether the asymmetry stems from methodological issues or genuine mechanistic limitations. To determine whether and how backward effects of nonspeech context on speech may occur, one experiment examined perception of CVC words with [ga]-[da] series onsets followed by one of two possible embedded tones and one of two possible final consonants. When the tone was separated from the target onset by 100 ms, contrastive effects of tone frequency similar to those of previous studies were observed; however, when the tone was moved closer to the target segment assimilative effects were observed. In another experiment, contrastive effects of a following tone were observed in both CVC words and CV nonwords, although the size of the effects depended on syllable structure. Results are discussed with respect to contrastive mechanisms not speech-specific but operating at a relatively high level, taking into account spectrotemporal patterns occurring over extended periods before and after target events.

  18. Zero temperature coefficient of resistivity induced by photovoltaic effect in Y Ba2Cu3O6.96 ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Han, Mengyuan; Chang, Fanggao

    2015-01-01

    I-V characteristics of YBCO-Ag system under blue laser (λ = 450 nm) illumination were studied from 100 to 300 K and obvious photovoltaic effects were observed. All the I-V curves in the temperature range intersect at a point in the first quadrant while the laser points to the cathode electrode, indicating a zero temperature coefficient of resistivity. This implies that the outputting voltage keeps constant in a broad temperature range when a critical bias current is assigned. The intersection points of different laser intensities fall in a straight line, the slope of which (Rc) is independent of temperature and laser intensity.

  19. Five Years Later: Achieving Professional Effectiveness to Move Neurorehabilitation Forward

    PubMed Central

    2013-01-01

    The AOTA Centennial Vision outlined in 2007 challenged the occupational therapy profession to become a “powerful, widely recognized, science-driven, and evidence-based” profession that could adapt to changing societal and cultural needs and flourish well into the future. That challenge can be met by simply being effective at what we do; this will increase our value and validate our worth. Neurorehabilitation in occupational therapy can also thrive if we verify that the interventions we use and the strategies we implement are grounded in evidence. Professional effectiveness will emerge by (1) increasing the dissemination of research that supports the methods we use and informs others of the successful patient outcomes we achieve and (2) expanding development and validation of instruments that quantitatively and qualitatively measure functional outcomes. Occupational therapists can individually develop professional effectiveness by fostering greater academic–clinical alliances, objectifying evaluation and intervention methods, and preparing future practitioners appropriately for evidence-driven practice. PMID:23968801

  20. Comparison of Therapeutic Effect of Extracorporeal Shock Wave in Calcific Versus Noncalcific Lateral Epicondylopathy

    PubMed Central

    Park, Jong Wook; Hwang, Ji Hye; Choi, Yoo Seong

    2016-01-01

    Objective To assess the therapeutic effect of extracorporeal shock wave therapy (ESWT) in lateral epicondylopathy with calcification, and compare it to the effect of ESWT in lateral epicondylopathy without calcification. Methods A retrospective study was conducted. Forty-three patients (19 with calcific and 24 with noncalcific lateral epicondylopathy in ultrasound imaging) were included. Clinical evaluations included the 100-point score, Nirschl Pain Phase scale before and after ESWT, and Roles and Maudsley (R&M) scores after ESWT. ESWT (2,000 impulses and 0.06–0.12 mJ/mm2) was performed once a week for 4 weeks. Results The 100-point score and Nirschl Pain Phase scale changed significantly over time (p<0.001), but there was no significant difference between groups (p=0.555). The R&M scores at 3 and 6 months after ESWT were not significantly different between groups. In the presence of a tendon tear, those in the calcific lateral epicondylopathy group showed poor improvement of 100-point scores compared to the noncalcific group (p=0.004). Conclusion This study demonstrated that the therapeutic effect of ESWT in calcific lateral epicondylopathy was not significantly different from that in noncalcific lateral epicondylopathy. When a tendon tear is present, patients with calcific lateral epicondylopathy might show poor prognosis after ESWT relative to patients with noncalcific lateral epicondylopathy. PMID:27152280

  1. Free School Fruit--Sustained Effect 1 Year Later

    ERIC Educational Resources Information Center

    Bere, E.; Veierod, M. B.; Bjelland, M.; Klepp, K.-I.

    2006-01-01

    This study reports the effect of a school-randomized fruit and vegetable intervention consisting of a subscription to the Norwegian School Fruit Programme at no parental cost, and the Fruit and Vegetables Make the Marks (FVMM) educational programme, both delivered in the school year of 2001-02. Nine randomly chosen schools received the…

  2. Transposed-Letter and Laterality Effects in Lexical Decision

    ERIC Educational Resources Information Center

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  3. Lateralization effects in reading pointed and unpointed Hebrew.

    PubMed

    Koriat, A

    1985-05-01

    Hebrew has two forms of spelling, pointed and unpointed. In the pointed spelling, diacritical signs (pointing) are added to consonantal letters to convey vowel information. These are omitted in the unpointed spelling. Since pointing conveys information that is critical for the prelexical derivation of phonology, it was hypothesized that its absence would prove detrimental for left hemisphere (LH) but not for right hemisphere (RH) reading and that, for the former, pointing effects would increase with increasing word length. Three experiments, one involving lexical decision and two involving word pronunciation, yielded little support for these hypotheses; rather, pointing had an overall adverse effect on performance, and this effect tended to be more pronounced for LH reading. In general, however, the results indicated an LH advantage. Since for central vision pointing has been found to aid performance under similar conditions, the results were seen to suggest a distinction between the visual and the phonological effects of pointing: pointing may impair early stages of visual analysis but may aid in the derivation of speech codes.

  4. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Goh, Chiatzun; Scully, Shawn R.; McGehee, Michael D.

    2007-06-01

    We have systematically investigated the effects of surface modification of titania (TiO2) in hybrid TiO2/regioregular poly(3-hexylthiophene) (P3HT) photovoltaic cells. By employing a series of para-substituted benzoic acids with varying dipoles and a series of multiply substituted benzene carboxylic acids, the energy offset at the TiO2/polymer interface and thus the open-circuit voltage of devices can be tuned systematically by 0.25 V. Transient photovoltage measurements showed that the recombination kinetics was dominated by charge carrier concentration in these devices and were closely associated with the dark current. The saturated photocurrent of TiO2/P3HT devices exhibited more than a twofold enhancement when molecular modifiers with large electron affinity were employed. The ability of modifiers to accept charge from polymers, as revealed in photoluminescence quenching measurement with blends of polymers, was shown to be correlated with the enhancement in device photocurrent. A planar geometry photoluminescence quenching measurement showed that TiO2 substrates modified by these same molecules that accept charge quenched more excitons in regioregular P3HT than bare TiO2 surfaces. An exciton diffusion length in P3HT as large as 6.5-8.5 nm was extracted. By measuring the external quantum efficiency (EQE) of working devices, it was found that all of the excitons that were quenched were accountable as extracted photocurrent. EQE was effectively increased from 5% to 10%-14% with certain surface modifiers; consequently exciton harvesting was more than doubled. The use of ruthenium (II) sensitizing dyes with good exciton harvesting property coupled with suppression of the recombination kinetics improved the efficiency of optimized bilayer TiO2/P3HT devices from 0.34% to 0.6% under AM 1.5 solar illuminations. The implication of this work is directly relevant to the design of nanostructured bulk heterojunction inorganic-organic cells, in which efficient exciton

  5. Photovoltaic effects of CdS and PbS quantum dots encapsulated in zeolite Y.

    PubMed

    Kim, Hyun Sung; Jeong, Nak Cheon; Yoon, Kyung Byung

    2011-12-06

    Zeolite Y films (0.35-2.5 μm), into which CdS and PbS quantum dots (QDs) were loaded, were grown on ITO glass. The CdS QD-loaded zeolite Y films showed a photovoltaic effect in the electrolyte solution consisting of Na(2)S (1 M) and NaOH (0.1 M) with Pt-coated F-doped tin oxide glass as the counter electrode. In contrast, the PbS QD-loaded zeolite Y films exhibited a negligible PV effect. This contrasting behavior was proposed to arise from the large difference in driving force for the electron transfer from S(2-) in the solution to the hole in the valence band of QDs, with the former being much larger (~2 eV) than the latter (~1 eV). In the case of CdS QD-loaded zeolite Y with a loaded amount of CdS of 6.3 per unit cell, the short circuit current, open circuit voltage, fill factor, and efficiency were 0.3 mA cm(-2), 423 V, 28, and 0.1%, respectively, under the AM 1.5, 100 mW cm(-2) condition. This cell was stable for more than 18 days of continuous measurements. A large (3-fold) increase in overall efficiency was observed when PbS QD-loaded zeolite Y on ITO glass was used as the counter electrode. This phenomenon suggests that the uphill electron transfer from ITO glass to S in the solution is facilitated by the photoassisted pumping of the potential energy of the electron in ITO glass to the level that is higher than the reduction potential of S by PbS QDs. Under this condition, the incident-photon-to-current conversion efficiency (IPCE) value at 398 nm was 42% and the absorbed-photon-to-current conversion efficiency (APCE) value at 405 nm was 82%. The electrolyte-mediated interdot charge transport within zeolite films is concluded to be responsible for the overall current flow. © 2011 American Chemical Society

  6. Field verification of lateral-torsional coupling effects on rotor instabilities in centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Wachel, J. C.; Szenasi, F. R.

    1980-01-01

    Lateral and torsional vibration data obtained on a centrifugal compressor train which had shaft instabilities and gear failures is examined. The field data verifies that the stability of centrifugal compressors can be adversely affected by coincidence of torsional natural frequencies with lateral instability frequencies. The data also indicates that excitation energy from gear boxes can reduce stability margins if energy is transmitted either laterally or torsionally to the compressors. The lateral and torsional coupling mechanisms of shaft systems is discussed. The coupling mechanisms in a large industrial compressor train are documented and the potential effect on rotor stability is demonstrated. Guidelines are set forth to eliminate these potential problems by minimizing the interaction of torsional and lateral responses and their effect on rotor stability.

  7. Effect of diffusion of light on thin-film photovoltaic laminates

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Wittkopf, Stephen K.

    A large fraction of the daylight incident on building-integrated photovoltaic (BIPV) laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV) laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters.

  8. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics

    PubMed Central

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340

  9. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  10. Effect of Diels-Alder Reaction in C60-Tetracene Photovoltaic Devices.

    PubMed

    Proudian, Andrew P; Jaskot, Matthew B; Lyiza, Christelle; Diercks, David R; Gorman, Brian P; Zimmerman, Jeramy D

    2016-10-12

    Developing organic photovoltaic materials systems requires a detailed understanding of the heterojunction interface, as it is the foundation for photovoltaic device performance. The bilayer fullerene/acene system is one of the most studied models for testing our understanding of this interface. We demonstrate that the fullerene and acene molecules chemically react at the heterojunction interface, creating a partial monolayer of a Diels-Alder cycloadduct species. Furthermore, we show that the reaction occurs during standard deposition conditions and that thermal annealing increases the concentration of the cycloadduct. The cycloaddition reaction reduces the number of sites available at the interface for charge transfer exciton recombination and decreases the charge transfer state reorganization energy, increasing the open circuit voltage. The submonolayer quantity of the cycloadduct renders it difficult to identify with conventional characterization techniques; we use atom probe tomography to overcome this limitation while also measuring the spatial distribution of each chemical species.

  11. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Lee, Hee Jae; Lee, Seung Joo; Kim, Hyo Min; Seo, Gi Jun; Youn, Jun Ho; Jang, Jin

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of -6.14 mA/cm(2) along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV.

  12. Lateralized goal framing: how selective presentation impacts message effectiveness.

    PubMed

    McCormick, Michael; Seta, John J

    2012-11-01

    We tested whether framing a message as a gain or loss would alter its effectiveness by using a dichotic listening procedure to selectively present a health related message to the left or right hemisphere. A significant goal framing effect (losses > gains) was found when right, but not left, hemisphere processing was initially enhanced. The results support the position that the contextual processing style of the right hemisphere is especially sensitive to the associative implications of the frame. We discussed the implications of these findings for goal framing research, and the valence hypothesis. We also discussed how these findings converge with prior valence framing research and how they can be of potential use to health care providers.

  13. Effects of Social Development Intervention in Childhood Fifteen Years Later

    PubMed Central

    Hawkins, J. David; Kosterman, Rick; Catalano, Richard F.; Hill, Karl G.; Abbott, Robert D.

    2008-01-01

    Objective To examine long-term effects of a universal intervention in elementary schools in promoting positive functioning in school, work, and community, and preventing mental health problems, risky sexual behavior, substance misuse, and crime at ages 24 and 27. Design Nonrandomized controlled trial followed participants to age 27, 15 years after the intervention ended. Three intervention conditions were compared: a full intervention group, assigned to intervention in grades 1 through 6; a late intervention group, assigned to intervention in grades 5 and 6 only; and a no-treatment control group. Setting Fifteen public elementary schools serving diverse neighborhoods including high-crime neighborhoods of Seattle. Participants A gender-balanced and multiethnic sample of 598 participants at ages 24 and 27 (93% of original sample in these conditions). Interventions Teacher training in classroom instruction and management, child social and emotional skill development, and parent workshops. Outcome Measures Self-reports of functioning in school, work and community, mental health, sexual behavior, substance use, and crime, and court records. Results A significant multivariate intervention effect across all 16 primary outcome indices was found. Specific effects included significantly better educational and economic attainment, mental health, and sexual health by age 27 (all p < .05). Hypothesized effects on substance use and crime were not found at ages 24 or 27. Conclusions A universal intervention for urban elementary school children, focused on classroom management and instruction, children’s social competence, and parenting practices, positively affected educational and economic attainment, mental health, and sexual health 15 years following the intervention’s end. PMID:19047540

  14. Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.

    PubMed

    Schaffer, Christoph J; Schlipf, Johannes; Dwi Indari, Efi; Su, Bo; Bernstorff, Sigrid; Müller-Buschbaum, Peter

    2015-09-30

    The use of solvent additives in the fabrication of bulk heterojunction polymer:fullerene solar cells allows to boost efficiencies in several low bandgap polymeric systems. It is known that solvent additives tune the nanometer scale morphology of the bulk heterojunction. The full mechanism of efficiency improvement is, however, not completely understood. In this work, we investigate the influences of blend composition and the addition of 3 vol % 1,8-octanedithiol (ODT) as solvent additive on polymer crystallization and both, vertical and lateral morphologies of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] and [6,6]-phenyl C71-butyric acid methyl ester (PCPDTBT:PC71BM) blend thin films processed from chlorobenzene-based solutions. The nanoscale morphology is probed with grazing incidence small- and wide-angle X-ray scattering as well as X-ray reflectivity and complemented with UV/vis spectroscopy. In PCPDTBT:PC71BM films the use of ODT is found to lower the solubility of fullerene in the polymer matrix and to promote polymer crystallization, both vertical and lateral microphase separation with morphological coarsening, and formation of a fullerene-rich topping layer. The enhanced photovoltaic performance is explained by these findings.

  15. Electrochemical and galvanic corrosion effects in thin-film photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G.; Wen, L.; Meyer, J.; Ross, R., Jr.; Nelson, A.

    1988-01-01

    The electrochemical and galvanic corrosion properties of thin-film photovoltaic (TF-PV) modules and module subcomponents are determined and interpreted in the light of established corrosion science. Results of a detailed study of thin-film aluminum metallization corrosion are presented. Bar-graph corrosion, observed in fielded modules, has been induced experimentally and found to be electrochemical in nature. Corrosion rates and passivation techniques for TF-PV modules are discussed.

  16. Influence Of Lateral Load Distributions On Pushover Analysis Effectiveness

    NASA Astrophysics Data System (ADS)

    Colajanni, P.; Potenzone, B.

    2008-07-01

    The effectiveness of two simple load distributions for pushover analysis recently proposed by the authors is investigated through a comparative study, involving static and dynamic analyses of seismic response of eccentrically braced frames. It is shown that in the upper floors only multimodal pushover procedures provide results close to the dynamic profile, while the proposed load patterns are always conservative in the lower floors. They over-estimate the seismic response less than the uniform distribution, representing a reliable alternative to the uniform or more sophisticated adaptive procedures proposed by seismic codes.

  17. Effects of amyotrophic lateral sclerosis sera on cultured cholinergic neurons

    SciTech Connect

    Touzeau, G.; Kato, A.C.

    1983-03-01

    Dissociated monolayer cultures of chick ciliary ganglion neurons have been used to study the effects of control and ALS sera. The cultured neurons survive and extend neurites for a minimum of 2 weeks in a standard tissue culture medium that contains 10% heat-inactivated human serum. Three parameters of the neurons have been examined when cultured in control and ALS sera for 8 to 12 days: (1) neuronal survival, (2) activity of the enzyme choline acetyltransferase, and (3) synthesis of /sup 3/H-acetylcholine using /sup 3/H-choline as precursor. ALS sera cause a small decrease in these three parameters, but this difference is not significant.

  18. Manipulations of attention during eating and their effects on later snack intake.

    PubMed

    Higgs, Suzanne

    2015-09-01

    Manipulation of attention during eating has been reported to affect later consumption via changes in meal memory. The aim of the present studies was to examine the robustness of these effects and investigate moderating factors. Across three studies, attention to eating was manipulated via distraction (via a computer game or TV watching) or focusing of attention to eating, and effects on subsequent snack consumption and meal memory were assessed. The participants were predominantly lean, young women students and the designs were between-subjects. Distraction increased later snack intake and this effect was larger when participants were more motivated to engage with the distracter and were offset when the distractor included food-related cues. Attention to eating reduced later snacking and this effect was larger when participants imagined eating from their own perspective than when they imagined eating from a third person perspective. Meal memory was impaired after distraction but focusing on eating did not affect later meal memory, possibly explained by ceiling effects for the memory measure. The pattern of results suggests that attention manipulations during eating have robust effects on later eating and the effect sizes are medium to large. The data are consistent with previous reports and add to the literature by suggesting that type of attention manipulation is important in determining effects on later eating. The results further suggest that attentive eating may be a useful target in interventions to help with appetite control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction

    NASA Astrophysics Data System (ADS)

    Vélez, Saül; Ciudad, David; Island, Joshua; Buscema, Michele; Txoperena, Oihana; Parui, Subir; Steele, Gary A.; Casanova, Fèlix; van der Zant, Herre S. J.; Castellanos-Gomez, Andres; Hueso, Luis E.

    2015-09-01

    The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 104, while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ~11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 104, while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ~11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials

  20. Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect

    NASA Astrophysics Data System (ADS)

    de Rosis, Alessandro

    2014-02-01

    In this paper, numerical analysis aiming at simulating biological organisms immersed in a fluid are carried out. The fluid domain is modeled through the lattice Boltzmann (LB) method, while the immersed boundary method is used to account for the position of the organisms idealized as rigid bodies. The time discontinuous Galerkin method is employed to compute body motion. An explicit coupling strategy to combine the adopted numerical methods is proposed. The vertical take-off of a couple of butterflies is numerically simulated in different scenarios, showing the mutual interaction that a butterfly exerts on the other one. Moreover, the effect of lateral wind is investigated. A critical threshold value of the lateral wind is defined, thus corresponding to an increasing arduous take-off.

  1. Using Seismic Tomography to Estimate the Magnitude of Lateral Variation in effective Mantle Viscosity

    NASA Technical Reports Server (NTRS)

    Sammis, C.; Ivins, E.

    1994-01-01

    Recent tomographic views of mantle are used to estimate corresponding lateral variations in effective viscosity under the assumption that temperature fluctuations about spherically symmetric mean values are the sole source of shear wave velocity anomalies.

  2. [The thalidomide experience: review of its effects 50 years later].

    PubMed

    Martínez-Frías, Maria Luisa

    2012-06-02

    This year is the 50(th) anniversary of the discovery that the drug thalidomide causes birth defects and should therefore be considered as a teratogen. However, despite the existence of several other drugs that are also human teratogens, thalidomide continues to cause concern among health professionals as well as the general population. The objectives of this article are to make a short historical review of the discovery that this drug severely alters the embryo development, the critical period of gestation and the identification of the real effect of thalidomide. For the first time an analysis is provided to identify the type of malformations for which thalidomide really increases the risk. The proportions of the different types of malformations groups from the series of patients considered to be affected by thalidomide from the literature were compared with the proportions of the same malformations groups in non-exposed infants from the Spanish Collaborative Study of Congenital Malformation (ECEMC). The aim of the analysis was to calculate the relative frequencies of 13 groups of malformations observed in series of patients exposed to thalidomide, by comparison with the same groups of defects in 1,491 patients with limb malformations from the ECEMC consecutive newborn infants, non-exposed to thalidomide. The results showed that the groups with the most classical limb malformations attributed to thalidomide (phocomelia, thumb absence/hypoplasia) had a significantly very higher frequency in exposed cases than in the ECEMC's cases. However, cases presenting with only lower limb malformations were 3 times less frequent in thalidomide cases than in those of ECEMC. Finally, other groups presented the same frequency as those observed in the ECEMC's cases. The results of the 2 last groups, strongly suggests that they were not due to the effect of thalidomide. In addition to the short historical review of the teratogenicity risk of thalidomide, and their new therapeutic

  3. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    SciTech Connect

    Kostritskii, S. M.; Aillerie, M.

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  4. Reynolds Number Effects on the Performance of Lateral Control Devices

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    2000-01-01

    The influence of Reynolds number on the performance of outboard spoilers and ailerons was investigated on a generic subsonic transport configuration in the National Transonic Facility over a chord Reynolds number range 41 from 3x10(exp 6) to 30xl0(exp 6) and a Mach number range from 0.50 to 0.94, Spoiler deflection angles of 0, 10, 15, and 20 deg and aileron deflection angles of -10, 0, and 10 deg were tested. Aeroelastic effects were minimized by testing at constant normalized dynamic pressure conditions over intermediate Reynolds number ranges. Results indicated that the increment in rolling moment due to spoiler deflection generally becomes more negative as the Reynolds number increases from 3x10(exp 6) to 22x10(exp 6) with only small changes between Reynolds numbers of 22x10(exp 6) and 30x10(exp 6). The change in the increment in rolling moment coefficient with Reynolds number for the aileron deflected configuration is generally small with a general trend of increasing magnitude with increasing Reynolds number.

  5. The effect of childhood trauma on later psychological adjustment.

    PubMed

    Browne, Caroline; Winkelman, Cecelia

    2007-06-01

    This study examined whether adult attachment and cognitive distortion mediate the relationship between childhood trauma and psychological adjustment. The participants were 219 students (40 men and 117 women) enrolled in a university degree. Participants completed the Childhood Trauma Questionnaire, which assessed retrospective accounts of childhood trauma; the Relationships Scales Questionnaire, which measured two dimensions of adult attachment (model-of-self and model-of-other); the Cognitive Distortions Scale, which measured internal attributions and perceptions of controllability; and the Trauma Symptom Inventory, which assessed posttraumatic symptoms and was used in this study to measure psychological adjustment. Results supported the hypothesis that model-of-self and cognitive distortion are related constructs. The influence of model-of-self on psychological adjustment however was only via its effect on cognitive processes. In other words, a negative model-of-self influenced cognitive distortion, which in turn influenced the expression of symptoms in adults reporting a history of childhood trauma. The implications for therapy were considered.

  6. The effect of lateral banking on the kinematics and kinetics of the lower extremity during lateral cutting movements.

    PubMed

    Wannop, John W; Graf, Eveline S; Stefanyshyn, Darren J

    2014-02-01

    There are many aspects of cutting movements that can limit performance, however, the implementation of lateral banking may reduce some of these limitations. Banking could provide a protective mechanism, placing the foot and ankle in orientations that keep them out of dangerous positions. This study sought to determine the effect of two banking angles on the kinematics and kinetics of the lower extremity during two athletic maneuvers. Kinematic and kinetic data were collected on 10 recreational athletes performing v-cuts and side shuffle movements on different banked surfaces (0°, 10°, 20°). Each sample surface was rigidly attached to the force platform. Joint moments were calculated and compared between conditions using a repeated measures ANOVA. Banking had a pronounced effect on the ankle joint. As banking increased, the amount of joint loading in the transverse and frontal planes decreased likely leading to a reduction in injury risk. Also an increase in knee joint loading in the frontal plane was seen during the 20° bank during the v-cut. Conversely loading in the sagittal plane at the ankle joint increased with banking and coupled with a reorientation of the ground reaction vector may facilitate a performance increase. The current study indicates that the 10° bank may be the optimal bank, in that it decreases ankle joint loading, as well as increases specific performance variables while not increasing frontal plane knee joint loading. If banking could be incorporated in footwear it may be able to provide a protective mechanism for athletes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Photovoltaic Materials

    SciTech Connect

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  8. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    PubMed Central

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs. PMID:25585937

  9. Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS{sub 2} films

    SciTech Connect

    Sutar, Surajit; Agnihotri, Pratik; Comfort, Everett; Ung Lee, Ji; Taniguchi, T.; Watanabe, K.

    2014-03-24

    Realizing basic semiconductor devices such as p-n junctions are necessary for developing thin-film and optoelectronic technologies in emerging planar materials such as MoS{sub 2}. In this work, electrostatic doping by buried gates is used to study the electronic and optoelectronic properties of p-n junctions in exfoliated MoS{sub 2} flakes. Creating a controllable doping gradient across the device leads to the observation of the photovoltaic effect in monolayer and bilayer MoS{sub 2} flakes. For thicker flakes, strong ambipolar conduction enables realization of fully reconfigurable p-n junction diodes with rectifying current-voltage characteristics, and diode ideality factors as low as 1.6. The spectral response of the photovoltaic effect shows signatures of the predicted band gap transitions. For the first excitonic transition, a shift of >4{sub kB}T is observed between monolayer and bulk devices, indicating a thickness-dependence of the excitonic coulomb interaction.

  10. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics.

    PubMed

    Pandey, Ajay K

    2015-01-14

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (V(OC)) in OPVs.

  11. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  12. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  13. Photovoltaic cell with thin CS layer

    DOEpatents

    Jordan, John F.; Albright, Scot P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  14. Ageing effects on medio-lateral balance during walking with increased and decreased step width.

    PubMed

    Nagano, H; Begg, R; Sparrow, W A

    2013-01-01

    The current study used falls direction to categorize falls and explore age-related effects on the biomechanics of medio-lateral balance control. Minimum lateral margin (MLM) was defined as the critical swing phase event where the medio-lateral length between center of mass (CoM) and stance heel became minimum and accordingly, any lateral balance perturbation at MLM was considered to increase the risk of balance loss lateral to the stance foot. Lateral center of pressure (CoP) displacement from toe-off to MLM was also monitored to assess the risk of medio-lateral balance perturbation. Gait testing involving 30 young and 26 older male subjects was conducted under the three step width conditions: preferred and ± 50% wider and narrower. For an overall description of gait, spatio-temporal parameters were also obtained. Typical ageing effects on spatio-temporal parameters such as lower step velocity, shorter step length and prolonged double support time were found, emerging most clearly in narrower, followed by wider and least in preferred width walking. MLM and CoP lateral displacement were not differentiated between the two age groups, but older adults demonstrated significantly more variable MLM and CoP in their non-dominant limb when walking with non-preferred widths. Variability of step width reduced in increased and decreased step width conditions while MLM and CoP variability increased, suggesting less consistent medio-lateral CoM control despite consistent foot control in altered width conditions. In summary, older adults were found to have less consistent control of CoM with respect to the non-dominant stance foot when walking with narrower and wider widths possibly due to more variable medio-lateral CoP control.

  15. Effect of lateral pressure motion on the torsional behavior of rotary ProTaper Universal instruments.

    PubMed

    Vieira, Evandro Pires; Buono, Vicente Tadeu Lopes; de Azevedo Bahia, Maria Guiomar

    2011-08-01

    The purpose of this study was to evaluate the torsional behavior of rotary ProTaper Universal instruments after multiple clinical uses with and without lateral pressure motion. Thirty sets of ProTaper Universal instruments were divided into 3 groups (n = 10): control group (CG) involving new instruments tested in torsion on the basis of ISO 3630-1, lateral pressure (LP) group involving instruments that were clinically used on 5 molars by using the shaping instruments S1 and S2 with lateral pressure motion, and no lateral pressure (NLP) group involving instruments that were clinically used on 5 molars without lateral pressure motion. The instruments in the LP and NLP groups were subsequently tested in torsion. Data were analyzed by using analysis of variance (α = 0.05). Multiple clinical uses caused a reduction in the maximum torque in the analyzed instruments. When the effect of using lateral pressure motion with the shaping instruments was assessed, a tendency of reduction in the maximum torque for the S1 and S2 instruments and of increase for the F1 and F2 instruments was observed in the group with lateral pressure motion. The use of lateral pressure motion with the shaping instruments S1 and S2 tended to produce smaller decreases in the torsional resistance of the finishing instruments F1 and F2. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Photovoltaics: New opportunities for utilities

    SciTech Connect

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  17. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  18. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  19. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  20. Doping effects of fluorinated organic dyes on the open-circuit voltage of bulk-heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Yamashita, Kenichi

    2015-08-01

    We have investigated photovoltaic properties of bulk-heterojunction (BHJ) organic absorption layer doped with fluorinated Coumarin dyes. By dilute doping of a fluorinated Coumarin dye, Coumarin 307, into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) BHJ absorption layer, the open-circuit voltage of photovoltaic device increased by ∼90 mV without the significant degradation in the short-circuit current density. On the other hand, the doping of non-fluorinated Coumarin dye such as Coumarin 2 did not induce such the enhancement effect in the open-circuit voltage. In ultraviolet photoelectron spectroscopies, the doping of Coumarin 307 was found to have no impact on P3HT, but the density of state of PCBM was significantly modified by the doping. The change in the density of state was confirmed also in ultraviolet absorption measurement. Possible explanations for the enhancement in the open-circuit voltage are discussed from the experimental results, and a shift of the vacuum level by the doping can be considered as a direct origin.

  1. The effects of junction interdiffusion and misfit dislocations on the efficiency of highly mismatched heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Mendis, B. G.; Treharne, R. E.; Lane, D. W.; Durose, K.

    2016-05-01

    A general modelling methodology has been developed to evaluate the effects of chemical interdiffusion and misfit dislocations on the performance of heterojunction solar cells made from highly mismatched materials. Results for the exemplar materials system CdS-CdTe are contrary to the widely held belief that such interdiffusion is beneficial to photovoltaic performance. In the model, recombination is presumed to take place at the cores of misfit dislocations, with the distribution of these dislocations in the interdiffused layer being calculated so as to minimise the total energy (an incidental result shows that the total number of dislocations is independent of the diffusion profile). The model takes calculated chemical profiles, optical absorption, and dislocation distributions from which the photovoltaic performance and recombination losses are evaluated. It was shown that for the realistic case in which the interdiffused region does not extend beyond the space charge region, the photovoltage losses dominate over any photocurrent gains. Methods to engineer mixed junctions that may increase solar conversion efficiency are discussed.

  2. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction.

    PubMed

    Vélez, Saül; Ciudad, David; Island, Joshua; Buscema, Michele; Txoperena, Oihana; Parui, Subir; Steele, Gary A; Casanova, Fèlix; van der Zant, Herre S J; Castellanos-Gomez, Andres; Hueso, Luis E

    2015-10-07

    The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 10(4), while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ∼11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.

  3. Effects of oriented surface dipole on photoconversion efficiency in an alkane/lipid-hybrid-bilayer-based photovoltaic model system.

    PubMed

    Liu, Lixia; Xie, Hong; Bostic, Heidi E; Jin, Limei; Best, Michael D; Zhang, X Peter; Zhan, Wei

    2013-08-26

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60% increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix.

  4. Effect of potassium iodide on luminescent and photovoltaic properties of organic solar cells P3HT-PCBM

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Afanasyev, D. A.; Zhapabaev, K. A.

    2016-02-01

    It has been investigated spectral-luminescence properties of polymer films, doped with potassium iodide (KI). Using of KI didn't lead to the gradual changes of optical density of polymer films and the range of band gap semiconductor polymer P3HT. The fluorescence intensity of P3HT decreased and changed by use of KI. Using of 1% KI in polymer leaded to decrease of fluorescence lifetime. Influence of heavy atom on photovoltaic effect of organic solar cells has been investigated. 1% of KI in polymer film leaded to decrease of Isc and slightly decrease of Uoc. Investigation shows that magnetic field does not affect on photovoltaic properties of cells P3HT-PCBM. Magnetic field increased of open circuit voltage and short circuit current of solar cells with 1% of KI. Study of electrical impedance of cells revealed the magnetic sensivity of solar cells with KI additives. The lifetime of free charge carriers increased in the magnetic field for solar cells with KI additives.

  5. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO{sub 3}/Pt heterostructure

    SciTech Connect

    Fan, Zhen; Yao, Kui E-mail: msewangj@nus.edu.sg; Wang, John E-mail: msewangj@nus.edu.sg

    2014-10-20

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In{sub 2}O{sub 3}-SnO{sub 2}/ZnO/BiFeO{sub 3}/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (J{sub sc}) of 340 μA/cm{sup 2} and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n{sup +}-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  6. [The effect of coping and appraisal for coping on mental health and later coping].

    PubMed

    Takamoto, Masahiro; Aikawa, Atsushi

    2013-02-01

    This study examined the effect of coping and appraisal for coping on mental health and later coping in two longitudinal studies. In Study 1 (Time 1: n = 342, Time 2: n = 367) investigated the influence of selected coping and coping for appraisal on mental health and assumed coping. In Study 2 (Time 1: n = 161, Time 2: n = 154) investigated the influence of selected coping and coping for appraisal on mental health and later coping. The results indicated that coping and coping for appraisal affected mental health and later coping. However, the influence of the coping for appraisal was more limited than selected coping.

  7. Effects of lateral viscosity variations on long-wavelength geoid anomalies and topography

    NASA Technical Reports Server (NTRS)

    Richards, Mark A.; Hager, Bradford H.

    1989-01-01

    The effects of lateral variations in the earth mantle viscosity, due to temperature- or stress-dependent rheology, on the long-wavelength geoid anomalies are examined. Results from simple perturbation theory combined with findings from numerical models for convective flow led to a conclusion that the geoid due to the very longest wavelength convective patterns (l = 2,3) on earth is probably not seriously contaminated by lateral variations due either to temperature or stress dependence. Considerable contamination of the higher-degree geoid (l value of no less than 4) is to be expected due to lateral viscosity variations in phase with the fundamental convection scale length.

  8. US photovoltaic patents: 1991--1993

    SciTech Connect

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  9. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  10. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  11. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  12. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  13. Effects of Lateral Bracing and Stiffeners on the CFRP Failure of Strengthened Steel Beams

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, M.; Jumaat, M. Z.; Sulong, N. H. R.; Qeshta, I. M. I.; Narmashiri, K.

    2017-06-01

    In this paper, the effects of lateral bracing and web stiffeners on the Carbon Fibre Reinforced Polymer (CFRP) failure modes and buckling strength of the CFRP strengthened wide-flange steel I-beams are investigated experimentally. The study consisted of eight beams tested under static gradual load until failure. The main test variables were steel plate stiffeners, lateral bracings, and bonding of CFRP plates to beam soffits. The results showed that the use of steel plate stiffeners did not only prevent stress concentration below the point load, but it could also help to delay debonding of the externally bonded CFRP plate. The use of lateral bracing indicated a significant effect in preventing the CFRP splitting failure mode. In addition, the use of stiffeners with lateral bracing simultaneously, showed improvement in the in-plane flexural strength, stiffness and ductility of the CFRP strengthened I-beams.

  14. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic

  15. Liquid Crystals for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    As discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2), 3 (10.1007/978-90-481-2873-3), 5 (10.1007/978-90-481-2873-5) and 6 (10.1007/978-90-481-2873-6), columnar, smectic and, more recently, nematic liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. This and their broad absorption spectra make them suitable as active materials for organic photovoltaic devices. In this chapter, we discuss the use of liquid crystals in such devices. Firstly, we examine the principle of power generation via the photovoltaic effect in organic materials and the various device configurations that can optimise efficiency. Then we discuss photovoltaic devices incorporating columnar liquid crystals combined with electron accepting materials based on either perylene or fullerene. The use of nematic and sanditic liquid crystals in photovoltaics is investigated as well as a novel solar cell concentrator incorporating liquid crystals. Finally, we analyse the benefits and limitations of liquid-crystal-based photovoltaics in the context of the state-of-the-art for organics photovoltaics.

  16. Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer.

    PubMed

    Dong, Wen; Guo, Yiping; Guo, Bing; Li, Hua; Liu, Hezhou; Joel, Thia Weikang

    2013-08-14

    The photovoltaic effect of BiVO4 semiconductor was investigated by incorporating an ultrathin BiFeO3 ferroelectric layer. It is found that the ultrathin ferroelectric layer with strong self-polarization and high carrier density is desirable to enhance the photovoltaic effect and to manipulate the photovoltaic polarity of the semiconductors. The photovoltage increases by 5-fold to 1 V, and the photocurrent density increases by 2-fold to 140 μA/cm(2), in which the photovoltage is the highest compared with the reported values in polycrystalline and epitaxial ferroelectric thin film solar cells. The mechanism for the observed effect is discussed on the basis of a polarization-induced Schottky-like barrier at the BiFeO3/fluorine doped tin oxide interface. Our work provides good guidance for fabrication of cost-effective semiconductor photovoltaic devices with high performance, and this kind of ultrathin ferroelectric film may also have promising applications in copper indium gallium selenide solar cell, dye-sensitized TiO2 solar cell, lighting emitting diode, and other photoelectron related devices.

  17. Correction: Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Dajung; An, Jongdeok; Im, Chan; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2016-02-21

    Correction for 'Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells' by Kyung-Jun Hwang et al., Phys. Chem. Chem. Phys., 2015, 17, 21974-21981.

  18. Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    NASA Astrophysics Data System (ADS)

    He, Hongcai; Yang, Kui; Wang, Ning; Luo, Feifei; Chen, Haijun

    2013-12-01

    Hydrogenated TiO2 film was obtained by annealing TiO2 film at 350 °C for 2 h with hydrogen, and TiO2 films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO2 film and pristine TiO2 film. Through optical and electrochemical characterization, the hydrogenated TiO2 film showed enhanced absorption and narrowed band gap, as well as reduced TiO2 surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO2 as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO2 film, which excited electrons injecting internal conduction band of TiO2 to generate more photocurrent.

  19. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-07

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection.

  20. Lateral Si /SiO2 quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Rölver, R.; Berghoff, B.; Bätzner, D. L.; Spangenberg, B.; Kurz, H.

    2008-05-01

    The photovoltaic properties of Si /SiO2 multiple quantum wells (QWs) embedded in lateral Schottky contacts are investigated. The QWs were fabricated by remote plasma enhanced chemical vapor deposition. By subsequent rapid thermal annealing, the two-dimensional Si layers are partially recrystallized, which gives rise to distinct quantum confinement effects. Although the current extraction along the quantum layers is hampered by the incomplete recrystallization, the data collected define the route to optimized Si based QW solar cells.

  1. Mechanical effectiveness of lateral foot wedging in medial knee osteoarthritis after one year of wear

    PubMed Central

    Barrios, Joaquin A.; Butler, Robert J.; Crenshaw, Jeremy R.; Royer, Todd D.; Davis, Irene S.

    2014-01-01

    Purpose The use of lateral foot wedging in the management of medial knee osteoarthritis is under scrutiny. Interestingly, there have been minimal efforts to evaluate biomechanical effectiveness with long term use. Therefore, we aimed to evaluate dynamic knee loading (assessed using the knee adduction moment) and other secondary gait parameters in patients with medial knee osteoarthritis wearing lateral foot wedging at a baseline visit and after 1 year of wear. Methods 3-dimensional gait data were captured in an intervention group of 19 patients with symptomatic medial knee osteoarthritis wearing their prescribed laterally wedged foot orthoses at 0 and 12 months. Wedge amounts were prescribed based on symptom response to a step-down test. A control group of 19 patients wearing prescribed neutral orthoses were also captured at 0 and 12 months. The gait of the intervention group wearing neutral orthoses was additionally captured. Walking speed and shoes were controlled. Analyses of variance were conducted to examine for group-by-time (between the groups in their prescribed orthoses) and condition-by-time (within the intervention group) interactions, main effects, and simple effects. Results We observed increased knee adduction moments and frontal plane motion over time in the control group but not the intervention group. Further, within the intervention group, the mechanical effectiveness of the lateral wedging did not decrease. Conclusions In patients with medial knee osteoarthritis, the effects of lateral foot wedging on pathomechanics associated with medial knee osteoarthritis were favorable and sustained over time. PMID:23097326

  2. Effects of aging on the lateral transmission of force in rat skeletal muscle.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2014-03-21

    The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.

  3. Effect of the chain length on the thermal and analytical properties of laterally biforked nematogens.

    PubMed

    Dahmane, Mohamed; Athman, Fatiha; Sebih, Saïd; Guermouche, Moulay-Hassane; Bayle, Jean-Pierre; Boudah, Soulimane

    2010-10-15

    Three laterally substituted liquid crystals were synthesized in order to investigate the effect of a lateral biforked chain on the thermal and analytical properties. The mesogenic molecules have the same core containing four aromatic rings connected by two ester and one diazo linkages, they differ by the length of one chain within the lateral biforked substituent. The phase transition temperatures were obtained by polarized light microscopy and differential scanning calorimetry (DSC). The clearing temperature and the nematic range decrease with increasing length of the lateral biforked chain. The stationary phases derived from these nematogens provide excellent resolution of various classes of compounds, including aromatic hydrocarbons (AH), substituted benzenes, polycyclic aromatic hydrocarbons (PAH), phenols and volatile organic compounds (VOC) present in the essential oils. The selectivities of the stationary phases were found to decrease according to the length of the side chain.

  4. Effects of anthropogenic water regulation and groundwater lateral flow on land processes

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Zou, Jing; Qin, Peihua; Jia, Binghao

    2016-09-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. In this study, schemes describing groundwater lateral flow and human water regulation were developed and incorporated into the Community Land Model 4.5. To investigate the effects of human water regulation and groundwater lateral flow on land processes as well as the relationship between the two processes, three simulations using the model were conducted for the years 2003-2013 over the Heihe River Basin in northwestern China. Simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the Heihe River Basin and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions.

  5. Photovoltaic panel support assembly

    SciTech Connect

    Barker, J.M.; Underwood, J.C.; Shingleton, J.

    1993-07-20

    A solar energy electrical power source is described comprising in combination at least two flat photovoltaic panels disposed side-by-side in co-planar relation with one another, a pivot shaft extending transversely across the panels, at least two supports spaced apart lengthwise of the pivot shaft, means for connecting the pivot shaft to the at least two supports, attachment means for connecting the at least two panels to the pivot shaft so that the panels can pivot about the longitudinal axis of the shaft, coupling means mechanically coupling all of the panels together so as to form a unified flat array, and selectively operable drive means for mechanically pivoting the unified flat array about the axis; wherein each of the flat photovoltaic panels comprises at least two modules each comprising a plurality of electrically interconnected photovoltaic cells, the at least two modules being aligned along a line extending at a right angle to the pivot shaft, and the coupling means comprises (a) an elongate member extending parallel to and spaced from the pivot shaft and (b) means for attaching the elongate member to the panels; and further wherein each flat photovoltaic panel comprises a unitary frame consisting of a pair of end frame members extending parallel to the pivot shaft, a pair of side frame members extending between and connected to the end frame members, and a pair of spaced apart cross frame members, with one of the two modules being embraced by and secured to the side frame members and a first one of each of the end and cross frame members, and the other of the two modules being embraced by and secured to the side frame members and the second one of each of the end and cross frame members, whereby the gap created by the spaced apart cross frame members allow air to pass between them in order to reduce the sail effect when the solar array is subjected to buffeting winds.

  6. Valence Specific Laterality Effects in Free Viewing Conditions: The Role of Expectancy and Gender of Image

    ERIC Educational Resources Information Center

    Stafford, Lorenzo D.; Brandaro, Nicola

    2010-01-01

    Recent research has looked at whether the expectancy of an emotion can account for subsequent valence specific laterality effects of prosodic emotion, though no research has examined this effect for facial emotion. In the study here (n = 58), we investigated this issue using two tasks; an emotional face perception task and a novel word task that…

  7. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    PubMed

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  8. Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation.

    PubMed

    Li, Mingguang; Wang, Lei; Liu, Jiangang; Zhou, Ke; Yu, Xinhong; Xing, Rubo; Geng, Yanhou; Han, Yanchun

    2014-03-14

    In this work, solvent chloronaphthalene (CN) and polymer acceptor an alternating copolymer of perylene diimide and carbazole (PCPDI) were utilized as co-additives to optimize the nanoscale phase-separated morphology and photovoltaic properties of bulk-heterojunction (BHJ) polymer solar cells based on the poly(3-hexyl thiophene) (P3HT)/N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) system. The domain size of EP-PDI molecules together with that of P3HT distinctly decreased by adding a 0.75 vol% CN additive. The optimized lateral phase separation increased the donor-acceptor interfacial area and facilitated the exciton dissociation process, leading to 5-fold enhancement of short-circuit current (JSC). Furthermore, when PCPDI was employed as a co-additive, acceptor materials (including PCPDI and EP-PDI) were prone to aggregation towards the top surface of blend films, improving vertical phase separation of active layers. PCPDI incorporation, which improved the percolation pathways for electron carriers, suppressed the crystallinity of P3HT distinctly. Thus, much more balanced charge transport was achieved by PCPDI addition, which resulted in almost 1-fold enhancement of open-circuit voltage (VOC) by reducing nongeminate recombination. As a consequence, cooperative effects of CN and PCPDI additives improved the nanoscale phase-separated morphology in lateral and vertical directions simultaneously, achieving the enhancement in both VOC and JSC.

  9. The effects of controls and controllable and storage loads on the performance of stand-alone photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1981-01-01

    Stand-alone photovoltaic systems have been modeled and analyzed from sunlight in to consumer product out. By including the consumer product in the analysis, concepts such as 'product storage' (a storage tank for water or cold-plates for refrigeration) and loads controllable by the system controller have been added to the system analysis. From a controls analysis viewpoint, this adds state variables to the system. The result is that the system controller can make operating control decisions on the energy flow between these various system elements to optimize system performance and reduce system cost. The effects on system performance of various control schemes employing these concepts are presented. Analysis of water pumping and/or refrigeration systems show possible performance improvements of greater than 15% with the addition of controllable loads with product storage.

  10. The effects of controls and controllable and storage loads on the performance of stand-alone photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1981-01-01

    Stand-alone photovoltaic systems have been modeled and analyzed from sunlight in to consumer product out. By including the consumer product in the analysis, concepts such as 'product storage' (a storage tank for water or cold-plates for refrigeration) and loads controllable by the system controller have been added to the system analysis. From a controls analysis viewpoint, this adds state variables to the system. The result is that the system controller can make operating control decisions on the energy flow between these various system elements to optimize system performance and reduce system cost. The effects on system performance of various control schemes employing these concepts are presented. Analysis of water pumping and/or refrigeration systems show possible performance improvements of greater than 15% with the addition of controllable loads with product storage.

  11. Effect of magnetic field on the photovoltaic properties of YBa2Cu3O6.96/Ag heterojunction

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Han, Mengyuan; Chu, Zhuang; Ma, Zhipan; Chang, Fanggao

    2017-02-01

    The obvious photovoltaic effect (Voc ˜ 30 μV) induced by purple-laser illumination at high Tc superconductor YBa2Cu3O6.96/Ag (YBCO/Ag) heterojunction has been observed, revealing that there exists an electrical field across the YBCO/Ag interface. It has been found that magnetic field can dramatically change the photo-induced voltage in the vicinity of superconducting transition. With increasing magnetic fields up to 3 T, the photovoltage at 74 K and 30 mW/mm2 is reduced from 15 μV to zero and then reaches -15 μV. The polarity of the voltage can be switched by applying an external magnetic field, as well as by varying the laser intensity. Our results can be understood in terms of the magnetic vortex penetrating in high Tc superconductors and provide strong evidence for the existence of an interface electrical field in the superconductor/metal heterojunction.

  12. Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kang, Tae-Woon; Noh, Yong-Jin; Yun, Jin-Mun; Yang, Si-Young; Yang, Yong-Eon; Lee, Hae-Seong; Na, Seok-In

    2015-06-01

    This study examined the effects of chemically converted graphene (CCG) materials as a metal electrode interfacial modifier on device-performances of inverted organic photovoltaic cells (OPVs). As CCG materials for interfacial layers, a conventional graphene oxide (GO) and reduced graphene oxide (rGO) were prepared, and their functions on OPV-performances were compared. The inverted OPVs with CCG materials showed all improved cell-efficiencies compared with the OPVs with no metal/bulk-heterojunction (BHJ) interlayers. In particular, the inverted OPVs with reduction form of GO showed better device-performances than those with GO and better device-stability than poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-based inverted solar cells, showing that the rGO can be more desirable as a metal/BHJ interfacial material for fabricating inverted-configuration OPVs.

  13. Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Steindamm, A.; Brendel, M.; Topczak, A. K.; Pflaum, J.

    2012-10-01

    In this work, we address the microscopic effects related to the implementation of a bathophenanthroline (BPhen) exciton blocking layer (EBL) sandwiched between Ag cathode and molecular diindenoperylene (DIP)/C60 bilayer of a photovoltaic cell. Complementary studies of current density, external quantum efficiency, and photoluminescence quenching for EBL thicknesses up to 50 nm indicate that Ag atoms are able to penetrate through the whole 35 nm thick C60 film into the polycrystalline DIP layer underneath, thereby enhancing exciton quenching if no blocking layer is applied. In contrast, an optimal trade-off between exciton blocking, suppression of metal penetration, and electron transport is achieved for a 5 nm thick BPhen layer yielding an improvement of power conversion efficiency by more than a factor of 2.

  14. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    PubMed

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  15. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  16. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  17. Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.

    1973-01-01

    The optical and electronic properties of single crystal Cu2S-CdS photovoltaic cells were investigated. In these cells trapped charge near the interface which is manifested by a persistent increase in junction capacitance (the photocapacitance) plays a significant role in determining the carrier transport properties. It was found that the severe degradation in short-circuit current observed in heat-treated cells can be separated into two components: (1) a relatively small thermal component occurring on heat-treatment in the dark, and (2) a much larger degradation caused by exposure to light at room temperature. By a short additional heat-treatment above approximately 100 C the cell can be completely restored to its condition before the optically caused degradation with no effect on the depletion layer width.

  18. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    SciTech Connect

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  19. Magnetical and electrical tuning of transient photovoltaic effects in manganite-based heterojunctions.

    PubMed

    Ni, Hao; Yue, Zengji; Zhao, Kun; Xiang, Wenfeng; Zhao, Songqing; Wang, Aijun; Kong, Yu-Chau; Wong, Hong-Kuen

    2012-05-07

    Magnetically and bias current tunable transient photovoltaic (TPV) responses have been investigated in a manganite-based heterojunction composed of a La2/3Ca1/3MnO3 film and an n-type Si substrate at ambient temperature. Under irradiation of 248 nm pulsed laser with 20 ns duration the TPV peak values can be modulated in a range of -125 to 138 mV when the applied magnetic field perpendicular to the interface changes from -6.4 to + 6.4 kOe, and the relative variations (TPV(H) - TPV(0))/TPV(0) reach up to about 1000%. In addition, TPV responses can be also affected by bias current, and the photoresponse peaks change from positive to negative with the currents from -350 to 350 μA. These results indicate that the manganite-based heterojunction can be used for magnetically and electrically tunable ultraviolet photodetectors.

  20. Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-06-14

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  1. Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability.

    SciTech Connect

    Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert; Lucero, Samuel J.

    2009-07-01

    A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

  2. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  3. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis.

    PubMed

    Vucic, Steve; Lin, Cindy Shin-Yi; Cheah, Benjamin C; Murray, Jenna; Menon, Parvathi; Krishnan, Arun V; Kiernan, Matthew C

    2013-05-01

    Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0

  4. Effect of biomechanical constraints in the hand laterality judgment task: where does it come from?

    PubMed

    Vannuscorps, Gilles; Pillon, Agnesa; Andres, Michael

    2012-01-01

    Several studies have reported that, when subjects have to judge the laterality of rotated hand drawings, their judgment is automatically influenced by the biomechanical constraints of the upper limbs. The prominent account for this effect is that, in order to perform the task, subjects mentally rotate their upper limbs toward the position of the displayed stimulus in a way that is consistent with the biomechanical constraints underlying the actual movement. However, the effect of such biomechanical constraints was also found in the responses of motor-impaired individuals performing the hand laterality judgment (HLJ) task, which seems at odds with the "motor imagery" account for this effect. In this study, we further explored the source of the biomechanical constraint effect by assessing the ability of an individual (DC) with a congenital absence of upper limbs to judge the laterality of rotated hand or foot drawings. We found that DC was as accurate and fast as control participants in judging the laterality of both hand and foot drawings, without any disadvantage for hands when compared to feet. Furthermore, DC's response latencies (RLs) for hand drawings were influenced by the biomechanical constraints of hand movements in the same way as control participants' RLs. These results suggest that the effect of biomechanical constraints in the HLJ task is not strictly dependent on "motor imagery" and can arise from the visual processing of body parts being sensitive to such constraints.

  5. Effect of biomechanical constraints in the hand laterality judgment task: where does it come from?

    PubMed Central

    Vannuscorps, Gilles; Pillon, Agnesa; Andres, Michael

    2012-01-01

    Several studies have reported that, when subjects have to judge the laterality of rotated hand drawings, their judgment is automatically influenced by the biomechanical constraints of the upper limbs. The prominent account for this effect is that, in order to perform the task, subjects mentally rotate their upper limbs toward the position of the displayed stimulus in a way that is consistent with the biomechanical constraints underlying the actual movement. However, the effect of such biomechanical constraints was also found in the responses of motor-impaired individuals performing the hand laterality judgment (HLJ) task, which seems at odds with the “motor imagery” account for this effect. In this study, we further explored the source of the biomechanical constraint effect by assessing the ability of an individual (DC) with a congenital absence of upper limbs to judge the laterality of rotated hand or foot drawings. We found that DC was as accurate and fast as control participants in judging the laterality of both hand and foot drawings, without any disadvantage for hands when compared to feet. Furthermore, DC's response latencies (RLs) for hand drawings were influenced by the biomechanical constraints of hand movements in the same way as control participants' RLs. These results suggest that the effect of biomechanical constraints in the HLJ task is not strictly dependent on “motor imagery” and can arise from the visual processing of body parts being sensitive to such constraints. PMID:23125830

  6. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  7. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit

    PubMed Central

    Dixson, Ronald G.; Orji, Ndubuisi G.; Goldband, Ryan S.

    2016-01-01

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  8. Conductive Hearing Loss during Infancy: Effects on Later Auditory Brain Stem Electrophysiology.

    ERIC Educational Resources Information Center

    Gunnarson, Adele D.; Finitzo, Terese

    1991-01-01

    Long-term effects on auditory electrophysiology from early fluctuating hearing loss were studied in 27 children, aged 5 to 7 years, who had been evaluated originally in infancy. Findings suggested that early fluctuating hearing loss disrupts later auditory brain stem electrophysiology. (Author/DB)

  9. The Effects of Bilingualism on Efficiency and Lateralization of Attentional Networks

    ERIC Educational Resources Information Center

    Marzecova, Anna; Asanowicz, Dariusz; Kriva, L'Uba; Wodniecka, Zofia

    2013-01-01

    The present study investigated the impact of bilingualism on efficiency of alerting, orienting and executive attention by means of the Lateralized Attention Network Test (LANT). Young adult bilinguals who had been exposed to their second language before the age of four years showed a reduced conflict cost and a larger alerting effect in terms of…

  10. The Effects of Bilingualism on Efficiency and Lateralization of Attentional Networks

    ERIC Educational Resources Information Center

    Marzecova, Anna; Asanowicz, Dariusz; Kriva, L'Uba; Wodniecka, Zofia

    2013-01-01

    The present study investigated the impact of bilingualism on efficiency of alerting, orienting and executive attention by means of the Lateralized Attention Network Test (LANT). Young adult bilinguals who had been exposed to their second language before the age of four years showed a reduced conflict cost and a larger alerting effect in terms of…

  11. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  12. Silicon purification melting for photovoltaic applications

    SciTech Connect

    VAN DEN AVYLE,JAMES A.; HO,PAULINE; GEE,JAMES M.

    2000-04-01

    The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

  13. Dichaptic scanning of Braille letters by skilled blind readers: lateralization effects.

    PubMed

    Semenza, C; Zoppello, M; Gidiuli, O; Borgo, F

    1996-06-01

    Dichaptic scanning of Braille letters was studied in 14 skilled blind readers, using Posner's paradigm. A right-hand (left-hemisphere) advantage was found when letters could be matched on the basis of their names (Name Identity Condition), a genuinely linguistic task, while no effects of lateralization appeared when matching could be performed on the basis of perceptual identity (Perceptual Identity Condition) or on "Different" responses. This result provides information about the cerebral lateralization of Braille reading and casts doubts about the current claim that linguistic material, when presented in the tactile modality, is initially analysed in a spatial code by the right hemisphere.

  14. Interaction effects and pseudogap in two-dimensional lateral tunnel junctions.

    PubMed

    Jiang, P; Yang, I; Kang, W; Pfeiffer, L N; Baldwin, K W; West, K W

    2006-03-31

    Tunneling characteristics of a two-dimensional lateral tunnel junction are reported. A pseudogap on the order of Coulomb energy is detected in the tunneling density of states (TDOS) when two identical two-dimensional electron systems are laterally separated by a thin energy barrier. The Coulombic pseudogap remains robust well into the quantum Hall regime until it is overshadowed by the cyclotron gap in the TDOS. The pseudogap is modified by the in-plane magnetic field, demonstrating a nontrivial effect of the in-plane magnetic field on the electron-electron interaction.

  15. Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Fen; Song, Linyu; Guo, Yiping; Jin, Song; Bi, Enbing; Chen, Han; Duan, Huanan; Li, Hua; Liu, Hezhou; Kang, Hongmei

    2014-06-01

    The photovoltaic (PV) effect of a bilayer anatase TiO2/BiFeO3 (BFO) film has been studied. The 20-nm ultrathin BFO layers were deposited on the fluorine-doped tin oxide (FTO) glass substrates by the chemical solution deposition method. An anatase TiO2 layer is deposited subsequently on the BFO surface via a screen-printing technique. It is found that the FTO/TiO2/Au cell exhibits negligible PV effect under solar exposure, while the one after introducing an ultrathin BFO film between TiO2 and FTO leads to a considerable PV effect with an open-circuit voltage of -0.58 V and a photocurrent density of 18.27 µA/cm2. The FTO/BiVO4 (BVO)/TiO2/Au cell was constructed to investigate the underlying mechanism for the observed effect. A negligible PV effect of the FTO/BVO/TiO2/Au cell indicates that the PV effect of the FTO/BFO/TiO2/Au cell arises mainly from a built-in electric field in the BFO film induced by the self-polarization. Our work opens up a new path to utilize TiO2 and may influence the future design of solar cells.

  16. Effect of Adding on the Critical Current Density and Lateral Levitation Force of Bulk

    NASA Astrophysics Data System (ADS)

    Savaşkan, B.; Koparan, E. Taylan; Güner, S. B.; Çelik, Ş.; Öztürk, K.; Yanmaz, E.

    2015-10-01

    We fabricated malic acid -added bulks by wet mixing and "Two-step solid state reaction method". The effects of adding malic acid on , behaviour and lateral levitation force features of bulk have been investigated. A systematic decrease in the critical temperature with increasing adding level confirms the substitution of C at the B site of . While the 4 wt% sample showed the best of at 4 T and 5 K, 15 wt% sample showed uncompetitive lower critical current density , which ascribes the poor connectivity due to the excessive unsubstituted C distribution at grain boundaries and the presence of high MgO amount. At 24 and 28 K, the 4 and 6 wt% malic-acid-added samples exhibit a higher lateral force than pure sample. Based on the observed values of M- H, ( H) and lateral levitation force , it can be concluded that the 4 wt% malic-acid-added sample is the best of the studied samples.

  17. Large area InN terahertz emitters based on the lateral photo-Dember effect

    SciTech Connect

    Wallauer, Jan Grumber, Christian; Walther, Markus; Polyakov, Vladimir; Iannucci, Robert; Cimalla, Volker; Ambacher, Oliver

    2015-09-14

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room for improvement by optimizing the masking structures.

  18. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  19. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  20. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  1. High density photovoltaic

    SciTech Connect

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  2. Current topics in photovoltaics

    SciTech Connect

    Coutts, T.J. ); Meakin, J.D. . Inst. of Energy Conversion)

    1990-01-01

    This book contains papers on current research in photovoltaics. Areas include: outdoor spectral odor radiation variations and their relationship to photovoltaic device performance, numerical modeling for analysis and design of solar cells, radiation damage mechanisms in GaAs and Si solar cells, and health and safety issues in the manufacturing of photovoltaic cells.

  3. Effects of ligation of lateral intermuscular septum perforating vessels on blood supply to the femur.

    PubMed

    Grob, K; Manestar, M; Lang, A; Ackland, T; Gilbey, H; Kuster, M S

    2015-12-01

    With a subvastus approach to the femur, the vessels that perforate the lateral intermuscular septum (LISP-vessels) must be ligated. The effect on the blood supply to the femur remains unclear. The purpose of the current study was to investigate the effect of ligation of the LISP-Vessels on the blood supply and to examine the anatomy of the LISP-vessels and the anastomoses around the femur. In six human cadavers the LISP vessels were ligated by a lateral subvastus approach on one side. The contralateral side served as control group. After bilateral injection of different coloured silicon dyes into the lateral and medial circumflex femoral artery (green), deep femoral artery (red) and the superficial femoral artery (blue) dissection was performed bilaterally. The arterial perfusion on both sides was compared and the anatomy of the LISP vessels studied. The medullary perfusion of the femur was not altered by the ligation of the LISP vessels. It did also not lead to a decrease in periosteal vessel filling. The LISP vessels were shown to be a part of a complex and rich anastomotic network and play an important role in the perfusion of the femur and quadriceps muscle group. The ligature could be compensated for by this anastomotic network. Branches to the periosteum separate from the LISP vessels immediately after perforating the lateral intermuscular septum. The linea aspera turned out to be an important area for the femoral blood supply. Exposure of the femur through a lateral subvastus approach with ligation of LISP vessels causes a certain degree of soft tissue trauma. However, by using a gentle surgical technique the periostal perfusion of the femur can be preserved by a potent anastomotic network after ligation of the LISP vessels if they are not ligated to close to the lateral intermuscular septum and the linea aspera is not unnecessarily exposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  5. Sex specific effect of prenatal testosterone on language lateralization in children.

    PubMed

    Lust, J M; Geuze, R H; Van de Beek, C; Cohen-Kettenis, P T; Groothuis, A G G; Bouma, A

    2010-01-01

    Brain lateralization refers to the division of labour between the two hemispheres in controlling a wide array of functions and is remarkably well developed in humans. Based on sex differences in lateralization of handedness and language, several hypotheses have postulated an effect of prenatal exposure to testosterone on human lateralization development, the topic of a long-standing and unresolved debate. Here we demonstrate a clear relationship between prenatal levels of testosterone as assessed from amniotic fluid of healthy pregnant mothers and language lateralization of their offspring at the age of 6 years. Using focused attention conditions in the dichotic listening task, in which the child is instructed to report information from the left ear or the right ear, we were able to differentiate between potential effects of early testosterone on the left hemisphere and effects on inter-hemispheric connectivity. This provides a new method to distinguish between the claims of the different hypotheses. The results suggest that in girls higher prenatal testosterone exposure facilitates left hemisphere language processing, whereas in boys it reduces the information transfer via the corpus callosum. 2009 Elsevier Ltd. All rights reserved.

  6. Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery

    NASA Astrophysics Data System (ADS)

    Ward, James D.; Simmons, Craig T.; Dillon, Peter J.; Pavelic, Paul

    2009-05-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.

  7. An Analysis of Lateral Crural Repositioning and Its Effect on Alar Rim Position.

    PubMed

    Paquet, Christian A; Choroomi, Sim; Frankel, Andrew S

    2016-01-01

    lowering of the alar rim. Our data suggest that when combined with lateral crural repositioning, the addition of adjunctive grafts does not add significantly to the rim-lowering effect. 3.

  8. Silicon Substrate Strained and Structured via Cavitation Effect for Photovoltaic and Biomedical Application

    NASA Astrophysics Data System (ADS)

    Savkina, Rada K.; Gudymenko, Aleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.; Nikolenko, Andrii S.; Smirnov, Aleksey B.; Stara, Tatyana R.; Strelchuk, Viktor V.

    2016-04-01

    A hybrid structure, which integrates the nanostructured silicon with a bio-active silicate, is fabricated using the method of MHz sonication in the cryogenic environment. Optical, atomic force, and scanning electron microscopy techniques as well as energy dispersive X-ray spectroscopy were used for the investigation of the morphology and chemical compound of the structured surface. Micro-Raman as well as X-ray diffraction, ellipsometry, and photovoltage spectroscopy was used for the obtained structures characterization. Ellipsometer measurements demonstrated the formation of the layer with the thicknesses ~700 nm and optical parameters closed to SiO2 compound with an additional top layer of the thicknesses ~15 nm and the refractive index ~1. Micro-Raman investigation detects an appearance of Ca-O local vibrational mode, and the stretching vibration of SiO4 chains characterized the wollastonite form of CaSiO3. A significant rise in the value and an expansion of the spectral range of the surface photovoltage for silicon structured via the megasonic processing was found. The concept of biocompatible photovoltaic cell on the base of Si/CaSiO3 structure for the application in bioelectronics was proposed.

  9. Silicon Substrate Strained and Structured via Cavitation Effect for Photovoltaic and Biomedical Application.

    PubMed

    Savkina, Rada K; Gudymenko, Aleksandr I; Kladko, Vasyl P; Korchovyi, Andrii A; Nikolenko, Andrii S; Smirnov, Aleksey B; Stara, Tatyana R; Strelchuk, Viktor V

    2016-12-01

    A hybrid structure, which integrates the nanostructured silicon with a bio-active silicate, is fabricated using the method of MHz sonication in the cryogenic environment. Optical, atomic force, and scanning electron microscopy techniques as well as energy dispersive X-ray spectroscopy were used for the investigation of the morphology and chemical compound of the structured surface. Micro-Raman as well as X-ray diffraction, ellipsometry, and photovoltage spectroscopy was used for the obtained structures characterization. Ellipsometer measurements demonstrated the formation of the layer with the thicknesses ~700 nm and optical parameters closed to SiO2 compound with an additional top layer of the thicknesses ~15 nm and the refractive index ~1. Micro-Raman investigation detects an appearance of Ca-O local vibrational mode, and the stretching vibration of SiO4 chains characterized the wollastonite form of CaSiO3. A significant rise in the value and an expansion of the spectral range of the surface photovoltage for silicon structured via the megasonic processing was found. The concept of biocompatible photovoltaic cell on the base of Si\\CaSiO3 structure for the application in bioelectronics was proposed.

  10. Effects of sodium and potassium on the photovoltaic performance of CIGS solar cells

    SciTech Connect

    Raguse, John M.; Muzzillo, Christopher P.; Sites, James R.; Mansfield, Lorelle

    2016-11-17

    Here, the deliberate introduction of K and Na into Cu(In, Ga)Se2 (CIGS) absorbers was investigated by varying a combination of an SiO2 diffusion barrier, coevaporation of KF with the CIGS absorber, and a KF postdeposition treatment (PDT). Devices made with no diffusion barrier and KF coevaporation treatment exhibited the highest photovoltaic conversion efficiency with the smallest overall distribution in key current density-voltage (J-V) performance metrics. Out-diffusion of Na and K from the substrate, KF coevaporation, and KF PDT all increased carrier concentration, open-circuit voltage, fill factor, and power conversion efficiency. Quantum-efficiency analysis of devices highlighted the greatest loss in the short-circuit current density due to incomplete absorption and collection. Secondary ion mass spectrometry illustrated the efficacy of the SiO2 film as a sodium and potassium diffusion barrier, as well as their relative concentration in the absorber. Introduction of KF appeared to enhance diffusion of Na from the substrate, in agreement with previous studies.

  11. Polarization dependent ferroelectric photovoltaic effects in BFTO/CuO thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Mingsai; Zheng, Haiwu; Zhang, Ju; Yuan, Guoliang; Wang, Ke; Yue, Gentian; Li, Fengzhu; Chen, Yuanqing; Wu, Mengjun; Zhang, Weifeng

    2017-07-01

    Bi5FeTi3O15 (BFTO) and BFTO/CuO films were deposited by a sol-gel technique, which exhibited macroscopic ferroelectric properties. It was found that the BFTO/CuO films showed a short circuit photocurrent density (Jsc) enhanced by nearly 10 times and power conversion efficiency increased by 13-fold compared to those of the BFTO film. The significant increase in the photovoltaic (PV) response may be attributed to the p-n junction internal electric field acting as the driving force of photogenerated carriers. Furthermore, both BFTO and BFTO/CuO films indicated a switchable PV response in both polarities. The open circuit voltage (Voc) and Jsc for BFTO and BFTO/CuO were observed to be -0.59 V and +43.88 μA /cm2 and -0.23 V and +123.16 μA /cm2, respectively, after upward poling, whereas after downward poling, +0.11 V and -6.26 μA /cm2 and +0.17 V and -83.21 μA /cm2 for BFTO and BFTO/CuO were observed, respectively. The switchable PV responses were explained by the ferroelectric depolarization field, whose direction could be altered with the variation in the applied poling field. This work provides an efficient approach to developing ferroelectric film based PV devices with low cost.

  12. Impurity photovoltaic effect with defect relaxation: Implications for low band gap semiconductors such as silicon

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Green, Martin A.

    2004-09-01

    The impurity photovoltaic solar cell can, in principle, increase the sunlight to electricity conversion efficiency of a conventional single junction solar cell by the introduction of optically active impurities or defects into the device. These "defects" ideally allow electrons to be excited from the valence band to the conduction band via the mid-gap defect level through the absorption of previously wasted sub-band-gap photons. In this work the maximum efficiency limits for such a device are calculated for the special case where the energy of the partly excited electron relaxes to a lower energy partly through the two-stage excitation process. This relaxation in energy by the electron when occupying the defect state is shown to give an efficiency improvement over the case where no defect relaxation occurs. In the case of silicon, an efficiency limit of 39.7% under the airmass 1.5G solar spectrum is obtained, compared to 33.0% when no defects are present and 30.5% when a defect is present but no relaxation is allowed.

  13. Effects of sodium and potassium on the photovoltaic performance of CIGS solar cells

    DOE PAGES

    Raguse, John M.; Muzzillo, Christopher P.; Sites, James R.; ...

    2016-11-17

    Here, the deliberate introduction of K and Na into Cu(In, Ga)Se2 (CIGS) absorbers was investigated by varying a combination of an SiO2 diffusion barrier, coevaporation of KF with the CIGS absorber, and a KF postdeposition treatment (PDT). Devices made with no diffusion barrier and KF coevaporation treatment exhibited the highest photovoltaic conversion efficiency with the smallest overall distribution in key current density-voltage (J-V) performance metrics. Out-diffusion of Na and K from the substrate, KF coevaporation, and KF PDT all increased carrier concentration, open-circuit voltage, fill factor, and power conversion efficiency. Quantum-efficiency analysis of devices highlighted the greatest loss in themore » short-circuit current density due to incomplete absorption and collection. Secondary ion mass spectrometry illustrated the efficacy of the SiO2 film as a sodium and potassium diffusion barrier, as well as their relative concentration in the absorber. Introduction of KF appeared to enhance diffusion of Na from the substrate, in agreement with previous studies.« less

  14. Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Wang, N. N.; Yu, J. S.; Yuan, Z. L.; Jiang, Y. D.

    2012-05-01

    Organic photovoltaic (OPV) cells with improved efficiency using thermal annealing-induced nanostructured copper phthalocyanine as a donor layer were fabricated. A power conversion efficiency of 1.47% in the OPV cell with interdigitated CuPc/C60 bulk heterojunction has been obtained under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which is higher than 0.63% of CuPc/C60 planar cell. Through varying the annealing temperature of CuPc films, the influence of interface morphology and crystallinity of CuPc films on the performance of OPV cells was systematically studied. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and spectrophotometry were used to characterize the CuPc films. The results showed that at an optimal annealing temperature, the crystalline nature and vertical orientation of nanostructured CuPc have been modified, which can facilitate the separation of interfacial electron-hole pairs and charge carrier transport to electrodes.

  15. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  16. Total dose effects on gate controlled lateral PNP bipolar junction transistors

    SciTech Connect

    Cazenave, P.; Fouillat, P.; Montagner, X.

    1998-12-01

    A gate controlled lateral PNP bipolar device has been designed in a commercial BiCMOS process to investigate its sensitivity to radiation-induced degradation. New experimental and simulated results concerning total dose effects are presented. The improved radiation hardness of this device working in its accumulation mode is shown. The influence of the gate potential during irradiation is studied as well as the effect of the gate potential on the degraded current characteristics.

  17. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  18. Europe's space photovoltaics programme

    NASA Technical Reports Server (NTRS)

    Bogus, Klaus P.

    1994-01-01

    The current space PV (photovoltaic) technology development program of ESA is described. The program is closely coupled to the European space mission scenario for the next 10 year period and has as its main objective to make the most effective use of the limited resources available for technology in the present economical climate. This requires a well-balanced approach between concentration on very few options and keeping the competition alive if more than one promising technology exists. The paper describes ESA's main activities in the areas of solar array technology, solar cell technology, solar cell assembly technology, and special test and verification activities including the in-orbit demonstration of new technologies.

  19. Basic photovoltaic principles and methods

    SciTech Connect

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  20. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  1. Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow

    NASA Astrophysics Data System (ADS)

    Carapella, G.; Sabatino, P.; Gombos, M.

    2017-02-01

    We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.

  2. Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review.

    PubMed

    Cullinane, Frances L; Boocock, Mark G; Trevelyan, Fiona C

    2014-01-01

    To establish the effectiveness of eccentric exercise as a treatment intervention for lateral epicondylitis. ProQuest, Medline via EBSCO, AMED, Scopus, Web of Science, CINAHL. A systematic review was undertaken to identify randomized and controlled clinical trials incorporating eccentric exercise as a treatment for patients diagnosed with lateral epicondylitis. Studies were included if: they incorporated eccentric exercise, either in isolation or as part of a multimodal treatment protocol; they assessed at least one functional or disability outcome measure; and the patients had undergone diagnostic testing. The methodological quality of each study was assessed using the Modified Cochrane Musculoskeletal Injuries Group score sheet. Twelve studies met the inclusion criteria. Three were deemed 'high' quality, seven were 'medium' quality, and two were 'low' quality. Eight of the studies were randomized trials investigating a total of 334 subjects. Following treatment, all groups inclusive of eccentric exercise reported decreased pain and improved function and grip strength from baseline. Seven studies reported improvements in pain, function, and/or grip strength for therapy treatments inclusive of eccentric exercise when compared with those excluding eccentric exercise. Only one low-quality study investigated the isolated effects of eccentric exercise for treating lateral epicondylitis and found no significant improvements in pain when compared with other treatments. The majority of consistent findings support the inclusion of eccentric exercise as part of a multimodal therapy programme for improved outcomes in patients with lateral epicondylitis.

  3. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  4. Effects of lateral osteotomy on nasal sound intensity levels in patients who underwent rhinoplasty.

    PubMed

    Acar, Mustafa; Ulusoy, Seçkin; Seren, Erdal; Muluk, Nuray Bayar; Cingi, Cemal; Hanci, Deniz

    2014-11-01

    We investigated the effects of lateral osteotomy on nasal sound intensity levels in 34 patients who underwent rhinoplasty. Four groups were evaluated: group 1, preoperative rhinoplasty with lateral osteotomy (Preop-RPwithLO); group 2, postoperative rhinoplasty with lateral osteotomy (Postop-RPwithLO); group 3, preoperative rhinoplasty without lateral osteotomy (Preop-RPwithoutLO); and group 4, postoperative rhinoplasty without lateral osteotomy (Postop-RPwithoutLO). By sound analysis, low-frequency (Lf; 500-1000 Hz), medium-frequency (Mf; 1-2 kHz), and high-frequency (Hf; 2-4 and 4-6 kHz) nasal sound intensities were defined. Mf-left values of Postop-RPwithLO were significantly lower than those of Preop-RPwithLO, and Mf-left values of Postop-RPwithoutLO were significantly higher than those of Postop-RPwithLO and Preop-RPwithoutLO. Hf-right values of Preop-RPwithoutLO were significantly higher than those of Postop-RPwithLO and Postop-RPwithoutLO. Hf-total values of Postop-RPwithoutLO were significantly lower than those of Preop-RPwithoutLO. Nasal airway width decreased and nasal sounds, especially Mf sound intensities, increased in the nonlateral osteotomy group (group 4). When lateral osteotomy is performed, the nasal air passage may be adjusted as required by the surgeon, the air passage in the nasal valve region may not be narrowed, and nasal sound intensities may decrease. During postoperative follow-ups, increased Mf and Lf nasal sound intensities should be considered for the narrowness of the nasal passage and lower patency of the nasal cavities. Nasal sound analysis is a noninvasive technique and can also be used to evaluate nasal patency in septoplasty and rhinoplasty patients and children and for cases in which official reports are needed in addition to acoustic rhinometry measurements.

  5. Effect of Posterior Cruciate Ligament Rupture on Biomechanical and Histological Features of Lateral Femoral Condyle.

    PubMed

    Deng, Zhenhan; Li, Yusheng; Liu, Hong; Li, Kanghua; Lei, Guanghua; Lu, Bangbao

    2016-11-15

    BACKGROUND The aim of this study was to investigate bone mineral density (BMD) and the biomechanical and histological effects of posterior cruciate ligament (PCL) rupture on the lateral femoral condyle. MATERIAL AND METHODS Strain on different parts of the lateral femoral condyle from specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle, 6 ruptures of the postmedial bundle, and 12 complete ruptures, was tested when loaded with different loads on the knee at various flexion angles. Lateral femoral condyles were also collected randomly from both the experimental side in which the PCLs were transected and the control side from 4 sets of 12 matched-mode pairs of rabbits at 4, 8, 16, and 24 weeks after surgery, and their BMD and morphological and histological changes were observed. RESULTS Partial and complete rupture of the PCL may cause an abnormal load on all parts of the lateral femoral condyle with any axial loading at all positions. Noticeable time-dependent degenerative histological changes of the lateral femoral condyle were observed in the rabbit model of PCL rupture. All of the PCL rupture groups had a higher expression of matrix metalloproteinase-7 (MMP-7) and collagen type II than the control group at all time points (P<0.05), but no significant difference in BMD (P>0.05). CONCLUSIONS Rupture of the PCL may trigger a coordinated response of lateral femoral condyle degeneration in a time-dependent manner, to which the high level of expression of MMP-7 and collagen type II could contribute.

  6. Effect of Posterior Cruciate Ligament Rupture on Biomechanical and Histological Features of Lateral Femoral Condyle

    PubMed Central

    Deng, Zhenhan; Li, Yusheng; Liu, Hong; Li, Kanghua; Lei, Guanghua; Lu, Bangbao

    2016-01-01

    Background The aim of this study was to investigate bone mineral density (BMD) and the biomechanical and histological effects of posterior cruciate ligament (PCL) rupture on the lateral femoral condyle. Material/Methods Strain on different parts of the lateral femoral condyle from specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle, 6 ruptures of the postmedial bundle, and 12 complete ruptures, was tested when loaded with different loads on the knee at various flexion angles. Lateral femoral condyles were also collected randomly from both the experimental side in which the PCLs were transected and the control side from 4 sets of 12 matched-mode pairs of rabbits at 4, 8, 16, and 24 weeks after surgery, and their BMD and morphological and histological changes were observed. Results Partial and complete rupture of the PCL may cause an abnormal load on all parts of the lateral femoral condyle with any axial loading at all positions. Noticeable time-dependent degenerative histological changes of the lateral femoral condyle were observed in the rabbit model of PCL rupture. All of the PCL rupture groups had a higher expression of matrix metalloproteinase-7 (MMP-7) and collagen type II than the control group at all time points (P<0.05), but no significant difference in BMD (P>0.05). Conclusions Rupture of the PCL may trigger a coordinated response of lateral femoral condyle degeneration in a time-dependent manner, to which the high level of expression of MMP-7 and collagen type II could contribute. PMID:27843134

  7. On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection

    NASA Astrophysics Data System (ADS)

    Sahoo, Swarandeep; Sreenivasan, Binod

    2017-08-01

    The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone-anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a

  8. Effects of set-size and lateral masking in visual search.

    PubMed

    Põder, Endel

    2004-01-01

    In the present research, the roles of lateral masking and central processing limitations in visual search were studied. Two search conditions were used: (1) target differed from distractors by presence/absence of a simple feature; (2) target differed by relative position of the same components only. The number of displayed stimuli (set-size) and the distance between neighbouring stimuli were varied as independently as possible in order to measure the effect of both. The effect of distance between stimuli (lateral masking) was found to be similar in both conditions. The effect of set-size was much larger for relative position stimuli. The results support the view that perception of relative position of stimulus components is limited mainly by the capacity of central processing.

  9. Tuning the photovoltaic effect of multiferroic CoFe2O4/Pb(Zr, Ti)O3 composite films by magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Chen, Guang-Yi; Bi, Gui-Feng; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-05-01

    The 0-3 type CoFe2O4-Pb(Zr,Ti)O3 (CFO-PZT) multiferroic composite films have been prepared by a sol-gel process and spin-coating technique. A confirmable photovoltaic effect is observed under ultraviolet light irradiation. Moreover, this photovoltaic effect can be tuned by external magnetic fields. The maximum magnetic modulation ratios of short-circuit current density and open-circuit voltage can reach as high as 13.7% and 12.8% upon the application of 6 kOe DC magnetic field. Through remnant polarization measurements under various magnetic fields and detailed analysis of the energy band structures, we elucidate the mechanism of tuning photovoltaic effect by magnetic fields and attribute it to the combination of two factors. One is the decreased ferroelectric-polarization-induced depolarization electric field and another is the band structure reconstruction at CFO-PZT interfaces, both of which are dominated by the magnetoelectric coupling via interfacial stress transferring at nanoscale. This work makes some attempts of coupling photo-induced effects with magnetoelectric effect in multiferroic materials and will widen the practical ranges of multiferroic-based applications.

  10. Tuning the photovoltaic effect of multiferroic CoFe{sub 2}O{sub 4}/Pb(Zr, Ti)O{sub 3} composite films by magnetic fields

    SciTech Connect

    Pan, Dan-Feng; Chen, Guang-Yi; Bi, Gui-Feng; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-05-30

    The 0–3 type CoFe{sub 2}O{sub 4}-Pb(Zr,Ti)O{sub 3} (CFO-PZT) multiferroic composite films have been prepared by a sol-gel process and spin-coating technique. A confirmable photovoltaic effect is observed under ultraviolet light irradiation. Moreover, this photovoltaic effect can be tuned by external magnetic fields. The maximum magnetic modulation ratios of short-circuit current density and open-circuit voltage can reach as high as 13.7% and 12.8% upon the application of 6 kOe DC magnetic field. Through remnant polarization measurements under various magnetic fields and detailed analysis of the energy band structures, we elucidate the mechanism of tuning photovoltaic effect by magnetic fields and attribute it to the combination of two factors. One is the decreased ferroelectric-polarization-induced depolarization electric field and another is the band structure reconstruction at CFO-PZT interfaces, both of which are dominated by the magnetoelectric coupling via interfacial stress transferring at nanoscale. This work makes some attempts of coupling photo-induced effects with magnetoelectric effect in multiferroic materials and will widen the practical ranges of multiferroic-based applications.

  11. The Department of the Navy Spent Recovery Act Funds on Photovoltaic Projects That Were Not Cost-Effective

    DTIC Science & Technology

    2011-09-22

    rooftops of various facilities at Naval Station Pearl Harbor in Oahu, Hawaii , and at the Pacific Missile Range Facility in Kauai , Hawaii . To execute...Photovoltaic Systems at Navy Installations in Hawaii 40 Project P856-M, Photovoltaic System at Marine Corps Base Camp Pendleton, California 40 C...reviewed Project P856-M at Marine Corps Base Camp Pendleton (Camp Pendleton), Project RM09-1363 at Navy installations in Hawaii , and Project RM09-1440 at

  12. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  13. Flate-plate photovoltaic power systems handbook for Federal agencies

    NASA Technical Reports Server (NTRS)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  14. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.

    PubMed

    Osella, Silvio; Narita, Akimitsu; Schwab, Matthias Georg; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus; Beljonne, David

    2012-06-26

    Graphene nanoribbons (GNRs) are strips of graphene cut along a specific direction that feature peculiar electronic and optical properties owing to lateral confinement effects. We show here by means of (time-dependent) density functional theory calculations that GNRs with properly designed edge structures fulfill the requirements in terms of electronic level alignment with common acceptors (namely, C(60)), solar light harvesting, and singlet-triplet exchange energy to be used as low band gap semiconductors for organic photovoltaics.

  15. Investigating the effect of lateral viscosity variations in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    O'Farrell, K. A.; Lithgow-Bertelloni, C. R.

    2015-12-01

    Seismic tomography can be used to investigate radial viscosity variations on instantaneous flow models by predicting the global geoid and comparing with the observed geoid. This method is one of many that has been used to constrain viscosity structure in the Earth's mantle in the last few decades. Using the 3D mantle convection model, Stag-YY (e.g., Hernlund and Tackley, 2008), we are further able to explore the effect of lateral variations in viscosity in addition to the radial variations. Examining over 50 tomographic models we found notable differences by comparing a synthetically produced geoid with the observed geoid. Comparing S- and P-wave tomographic models, the S-wave models provided a better fit to the observed geoid. Using this large suite of 50 tomographic models, we have been able to constrain the radial viscosity structure of the Earth. We found that two types of viscosity profiles yielded equally good fits. A viscosity profile with a low transition zone viscosity and a lower mantle viscosity equal to the upper mantle, or a profile with a large lower mantle viscosity and a transition zone viscosity similar to the upper mantle. Using the set of radial viscosity profiles that gave the best fit to the observed geoid, we can explore a range of lateral viscosity variations and see how they affect the different types of tomographic models. Improving on previous studies of lateral viscosity variations (e.g. Ghosh, Becker and Zhong, 2010), we systematically explore a large range of tomographic models and density-velocity conversion factors. We explore which type of tomographic model (S- or P- wave) is more strongly affected by lateral viscosity variations, as well as the effect on isotropic and anisotropic models. We constrain the strength of lateral viscosity variations necessary to produce a high correlation between observed and predicted geoid anomalies. We will discuss the wavelength of flow that is most affected by the lateral viscosity variations

  16. Photovoltaics: electricity from sunlight

    SciTech Connect

    Not Available

    1984-09-01

    The role of photovoltaic power in the world's energy mix is discussed. The role of the US federal government in the research and development of photovoltaic technology is described as one of undertaking long-range, high-risk research and development in areas that industry is not likely to pursue because of the costs and risks involved. The commercial growth of photovoltaic technology is alluded to briefly, and the basic operating theory of photovoltaic conversion is introduced. Numerous applications of photovoltaic technology are described, including uses in communications, rural electrification, waer pumping, corrosion protectio, navigational aids, and railroads, as well as utility network power. The economics of photovoltaic power are discussed, and the products and technology of the US photovoltaic industry are described. (LEW)

  17. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    DOE PAGES

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; ...

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less

  18. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    PubMed

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  19. Carrier-tunneling-induced photovoltaic effect of InAs/GaAs quantum-dot solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Kim, Jong Su; Lee, Sang Jun

    2016-08-01

    This study reports the observation of the carrier-tunneling-induced photovoltaic (PV) effect in an InAs/GaAs quantum-dot solar cell (QDSC). The illuminated current-voltage (J-V) characteristics and the applied-bias-dependent electroreflectance (ER) were measured at 12 K by using an excitation laser with a wavelength of 975 nm (1.27 eV), which excites only the quantum-dot (QD) states below the GaAs band gap. The J-V results showed a peculiar current curve in the reverse bias region caused by carrier tunneling. The ER results showed that the junction electric field ( F) decreased with increasing intensity of the excitation laser ( I ex ) at different applied-bias-voltages ( V a ) due to the tunneling-induced PV effect. The PV effect was enhanced by improved tunneling with increasing reverse bias voltage. We also evaluated the tunneling carrier density ( σ pv ) as a function of V a in the QDSC.

  20. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  1. Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons.

    PubMed

    Reed, William R; Pickar, Joel G; Sozio, Randall S; Long, Cynthia R

    2014-06-01

    High-velocity low-amplitude spinal manipulation (HVLA-SM), as performed by doctors who use manual therapy (eg, doctors of chiropractic and osteopathy), results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields, which included the lumbar dorsal-lateral trunk, were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in 3 directions (dorsal-ventral, 45° caudalward, and 45° cranialward) before and immediately after the dorsal-ventral delivery of a 100-millisecond HVLA-SM at 3 thrust magnitudes (control, 55%, 85% body weight). There was a significant difference in mechanical threshold between 85% body weight manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (P=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that, at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  2. Lateral ink mobility and fringe field effects across the porous matrix of an electrophoretic display

    NASA Astrophysics Data System (ADS)

    Li Tsui, Kelly; Ahumada, Manuel; Bryning, Mateusz; Hartono, Michelle; Lee, Sang-Joon J.

    2013-03-01

    This investigation studies fringe field between laterally adjacent electrodes in a reverse-emulsion electrophoretic display (REED). The display consists of a nanodroplet ink and a porous matrix that serves as the "paper" between planar electrodes. One relative advantage of this type of electronic paper display is that it can be produced with lowcost materials and manufacturing processes. A concern for image resolution, however, is the fringe field effect that occurs in the gaps between neighboring electrodes. Ideally the dye-containing nanodroplets in the ink move in a direction that is strictly perpendicular to the opposing pairs of electrodes. However, nanodroplet saturation and potential gradients from neighboring electrodes may result in lateral displacement of the nanodroplets as well. Accordingly, this study examines how fringe field between neighboring electrodes is affected by lateral spacing and applied voltage. Transient and steady-state effects were studied by fabricating and testing devices that were patterned with different lateral spacing between electrodes, and switching under different voltage levels. Relative luminance was extracted from digital microscope images, captured in the vicinity between neighboring electrodes. Measurements were recorded for electrode spacing of 20 μm, 40 μm, 60 μm, and 80 μm with devices switched at ±1.5 V and ±2.5 V. Gradients in luminance overlapped at lateral distances below 60 μm, and became distinct for left and right electrodes spaced by at least 80 μm. Higher applied voltage resulted in steeper transition between light and dark states, but exhibited distortion at electrode edges.

  3. Effects of piping irrigation laterals on selenium and salt loads, Montrose Arroyo Basin, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    2001-01-01

    Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.

  4. [Effect of NO3- supply on lateral root growth in maize plants].

    PubMed

    Guo, Ya-Fen; Mi, Guo-Hua; Chen, Fan-Jun; Zhang, Fu-Suo

    2005-02-01

    Growth of lateral roots is regulated by both environmental factors and nitrate (NO(-)(3)) content of the plant. The mechanism involved is not clearly understood. Two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study the effect of different nitrate supply on lateral root (LR) growth by a whole plants agar culture. The results showed that increasing NO(-)(3)concentration in nutrient solution from 0.01 to 1.0 mmol/L significantly increased the LR length and root biomass. Lateral root density changed little with NO(-)(3) increase up to 5x10(-3) mol/L (for Wu312) - 10x10(-3) mol/L (for 478), then decreased significantly with increasing NO(-)(3). The inhibitory effect of high NO(-)(3) on root growth was weaker in 478 than in Wu312. The growth of lateral roots in Wu312 was completely inhibited by NO(-)(3) at a concentration of 10x10(-3) mol/L, whereas LR density of 478 could reach 30% (axial) and 50% (radicle) of its maximum even at NO(-)(3) 20x10(-3) mol/L. Both the shoot total N and shoot nitrate content increased with increasing NO(-)(3) level. They had similar mathematic functions with shoot/root ratio (Exponential Decay), LR density (Gaussian) and LR length (Parabola). When shoot N content exceed about 1.6 mol/kg and NO(-)(3) content exceed 0.22 mol/kg, shoot/root ratio increased rapidly; when the shoot N content exceed about 1.5 and NO(-)(3) exceed 0.16 mol/kg, LR densities began to decrease; when shoot N content reached about 1 mol/kg and NO(-)(3) content reached 0.10 mol/kg, the LR lengths began to decrease. The possible relationship between shoot NO(-)(3) content and lateral root growth was discussed.

  5. Effect of Spinal Manipulation Thrust Magnitude on Trunk Mechanical Thresholds of Lateral Thalamic Neurons

    PubMed Central

    Reed, William R.; Pickar, Joel G.; Sozio, Randall S.; Long, Cynthia R.

    2014-01-01

    Objectives High velocity low amplitude spinal manipulation (HVLA-SM), as performed by manual therapists (eg, doctors of chiropractic and osteopathy) results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Methods Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields which included the lumbar dorsal-lateral trunk were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in three directions (dorsal-ventral, 45°caudalward, and 45°cranialward) prior to and immediately following the dorsal-ventral delivery of a 100ms HVLA-SM at three thrust magnitudes (control, 55%, 85% body weight; (BW)). Results There was a significant difference in mechanical threshold between 85% BW manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (p=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. Conclusions This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. PMID:24928636

  6. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  7. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  8. Effect of lateral meniscus allograft on shoulder articular contact areas and pressures.

    PubMed

    Creighton, R Alexander; Cole, Brian J; Nicholson, Gregory P; Romeo, Anthony A; Lorenz, Eric P

    2007-01-01

    The objective of this study was to determine the effect of a lateral meniscus allograft on the articular contact area and pressures across the glenohumeral joint under compressive loads of 220 N and 440 N. Eight fresh-frozen shoulders were used, and contact areas and pressures were determined with a Tekscan flexible tactile force sensor. Testing conditions included a normal glenohumeral joint and one interposed with a lateral meniscus allograft. Using the Tekscan sensing equipment, we evaluated the total force (in Newtons), contact area (in square millimeters), mean contact pressure (in kilograms per square centimeter), peak force (in Newtons), and peak contact pressure (in kilograms per square centimeter). The interposed lateral meniscus allograft group showed a statistically significant decrease in total force at both 220 N and 440 N, as well as a decrease in contact area for the 220-N testing condition. There were no statistically significant differences between the two groups in contact area at 440 N or in peak forces or peak contact areas for either 220-N or 440-N testing condition. Biomechanically biologic resurfacing with a lateral meniscus allograft of the glenohumeral joint is supported by decreased forces on the glenoid surface.

  9. Effects of bilateral lesions of the central and lateral amygdala on free operant successive discrimination.

    PubMed

    Peinado-Manzano, A

    1988-07-01

    Male rats received either ibotenic acid (IBO) or sham lesions bilaterally into the central or lateral amygdala or were assigned to an unoperated control group. After the postoperation recovery period all lesioned and unoperated animals were tested for open field behaviour and for the ability to master a free operant successive discrimination. Retention of the discrimination learning was evaluated 48 h later for the original and reversal problem. After the reversal learning retention test the unoperated animals were assigned at random to one unoperated control and two IBO amygdaloid lesioned groups (central and lateral) and these, unoperated and lesioned animals, received additional free operant successive discrimination retraining after the surgery recovery period. Significant lesion effects were found in the emotional indices in the open field test. The lesions significantly impaired the postoperative acquisition of a free operant successive discrimination and its reversal and diminished its retention but did not impair the retention of such a discrimination task acquired before the lesion. The contribution of central and lateral amygdala in open field behaviour and in the major components of a free operant successive discrimination is discussed. In order to know how the amygdala is involved in association of sensorial stimuli with reinforcement we suggest experimental designs controlling the detailed components of such an association.

  10. Effect of fullerene tris-adducts on the photovoltaic performance of P3HT:fullerene ternary blends.

    PubMed

    Kang, Hyunbum; Kim, Ki-Hyun; Kang, Tae Eui; Cho, Chul-Hee; Park, Sunhee; Yoon, Sung Cheol; Kim, Bumjoon J

    2013-05-22

    Fullerene tris-adducts have the potential of achieving high open-circuit voltages (V(OC)) in bulk heterojunction (BHJ) polymer solar cells (PSCs), because their lowest unoccupied molecular orbital (LUMO) level is higher than those of fullerene mono- and bis-adducts. However, no successful examples of the use of fullerene tris-adducts as electron acceptors have been reported. Herein, we developed a ternary-blend approach for the use of fullerene tris-adducts to fully exploit the merit of their high LUMO level. The compound o-xylenyl C60 tris-adduct (OXCTA) was used as a ternary acceptor in the model system of poly(3-hexylthiophene) (P3HT) as the electron donor and the two soluble fullerene acceptors of OXCTA and fullerene monoadduct (o-xylenyl C60 monoadduct (OXCMA), phenyl C61-butyric acid methyl ester (PCBM), or indene-C60 monoadduct (ICMA)). To explore the effect of OXCTA in ternary-blend PSC devices, the photovoltaic behavior of the device was investigated in terms of the weight fraction of OXCTA (W(OXCTA)). When W(OXCTA) is small (<0.3), OXCTA can generate a synergistic bridging effect between P3HT and the fullerene monoadduct, leading to simultaneous enhancement in both V(OC) and short-circuit current (J(SC)). For example, the ternary PSC devices of P3HT:(OXCMA:OXCTA) with W(OXCTA) of 0.1 and 0.3 exhibited power-conversion efficiencies (PCEs) of 3.91% and 3.96%, respectively, which were significantly higher than the 3.61% provided by the P3HT:OXCMA device. Interestingly, for W(OXCTA) > 0.7, both V(OC) and PCE of the ternary-blend PSCs exhibited nonlinear compositional dependence on W(OXCTA). We noted that the nonlinear compositional trend of P3HT:(OXCMA:OXCTA) was significantly different from that of P3HT:(OXCMA:o-xylenyl C60 bis-adduct (OXCBA)) ternary-blend PSC devices. The fundamental reasons for the differences between the photovoltaic trends of the two different ternary-blend systems were investigated systemically by comparing their optical, electrical

  11. Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes

    SciTech Connect

    Armstrong, Clare L; Barrett, M; Heiss, Arno; Salditt, Tim; Katsaras, John; Shi, An-Chang; Rheinstadter, Maikel C

    2012-01-01

    Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be softer than fluid bilayers, but better ordered than bilayers in the gel phase.

  12. Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films

    NASA Astrophysics Data System (ADS)

    Visalakshi, S.; Kannan, R.; Valanarasu, S.; Kim, Hyun-Seok; Kathalingam, A.; Chandramohan, R.

    2015-09-01

    Solar cell property of p-CuO/n-Si heterojunction was investigated using SILAR-deposited CuO thin films. The effects of copper salt concentration on the growth of CuO films and its effect on the efficiency in solar cell conversion were investigated. Structural, morphological, optical and electrical studies of the CuO thin films deposited at 90 °C with different copper sulphate concentrations are reported. Crystallinity of the film is found to increase with the increase in copper sulphate concentration. The measured Raman spectrum of the deposited film showed peaks corresponding to CuO phase. It is observed by the SEM that the film is homogeneous fully covering the substrate. The optical band gap of the deposited film has exhibited a decrease in band gap from 1.76 to 1.57 eV with the increase in copper sulphate concentration. Solar cell device was constructed using the p-CuO film deposited on n-silicon substrate, and its photovoltaic response was measured. It showed increasing photoresponse with increasing concentration of copper sulphate.

  13. The Photovoltaic Effect of CdS Quantum Dots Synthesized in Inverse Micelles and R-Phycoerythrin Tunnel Cavities.

    PubMed

    Bekasova, Olga D; Revina, Alexandra A; Kornienko, Ekaterina S; Kurganov, Boris I

    2015-06-01

    CdS quantum dots (CdS QDs) 4.3 nm in diameter synthesized in an AOT/isooctane/water microemulsion and in R-phycoerythrin tunnel cavities (3.5 × 6.0 nm) were analyzed for photoelectrochemical properties. The CdS QDs preparations were applied onto a platinum electrode to obtain solid films. Experiments were performed in a two-section vessel, with one section filled with ethanol and the other, with 3 M KCl. The sections were connected through an agar stopper. It was found that illumination of the films resulted in a change of the electrode potential. The magnitude of this change and the kinetics of the appearance and disappearance of the photopotential, i.e., the difference between the electrode potential on the light and in dark, depended on the nature of the QD shell. The photovoltaic effect of CdS QDs in R-phycoerythrin, compared to that of CdS QDs in AOT/isooctane micelles, is three to four times greater due to the photosensitizing action of R-phycoerythrin. The photosensitized effect was markedly higher than the photoelectric sensitivity of R-phycoerythrin and had the opposite polarity. Changes in the potential upon turning the light on and off could be observed repeatedly.

  14. Drift-Diffusion Modeling of the Effects of Structural Disorder and Carrier Mobility on the Performance of Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Finck, Benjamin Y.; Schwartz, Benjamin J.

    2015-09-01

    We probe the effects of structural disorder on the performance of organic photovoltaic (OPV) devices via drift-diffusion modeling. We utilize ensembles of spatially disordered one-dimensional mobility profiles to approximate the three-dimensional structural disorder present in actual devices. Each replica in our ensemble approximates one high-conductivity pathway through the three-dimensional network(s) present in a polymer-based bulk heterojunction solar cell, so that the ensemble-averaged behavior provides a good approximation to a full three-dimensional structurally disordered device. Our calculations show that the short-circuit current, fill factor, and power conversion efficiency of simulated devices are all negatively impacted by the inclusion of structural disorder, but that the open-circuit voltage is nearly impervious to structural defects. This is in contrast to energetic disorder, where previous studies found that spatial variation in the energy in OPV active layers causes a decrease in the open-circuit voltage. We also show that structural disorder causes the greatest detriment to device performance for feature sizes between 2 and 10 nm. Since this is on the same length scale as the fullerene crystallites in experimental devices, it suggests both that controlling structural disorder is critical to the performance of OPV devices and that the effects of structural disorder should be included in future drift-diffusion modeling studies of organic solar cells.

  15. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    PubMed

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  16. Antenna effects and improved efficiency in multiple heterojunction photovoltaic cells based on pentacene, zinc phthalocyanine, and C60

    NASA Astrophysics Data System (ADS)

    Hong, Z. R.; Lessmann, R.; Maennig, B.; Huang, Q.; Harada, K.; Riede, M.; Leo, K.

    2009-09-01

    For organic solar cells, effective absorption over a wide wavelength range is important. A simple donor-acceptor pair is usually not sufficient to reach this goal. Thus, it would be desirable to utilize multiple photoactive materials in a single cell. In this work, two hole conducting materials, pentacene and zinc phthalocyanine (ZnPc), and electron conducting C60 are chosen to construct three-component heterojunctions aiming at improved effective photon harvesting in organic solar cells. It is found that in pentacene/ZnPc/C60 multiple heterojunctions, part of the excitons in pentacene reach the ZnPc/C60 interface, where efficient exciton separation occurs and contributes to the photocurrent (PC). Triplet excitons are confirmed to be the major origin of PC by transient PC response measurements, suggesting that triplet-to-triplet energy transfer from pentacene to ZnPc is responsible for the improved PC of pentacene/ZnPc/C60 multiheterojunctions. Furthermore, exothermic energy transfer from ZnPc to the lower lying triplet levels of pentacene is employed for extending the absorption range and enlarging the absorption intensity. To realize such a structure, an ultrathin ZnPc layer is embedded in the pentacene film in pentacene/C60 single heterojunctions, leading to an enhanced quantum efficiency in the long wavelength range compared to the reference cell. These findings pave a way to efficient photovoltaic cells with a wide photoresponse ranging from near UV through the visible to the near infrared.

  17. Effects of ytterbium on electrical and optical properties of BCP/Ag/WO3 transparent electrode based organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Oh, Il Soo; Ji, Chan Hyuk; Oh, Se Young

    2016-01-01

    This study introduces dielectric/metal/dielectric multilayers based on a WO3/Ag/WO3 (WAW) anode and Yb/BCP/Ag/WO3 (Yb/BAW) cathode for use in organic photovoltaic cells (OPVs). Here, the Yb/BCP hybrid multilayer provides an effective electron transport layer (ETL), while the Yb doping ensures that voltage loss due to interfacial band bending is effectively suppressed. Transparent OPVs produced with a structure of WAW/P3HT:PCBM/Yb/BAW are shown to exhibit a power conversion efficiency (PCE) of up to 2.42%, achieving a 65.4% fill factor (FF) under one sun irradiation. These results indicate that the use of Yb in transparent OPVs is vastly superior to other ETLs, as it improves the majority of critical parameters such as short circuit current (Jsc), fill factor (FF) and PCE. This is attributed to a decrease in the series resistance and increase in the shunt resistance, while an increase in electron mobility also helps to ensure faster sweep out. [Figure not available: see fulltext.

  18. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Tu, C. S.; Hung, C.-M.; Xu, Z.-R.; Schmidt, V. H.; Ting, Y.; Chien, R. R.; Peng, Y.-T.; Anthoninappen, J.

    2013-09-01

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi1-xCax)FeO3-δ ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi1-xCax)FeO3-δ ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi0.90Ca0.10)FeO2.95 (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  19. Optimal velocity model with consideration of the lateral effect and its feedback control research

    NASA Astrophysics Data System (ADS)

    Zheng, Y. Z.; Ge, H. X.

    2016-06-01

    In this paper, a car-following model with the consideration of lateral effect is constructed. An improved control signal with considering more comprehensive information is introduced according to the feedback control theory. The stability conditions with control signal or not are derived. Numerical simulations are carried out to illustrate the advantage of the modified model with and without the control signal, and the results are consistent with the analytical ones.

  20. Turbulence Model Effects on Cold-Gas Lateral Jet Interaction in a Supersonic Crossflow

    DTIC Science & Technology

    2014-06-01

    again with excellent agreement. The study detailed in this report found that, even with the observed variations in surface pressure, the aerodynamic ...fins or other appendages in the wake of the counter-rotating vortex pair. 15. SUBJECT TERMS lateral jet, computational fluid dynamics, aerodynamics 16...effective point of action are critical to the accuracy of any flight trajectory simulations using an aerodynamic model based on these simulations (5–7

  1. Photovoltaic effect of spin-triplet emitters PtOEP and Ir(ppy)3 in organic light emitting diode devices

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki

    2004-02-01

    Photovoltaic effect has been studied on single- and multi-layer OLED devices based on phosphorescent PtOEP and Ir(ppy)3 molecules, together with the electroluminescence (EL). The incident photon to current efficiency (IPCE) spectra of these PtOEP and Ir(ppy)3 devices are similar to the absorption spectra of PtOEP and Ir(ppy)3 molecules, respectively. This indicates that the photovoltaic effect is caused by the optical excitation of PtOEP and Ir(ppy)3 molecules. The single-layer devices show weak EL luminance and low EL efficiency. Although the EL efficiency of the multi-layer Ir(ppy)3 OLED device is high, the IPCE value is quite low, e.g. 0.013% in the single-layer device at the absorption peak wavelength of 386 nm. The same is true for PtOEP OLED, e.g. 0.0425% at the absorption peak wavelength of 371 nm. Such a low IPCE is considered to be due to low carrier mobility of PtOEP and Ir(ppy)3 molecules. It was found that the multi-layer PtOEP and Ir(ppy)3 OLED devices with emitting layer of guest-host system show much less efficient photovoltaic effect than the single-layer devices without guest-host.

  2. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview.

    PubMed

    Roseboom, T J; van der Meulen, J H; Ravelli, A C; Osmond, C; Barker, D J; Bleker, O P

    2001-12-20

    Chronic diseases are the main public health problem in Western countries. There are indications that these diseases originate in the womb. It is thought that undernutrition of the fetus during critical periods of development would lead to adaptations in the structure and physiology of the fetal body, and thereby increase the risk of diseases in later life. The Dutch famine--though a historical disaster--provides a unique opportunity to study effects of undernutrition during gestation in humans. This thesis describes the effects of prenatal exposure to the Dutch famine on health in later life. We found indications that undernutrition during gestation affects health in later life. The effects on undernutrition, however, depend upon its timing during gestation and the organs and systems developing during that critical time window. Furthermore, our findings suggest that maternal malnutrition during gestation may permanently affect adult health without affecting the size of the baby at birth. This may imply that adaptations that enable the fetus to continue to grow may nevertheless have adverse consequences of improved nutrition of pregnant women will be underestimated if these are solely based on the size of the baby at birth. Little is known about what an adequate diet for pregnant women might be. In general, women are especially receptive to advice about diet and lifestyle before and during a pregnancy. This should be exploited to improve the health of future generations.

  3. The effects of thermal capsulorrhaphy of medial parapatellar capsule on patellar lateral displacement

    PubMed Central

    Zheng, Naiquan; Davis, Brent R; Andrews, James R

    2008-01-01

    Background The effectiveness of thermal shrinkage on the medial parapatellar capsule for treating recurrent patellar dislocation is controversial. One of reasons why it is still controversial is that the effectiveness is still qualitatively measured. The purpose of this study was to quantitatively determine the immediate effectiveness of the medial parapatellar capsule shrinkage as in clinical setting. Methods Nine cadaveric knees were used to collect lateral displacement data before and after medial shrinkage or open surgery. The force and displacement were recorded while a physician pressed the patella from the medial side to mimic the physical exam used in clinic. Ten healthy subjects were used to test the feasibility of the technique on patients and establish normal range of lateral displacement of the patella under a medial force. The force applied, the resulting displacement and the ratio of force over displacement were compared among four data groups (normal knees, cadaveric knees before medial shrinkage, after shrinkage and after open surgery). Results Displacements of the cadaveric knees both before and after thermal modification were similar to normal subjects, and the applied forces were significantly higher. No significant differences were found between before and after thermal modification groups. After open surgery, displacements were reduced significantly while applied forces were significantly higher. Conclusion No immediate difference was found after thermal shrinkage of the medial parapatellar capsule. Open surgery immediately improved of the lateral stiffness of the knee capsule. PMID:18826583

  4. Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish

    PubMed Central

    Domenichini, Alice; Dadda, Marco; Facchin, Lucilla; Bisazza, Angelo; Argenton, Francesco

    2011-01-01

    In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw), a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a “viewing test”. As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors. PMID:22022484

  5. Laterality effects in normal subjects' recognition of familiar faces, voices and names. Perceptual and representational components.

    PubMed

    Gainotti, Guido

    2013-06-01

    A growing body of evidence suggests that a different hemispheric specialization may exist for different modalities of person identification, with a prevalent right lateralization of the sensory-motor systems allowing face and voice recognition and a prevalent left lateralization of the name recognition system. Data supporting this claim concern, however, much more disorders of familiar people recognition observed in patients with focal brain lesions than results of experimental studies conducted in normal subjects. These last data are sparse and in part controversial, but are important from the theoretical point of view, because it is not clear if hemispheric asymmetries in the recognition of faces, voices and names are limited to their perceptual processing, or also extend to the domain of their cortical representations. The present review has tried to clarify this issues, taking into account investigations that have evaluated in normal subjects laterality effects in recognition of familiar names, faces and voices, by means of behavioural, neurophysiological and neuroimaging techniques. Results of this survey indicate that: (a) recognition of familiar faces and voices show a prevalent right lateralization, whereas recognition of familiar names is lateralized to the left hemisphere; (b) the right hemisphere prevalence is greater in tasks involving familiar than unfamiliar faces and voices, and the left hemisphere superiority is greater in the recognition of familiar than unfamiliar names. Taken together, these data suggest that hemispheric asymmetries in the recognition of faces, voices and names are not limited to their perceptual processing, but also extend to the domain of their cortical representations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of TiO2 Film Thickness and Electrolyte Concentration on Photovoltaic Performance of Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Domtau, D. L.; Simiyu, J.; Ayieta, E. O.; Nyakiti, L. O.; Muthoka, B.; Mwabora, J. M.

    Effects of film thickness and electrolyte concentration on the photovoltaic performance of TiO2-based dye-sensitized solar cell (DSSC) were studied. Nanocrystalline anatase TiO2 thin films with varying thicknesses (3.2-18.9μm) have been deposited on FTO/glass substrates by screen printing method as work electrodes for DSSC. The prepared samples were characterized by UV-Vis spectroscopy, Atomic Force Microscopy/Scanning Tunneling Microscopy (AFM/STM) and X-ray diffraction (XRD). The optimal thickness of the TiO2 photoanode is 13.5μm. Short-circuit photocurrent density (Jsc) increases with film thickness due to enlargement of surface area whereas open-circuit voltage decreases with increase in thickness due to increase in electron diffusion length to the electrode. However, the Jsc and Voc of DSSC with a film thickness of 18.9μm (7.5mA/cm2 and 0.687V) are smaller than those of DSSC with a TiO2 film thickness of 13.5μm (9.9mA/cm2 and 0.734V). This is because the increased thickness of TiO2 thin film resulted in the decrease in the transmittance of TiO2 thin films hence reducing the incident light intensity on the N719 dye. Photovoltaic performance also depends greatly on the redox couple concentration in iodide∖triiodide. Jsc decreases as the redox concentration increases as a result of increased viscosity of the solution which lowers ion mobility. Similarly, Voc decreases as the electrolyte concentration increases due to enhanced back electron transfer reaction. An optimum power conversion efficiency of 4.3% was obtained in a DSSC with the TiO2 film thickness of 13.5μm and redox concentration of 0.03mol dm-3 under AM 1.5G illumination at 100mW/cm2.

  7. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  8. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  9. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  10. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Peng, Yi-Ting; Chiou, Shan-Haw; Hsiao, Ching-Hung; (Hao) Ouyang, Chuenhou; Tu, Chi-Shun

    2017-03-01

    Remarkably enhanced photovoltaic effects have been observed in the heterostructures of p-type A-site Nd3+-doped BiFeO3 (Bi0.9375Nd0.0625)FeO3 (or BFONd) polycrystalline ceramics and the n-type ITO thin film. The maximum power conversion is ~0.82%, which is larger than 0.015% in BiFeO3 (BFO) under blue-ultraviolet irradiation of wavelength λ = 405 nm. The current-voltage (I-V) characteristic curve suggests a p-n junction interface between the ITO thin film and BFO (or BFONd) ceramics. The band gaps calculated from first-principles for BFO and BFONd are respectively 2.25 eV and 2.23 eV, which are consistent with the experimental direct band gaps of 2.24 eV and 2.20 eV measured by optical transmission spectra. The reduction of the band gap in BFONd can be explained by the lower electronic Fermi level due to acceptor states revealed by first-principles calculations. The optical calculations show a larger absorption coefficient in BFONd than in BFO.

  11. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3

    PubMed Central

    Peng, Yi-Ting; Chiou, Shan-Haw; Hsiao, Ching-Hung; (Hao) Ouyang, Chuenhou; Tu, Chi-Shun

    2017-01-01

    Remarkably enhanced photovoltaic effects have been observed in the heterostructures of p-type A-site Nd3+-doped BiFeO3 (Bi0.9375Nd0.0625)FeO3 (or BFONd) polycrystalline ceramics and the n-type ITO thin film. The maximum power conversion is ~0.82%, which is larger than 0.015% in BiFeO3 (BFO) under blue-ultraviolet irradiation of wavelength λ = 405 nm. The current-voltage (I-V) characteristic curve suggests a p-n junction interface between the ITO thin film and BFO (or BFONd) ceramics. The band gaps calculated from first-principles for BFO and BFONd are respectively 2.25 eV and 2.23 eV, which are consistent with the experimental direct band gaps of 2.24 eV and 2.20 eV measured by optical transmission spectra. The reduction of the band gap in BFONd can be explained by the lower electronic Fermi level due to acceptor states revealed by first-principles calculations. The optical calculations show a larger absorption coefficient in BFONd than in BFO. PMID:28337977

  12. The effect of optical properties on photovoltaic performance in dye-sensitized TiO2 nanocrystalline solar cells.

    PubMed

    Ji, Ya-Jun; Zhang, Ming-Dao; Cui, Jie-Hu; Zheng, He-Gen; Zhu, Jun-Jie

    2013-06-01

    In this study, well-crystallized TiO2 nanoparticles with average size of -20 nm were synthesized by hydrolysis of titania salt in aqueous medium. The effect of the optical properties of the obtained titania particles based thin films with different thickness on the photovoltaic performance of dye-sensitized solar cells were investigated. Differential thermal analysis/thermo-gravimetric analysis, scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the morphology, structure and crystal formation of the obtained samples. The optical properties such as reflectance and transmittance of the photoanodes with different thickness were systematically investigated. The reflectance property increased with increasing the film thickness, however, the transmittance property showed the opposite way. The improved scattering property with increasing the film thickness facilitated efficient utilization of solar spectrum, which was verified by incident photon-to-current conversion efficiency. The maximum energy conversion efficiency of 5.0% was achieved on photoelectrode film with 17.8 microm.

  13. Pore-size effect on photovoltaic performance of dye-sensitized solar cells composed of mesoporous anatase-titania

    NASA Astrophysics Data System (ADS)

    Yun, Tae Kwan; Park, Sung Soo; Kim, Duckhyun; Hwang, Yong-Kyung; Huh, Seong; Bae, Jae Young; Won, Yong Sun

    The effect of the pore size of mesoporous anatase-TiO 2 on the photovoltaic performance of dye-sensitized solar cells (DSSCs) is investigated. The mesoporous TiO 2 particles are synthesized by two different methods using a soft template of tri-block copolymer and a hard template of mesoporous ZnO/Zn(OH) 2-composite. These methods produce the same high surface area (S BET ∼ 210 m 2 g -1) but different pore sizes of 6.8 and 3.0 nm, respectively. With the mesoporous TiO 2 having larger pores, the photo-conversion efficiency (η) is increased significantly to 6.71%, compared with 5.62% that is typically achieved using P25 TiO 2 nanopowders. By comparison, only half the performance (3.05%) has been observed with mesoporous TiO 2 that has small pores. Mesoporous TiO 2 with suitable pore sizes (∼6.8 nm) makes the most of its high surface area and thereby allows a high uptake of dye to enhance the current density. In contrast, the low efficiency of mesoporous TiO 2 with small pores is attributed to the low uptake of dye due to the smaller pore size (∼3.0 nm), which blocks the diffusion and adsorption of dye molecules through the pores.

  14. Influence of Atmospheric Variations on Photovoltaic Performance and Modeling Their Effects for Days with Clear Skies: Preprint

    SciTech Connect

    Marion, B.

    2012-06-01

    Although variation in photovoltaic (PV) performance is predominantly influenced by clouds, performance variations also exist for days with clear skies with different amounts of atmospheric constituents that absorb and reflect different amounts of radiation as it passes through the earth's atmosphere. The extent of the attenuation is determined by the mass of air and the amounts of water vapor, aerosols, and ozone that constitute the atmosphere for a particular day and location. Because these constituents selectively absorb radiation of particular wavelengths, their impact on PV performance is sensitive to the spectral response of the PV device. The impact may be assessed by calculating the spectral mismatch correction. This approach was validated using PV module performance data at the National Renewable Energy Laboratory (NREL) for summer, fall, and winter days with clear skies. The standard deviation of daily efficiencies for single-crystal Si, a-Si/a-Si/a-Si:Ge, CdTe, and CIGS PV modules were reduced to 0.4% to 1.0% (relative) by correcting for spectral mismatch, temperature, and angle-of-incidence effects.

  15. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    PubMed

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers.

  16. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect.

    PubMed

    Tang, Longhua; Zhu, Yihua; Yang, Xiaoling; Sun, Jinjie; Li, Chunzhong

    2008-10-15

    A novel multi-components hybrid material, self-assembled quantum dots (CdS) and glutamate dehydrogenase (GDH) onto multiwall carbon nanotubes (CNTs), was designed for amperometric biosensing system. The zeta-potential and transmission electron microscopy (TEM) analyses confirmed the uniform growth of the CdS/GDH onto carboxyl-functionalized CNTs. Compared with the single CdS, the resulting hybrid material showed more efficient generation of photocurrent upon illumination. The incident light excites CdS and generates charge carriers, and then CNTs facilitates the charge transfer. For dehydrogenase-based biosensor, normally, the cofactor of beta-nicotinamide adenine dinucleotide (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate (NADP(+)) is necessary. Furthermore, we found the photovoltaic effect of CNTs/CdS/GDH can trigger the dehydrogenase enzymatic reaction in the absence of the NAD(+) or NADP(+) cofactors. The electrochemical experiment results also demonstrate that the cofactor-independent dehydrogenase biosensing system had series attractive characteristics, such as a good sensitivity (11.9 nA/microM), lower detection limit (up to 50 nM), an acceptable reproducibility and stability. These studies aid in understanding the combination of the semiconductor nanohybrids (CNTs/QDs, etc.) and biomolecules (enzymes, etc.), which has potential for the applications in biosensor, biofuel cell, biomedical and other bioelectronics field.

  17. Effect of Molecule–Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic Performance of Molecularly Modified Si

    PubMed Central

    2013-01-01

    We report on the passivation properties of molecularly modified, oxide-free Si(111) surfaces. The reaction of 1-alcohol with the H-passivated Si(111) surface can follow two possible paths, nucleophilic substitution (SN) and radical chain reaction (RCR), depending on adsorption conditions. Moderate heating leads to the SN reaction, whereas with UV irradiation RCR dominates, with SN as a secondary path. We show that the site-sensitive SN reaction leads to better electrical passivation, as indicated by smaller surface band bending and a longer lifetime of minority carriers. However, the surface-insensitive RCR reaction leads to more dense monolayers and, therefore, to much better chemical stability, with lasting protection of the Si surface against oxidation. Thus, our study reveals an inherent dissonance between electrical and chemical passivation. Alkoxy monolayers, formed under UV irradiation, benefit, though, from both chemical and electronic passivation because under these conditions both SN and RCR occur. This is reflected in longer minority carrier lifetimes, lower reverse currents in the dark, and improved photovoltaic performance, over what is obtained if only one of the mechanisms operates. These results show how chemical kinetics and reaction paths impact electronic properties at the device level. It further suggests an approach for effective passivation of other semiconductors. PMID:24205409

  18. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect

    PubMed Central

    Zhang, Ganghua; Wu, Hui; Li, Guobao; Huang, Qingzhen; Yang, Chongyin; Huang, Fuqiang; Liao, Fuhui; Lin, Jianhua

    2013-01-01

    Intrinsic polarization of ferroelectrics (FE) helps separate photon-generated charge carriers thus enhances photovoltaic effects. However, traditional FE with transition-metal cations (M) of d0 electron in MO6 network typically has a band gap (Eg) exceeding 3.0 eV. Although a smaller Eg (2.6 eV) can be obtained in multiferroic BiFeO3, the value is still too high for optimal solar energy applications. Computational “materials genome” searches have predicted several exotic MO6 FE with Eg < 2.0 eV, all thus far unconfirmed because of synthesis difficulties. Here we report a new FE compound with MO4 tetrahedral network, KBiFe2O5, which features narrow Eg (1.6 eV), high Curie temperature (Tc ~ 780 K) and robust magnetic and photoelectric activities. The high photovoltage (8.8 V) and photocurrent density (15 μA/cm2) were obtained, which is comparable to the reported BiFeO3. This finding may open a new avenue to discovering and designing optimal FE compounds for solar energy applications. PMID:23405279

  19. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    NASA Astrophysics Data System (ADS)

    Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.

    2015-09-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.

  20. Effect of sulfur doped TiO2 on photovoltaic properties of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Nam, Sang-Hun; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Boo, Jin-Hyo

    2016-07-01

    In a dye-sensitized solar cell (DSC), a nano-porous semiconductor layer plays an important role in the performance. It determines open-circuit voltage and it affects the dye adsorption capacity and charge transfer, which are closely associated with photocurrent and overall performance. TiO2 is the most proper material for nano-porous layer since the first development of DSCs. This work focuses on the enhancement of TiO2 by doping. Sulfur (S) doping enhances charge transfer and the photoconversion of TiO2. Therefore, the increase in photocurrent and efficiency is expected by S doping. S is doped into TiO2 by hydrolysis method. The amount of S is varied and their photo-responses are verified. The most effective S doped TiO2 is applied to DSCs. Overall performance of DSC is enhanced by the addition of S doped TiO2. Especially, the photocurrent is much increased by the improvement on charge transfer, electron lifetime, and photo-conversion. The photovoltaic properties of DSCs are investigated with various ratios of undoped and S doped TiO2. Finally, a DSC based on undoped and S doped TiO2 ratio of 1:1 has the highest efficiency, better than that of a standard DSC based on undoped TiO2. [Figure not available: see fulltext.

  1. Effects of synchronous irradiance monitoring and correction of current-voltage curves on the outdoor performance measurements of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Doi, Takuya; Higa, Michiya; Ohshima, Hironori; Takenouchi, Takakazu; Yamagoe, Kengo

    2017-08-01

    Precise outdoor measurement of the current-voltage (I-V) curves of photovoltaic (PV) modules is desired for many applications such as low-cost onsite performance measurement, monitoring, and diagnosis. Conventional outdoor measurement technologies have a problem in that their precision is low when the solar irradiance is unstable, hence, limiting the opportunity of precise measurement only on clear sunny days. The purpose of this study is to investigate an outdoor measurement procedure, that can improve both the measurement opportunity and precision. Fast I-V curve measurements within 0.2 s and synchronous measurement of irradiance using a PV module irradiance sensor very effectively improved the precision. A small standard deviation (σ) of the module’s maximum output power (P max) in the range of 0.7-0.9% is demonstrated, based on the basis of a 6 month experiment, that mainly includes partly sunny days and cloudy days, during which the solar irradiance is unstable. The σ was further improved to 0.3-0.5% by correcting the curves for the small variation of irradiance. This indicates that the procedure of this study enables much more reproducible I-V curve measurements than a conventional usual procedure under various climatic conditions. Factors that affect measurement results are discussed, to further improve the precision.

  2. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects

    PubMed Central

    De Neve, Jan-Emmanuel; Oswald, Andrew J.

    2012-01-01

    The question of whether there is a connection between income and psychological well-being is a long-studied issue across the social, psychological, and behavioral sciences. Much research has found that richer people tend to be happier. However, relatively little attention has been paid to whether happier individuals perform better financially in the first place. This possibility of reverse causality is arguably understudied. Using data from a large US representative panel, we show that adolescents and young adults who report higher life satisfaction or positive affect grow up to earn significantly higher levels of income later in life. We focus on earnings approximately one decade after the person’s well-being is measured; we exploit the availability of sibling clusters to introduce family fixed effects; we account for the human capacity to imagine later socioeconomic outcomes and to anticipate the resulting feelings in current well-being. The study’s results are robust to the inclusion of controls such as education, intelligence quotient, physical health, height, self-esteem, and later happiness. We consider how psychological well-being may influence income. Sobel–Goodman mediation tests reveal direct and indirect effects that carry the influence from happiness to income. Significant mediating pathways include a higher probability of obtaining a college degree, getting hired and promoted, having higher degrees of optimism and extraversion, and less neuroticism. PMID:23169627

  3. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects.

    PubMed

    De Neve, Jan-Emmanuel; Oswald, Andrew J

    2012-12-04

    The question of whether there is a connection between income and psychological well-being is a long-studied issue across the social, psychological, and behavioral sciences. Much research has found that richer people tend to be happier. However, relatively little attention has been paid to whether happier individuals perform better financially in the first place. This possibility of reverse causality is arguably understudied. Using data from a large US representative panel, we show that adolescents and young adults who report higher life satisfaction or positive affect grow up to earn significantly higher levels of income later in life. We focus on earnings approximately one decade after the person's well-being is measured; we exploit the availability of sibling clusters to introduce family fixed effects; we account for the human capacity to imagine later socioeconomic outcomes and to anticipate the resulting feelings in current well-being. The study's results are robust to the inclusion of controls such as education, intelligence quotient, physical health, height, self-esteem, and later happiness. We consider how psychological well-being may influence income. Sobel-Goodman mediation tests reveal direct and indirect effects that carry the influence from happiness to income. Significant mediating pathways include a higher probability of obtaining a college degree, getting hired and promoted, having higher degrees of optimism and extraversion, and less neuroticism.

  4. Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique

    NASA Technical Reports Server (NTRS)

    Maise, G.; Rossi, M. J.

    1974-01-01

    A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.

  5. The effect of gauge misalignment on the measurement of lateral stress

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, Gareth; Hazell, Paul; Roberts, Andrew

    2011-06-01

    The evolution of the lateral component of stress during shock loading may be directly interrogated via embedded wire-element lateral manganin pressure gauges. However, these gauges are an inherently invasive diagnostic, requiring target materials to be sectioned before insertion. Further, they inevitably possess a significant finite size; with typical active element widths of c.15 mm. Consequently, gauge insertion, typically within an encapsulating epoxy interlayer, can lead to some degree of misalignment. In order to quantify any effects of such experimental errors, the response of Vishay Micro-Measurements T-gauges of type J2M-SS-580SF-025 was monitored in PMMA targets machined such that embedded gauges were deliberately misaligned to a known extent. Attempts were made to link the extent of misalignment to gauge response for misalignments introduced both in the plane of, and orthogonally to, the impact axis.

  6. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  7. Revisit the spin-FET: Multiple reflection, inelastic scattering, and lateral size effects

    PubMed Central

    Xu, Luting; Li, Xin-Qi; Sun, Qing-feng

    2014-01-01

    We revisit the spin-injected field effect transistor (spin-FET) in a framework of the lattice model by applying the recursive lattice Green's function approach. In the one-dimensional case the results of simulations in coherent regime reveal noticeable differences from the celebrated Datta-Das model, which lead us to an improved treatment with generalized result. The simulations also allow us to address inelastic scattering and lateral confinement effects in the control of spins. These issues are very important in the spin-FET device. PMID:25516433

  8. Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Eleventh Space Photovoltaic Research and Technology conference was held at NASA Lewis Research Center from May 7 to 9, 1991. The papers and workshop summaries presented here report remarkable progress on a wide variety of approaches in space photovoltaics, both near and far term applications. Papers were presented in a variety of technical areas, including multijunction cell technology, GaAs and InP cells, system studies, cell and array development, and photovoltaics for conversion of laser radiation. Three workshops were held to discuss thin film cell development, III-V cell development, and space environmental effects.

  9. Screening-engineered Field-effect Photovoltaics and Synthesis, Characterization, and Applications of Carbon-based and Related Nanomaterials

    NASA Astrophysics Data System (ADS)

    Regan, William Raymond

    Carbon nanomaterials, and especially graphene (a 2D carbon allotrope), possess unique electronic, optical, and mechanical properties and allow access to both new physical phenomena and reinventions of familiar technologies. In the first part of this thesis (chapter 2), the low carrier density and high conductivity of graphene are used to repurpose the electric field effect (used for many decades in transistors) into a universally-applicable doping method for electrically-contacted semiconductors. This method, referred to as "screening-engineered field-effect photovoltaics" as the electric field doping is enabled by a carefully-designed poorly-screening electrode (e.g. graphene), is shown to open up many new low-cost and abundant semiconductors for use in high efficiency solar cells. We extend this method beyond ultrathin materials such as graphene and show that 1D nanowire electrodes made of any material also allow penetration of applied electric fields. The next part of this thesis (chapter 3) focuses on the fundamental properties of graphene -- its structure, synthesis, characterization, and manipulation -- and on using graphene as a building block for other nanostructures: grafold, graphene sandwiches and veils, and graphritos. In chapter 4, various graphene electronics are constructed and tested. Graphene field-effect transistors (FETs) and p-n junctions are fabricated to study the influence of the substrate on graphene carrier mobility and doping. Graphene nanoribbons and grafold FETs are made to investigate the effects of additional confinement on electronic transport. Chapter 5 summarizes synthesis methods and additional experiments with other nanomaterials, including dichalcogenides and chalcogenides (magnesium diboride, gallium selenide, and tin sulfide), carbon nanomaterials (carbon nanotubes and graphene), and copper oxide. Additional measurement and fabrication methods are discussed in appendix A.

  10. Effects of cortisol on the laterality of the neural correlates of episodic memory.

    PubMed

    Alhaj, Hamid A; Massey, Anna E; McAllister-Williams, R Hamish

    2008-10-01

    Alterations in the laterality of cortical activity have been shown in depressive illnesses. One possible pathophysiological mechanism for this is an effect of corticosteroids. We have previously demonstrated that endogenous cortisol concentrations correlate with the asymmetry of cortical activity related to episodic memory in healthy subjects and depressed patients. To further-examine whether this is due to a causal effect of cortisol on the laterality of episodic memory, we studied the effect of exogenous administration of cortisol in healthy subjects. Twenty-three right-handed healthy male volunteers were tested in a double-blind cross-over study. Event-related potentials (ERPs) were recorded during an episodic memory task following a four-day course of 160mg/day cortisol or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to identify brain regions involved in the neurocognitive task. Cortisol levels were measured in saliva samples. ERP and LORETA analysis following placebo demonstrated significant left parahippocampal activation associated with successful retrieval. Cortisol led to a decrease in the mean early frontal ERP voltage and an increase in the late right ERP voltage. LORETA suggested this to be due to a significant increased late activation of the right superior frontal gyrus. There was no significant effect of cortisol on episodic memory performance. This study suggests that exogenous cortisol leads to more positive-going waveforms over the right than the left hemisphere, possibly due to increased monitoring of the products of retrieval. The results support the hypothesis of causal effects of cortisol on the laterality of cortical activity occurring during an episodic memory task.

  11. Photovoltaics: The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presented. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  12. Residential photovoltaic system designs

    SciTech Connect

    Russell, M. C.

    1981-01-01

    A project to develop Residential Photovoltaic Systems has begun at Massachusetts Institute of Technology Lincoln Laboratory with the construction and testing of five Prototype Systems. All of these systems utilize a roof-mounted photovoltaic array and allow excess solar-generated electric energy to be fed back to the local utility grid, eliminating the need for on-site storage. Residential photovoltaic system design issues are discussed and specific features of the five Prototype Systems now under test are presented.

  13. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  14. Adverse Effects of Excess Residual PbI2 on Photovoltaic Performance, Charge Separation, and Trap-State Properties in Mesoporous Structured Perovskite Solar Cells.

    PubMed

    Wang, Hao-Yi; Hao, Ming-Yang; Han, Jun; Yu, Man; Qin, Yujun; Zhang, Pu; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping

    2017-03-17

    Organic-inorganic halide perovskite solar cells have rapidly come to prominence in the photovoltaic field. In this context, CH3 NH3 PbI3 , as the most widely adopted active layer, has been attracting great attention. Generally, in a CH3 NH3 PbI3 layer, unreacted PbI2 inevitably coexists with the perovskite crystals, especially following a two-step fabrication process. There appears to be a consensus that an appropriate amount of unreacted PbI2 is beneficial to the overall photovoltaic performance of a device, the only disadvantageous aspect of excess residual PbI2 being viewed as its insulating nature. However, the further development of such perovskite-based devices requires a deeper understanding of the role of residual PbI2 . In this work, PbI2 -enriched and PbI2 -controlled perovskite films, as two extreme cases, have been prepared by modulating the crystallinity of a pre-deposited PbI2 film. The effects of excess residual PbI2 have been elucidated on the basis of spectroscopic and optoelectronic studies. The initial charge separation, the trap-state density, and the trap-state distribution have all been found to be adversely affected in PbI2 -enriched devices, to the detriment of photovoltaic performance. This leads to a biphasic recombination process and accelerates the charge carrier recombination dynamics.

  15. TiO2 photoanode sensitized with nanocrystalline Bi2S3: the effect of sensitization time and annealing on its photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anil N.; Rajendra Prasad, M. B.; Pathan, Habib M.; Patil, Rajendra S.

    2016-04-01

    This work deals with the sensitization of the porous TiO2 films of thickness about 4 µm deposited on fluorine-doped tin oxide with nanocrystalline Bi2S3 for photovoltaic application. The sensitization was achieved for four different sensitization times employing chemical solution deposition with bismuth nitrate and sodium thiosulphate as precursors for Bi3+ and S2-, respectively. The unsensitized and sensitized photoelectrodes were characterized using X-ray diffractometry, scanning electron microscopy and diffused reflectance spectroscopy. XRD patterns show the signatures of both anatase TiO2 and orthorhombic Bi2S3 in the sensitized photoanodes. However, crystallinity of Bi2S3 increased with increase in sensitization time from 10 to 40 min. The temporal effect of sensitization and annealing on the photovoltaic performance of the solar cells fabricated using four different photoelectrodes was studied using the photocurrent density versus photovoltage curves. Annealing apparently improved the photovoltaic performance of photoanodes. The best performance was obtained for cell fabricated using annealed TiO2/Bi2S3 photoanode after 30 min sensitization time showing V oc ~ 0.37 mV, J sc ~ 0.52 mA/cm2, FF ~ 68 and 0.43 %.

  16. Abnormal capacitance-voltage and switchable photovoltaic effect of epitaxial Mn-doped BiFeO3 thin film capacitor

    NASA Astrophysics Data System (ADS)

    Peng, Zeng-Wei; Liu, Bao-Ting

    2015-05-01

    Epitaxial BiFe0.95Mn0.05O3 (BFMO) film was deposited on (001)-oriented SrRuO3 (SRO) coated SrTiO3 (STO) substrate by radio-frequency (rf) magnetron sputtering. Indium tin oxide (ITO) was grown on BFMO/STO heterojunction to fabricate ITO/BFMO/SRO capacitor for investigating the ferroelectric and photovoltaic properties. The ITO/BFMO/SRO capacitor exhibits large remanent polarizations of 92.2 μC/cm2, 101 μC/cm2 and 109 μC/cm2 measured at 20 V, 25 V and 30 V, respectively. An observed abnormal capacitance-voltage (C-V) curve can be explained based on the ITO/BFMO interface. The calculated capacitance and junction width of ITO/BFMO interface are 105 pF and 32 nm, respectively. Additionally, it is found that photovoltaic effect of the ITO/BFMO/SRO capacitor is mainly attributed to ferroelectric polarization and internal electric field induced by defects. The photocurrent densities coming from ferroelectric polarization and internal field are 36 μA/cm2 and 23 μA/cm2, respectively. The photovoltaic output from the ferroelectric polarization is obviously larger than that from the internal electric field.

  17. Lateral viscosity variations and post-glacial rebound: Effects on present-day VLBI baseline deformations

    NASA Astrophysics Data System (ADS)

    Giunchi, C.; Spada, G.; Sabadini, R.

    By means of a finite element algorithm we investigate the effects of lateral viscosity variations upon the horizontal motions currently detected by VLBI techniques in Europe. Our axisymmetric flat models, appropriate to describe the rebound due to the melting of the Fennoscandia ice-sheet, are characterized by a layered compressible mantle with linear Maxwell rheology. We have first computed the time-evolution of theoretical baselines characterized by a simple geometry. In agreement with previous results, the rates of horizontal deformation have been found to be greatly sensitive to both lateral viscosity variations and deep mantle stratification, especially for baselines located in the vicinity of the ice sheet margin. To complete our study, we have compared our numerical results with the observed time-evolutions of relevant European baselines. Onsala-Wettzell and Onsala-Eflsberg are fitted by a laterally varying asthenosphere and sharp viscosity increase in the lower mantle; longer baselines, connecting these sites to Medicina (northern Italy), indicate that post glacial rebound is responsible only for a fraction of the VLBI observations, the residual being thus attributable to continental collision in the Mediterranean Sea.

  18. The effect of resistance exercise direction for hip joint stabilization on lateral abdominal muscle thickness

    PubMed Central

    Jung, Ju-Hyeon; Lee, Sang-Yeol

    2016-01-01

    The aim of this study was to determine the effects of resistance direction in hip joint stabilization exercise on change in lateral abdominal muscle thickness in healthy adults. Twenty-six healthy adults were randomly allocated to either a hip stabilization exercise by hip straight resistance group (n=12) or a hip diagonal resistance group (n=14). The outcome measures included contraction thickness ratio in transversus abdominis (TrA), internal oblique (IO) and external oblique, and TrA lateral slide were assessed during the abdominal drawing-in maneuver by b-mode ultrasound. The researcher measured the abdominal muscle thickness of each participant before the therapist began the intervention and at the moment intervention was applied. There was a significant difference in lateral abdominal muscle thickness between the straight resistance exercise of hip joint group and the diagonal resistance exercise of hip joint group. Significant differences were found between the two groups in the percentage of change of muscle thickness of the TrA (P=0.018) and in the thickness ratio of the TrA (P=0.018). Stability exercise accompanied by diagonal resistance on the hip joint that was applied in this study can induce automatic contraction of the IO and TrA, which provides stability to the lumbar spine. PMID:27807520

  19. Lateral asymmetry and reduced forward masking effect in early brainstem auditory evoked responses in schizophrenia.

    PubMed

    Källstrand, Johan; Nehlstedt, Sara Fristedt; Sköld, Mia Ling; Nielzén, Sören

    2012-04-30

    Individuals diagnosed with schizophrenia show deficiencies of basic neurophysiological sorting mechanisms. This study further investigated this issue, focusing on the two phenomena, laterality of coding and auditory forward masking. A specific audiometric method for use in psychiatry was the measuring set up to register brain stem audiograms (ABRs). A sample of 49 schizophrenic patients was compared with three control groups consisting of healthy reference subjects (n=49), attention deficit hyperactivity disorder (ADHD) patients (n=29), Asperger syndrome (AS) patients (n=13) and drug-induced psychotic patients (n=14). Schizophrenic patients showed significant abnormal laterality of brainstem activity in wave II of the auditory brainstem response (ABR) in comparison with all other study groups. Forward masking effects in the superior olive complex were coded significantly differently by schizophrenic patients compared to control groups except for the AS group. The results suggest deficits in the coding of auditory stimuli in the lower parts of the auditory pathway in schizophrenia and indicate that increased peripheral lateral asymmetry and forward masking aberrances could be neurophysiological markers for the disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The effect of midline crossing of lateral supraglottic cancer on contralateral cervical lymph node metastasis.

    PubMed

    Yılmaz, Taner; Süslü, Nilda; Atay, Gamze; Günaydın, Rıza Önder; Bajin, Münir Demir; Özer, Serdar

    2015-05-01

    The degree of midline crossing of lateral supraglottic cancer does not significantly change its rate of contralateral cervical metastasis. The rate of occult metastasis is too high to take the risk of contralateral regional recurrence. We support routine bilateral neck dissection even in lateral supraglottic cancers with no or minimal midline crossing. Data on the rate of contralateral cervical metastasis of laterally located supraglottic cancer, the effect of its degree of midline crossing on contralateral cervical metastasis, and its treatment are still controversial. This was a retrospective cohort, chart review involving 305 surgically treated patients with T1-3 squamous cell carcinoma of the supraglottic larynx. In all, 184 patients had bilateral neck dissection; 86 N0 contralateral necks were followed up. Thirty-five patients who needed postoperative radiation therapy because of the primary tumor or ipsilateral neck dissection specimen also received radiation therapy to the contralateral neck. The degree of midline crossing at the epiglottis was measured on a laryngectomy specimen with a ruler and expressed as 'no,' '<5 mm' or '≥5 mm.' The rates of occult and overall contralateral metastasis in our series were 16% and 28%, respectively. There was no statistically significant difference between contralateral neck metastasis and recurrence rates in the neck dissection, follow-up, and irradiation groups according to the degree of midline crossing.

  1. The Immediate Effects of Orthoses on Pain in People with Lateral Epicondylalgia

    PubMed Central

    Jafarian, Fahimehsadat

    2013-01-01

    Objective. Tennis elbow is a common cause of upper limb dysfunction and a primary reason for pain at the lateral aspect of the elbow. The purpose of this study was to investigate the effects of three commonly used orthoses on pain severity. An elbow band, an elbow sleeve, and a wrist splint were assessed for their ability to reduce the level of reported pain. Method. A crossover randomized controlled trial was used. The orthoses were worn in a randomized order, and all participants were required to complete a control trial for which they wore a placebo orthosis. 52 participants with lateral epicondylalgia were recruited, and the level of pain at their elbow was recorded using the visual analogue scale (VAS). Results. The reported pain for all orthoses was lower than that of the placebo (P < 0.05). Pain reduction was significantly greater with a counterforce elbow band or a counterforce elbow sleeve compared to a wrist splint (P < 0.01). There was no significant difference between a counterforce elbow band and a counterforce elbow sleeve (P = 0.23). Conclusion. All the types of orthoses studied showed an immediate improvement on pain severity in people with lateral epicondylalgia. The counterforce elbow orthoses (elbow band and elbow sleeve) presented the greatest improvement, suggesting that either of them can be used as a first treatment choice to alleviate the pain in people with tennis elbow. PMID:24349776

  2. Photovoltaic development in Argentina

    SciTech Connect

    Godfrin, E.M.; Duran, J.C.; Frigerio, A.; Moragues, J.A.

    1994-12-31

    A critical assessment of the photovoltaic program in Argentina is presented. Research and development activities on photovoltaic cells as well as industrial and technological development are still in the initial stages. Activities accomplished by the Atomic Energy Commission (CNEA) and the Institute of Technology Development for the Chemical industry (INTEC) are briefly described. The evolution of photovoltaic installations in Argentina is analyzed and accumulative data up to 1993 are given. A summary of the potential market for photovoltaic systems in the short and medium term is presented.

  3. Effectiveness of different methods of resistance exercises in lateral epicondylosis--a systematic review.

    PubMed

    Raman, Jayaprakash; MacDermid, Joy C; Grewal, Ruby

    2012-01-01

    Systematic Review. Lateral epicondylosis (LE) is relatively common with an annual incidence in the general population of 1% to 3%. Systematic reviews have identified exercise is effective, but have not established specific exercise parameters. The purpose of this systematic review was to synthesize the quality and content of clinical research addressing type and dosage of resistance exercises in lateral epicondylosis. Computerized bibliographic databases (1990-2010) were searched using relevant keywords; bibliographies of included papers were hand searched. Of 594 screened abstracts, 11 articles (12 studies) met inclusion criteria. Articles were randomly allocated to pairs of reviewers who independently verified data extraction and appraised the full text, using a structured critical appraisal tool with 24 items. Data extraction was limited by a lack of consistent reporting of elements of exercise dosage. The mean quality rating of the studies was 72%, with 2 papers exceeding 75% quality. Of the 12 studies, 9 addressed the effects of isotonic (eccentric/concentric) exercises, 2 studied the effect of isometric and one studied isokinetic exercises. The exercise programs ranged over a period of 4 to 52 weeks. Exercises were prescribed 1 to 6 times per day, with an average duration of 15 minutes per session, and average of 15 repetitions (range: 3 to 50), with 1 to 4 sets per session. All the studies reported that resistance exercise resulted in substantial improvement in pain and grip strength; eccentric exercise was most studied. Strengthening using resistance exercises is effective in reducing pain and improving function for lateral epicondylosis but optimal dosing is not defined. 2a. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  4. Medial and lateral foot loading and its effect on knee joint loading.

    PubMed

    Schwachmeyer, Verena; Kutzner, Ines; Bornschein, Jan; Bender, Alwina; Dymke, Jörn; Bergmann, Georg

    2015-10-01

    The medial knee contact force may be lowered by modified foot loading to prevent the progression of unilateral gonarthrosis but the real effects of such gait modifications are unknown. This study investigates how walking with a more medial or lateral rollover of the foot influences the in vivo measured knee contact forces. Five subjects with telemeterized knee implants walked on a treadmill with pronounced lateral or medial foot loading. Acoustic feedback of peak foot pressure was used to facilitate the weight bearing shift. The resultant contact force, Fres, the medial contact force, Fmed, and the force distribution Fmed/Fres across the tibial plateau were computed from the measured joint contact loads. During lateral foot loading, the two maxima of Fres during the stance phase, Peak 1 and Peak 2, increased by an average of 20% and 12%, respectively. The force distribution was changed by only -3%/+2%. As a result, Fmed increased by +16%/+17%. Medial foot loading, on the other hand, changed Fres only slightly, but decreased the distribution by -18%/-11%. This led to average reductions of Fmed by -18%/-18%. The reductions were realized by kinematic adaptations, such as increases of ankle eversion, step width and foot progression angle. Medial foot loading consistently reduced the medial knee compartment, and may be a helpful gait modification for patients with pronounced medial gonarthrosis. The increase of Fmed during lateral foot loading was most likely caused by muscular co-contractions. Long-term training may lead to more efficient gait and reduce co-contractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Word and pseudoword superiority effects in a shallow orthography language: the role of hemispheric lateralization.

    PubMed

    Ripamonti, Enrico; Traficante, Daniela; Crippa, Franca; Luzzattii, Claudio

    2014-04-01

    The word superiority effect (WSE) has made it possible to demonstrate the automatic activation of lexical-orthographic entries in reading. The observation of this effect is important since it led to experimental support of the main cognitive reading models. These models were mostly developed on English data, hence the verification in different orthography systems is relevant. The present study tested WSE in Italian, a language in which this effect was predicted to be less constant given the highly consistent correspondence between orthography and phonology. Moreover, the presentation of the items in a lateralized visual field condition allowed testing of assumptions about the roles of the right and left hemispheres in written word recognition and, in particular, on the hemispheric lateralization of lexical processing. Two experiments were conducted with undergraduate students who had to recognize a target letter within a word, pseudoword, or nonword. In Experiment 1, prime and probe letters were in the same letter case, while in Experiment 2 they were in different letter cases. Error rates and reaction times were analyzed with mixed models. The results showed a superiority of pseudowords (pseudoword superiority effect; PSE) over illegal strings with no evidence of a clear superiority of words over pseudowords for both left and right visual field presentations. This suggests that in Italian, the sub-lexical route could play a major role in reading and that this route relies on a visual-perceptual orthographic coding concerning familiarity of letter combinations, which is also available to the right hemisphere.

  6. Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics.

    PubMed

    Liu, Chang-Hua; Chang, You-Chia; Lee, Seunghyun; Zhang, Yaozhong; Zhang, Yafei; Norris, Theodore B; Zhong, Zhaohui

    2015-06-10

    The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graphene due to its electron-hole symmetry. Here, we report the observation of a strong lateral photo-Dember effect induced by nonequilibrium hot carrier dynamics when exciting a graphene-metal interface with a femtosecond laser. Scanning photocurrent measurements reveal the extraction of photoexcited hot carriers is driven by the transient photo-Dember field, and the polarity of the photocurrent is determined by the device's mobility asymmetry. Furthermore, ultrafast pump-probe measurements indicate the magnitude of photocurrent is related to the hot carrier cooling rate. Our simulations also suggest that the lateral photo-Dember effect originates from graphene's 2D nature combined with its unique electrical and optical properties. Taken together, these results not only reveal a new ultrafast photocurrent generation mechanism in graphene but also suggest new types of terahertz sources based on 2D nanomaterials.

  7. Recent advances in photovoltaics

    SciTech Connect

    Carlson, D.E.

    1995-12-31

    Photovoltaic energy conversion has been widely used for over three decades in the space program to power satellites and in the last two decades has also found widespread use in remote applications such as powering microwave communication repeaters, providing cathodic protection for wells and pipelines, pumping water in remote locations, etc. With continued improvements in performance and ongoing reductions in manufacturing costs, PV systems are expected to become cost effective for grid-connected applications in the next few years. While crystalline silicon technology accounts for the majority of the present PV business, new thin film PV technologies such as multifunction amorphous silicon, copper-indium-diselenide and cadmium telluride have progressed to a point where several companies are building multi-megawatt production facilities. High efficiency concentrator arrays may also prove to be cost effective for grid-connected applications in regions of the world with significant direct sunlight.

  8. Characterizing the Lateral Border of the Frontalis for Safe and Effective Injection of Botulinum Toxin

    PubMed Central

    Choi, You-Jin; Won, Sung-Yoon; Lee, Jae-Gi; Hu, Kyung-Seok; Kim, Sung-Taek; Tansatit, Tanvaa; Kim, Hee-Jin

    2016-01-01

    Background The forehead is a common site for injection of botulinum neurotoxin type A (BoNT-A) to treat hyperactive facial muscles. Unexpected side effects of BoNT-A injection may occur because the anatomy of the forehead musculature is not fully characterized. Objectives The authors described the lateral border of the frontalis in terms of facial landmarks and reference lines to determine the safest and most effective forehead injection sites for BoNT-A. Methods The hemifaces of 49 embalmed adult Korean cadavers were dissected in a morphometric analysis of the frontalis. L2 was defined in terms of FT (the most protruding point of the frontotemporal region), L0 (the line connecting the infraorbital margin with the tragus), and L1 (the line parallel to L0 and passing through FT) such that L2 was positioned 45° from L1 and passed through FT. Results The distance from FT to the superior margin of the orbicularis oculi was 12.3 ± 3.3 mm. The frontalis extended more than 5 cm along L2 in 49 of 49 cases (100%), more than 6 cm in 47 cases (95.9%), more than 7 cm in 34 cases (69.4%), more than 8 cm in 11 cases (22.4%), and more than 9 cm in 3 cases (6.1%). The lateral border of the frontalis ran parallel to and within 1 cm of the medial side of L2. Conclusions Surface anatomy mapping can assist with predicting the lateral border of the frontalis to minimize the side effects and maximize the efficiency of BoNT-A injections into the forehead. PMID:26507959

  9. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  10. Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Satou, A.; Khmyrova, I.; Ryzhii, M.; Otsuji, T.; Mitin, V.; Shur, M. S.

    2006-05-01

    We study the plasma oscillations in a two-dimensional electron channel with a reverse-biased Schottky junction. Using the developed model we show that the negative dynamic conductivity of the Schottky junction associated with the tunneling injection and electrontransit- time effect can result in the self-excitation of plasma oscillations (plasma instability) in the quasineutral portion of the channel serving as a resonant cavity. The spectrum of plasma oscillations and the conditions of their self-excitations are expressed via the structure parameters. The instability can be used in a novel diode device - lateral Schottky junction tunneling transit-time terahertz oscillator.

  11. Thinking about my generation: adaptive effects of a dual age identity in later adulthood.

    PubMed

    Weiss, David; Lang, Frieder R

    2009-09-01

    Growing old involves experiences of losses. Yet, it is not clear whether one's cohort group membership poses a resource in later adulthood. The authors examined the role of a dual age identity (age group vs. generation) across adulthood and possible adaptive effects on future time perspective and well-being. Findings suggest that when generation membership is salient, older (but not young and middle-aged) participants display a stronger identification with same-aged people than when age group membership is salient. Additionally, results demonstrate that the dual age identity represents a significant component of the self-concept and well-being in older adults.

  12. Effect of tip shape and dihedral on lateral-stability characteristics

    NASA Technical Reports Server (NTRS)

    Shortal, Joseph A

    1937-01-01

    This report presents the results of wind tunnel tests to determine the effect of wing-tip shape and dihedral on some of the aerodynamic characteristics of Clark Y wings that affect the performance and lateral stability of airplanes. Force tests at several angles of yaw and rotation tests at zero yaw were made. From these tests the rates of change of rolling moment, yawing moment, and cross-wind force coefficients with angle of yaw and the rate of change of rolling moment coefficient with rolling were determined.

  13. All-graphene field-effect transistor based on lateral tunnelling

    NASA Astrophysics Data System (ADS)

    Svintsov, D.; Vyurkov, V.; Orlikovsky, A.; Ryzhii, V.; Otsuji, T.

    2014-03-01

    A novel lateral all-graphene tunnel field-effect transistor (FET) with superior ON/OFF current switching ratio is proposed and simulated. The structure consists of two coplanar graphene layers serving as source and drain separated by a narrow tunnel gap. Both barrier transparency and tunnel density of states are controlled by top and bottom gates made of graphene too. The proposed FET exhibits an ultrahigh frequency performance inherent to graphene along with a subthreshold slope approaching the thermionic limit and current saturation inherent to common semiconductor FETs.

  14. Distribution of plantar pressures during gait in different zones of the foot in healthy children: the effects of laterality.

    PubMed

    Mayolas Pi, C; Arrese, A Legaz; Aparicio, A Villarroya; Masià, J Reverter

    2015-02-01

    The objective was to determine whether gait is symmetric in healthy children 6-7 years of age and to assess the effects of laterality and the anatomical zone of the foot. 46 children were subjected to gait symmetry analysis in which the plantar and lateral pressures associated with kicking a ball, static balance, and dynamic support were measured. There were no significant differences in the average pressure exerted by the right and left feet based on the laterality of the child. Independent of each laterality test, a greater pressure on the right rearfoot was observed compared to the left rearfoot and on the left midfoot and forefoot compared to the right.

  15. Lateralized effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory.

    PubMed

    Weigand, Anne; Grimm, Simone; Astalosch, Antje; Guo, Jia Shen; Briesemeister, Benny B; Lisanby, Sarah H; Luber, Bruce; Bajbouj, Malek

    2013-05-01

    Little is known about the neural correlates underlying the integration of working memory and emotion processing. We investigated the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left or right dorsolateral prefrontal cortex (DLPFC) on emotional working memory. In a sham-controlled crossover design, participants performed an emotional 3-back task (EMOBACK) at baseline and after stimulation (1 Hz, 15 min, 110 % of the resting motor threshold) in two subsequent sessions. Stimuli were words assigned to the distinct emotion categories fear and anger as well as neutral words. We found lateralized rTMS effects in the EMOBACK task accuracy for fear-related words, with enhanced performance after rTMS applied over the right DLPFC and impaired performance after rTMS applied over the left DLPFC. No significant stimulation effect could be found for anger-related and neutral words. Our findings are the first to demonstrate a causal role of the right DLPFC in working memory for negative, withdrawal-related words and provide further support for a hemispheric lateralization of emotion processing.

  16. Computational analysis of aerodynamic characteristics for wing in ground effect craft in lateral stability

    NASA Astrophysics Data System (ADS)

    Amir, M. A. U.; Maimun, A.; Mat, S.; Saad, M. R.

    2016-10-01

    Wing in-ground effect (WIG) crafts are becoming promising transportation over the last decade. However, stability and control problems faced by the WIG in earlier development are still unresolved. This paper objectively investigates the lateral stability of wing in ground effect craft. The wing encompasses a winglet at the end of the wingtip. Lift, drag and pressure were measured with the respect of the heeling angle of 100, 150 and 200, respectively, with the h/c of 0.3. Initial results from the computational studies show that the ground effect pressure distributions provide a natural righting moment when the WIG craft heels near ground. This initial result provides an insight to understand the current state of knowledge of stability for WIG, particularly on transverse or lateral stability of WIG where it plays important roles in the safety aspect. It is crucial to understand the stability and its component in order to avoid any unforeseen accident. This paper discusses the results obtained from the numerical studies.

  17. [Lateralized brain language semantic network demonstrated by word repetition suppression effect in MEG].

    PubMed

    Nikolaeva, A Yu; Butorina, A V; Prokofyev, A O; Stroganova, T A

    2015-01-01

    We studied auditory word repetition suppression effect using magnetoencephalography while subjects listened to "new" and "old" words whose familiarity they had to judge upon presentation. The lateralization of brain magnetic activity during processing of "new" and "old" words were estimated by computing RMS measure of whole-brain magnetic response within time window of semantic N400 (350-450 ms). A magnetic N400 was significantly stronger in the left than in the right hemisphere for the "new" words only. Repetition of "new" words led to sharp decrease of N400 response RMS in the left hemisphere but did not change right-hemispheric N400 RMS. The asymmetry index of this repetition suppression effect was lateralized to the left hemisphere for the majority of the participants and its magnitude was related to memory task performance. The findings point to a strong left-hemispheric dominance of word repetition suppression effect within the brain semantic networks at the level of whole-network response.

  18. Effect of lateral structure parameters of SiGe HBTs on synthesized active inductors

    NASA Astrophysics Data System (ADS)

    Yan-Xiao, Zhao; Wan-Rong, Zhang; Huang, Xin; Hong-Yun, Xie; Dong-Yue, Jin; Qiang, Fu

    2016-03-01

    The effect of lateral structure parameters of transistors including emitter width, emitter length, and emitter stripe number on the performance parameters of the active inductor (AI), such as the effective inductance Ls, quality factor Q, and self-resonant frequency ω0 is analyzed based on 0.35-μm SiGe BiCMOS process. The simulation results show that for AI operated under fixed current density JC, the HBT lateral structure parameters have significant effect on Ls but little influence on Q and ω0, and the larger Ls can be realized by the narrow, short emitter stripe and few emitter stripes of SiGe HBTs. On the other hand, for AI with fixed HBT size, smaller JC is beneficial for AI to obtain larger Ls, but with a cost of smaller Q and ω0. In addition, under the fixed collector current IC, the larger the size of HBT is, the larger Ls becomes, but the smaller Q and ω0 become. The obtained results provide a reference for selecting geometry of transistors and operational condition in the design of active inductors. Project supported by the Natural Science Foundation of Beijing, China (Grant Nos. 4142007 and 4122014), the National Natural Science Foundation of China (Grant No. 61574010), and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J13LN09).

  19. Numerical study on effects of lateral variations of Moon crustal thickness on lunar seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, F.; Wang, Y.; Jiang, X.

    2016-12-01

    Most recent results reveal drastic lateral variations of crustal thickness around craters on the Moon. Compared with the crust of the earth, the lunar crustal thickness has strong lateral variations, which can vary from as thin as almost zero kilometers to as thick as more than 60 kilometers. However, effects of drastic variations of crustal thickness on lunar seismic wave propagation are still not well understood. In this study we try to reveal how the variance in crustal thickness of the Moon affects the propagation of the lunar seismic waves by numerical simulation. Based on previous research results, we apply a 2-D staggered grid pseudospectral and finite difference hybrid method to perform numerical simulations of seismic wave propagation in a laterally heterogeneous Moon model. We use the newly published layered velocity model as the background model. As indicated by Jiang et al. (2015), scattering by random velocity perturbation in the upper lunar crust plays a fundamental role in lunar seismic wave propagation. Therefore, we consider the random velocity perturbation in upper crust in our model as well. A lateral varying moon crust model is designed, with one side thickness fixed and the other side varying. Stations are deployed at both sides to record lunar seismic waves generated from different kinds of sources, both shallow and deep moonquakes. An average lunar crustal thickness of 35 kilometers is designed as the contrast model. The simulation results demonstrate that the scattering and reverberation of the lunar seismic waves taper off where the crust is comparatively thin but gradually strengthens when the crust gets thick. The propagation of lunar seismic waves generated by shallow moonquakes is more affected by the variations of crustal thickness than that of deep moonquakes. We also conduct simulations based on several recent real lunar crustal profiles and get similar conclusions. This study can enhance our knowledge of lunar seismic wave

  20. Reliability Research for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald J., Jr.

    1986-01-01

    Report describes research approach used to improve reliability of photovoltaic modules. Aimed at raising useful module lifetime to 20 to 30 years. Development of cost-effective solutions to module-lifetime problem requires compromises between degradation rates, failure rates, and lifetimes, on one hand, and costs of initial manufacture, maintenance, and lost energy, on other hand. Life-cycle costing integrates disparate economic terms, allowing cost effectiveness to be quantified, allowing comparison of different design alternatives.

  1. Reliability Research for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald J., Jr.

    1986-01-01

    Report describes research approach used to improve reliability of photovoltaic modules. Aimed at raising useful module lifetime to 20 to 30 years. Development of cost-effective solutions to module-lifetime problem requires compromises between degradation rates, failure rates, and lifetimes, on one hand, and costs of initial manufacture, maintenance, and lost energy, on other hand. Life-cycle costing integrates disparate economic terms, allowing cost effectiveness to be quantified, allowing comparison of different design alternatives.

  2. Effects of vasopressin and related peptides on neurons of the rat lateral septum and ventral hippocampus.

    PubMed

    Urban, I J

    1998-01-01

    The effects of vasopressin (VP), VP fragments and propressophysin glycopeptide on neuronal activities in the septum-hippocampus complex of rats were studied in vitro and in vivo. The frequency of the hippocampus theta rhythm in Brattleboro rats homozygous for diabetes insipidus was significantly slower than that of heterozygous litter mates and normal rats. Intracerebroventricular micro-injection of des-glycine-amide vasopressin corrected for several hours the frequency deficit of the theta rhythm in the homozygous Brattleboro rats and the centrally administered VP slowed down theta rhythm in normal rats. Microinotophoretically administered VP excited single neurons in the lateral septum of ventral hippocampus, and/or facilitated the responses of these neurons to glutamate and to stimulation of the glutamatergic afferent fibers in the fimbria bundle. The excitatory effects of VP vanished within seconds after termination of the peptide administration, however, the peptide-induced enhancement of glutamate and syntatically induced excitations were sustained for up to 60 min after the peptide administration. In vitro, pM concentrations of VP, VP 4-8 and C-terminus glycopeptide of propresophysin facilitated for 30-60 min the glutamate-mediated EPSPs in neurons of the lateral septum or the ventral hippocampus. The EPSPs increase in the lateral septum neurons was not prevented by pretreatment with antagonist of the V1a type of the vasopressin receptor. The resting membrane potential and input resistance were not affected by the peptides. A low-frequency electrical stimulation in the diagonal Band of Broca or in the Bed nucleus of the stria terminals, sources of the vasopressinergic innervation of the septum, facilitated the negative wave of the filed potentials responses evoked in the lateral septum by stimulating the fimbria bundle fibers in control Long-Evans and Brattleboro rats heterozygous for diabetes insipidus. The field potential increase was sustained for several

  3. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.

    PubMed

    Ozlugedik, Samet; Nakiboglu, Gunes; Sert, Cuneyt; Elhan, Alaittin; Tonuk, Ergin; Akyar, Serdar; Tekdemir, Ibrahim

    2008-02-01

    To investigate, first, the effects of septal deviation and concha bullosa on nasal airflow, and second, the aerodynamic changes induced by septoplasty and partial lateral turbinectomy, using computational fluid dynamics (CFD). A three-dimensional model of a nasal cavity was generated using paranasal sinus computed tomography images of a cadaver with concha bullosa and septal deviation. Virtual septoplasty and partial lateral turbinectomy were performed on this model to generate a second model representing the postoperative anatomy. Aerodynamics of the nasal cavity in the presence of concha bullosa and septal deviation as well as postoperative changes due to the virtual surgery were analyzed by performing CFD simulations on both models. Inspiratory airflow with a constant flow rate of 500 mL/second was used throughout the analyses. In the preoperative model, the airflow mostly pass through a narrow area close to the base of the nasal cavity. Following the virtual operation, a general drop in the maximum intranasal air speed is observed with a significant increase of the airflow through right middle meatus. While in the preoperative model the greatest reduction in pressure is found to be in the localization of anterior septal deviation on the right side and confined to a very short segment, for the postoperative model, it is observed to be in the nasal valve region in both nasal cavities. Following septoplasty and partial lateral turbinectomy, total nasal resistance is reduced significantly. CFD simulations promise to make great contributions to understand the airflow characteristics of healthy and pathologic noses. Before surgery, planning for any specific intervention using CFD techniques on the nasal cavity model of the patient may help foreseeing the aerodynamic effects of the operation and might increase the success rate of the surgical treatment.

  4. The effect of brain tumour laterality on anxiety levels among neurosurgical patients

    PubMed Central

    Mainio, A; Hakko, H; Niemela, A; Tuurinkoski, T; Koivukangas, J; Rasanen, P

    2003-01-01

    Objectives: The aim of this study was to investigate the level of anxiety in patients with a primary brain tumour and to analyse the effect of tumour laterality and histology on the level of anxiety. Recurrent measurements were assessed preoperatively, three months, and one year after operation. Methods: The study population consisted of 101 patients with a primary brain tumour from unselected and homogeneous population in northern Finland. The patients were studied preoperatively with CT or MRI to determine the location of the tumour. The histology of the tumour was defined according to WHO classification. The level of anxiety was obtained by Crown-Crisp Experiential Index (CCEI) scale. Results: The patients with a tumour in the right hemisphere had statistically significantly higher mean anxiety scores compared to the patients with a tumour in the left hemisphere before surgery of the tumour. By three months and by one year after surgical resection of the tumour, the level of anxiety declined in patients with a tumour in the right hemisphere. A corresponding decline was not found in patients with a tumour in the left hemisphere. According to laterality by tumour histology, the level of anxiety decreased significantly in male and female patients with a glioma in the right hemisphere, but a corresponding decline was not significant in the female patients with a meningioma in the right hemisphere. Decreased level of anxiety was not found in patients with gliomas or meningiomas in the left hemisphere by follow up measurements. Conclusions: Primary brain tumour in right hemisphere is associated with anxiety symptoms. The laterality of anxiety seems to reflect the differentiation of the two hemispheres. The level of anxiety declined after operation of right tumour, approaching that of the general population. The effect of right hemisphere gliomas on anxiety symptoms deserves special attention in future research. PMID:12933936

  5. Photovoltaic effect and photoconductivity in Sc-doped near-stoichiometric LiNbO 3 crystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaru; Takekawa, Shunji; Liu, Youwen; Kumaragurubaran, Somu; Moorthy Babu, S.; Hatano, Hideki; Kitamura, Kenji

    2008-10-01

    The photorefractive damage (optical damage) process in Sc-doped near-stoichiometric LiNbO 3 (Sc:SLN) crystals was investigated by measuring the photocurrents in these crystals for several Sc concentrations (up to approximately 1 mol%). The photovoltaic current density and photoconductivity were then estimated using the measured photocurrents. The saturated space-charge field, which is the ratio between the photovoltaic current density and photoconductivity and which causes the photorefractive damage, was then estimated. The photovoltaic current density decreased with an increasing Sc concentration while the photoconductivity increased with the concentration. This combination of decreased photovoltaic current density and increased photoconductivity means that the saturated space-charge field decreases with an increasing Sc concentration. This decrease in the saturated space-charge field apparently reduced the photorefractive damage in the Sc:SLN crystals. These behaviors are similar to those of Mg-doped LN (Mg:LN) crystals. The saturated space-charge field of the Sc:SLN crystals with no photorefractive damage was less than 100 V/cm (10 4 V/m), as it is for Mg:LN crystals. This means that the Sc concentration needed to obtain a less than 100-V/cm saturated space-charge field in SLN crystals is less than the corresponding value for Mg doping.

  6. Investigation of the effect of laterally ejected gas jets on flows

    NASA Astrophysics Data System (ADS)

    Patz, G.

    1986-02-01

    The effect of a gas jet, ejected through a hole in the wall, on the supersonic flow along that wall was simulated in a model measuring chamber in a shock tube. A head wave with an obliquely detaching shock was formed, accompanied by a pressure increase in front of the jet. This effect can be used for missile control. In the shock tube, the flow about a plane plate with a slit through which a gas jet was laterally ejected, was simulated. Flow visualization and wall pressure measurements in front of and behind the nozzle slit show the effect of the jet on the flow, and allow the analysis of the initial phase and the evaluation of the forces resulting from the wall pressure which add to the jet thrust.

  7. Effects on lipid bilayer and nitrogen distribution induced by lateral pressure.

    PubMed

    Wang, Yu; Chen, Liang; Wang, Xiaogang; Dai, Chaoqing; Chen, Junlang

    2015-05-01

    The lateral pressure exerted on cell membrane is of great importance to signal transduction. Here, we perform molecular dynamics simulation to explore how lateral pressure affects the biophysical properties of lipid bilayer as well as nitrogen distribution in the membrane. Our results show that both physical properties of cell membrane and nitrogen distribution are highly sensitive to the lateral pressure. With the increasing lateral pressure, area per lipid drops and thickness of membrane increases obviously, while nitrogen molecules are more congested in the center of lipid bilayer than those under lower lateral pressure. These results suggest that the mechanism of nitrogen narcosis may be related to the lateral pressure.

  8. Band structures of laterally coupled quantum dots, accounting for electromechanical effects

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Patil, Sunil

    2010-09-01

    In a series of recent papers we demonstrated that coupled electro-mechanical effects can lead to pronounced contributions in band structure calculations of low dimensional semiconductor nanostructures (LDSNs) such as quantum dots, wires, and even wells. Some such effects are essentially nonlinear. Both strain and piezoelectric effects have been used as tuning parameters for the optical response of LDSNs in photonics, band gap engineering and other applications. However, these effects have been largely neglected in literature while laterally coupled quantum dots (QDs) have been studied. The superposition of electron wave functions in these QDs become important in the design of optoelectronic devices as well in tayloring properties of QDs in other applications areas. At the same time, laterally grown QDs coupled with electric and mechanical fields are becoming increasingly important in many applications of LDSN-based systems, in particular where the tunneling of electron wave function through wetting layer (WL) becomes important and the distance between the dots is treated as a tuning parameter. Indeed, as electric and elastic effects are often significant in LDSNs, it is reasonable to expect that the separation between the QDs may also be used as a tuning parameter in the application of logic devices, for example, OR gates, AND gates and others. In this contribution, by using the fully coupled model of electroelasticity, we build on our previous results while analyzing the influence of these effects on optoelectronic properties of QDs. Results are reported for III-V type semiconductors with a major focus given to GaN/AlN based QD systems.

  9. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  10. Photovoltaics for residential applications

    SciTech Connect

    Not Available

    1984-02-01

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  11. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  12. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  13. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  14. Characterization of Photovoltaic Generators

    ERIC Educational Resources Information Center

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  15. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  16. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  17. Photovoltaics industry profile

    SciTech Connect

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  18. Characterization of Photovoltaic Generators

    ERIC Educational Resources Information Center

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  19. Effects of early language, speech, and cognition on later reading: a mediation analysis

    PubMed Central

    Durand, Vanessa N.; Loe, Irene M.; Yeatman, Jason D.; Feldman, Heidi M.

    2013-01-01

    This longitudinal secondary analysis examined which early language and speech abilities are associated with school-aged reading skills, and whether these associations are mediated by cognitive ability. We analyzed vocabulary, syntax, speech sound maturity, and cognition in a sample of healthy children at age 3 years (N = 241) in relation to single word reading (decoding), comprehension, and oral reading fluency in the same children at age 9–11 years. All predictor variables and the mediator variable were associated with the three reading outcomes. The predictor variables were all associated with cognitive abilities, the mediator. Cognitive abilities partially mediated the effects of language on reading. After mediation, decoding was associated with speech sound maturity; comprehension was associated with receptive vocabulary; and oral fluency was associated with speech sound maturity, receptive vocabulary, and syntax. In summary, all of the effects of language on reading could not be explained by cognition as a mediator. Specific components of language and speech skills in preschool made independent contributions to reading skills 6–8 years later. These early precursors to later reading skill represent potential targets for early intervention to improve reading. PMID:24027549

  20. Lateral spin-orbit coupling and the Kondo effect in quantum dots

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Ngo, Anh; Ulloa, Sergio

    2010-03-01

    We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).