Science.gov

Sample records for lateral photovoltaic effect

  1. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    NASA Astrophysics Data System (ADS)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo

    2016-07-01

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  2. Lateral photovoltaic effect in p-type silicon induced by surface states

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  3. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection

    NASA Astrophysics Data System (ADS)

    Moon, In Kyu; Ki, Bugeun; Yoon, Seonno; Oh, Jungwoo

    2016-09-01

    Lightweight, simple and flexible self-powered photodetectors are urgently required for the development and application of advanced optical systems for the future of wearable electronic technology. Here, using a low-temperature reduction process, we report a chemical approach for producing freestanding monolithic reduced graphene oxide papers with different gradients of the carbon/oxygen concentration ratio. We also demonstrate a novel type of freestanding monolithic reduced graphene oxide self-powered photodetector based on a symmetrical metal–semiconductor–metal structure. Upon illumination by a 633-nm continuous wave laser, the lateral photovoltage is observed to vary linfearly with the laser position between two electrodes on the reduced graphene oxide surface. This result may suggest that the lateral photovoltaic effect in the reduced graphene oxide film originates from the built-in electric field by the combination of both the photothermal electric effect and the gradient of the oxygen-to-carbon composition. These results represent substantial progress toward novel, chemically synthesized graphene-based photosensors and suggest one-step integration of graphene-based optoelectronics in the future.

  4. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection

    PubMed Central

    Moon, In Kyu; Ki, Bugeun; Yoon, Seonno; Oh, Jungwoo

    2016-01-01

    Lightweight, simple and flexible self-powered photodetectors are urgently required for the development and application of advanced optical systems for the future of wearable electronic technology. Here, using a low-temperature reduction process, we report a chemical approach for producing freestanding monolithic reduced graphene oxide papers with different gradients of the carbon/oxygen concentration ratio. We also demonstrate a novel type of freestanding monolithic reduced graphene oxide self-powered photodetector based on a symmetrical metal–semiconductor–metal structure. Upon illumination by a 633-nm continuous wave laser, the lateral photovoltage is observed to vary linfearly with the laser position between two electrodes on the reduced graphene oxide surface. This result may suggest that the lateral photovoltaic effect in the reduced graphene oxide film originates from the built-in electric field by the combination of both the photothermal electric effect and the gradient of the oxygen-to-carbon composition. These results represent substantial progress toward novel, chemically synthesized graphene-based photosensors and suggest one-step integration of graphene-based optoelectronics in the future. PMID:27634110

  5. Improved lateral photovoltaic effect of Ti and carbon films by interface modification with single-walled carbon nanotubes

    SciTech Connect

    Lu, Jing; Wang, Hui

    2014-01-21

    An efficiently improved lateral photovoltaic effect (LPE) has been successfully observed in Ti/Si and amorphous carbon (a-C) film/Si structures by introducing single-walled carbon nanotubes (SWNTs) as modifying interface instead of native SiO{sub 2} layer grown on Si substrate. The largest lateral photovoltage (LPV) position sensitivity achieved is 67.02 mV/mm for the Ti/Si system and 2.23 mV/mm for the a-C/Si system. This corresponds to an improvement of 40% for the Ti/Si system and 2600% for the a-C/Si system. Besides, the SWNTs modified interface also induced a well-marked shift of optimal film thickness in both materials. An additional novel phenomenon is that the directly observed LPV is much larger in SWNTs/Si system compared to the improved a-C/SWNTs/Si structure. A mechanism based on the change of interface states is given to interpret these results, which not only suggests a new common modulation method for LPE, but also a new potential application of SWNTs for photo-electronic device.

  6. Large lateral photovoltaic effect in µc-SiOx:H/a-Si:H/c-Si p-i-n structure

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Chen, Jianhui; Liu, Jihong; Zhang, Xinhui; Wang, Shufang; Fu, Guangsheng

    2016-03-01

    In this paper, we report on a large lateral photovoltaic effect (LPE) in a hydrogenated microcrystal silicon-oxygen (µc-SiOx:H)-based p-i-n structure. Compared with LPE in a hydrogenated amorphous silicon (a-Si:H)-based p-i-n structure, this structure showed an abnormal current-voltage (I-V) curve with a lower photoelectric conversion efficiency, but exhibited a much higher LPE with the highest position sensitivity of 64.3 mV/mm. We ascribe this to the enhancement of the lateral gradient of excess transmitted carriers induced by increasing both Schottky barrier and p-type layer body conductivity. Our results suggest that this µc-SiOx:H-based p-i-n structure may be a promising candidate for position-sensitive detectors (PSDs). Moreover, our results may also imply that solar cell devices with abnormal I-V curves (or low efficiency) could find their new applications in other aspects.

  7. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  8. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  9. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-11

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  10. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  11. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  12. Lateral photovoltaic effect observed in doping-modulated GaAs/Al0.3Ga0.7As.

    PubMed

    Liu, Ji Hong; Qiao, Shuang; Liang, BaoLai; Wang, ShuFang; Fu, GuangSheng

    2017-02-20

    For photovoltaic effect (PE), both barrier height and carrier lifetime are all very important factors. However, how to distinguish their contributions to the PE is very difficult. In this paper, we prepared a series of GaAs/Al0.3Ga0.7As two dimensional electron gas (2DEG) with typical Al0.3Ga0.7As doping concentration of 0.6 × 1018/cm3, 1.2 × 1018/cm3, and 2.5 × 1018/cm3, respectively (sample number: #1, #2, #3), and studied their lateral photovoltaic effects (LPEs). It is found that their position sensitivities all increase with both laser wavelength and laser power. However, the position sensitivity exhibits a non-monotonic behavior with increasing doping concentration, which can be mainly ascribed to the doping concentration-dependent carrier lifetime, especially in the low power regime. With increasing laser power gradually, the position sensitivity difference between sample #1 and sample #2 is still large and increases a little, while the position sensitivity of sample #3 approaches to that of sample #2, suggesting that the doping concentration-dependent barrier height also starts to play an important role in the high power regime. Our results will provide important information for the design and development of novel and multifunctional PE devices.

  13. Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions.

    PubMed

    Song, Bingqian; Wang, Xianjie; Li, Bo; Zhang, Lingli; Lv, Zhe; Zhang, Yu; Wang, Yang; Tang, Jinke; Xu, Ping; Li, Bingsheng; Yang, Yanqiang; Sui, Yu; Song, Bo

    2016-10-17

    In this paper, we report a sensitive lateral photovoltaic effect (LPE) in Fe3O4/3C-SiC Schottky junctions with a fast relaxation time at near-ultraviolet wavelengths. The rectifying behavior suggests that the large build-in electric field was formed in the Schottky junctions. This device has excellent position sensitivity as high as 67.8 mV mm-1 illuminated by a 405 nm laser. The optical relaxation time of the LPE is about 30 μs. The fast relaxation and high positional sensitivity of the LPE make the Fe3O4/3C-SiC junction a promising candidate for a wide range of ultraviolet/near-ultraviolet optoelectronic applications.

  14. Tracking integration in concentrating photovoltaics using laterally moving optics.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  15. Designing a metallic nanoconcentrator for a lateral multijunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Wang, Trudie; Peumans, Peter

    2011-06-01

    A lateral multijunction photovoltaic (PV) concept is introduced that explores the unique ability of plasmonic nanoantennas to locally concentrate optical energy and spectrally filter incoming light at the subwavelength level. This electromagnetic field enhancement near the localized plasmon resonance modes of the metallic nanoantennas can be used to selectively increase light absorption in semiconductor nanowires at specific spectral and spatial regions. In our geometry, we take advantage of the ring antenna's ability to excite two distinct plasmon modes in order to carry out spectral splitting and concentration of the electromagnetic field. A localized dipolar surface plasmon mode near the material resonance of the silver nanoantenna results from the ring behaving as an effective disk in the visible region and focuses the field on the external surface of the ring while a dipolar bonding resonance mode dependent on the coupling of modes excited on the inner and outer surface of the ring geometry in the near infrared (NIR) region focuses energy in the cavity of the ring. Using finite difference time domain (FDTD) simulations, we describe the basic mechanisms at work and demonstrate that the subwavelength ring antennas can couple incident light into semiconductor nanowires placed both inside and outside the ring through the two modes with minimal loss in the metal. The modes are used to laterally split different spectral regions of broadband incident light optimized to the material bandgap of the nanowires located in the regions of field enhancement to produce the lateral multijunction effect. We demonstrate that, for example, a ring antenna with both an internal diameter and a thickness of 40 nm can enhance absorption by 6x in the visible region for a 100 nm tall AlAs nanowire placed just outside the ring and by 380x in the NIR region for a geometrically similar GaAs nanowire placed inside the ring. Both enhancements occur just above the material band gaps of the

  16. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  17. Nonlinear photovoltaic effect in Sillenite photorefractive crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, Ivan; Capovilla, Danilo Augusto; Moura, André L.; Timóteo, Varese S.; Carvalho, Jesiel F.; Frejlich, Jaime

    2017-04-01

    We report on the presence of photovoltaic effect in some Sillenite photorefractive crystals and compare their behavior with that of the well known photovoltaic LiNbO3:Fe crystal. Nonlinear photovoltaic behavior of these Sillenites are also reported here for the first time and explained by the presence of shallow along with deep photovoltaic centers.

  18. Diffractive Optical Element design for lateral spectrum splitting photovoltaics

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.

    In this work, two distinct types of Diffractive Optical Elements (DOEs) are designed to laterally distribute the solar spectrum across multiple photovoltaic (PV) cells. Each PV cell receives a spectral band near its bandgap energy to maximize overall solar-to-electric conversion efficiency of the system. The first DOE is an off-axis volume holographic lens. Design parameters include lateral grating period and slant angle, index modulation, film thickness, and control of swelling and index modulation attenuation in the film development process. Diffraction efficiency across the holographic lens is simulated using Rigorous Coupled Wave Analysis (RCWA). A full system model is created, and non-sequential ray tracing is performed. Performance is evaluated under AM 1.5 conditions and annual insolation in Tucson, AZ, and Seattle, WA. A proof-of-concept off-axis holographic lens is fabricated and its performance is measured to confirm the optical properties of this system. The second DOE is an algorithmically-designed freeform surface relief structure. The Gerchberg-Saxton design algorithm is expanded to consider multiple wavelengths, resulting in a Broadband Gerchberg-Saxton (BGS) algorithm. All design variables are evaluated in a parametric study of the algorithm. Several DOE designs are proposed for spectrum splitting, and two of these designs are fabricated and measured. Additional considerations, such as finite sampling of the discrete Fourier transform, fabrication error, and solar divergence are addressed. The dissertation will conclude with a summary of spectrum splitting performance of all proposed DOEs, as well as a comparison to ideal spectrum splitting performance and discussion of areas for improvement and future work.

  19. Photovoltaic effect in Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Katiyar, Rajesh K.; Panwar, Neeraj; Morell, G.; Katiyar, Ram S.

    2010-03-01

    Photovoltaic effect in ferroelectric materials is of much interest due to the anomalously large open circuit photovoltages when illuminated. It is concluded that this unprecedented high value of photovoltaic effect is due to the presence of non-centrosymmetry in the ferroelectric materials which gives rise to electron excitation, relaxation, and scattering processes. The photovoltaic efficiencies are, however, limited due to small current densities and the large band gap values of the ferroelectric materials. We have synthesized thin films of BiFeO3 (a low band gap material ˜2.67eV) and ferroelectric material SrBi2Ta2O9(SBT) on silicon substrates with ITO as the bottom electrode. The band gap of the SBT has been decreased by incorporating metallic particles Ag, Pt. in the ferroelectric matrix. The results will be presented.

  20. Giant switchable photovoltaic effect in organometal trihalide perovskite devices.

    PubMed

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm(-1). The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm(-2) under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  1. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm-1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm-2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  2. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    SciTech Connect

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  3. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGES

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; ...

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by themore » formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  4. Lateral photovoltaic measurements of electrical properties of SiAl:H/n-type Si structures

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Okada, Y.; Hamana, T.; Niu, H.; Matsuda, T.; Takai, M.

    1984-12-01

    A modified lateral photovoltaic method is developed to measure p-n junction characteristics as exemplified by those of the junction formed by an amorphous-microcrystalline SiAl:H film on a crystal Si. The junction is biased at a forward voltage, V, by uniform irradiation by a He-Ne/laser beam, and the lateral-photovoltage (LPV) induced by the laser beam is measured with a lock-in amplifier for various V. It is shown that I0 and m in the I-V equation of the junction, I = I0 exp (qV/mkT - 1), are determined with high accuracy when the leakage conductance at the periphery of a junction is reduced to a negligible value. If the leakage conductance is not negligible, its existence is confirmed by the LPV method.

  5. Substantial bulk photovoltaic effect enhancement via nanolayering

    PubMed Central

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1−x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  6. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE PAGES

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; ...

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  7. Substantial bulk photovoltaic effect enhancement via nanolayering.

    PubMed

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  8. Substantial bulk photovoltaic effect enhancement via nanolayering

    SciTech Connect

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  9. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    PubMed

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  10. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  11. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    PubMed

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials' bandgap.

  12. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect

    Perez, R.; Seals, R.

    1997-11-01

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  13. The laterality effect: myth or truth?

    PubMed

    Cohen Kadosh, Roi

    2008-03-01

    Tzelgov and colleagues [Tzelgov, J., Meyer, J., and Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 166-179.], offered the existence of the laterality effect as a post-hoc explanation for their results. According to this effect, numbers are classified automatically as small/large versus a standard point under autonomous processing of numerical information. However, the genuinity of the laterality effect was never examined, or was confounded with the numerical distance effect. In the current study, I controlled the numerical distance effect and observed that the laterality effect does exist, and affects the processing of automatic numerical information. The current results suggest that the laterality effect should be taken into account when using paradigms that require automatic numerical processing such as Stroop-like or priming tasks.

  14. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  15. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO3 and paraelectric SrTiO3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO3. The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  16. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.

    PubMed

    Chen, Jing-Jing; Wang, Qinsheng; Meng, Jie; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Bie, Ya-Qing; Liu, Junku; Liu, Kaihui; Liao, Zhi-Min; Sun, Dong; Yu, Dapeng

    2015-09-22

    Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metal-graphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics.

  17. Centrifugal photovoltaic and photogalvanic effects driven by structured light

    NASA Astrophysics Data System (ADS)

    Wätzel, J.; Berakdar, J.

    2016-02-01

    Much efforts are devoted to material structuring in a quest to enhance the photovoltaic effect. We show that structuring light in a way it transfers orbital angular momentum to semiconductor-based rings results in a steady charge accumulation at the outer boundaries that can be utilized for the generation of an open circuit voltage or a photogalvanic (bulk photovoltaic) type current. This effect which stems both from structuring light and matter confinement potentials, can be magnified even at fixed moderate intensities, by increasing the orbital angular momentum of light which strengthens the effective centrifugal potential that repels the charge outwards. Based on a full numerical time propagation of the carriers wave functions in the presence of light pulses we demonstrate how the charge buildup leads to a useable voltage or directed photocurrent whose amplitudes and directions are controllable by the light pulse parameters.

  18. Centrifugal photovoltaic and photogalvanic effects driven by structured light

    PubMed Central

    Wätzel, J.; Berakdar, J.

    2016-01-01

    Much efforts are devoted to material structuring in a quest to enhance the photovoltaic effect. We show that structuring light in a way it transfers orbital angular momentum to semiconductor-based rings results in a steady charge accumulation at the outer boundaries that can be utilized for the generation of an open circuit voltage or a photogalvanic (bulk photovoltaic) type current. This effect which stems both from structuring light and matter confinement potentials, can be magnified even at fixed moderate intensities, by increasing the orbital angular momentum of light which strengthens the effective centrifugal potential that repels the charge outwards. Based on a full numerical time propagation of the carriers wave functions in the presence of light pulses we demonstrate how the charge buildup leads to a useable voltage or directed photocurrent whose amplitudes and directions are controllable by the light pulse parameters. PMID:26900105

  19. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  20. Photovoltaic effect in Bi{sub 2}TeO{sub 5} photorefractive crystal

    SciTech Connect

    Oliveira, Ivan de Capovilla, Danilo Augusto

    2015-10-12

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi{sub 2}TeO{sub 5} crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material.

  1. Intertemporal cumulative radiative forcing effects of photovoltaic deployments.

    PubMed

    Ravikumar, Dwarakanath; Seager, Thomas P; Chester, Mikhail V; Fraser, Matthew P

    2014-09-02

    Current policies accelerating photovoltaics (PV) deployments are motivated by environmental goals, including reducing greenhouse gas (GHG) emissions by displacing electricity generated from fossil-fuels. Existing practice assesses environmental benefits on a net life-cycle basis, where displaced GHG emissions offset those generated during PV production. However, this approach does not consider that the environmental costs of GHG release during production are incurred early, while environmental benefits accrue later. Thus, where policy targets suggest meeting GHG reduction goals established by a certain date, rapid PV deployment may have counterintuitive, albeit temporary, undesired consequences. On a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood, particularly when PV manufacturing utilizes GHG-intensive energy sources (e.g., coal), but deployment occurs in areas with less GHG-intensive electricity sources (e.g., hydroelectric). This paper details a dynamic CRF model to examine the intertemporal warming impacts of PV deployments in California and Wyoming. CRF payback times are longer than GHG payback times by 6-12 years in California and 6-11 years in Wyoming depending on the PV technology mix and deployment strategy. For the same PV capacity being deployed, early installations yield greater CRF benefits (calculated over 10 and 25 years) than installations occurring later in time. Further, CRF benefits are maximized when PV technologies with the lowest manufacturing GHG footprint (cadmium telluride) are deployed in locations with the most GHG-intensive grids (i.e., Wyoming).

  2. Photovoltaics for municipal planners. Cost-effective municipal applications of photovoltaics for electric power

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  3. Simultaneous verbal and affective laterality effects.

    PubMed

    Bulman-Fleming, M B; Bryden, M P

    1994-07-01

    By analyzing the error scores of normal participants asked to identify a specific word spoken in a specific tone of voice (for example, the word "tower" spoken in a happy tone of voice), we have been able to demonstrate concurrent verbal and affective cerebral laterality effects in a dichotic listening task. The targets comprised the 16 possible combinations of four two-syllable words spoken in four different tones of voice. There were 128 participants equally divided between left- and right-handers, with equal numbers of each sex within each handedness group. Each participant responded to 144 trials on the dichotic task, and filled in the 32-item Waterloo Handedness Questionnaire. Analysis of false positive responses on the dichotic task (responding "yes" when only the verbal or only the affective component of the target was present, or when both components were present but were at opposite ears) indicated that significantly more errors were made when the verbal aspect of the target appeared at the right ear (left hemisphere) and the emotional aspect was at the left ear (right hemisphere) than when the reverse was the case. A single task has generated both effects, so that differences in participants' strategies or the way in which attention is biased cannot account for the results. While the majority of participants showed a right-ear advantage for verbal material and a left-ear advantage for nonverbal material, these two effects were not correlated, suggesting that independent mechanisms probably underly the establishment of verbal and affective processing. We found no significant sex or handedness effects, though left-handers were much more variable than were right-handers. There were no significant correlations between degree of handedness as measured on the handedness questionnaire and extent of lateralization of verbal or affective processing on the dichotic task. We believe that this general technique may be able to provide information as to the nature and

  4. Electrochemical aging effects in photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1986-01-01

    Leakage currents were experimentally measured in PV modules undergoing natural aging outdoors, and in PV modules undergoing accelerated aging in laboratory environmental chambers. The significant contributors to module leakage current were identified with a long range goal to develop techniques to reduce or stop module leakage currents. For outdoor aging in general, module leakage current is relatively insensitive to temperature fluctuations, but is very sensitive to moisture effects such as dew, precipitation, and fluctuations in relative humidity. Comparing ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB), module leakage currents are much higher in PVB as compared to EVA for all environmental conditions investigated. Leakage currents proceed in series along two paths, bulk conduction followed by interfacial (surfaces) conduction.

  5. Pattern Effects of Soil on Photovoltaic Surfaces

    DOE PAGES

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; ...

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less

  6. Pattern Effects of Soil on Photovoltaic Surfaces

    SciTech Connect

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observed $I_{{rm SC}}$. Angular losses were significant at angles as low as 25°.

  7. Antistatic effect of power-enhancement coating for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Narushima, D.; Takanohashi, H.; Hirose, J.; Ogawa, S.

    2011-09-01

    Photovoltaic (PV) modules are periodically cleaned, particularly in large grid-connect photovoltaic plants, in order to avoid losses caused by dust accumulation. However, this maintenance task is often expensive, especially in those areas with water shortage. A hydrophilic coating on the surface of PV modules is one of typical methods to reduce the dust accumulation. But it is not commonly used yet, because the electrical performance of PV modules with conventional hydrophilic coating was slightly degraded by the decrease of transmittance. We have already developed a new hydrophilic power enhancement coating and reported its fundamental characters and results of several ISO/IEC standard tests in SPIE Solar Energy + Technology in 2010. One of the important characters was an antistatic effect. It was showed that the surface resistances of the coated glass and the uncoated glass were 1.3 × 1010Ω and 5.3 × 1014Ω, respectively. It would be understood that lower surface resistance of the coated glass resulted in the antistatic characteristics, which reduce the dust attraction on the coated glass. With the surface resistance result, it could be elucidated that the 3% additional energy production resulted from the antistatic effect of the coating on PV modules in the exposure test after several months without rain in Spain. In this paper, it is shown the results of the antistatic effect performed under the several dust accumulation tests.

  8. On the photovoltaic effect in local field potential recordings

    PubMed Central

    Mikulovic, Sanja; Pupe, Stefano; Peixoto, Helton Maia; Do Nascimento, George C.; Kullander, Klas; Tort, Adriano B. L.; Leão, Richardson N.

    2016-01-01

    Abstract. Optogenetics allows light activation of genetically defined cell populations and the study of their link to specific brain functions. While it is a powerful method that has revolutionized neuroscience in the last decade, the shortcomings of directly stimulating electrodes and living tissue with light have been poorly characterized. Here, we assessed the photovoltaic effects in local field potential (LFP) recordings of the mouse hippocampus. We found that light leads to several artifacts that resemble genuine LFP features in animals with no opsin expression, such as stereotyped peaks at the power spectrum, phase shifts across different recording channels, coupling between low and high oscillation frequencies, and sharp signal deflections that are detected as spikes. Further, we tested how light stimulation affected hippocampal LFP recordings in mice expressing channelrhodopsin 2 in parvalbumin neurons (PV/ChR2 mice). Genuine oscillatory activity at the frequency of light stimulation could not be separated from light-induced artifacts. In addition, light stimulation in PV/ChR2 mice led to an overall decrease in LFP power. Thus, genuine LFP changes caused by the stimulation of specific cell populations may be intermingled with spurious changes caused by photovoltaic effects. Our data suggest that care should be taken in the interpretation of electrophysiology experiments involving light stimulation. PMID:26835485

  9. On the photovoltaic effect in local field potential recordings.

    PubMed

    Mikulovic, Sanja; Pupe, Stefano; Peixoto, Helton Maia; Do Nascimento, George C; Kullander, Klas; Tort, Adriano B L; Leão, Richardson N

    2016-01-01

    Optogenetics allows light activation of genetically defined cell populations and the study of their link to specific brain functions. While it is a powerful method that has revolutionized neuroscience in the last decade, the shortcomings of directly stimulating electrodes and living tissue with light have been poorly characterized. Here, we assessed the photovoltaic effects in local field potential (LFP) recordings of the mouse hippocampus. We found that light leads to several artifacts that resemble genuine LFP features in animals with no opsin expression, such as stereotyped peaks at the power spectrum, phase shifts across different recording channels, coupling between low and high oscillation frequencies, and sharp signal deflections that are detected as spikes. Further, we tested how light stimulation affected hippocampal LFP recordings in mice expressing channelrhodopsin 2 in parvalbumin neurons (PV/ChR2 mice). Genuine oscillatory activity at the frequency of light stimulation could not be separated from light-induced artifacts. In addition, light stimulation in PV/ChR2 mice led to an overall decrease in LFP power. Thus, genuine LFP changes caused by the stimulation of specific cell populations may be intermingled with spurious changes caused by photovoltaic effects. Our data suggest that care should be taken in the interpretation of electrophysiology experiments involving light stimulation.

  10. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2014-12-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I-V) characteristic results, we observed a certain transition voltage (Vth) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, Vth is 3.9 V whereas for COOH-SWCNT mixed with this dye, Vth drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers.

  11. Optical cleaning owing to the bulk photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Kösters, M.; Haertle, D.; Becher, C.; Buse, K.

    2009-12-01

    It is shown within the conventional photovoltaic charge-transport model that photoexcitable electrons, localized at deep impurity levels, can be effectively removed by light from the exposed area at sufficiently high temperatures. This allows to modify strongly the absorption and photoelectric properties of the material and, in particular, to suppress “optical damage” in LiNbO3 and LiTaO3 crystals. This optical cleaning method is applicable to numerous pyro- and piezo-electric optical materials. It employs the photovoltaic drift of electrons and ionic charge compensation at elevated temperatures. The physics of the optical cleaning is very rich; it has strong links to nonlinear dynamics and offers important handles for improvement of the cleaning performance. The use of properly moving light beams leads, e.g., to a strong enhancement of the cleaning rate and allows to reduce the electron concentration by several orders of magnitude. The theoretical predictions are supported by the data of our cleaning experiments with LiNbO3 crystals. In particular, the intensity threshold of optical damage is increased by three orders of magnitude.

  12. Cerebral Lateralization and Its Effect on Drawing.

    ERIC Educational Resources Information Center

    Thomas, Yvonne A.; Thomas, Stephen B.

    1983-01-01

    Discusses the importance of both sides of the brain for the development of drawing skills but notes that the left brain can inhibit the action of the right brain. Provides a discussion of cerebral lateralization and child development. Suggests five drawing exercises to help develop hemispheric cooperation. (SB)

  13. Modeling lateral acceleration effects on pilot performance

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinan, D. L.

    1982-01-01

    Attendant to the direct side force maneuver of a Vectored Force Fighter is the transverse acceleration imposed on the pilot. This lateral acceleration (Gy), when combind with a positive Gz stress, is a potential source of pilot tracking performance impairment. A research effort to investigate these performance decrements includes experimental as well as anaytical pilot performance modeling using the Optimal Control Model.

  14. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets.

    PubMed

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian

    2015-03-21

    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm(2) V(-1) s(-1). Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials.

  15. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    DOE PAGES

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predictedmore » to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.« less

  16. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    SciTech Connect

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

  17. Progress in piezo-phototronic effect modulated photovoltaics

    NASA Astrophysics Data System (ADS)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-01

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  18. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    NASA Astrophysics Data System (ADS)

    Katti, Aavishkar; Yadav, R. A.

    2017-01-01

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping.

  19. Design and Fabrication of Monolithically-Integrated Laterally-Arrayed Multiple Band Gap Solar Cells using Composition-Graded Alloy Nanowires for Spectrum-Splitting Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Caselli, Derek

    This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems. Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single

  20. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search.

    PubMed

    Constable, Merryn D; Becker, Stefanie I

    2017-03-27

    According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.

  1. Cost effective flat plate photovoltaic modules using light trapping

    NASA Technical Reports Server (NTRS)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  2. Effect of formulas of titanoxide compositions on the photovoltaic characteristics of solar cells

    NASA Astrophysics Data System (ADS)

    Aimukhanov, A. K.; Ibrayev, N. Kh.; Serikov, T. M.

    2016-12-01

    The effect the chemical composition of semiconductor titanium compositions (titanium pastes) has on the photovoltaic characteristics of dye-sensitized solar cells is investigated. It is established that the efficiency of solar energy conversion by a photovoltaic cell made with Ti-nanooxide D paste is 5.3%, while that of one made with Degussa P25 paste is 4.7%. These data correlate with the specific surface and sorption ability of semiconductor films.

  3. The Effects of Enriched Neonatal Experiences Upon Later Cognitive Functioning

    ERIC Educational Resources Information Center

    Wachs, Theodore D.; Cucinotta, Pattiann

    1971-01-01

    The data reported in this small study confirm previous research indicating that early stimulation, though initially affecting human behavior, has little permanent effect upon later functioning. (Author/WY)

  4. A Photoferroelectric Perovskite-Type Organometallic Halide with Exceptional Anisotropy of Bulk Photovoltaic Effects.

    PubMed

    Sun, Zhihua; Liu, Xitao; Khan, Tariq; Ji, Chengmin; Asghar, Muhammad Adnan; Zhao, Sangen; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-05-23

    Perovskite-type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite-type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner-sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>10(4) ), which compete with the most active photovoltaic material CH3 NH3 PbI3 . In 1 the temperature-dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices.

  5. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  6. The effect of lateral interaction on traffic flow

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; Kenz, A.

    2016-10-01

    We propose an extended cellular automaton model for traffic flow, taking into account lateral interactions with defects and between vehicles. The fundamental diagram for a given defects density on the road is studied. It is found that the plateau size increases linearly with the decreasing road width for little defects densities. Furthermore, the capacity increases linearly with the increasing road width. However, for a fixed road width, the capacity decreases exponentially with the increasing defects density. The lateral effects for non-mutual interactions between lanes and for the same maximal velocity is also investigated. It is found that the lateral effects on one lane are meaningful only when the density on the other lane is above the critical density. However, the lateral effects are always present if fast and slow lanes exist. Little differences have been found for the mutual interactions.

  7. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect

    Lubin, Barry T.

    2012-02-02

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focused on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for

  8. Effects of a continuous lateral turning device on pressure relief

    PubMed Central

    Do, Nam Ho; Kim, Deog Young; Kim, Jung-Hoon; Choi, Jong Hyun; Joo, So Young; Kang, Na Kyung; Baek, Yoon Su

    2016-01-01

    [Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites. PMID:27065531

  9. Effects of a continuous lateral turning device on pressure relief.

    PubMed

    Do, Nam Ho; Kim, Deog Young; Kim, Jung-Hoon; Choi, Jong Hyun; Joo, So Young; Kang, Na Kyung; Baek, Yoon Su

    2016-01-01

    [Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites.

  10. Improving the effectiveness of photovoltaic devices by light guiding optical foils

    NASA Astrophysics Data System (ADS)

    Leiner, C.; Wenzl, F. P.; Sommer, C.; Peharz, G.

    2016-09-01

    A photovoltaic device comprising of areas which are partly covered by solar cells and a light guiding film is investigated. In particular results on the feasibility of combined daylighting and photovoltaic energy generation are presented. Optical simulations have been conducted for a device-design optimized to redirect most of perpendicular impinging light rays onto photovoltaic areas. Two application cases are investigated for integrating the photovoltaic device into windows and/or glazings in middle (northern) latitudes. The first application case deals with an overhead glazing and the second deals with a window integrated in a roof tilted by 30° towards south. For the latter case encouraging results have been derived. In particular it is calculated that during summer time more than 70% of the direct sunlight is absorbed by photovoltaic areas and less than 10% is transmitted. Consequently, effective shading in summer against direct sunlight can be achieved and most of the shaded solar irradiation can be used for photovoltaic energy conversion. In contrast, in winter time about 40% of the direct sunlight is transmitted through the device and enables decent daylighting.

  11. Photovoltaic effect in organic polymer-iodine complex

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Rembaum, A.

    1967-01-01

    Certain charge transfer complexes formed from organic polymers and iodine generate appreciable voltages at relatively low impedances upon exposure to light. These films show promise in applications requiring chemically and electrically stable films as detectors of optical radiation and as energy converters in photovoltaic cells.

  12. Organic photovoltaics: potential fate and effects in the environment.

    PubMed

    Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe F-X; Lenz, Markus

    2012-11-15

    In times of dwindling fossil fuels it is particularly crucial to develop novel "green" technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.

  13. The Department of the Navy Spent Recovery Act Funds on Photovoltaic Projects That Were Not Cost-Effective

    DTIC Science & Technology

    2011-09-22

    Report No. D-2011-106 September 22, 2011 The Department of the Navy Spent Recovery Act Funds on Photovoltaic Projects...Spent Recovery Act Funds on Photovoltaic Projects That Were Not Cost-Effective 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Command NFESC Naval Facilities Engineering Service Center MILCON Military Construction O&M Operations and Maintenance PV Photovoltaic

  14. Social Effectiveness Therapy for Children: Five Years Later

    ERIC Educational Resources Information Center

    Beidel, Deborah C.; Turner, Samuel M.; Young, Brennan J.

    2006-01-01

    Social Effectiveness Therapy for Children (SET-C) is a comprehensive behavioral treatment combining social skills training, peer generalization experiences, and individualized in vivo exposure for the treatment of social phobia in youth. SET-C results in positive treatment outcome and its effects are maintained at least 3 years later. In this…

  15. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  16. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  17. Low earth orbit environmental effects on the Space Station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, H. K.

    1988-01-01

    A summary of the low earth orbital environment, its impact on the photovoltaic power systems of the Space Station and the solutions implemented to resolve the environmental concerns or issues are described. Low earth orbital environment (LEO) presents several concerns to the photovoltaic power systems of the Space Station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the Space Station with the desired life are also summarized.

  18. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

  19. Effects of lateral osteotomy on surgically assisted rapid maxillary expansion.

    PubMed

    Oliveira, T F M; Pereira-Filho, V A; Gabrielli, M A C; Gonçales, E S; Santos-Pinto, A

    2016-04-01

    This study aimed to assess the potential effects of two different osteotomy designs of the maxillary lateral wall on dental and skeletal changes after surgically assisted rapid maxillary expansion (SARME). Thirty adult patients were divided into two groups according to the lateral osteotomy design: group 1 (n=16) underwent lateral osteotomy performed in a horizontal straight fashion, and group 2 (n=14) underwent lateral osteotomy performed in parallel to the occlusal plane with a step at the zygomatic buttress. Cone beam computed tomography scans were obtained preoperatively (T1), immediately after expansion (T2), and 6 months after expansion (T3). Mixed analysis of variance (ANOVA) was used for the statistical analysis. The results showed no significant interaction effect between groups and time points. Therefore, maxillary expansion was effective in both groups. Statistically significant increases in all dental and skeletal measurements were observed immediately after expansion (P<0.001). Relapse of the nasal floor width, tipping of the supporting teeth, and an increase in root distance in molars occurred at T3 (P<0.05). In summary, the maxillary lateral osteotomy design did not influence the results of SARME, which occurred mainly through the inclination of maxillary segments.

  20. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    The basic mechanism associated with the photovoltaic phenomena observed in the R.F. sputtered BaTiO3/silicon system is presented. Series of measurements of short circuit photocurrents and open circuit photovoltage were made. The composition depth profiles and the interface characteristics of the BaTiO3/silicon system were investigated for a better understanding of the electronic properties. A Scanning Auger Microprobe combined with ion in depth profiling were used.

  1. Magnetic field effects in a polymer/fullerene blend photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Basham, James I.; Gundlach, David J.; Richter, Curt A.

    Organic photovoltaic (OPV) systems based on blends of conjugated polymers and fullerene derivatives have shown great promise for low-cost and efficient photovoltaic applications. Recent findings suggest that a weak external magnetic field can disturb the spin configuration of excited states and subsequently change properties of OPV cells such as photocurrent. These changes are referred to as magnetic field effects (MFEs). In order to have a better understanding of the underlying mechanisms responsible for the MFEs in polymer/fullerene blend photovoltaic systems, we fabricated poly-3-hexylthiophene (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) cells and carried out photovoltaic device performance and impedance spectroscopy measurements with and without an externally applied magnetic field. A significant reduction in short circuit current (JSC) as well as open circuit voltage (VOC) was observed with an applied magnetic field of a 0.1 tesla compared to those measured without a magnetic field under the same intensity of illumination. Impedance spectroscopy data gives insights into the influence of an external magnetic field on charge generation and recombination near normal photovoltaic operating conditions.

  2. Classical ratchet effects in heterostructures with a lateral periodic potential

    NASA Astrophysics Data System (ADS)

    Olbrich, P.; Karch, J.; Ivchenko, E. L.; Kamann, J.; März, B.; Fehrenbacher, M.; Weiss, D.; Ganichev, S. D.

    2011-04-01

    We study terahertz radiation induced ratchet currents in low dimensional semiconductor structures with a superimposed one-dimensional lateral periodic potential. The periodic potential is produced by etching a grating into the sample surface or depositing metal stripes periodically on the sample top. Microscopically, the photocurrent generation is based on the combined action of the lateral periodic potential, verified by transport measurements, and the in-plane modulated pumping caused by the lateral superlattice. We show that a substantial part of the total current is caused by the polarization-independent Seebeck ratchet effect. In addition, polarization-dependent photocurrents occur, which we interpret in terms of their underlying microscopical mechanisms. As a result, the class of ratchet systems needs to be extended by linear and circular ratchets, sensitive to linear and circular polarizations of the driving electromagnetic force.

  3. Lateral vibration effects in atomic-scale friction

    SciTech Connect

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E.; Gnecco, E.

    2014-02-24

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superimposed at finite temperature. Nevertheless, the peak values of the lateral force, and the total energy losses, are expected to increase with the excitation amplitude, which may limit the practical relevance of this effect.

  4. Angle-dependent photovoltaic effect in Al-Si multilayers

    NASA Astrophysics Data System (ADS)

    Kyarad, A.; Lengfellner, H.

    2005-10-01

    Al-Si multilayer stacks have been prepared by an alloying process from aluminum and silicon platelets. Irradiation of a stack with infrared to visible laser radiation generates photovoltaic signals depending on the angle of incidence of the laser beam with respect to the layer planes, with zero signal and a polarity reversal for beam and layers in parallel. Results are explained in terms of photoactive layers connected in series and symmetrically aligned along the stack axis. For light beams inclined with respect to the layer planes, asymmetry is introduced by fractional shadowing of photoactive regions due to the intransparent metallic layers.

  5. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Rappe, Andrew M.

    2016-06-01

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI3 under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  6. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators.

    PubMed

    Tan, Liang Z; Rappe, Andrew M

    2016-06-10

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles density functional theory calculations of BiTeI and CsPbI_{3} under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  7. Effect of doping on photovoltaic characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Deepshikha

    2016-12-01

    Chemical doping of CVD grown graphene by introducing PTSA ( n-type) and NBD ( p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.

  8. Terahertz ratchet effects in graphene with a lateral superlattice

    NASA Astrophysics Data System (ADS)

    Olbrich, P.; Kamann, J.; König, M.; Munzert, J.; Tutsch, L.; Eroms, J.; Weiss, D.; Liu, Ming-Hao; Golub, L. E.; Ivchenko, E. L.; Popov, V. V.; Fateev, D. V.; Mashinsky, K. V.; Fromm, F.; Seyller, Th.; Ganichev, S. D.

    2016-02-01

    Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction.

  9. Photovoltaic and photostrictive effects in lanthanum-modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Poosanaas, Patcharin

    Photostriction is the light induced strain in a material, arising from the combination of photovoltaic and converse-piezoelectric effects. The possibility of directly producing strain by light illumination, without any electrical lead wire connection, makes the photostrictive materials very attractive for potential usage in future generation wireless remote controlled micro-actuator and micro-sensor. However, for the fabrication of these devices, materials exhibiting higher photovoltaic effect and higher response speed must be developed. This research was aimed towards investigating the mechanism of photovoltaic effect, developing photostrictive materials with enhanced performance, and exploring the limits of the photostriction. A new model based on the optical nonlinearity in ferroelectrics having noncentric symmetry has been proposed to explain the mechanism of photovoltaic effect. This model provides a better understanding of photostrictive phenomenon and agrees well with the experimental measurements carried out on PLZT ceramics. Among the various processing routes attempted, coprecipitation route was found to be most suitable for the fabrication of PLZT ceramics. High purity homogeneous powders with stoichiometric compositions obtained from this method yielded compacts with high density, fine grain size and uniformly distributed dopants. These desirable properties resulted in enhancement of photostrictive response. Photovoltaic and photoinduced strain were found to increase with decreasing grain size and increasing relative density. The composition, especially near the morphotropic phase boundary (MPB) of PLZT ceramics, was optimized for photovoltaic characteristics. The maximum photocurrent was observed in tetragonal phase 4/48/52 PLZT, while the maximum photovoltage was observed in 5/54/46 PLZT, which is around the MPB of the PLZT phase diagram. The photostriction was found to be strongly influenced by the surface characteristics (namely, sample thickness

  10. Effects of windblown dust on photovoltaic surface s on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Moinuddin, Alia M.

    1991-01-01

    Photovoltaic (PV) coverslip material was subjected to Maritan dust storm conditions using basaltic dust flowing through the Martian Surface Wind Tunnel at NASA-Ames. Initially dusted and clear coverslips were held at angles from 0 to 90 deg., and the dust laden wind velocity was varied from 20 to 97 m/s. Blowing dust was found to adhere more to the coverslips as the angle was increased. However, dust was partially cleared from surfaces that were initially dusted at substantially lower velocities in dust laden wind than in clear wind. Thus, an equilibrium amount of dust accumulated which was dependent only upon angle and wind velocity and not upon initial concentration of dust. Abrasion was also evident in the coverslips. It increased with wind velocity and angle of attack. It appears that an initial dust layer may help to protect PV surfaces from abrasion.

  11. Thermal effect on the morphology and performance of organic photovoltaics.

    PubMed

    Kawashima, Eisuke; Fujii, Mikiya; Yamashita, Koichi

    2016-09-29

    The morphology of organic photovoltaics (OPVs) is a significant factor in improving performance, and establishing a method for controlling morphology is necessary. In this study, we propose a device-size simulation model, combining reptation and the dynamic Monte Carlo (DMC) algorithm, to investigate the relationship between the manufacturing process, morphology, and OPV performance. The reptation reproduces morphologies under thermal annealing, and DMC showed morphology-dependence of performance: not only short-circuit current density but also open-circuit voltage had optimal interfacial areas due to competition between exciton dissociation and charge collection. Besides, we performed transient absorption spectroscopy of various BHJ morphologies under realistic conditions, which revealed prompt and delayed dynamics of charge generation-the majority of the charges were from excitons that were generated on interfaces and dissociated within a few picoseconds, and the others from excitons that migrated to interfaces and dissociated on the order of sub-nanoseconds.

  12. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (Jsc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance.

  13. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (Ec) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (Vth) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current-voltage (I-V) characteristics Vth and Ec is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes Vth is reduced by about 30% in presence of SWCNT. The trap energy Ec also reduces in case of all the dyes. The relation between Vth, Ec and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  14. Photovoltaic effects as the physical basis of a new generation of microelectromechanical sensors and systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Oskolkov, Boris; Filonov, Oleg; Prussak, Nikolay

    2016-09-01

    The paper analyzes the prospects for the creation of a fundamentally new class of MEMS, which are based on the use of the photovoltaic effects of Dember, Kikoin - Noskov, photopiezoelectric effect in semiconductors for measuring various physical quantities. Different variants of designs of sensors, which are allowing their technical implementation without making fundamental changes in the existing technology have been reviewed. It is shown that the sensors based on photovoltaic effects are high-tech products, which is provided including extreme simplicity of the construction and technological route of their manufacture. An experiment proves the consistency was conducted photopiezoelectric effect and its use in sensor design based on it. The main problems that will require considerable effort on the part of developers and constructors of these products are likely to be associated with the processing of the output signal and increasing the sensitivity of the sensor to the measured physical quantities.

  15. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.

    PubMed

    Groenendijk, Dirk J; Buscema, Michele; Steele, Gary A; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-10-08

    Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

  16. Effective deployment of photovoltaics in the Mediterranean countries: Balancing policy risk and return

    SciTech Connect

    Luethi, S.

    2010-06-15

    Although the Mediterranean region is blessed with abundant solar resources, photovoltaic energy currently represents a very small share of power production. In Germany however, a much less sunny country, the photovoltaic (PV) industry is booming. This country has become a front runner in the adoption of PV because of effective policy incentives. Based on a cross-case study analysis of the German, Spanish and Greek PV markets, this paper investigates factors determining the effectiveness of PV policies. Our analysis shows that, above a certain level of return, risk-related factors (such as policy instability and administrative hurdles) play a more important role in influencing investment decisions than return-related factors (such as the level of a feed-in tariff). (author)

  17. Assessing the Performance of the Photovoltaic Cells on the Effects of Yellow Dust Events and Haze in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Kim, Yong Pyo; Wee, DaeHyun

    2016-04-01

    We analyze the potential effects of the Asian yellow dust Events and haze on the performance of Korean photovoltaic systems. Particulate matters from the Asian yellow dust outbreaks in the deserts of Mongolia and northern China are typically transported to Korea. Haze is an atmospheric phenomenon where dust, smoke and other dry particles obscure the clarity of the sky. Hence, we conjecture that the effects of the Asian yellow dust and haze block the incident solar irradiance. The potential reduction of the solar spectral irradiance due to Asian yellow dust events and haze in Korea is investigated using a clear-sky spectral radiation model, and the performance of photovoltaic systems under reduced irradiance is estimated by using a simple analytic model representing typical photovoltaic cells. Comparison of photovoltaic performance under Asian dust events, haze and that under a clear condition is made to evaluate overall influence of the particulate air pollution, respectively.

  18. Photovoltaic effect in YBa2Cu3O7-δ/Nb-doped SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Hao, F. X.; Zhang, C.; Liu, X.; Yin, Y. W.; Sun, Y. Z.; Li, X. G.

    2016-09-01

    The photovoltaic properties of YBa2Cu3O7-δ/Nb-doped SrTiO3 (SNTO) heterostructures were investigated systematically under laser irradiation of different wavelengths from 365 nm to 640 nm. A clear photovoltaic effect was observed, and the photovoltage Voc ranged from 0.1 V to 0.9 V depending on the wavelength. The Voc appeared under laser illumination with a photon energy of 2.4 eV, far below the band gap (3.2 eV) of Nb-doped SrTiO3. The temperature dependencies of the Voc and short-current density showed kinks near the structural phase transition of the Nb-doped SrTiO3. Our findings are helpful for understanding the photovoltaic effect in transition-metal oxide based heterojunctions and designing such photovoltaic devices.

  19. Band alignment and photovoltaic effect of epitaxial α-PbO thin films

    NASA Astrophysics Data System (ADS)

    Majima, Eishi; Kozuka, Yusuke; Uchida, Masaki; Nakamura, Masao; Kawasaki, Masashi

    2015-07-01

    To explore a p-type semiconductor lattice-matched with perovskite transition-metal oxides, we have grown α-PbO(001) thin films on (Nb-doped) SrTiO3(001) and GdScO3(110) substrates by pulsed laser deposition. The photovoltaic effect in a Au/α-PbO/Nb:SrTiO3 heterojunction is enhanced compared with that in a Au/Nb:SrTiO3 Schottky junction. The band alignment is deduced from photocurrent action spectra. We conclude that α-PbO facilitates the separation of electron-hole pairs generated at the interface of the SrTiO3 side in the ultraviolet light region and of the α-PbO side in the visible light region. Our results indicate that α-PbO is a promising candidate for photovoltaic heterojunctions involving strongly correlated oxides.

  20. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  1. Surface states and photovoltaic effects in CdSe quantum dot films

    SciTech Connect

    Kronik, L.; Ashkenasy, N.; Leibovitch, M.; Fefer, E.; Shapira, Y.; Gorer, S.; Hodes, G.

    1998-05-01

    Photovoltaic effects in CdSe quantum dot (QD) films have been studied using surface photovoltage spectroscopy and complementary methods. The results show that, contrary to previous studies, nonnegligible electric fields can exist in QD films. As a result, driftlike currents must be considered, in addition to the well-known diffusion like currents. However, it is found that the specific case of photovoltage sign reversal, observed after etching highly quantized CdSe QD films, is governed by diffusion like transport. The latter is highly influenced by preferential trapping of one type of charge carrier. The preferential trapping is shown to be surface localized and is strongly ambient dependent. It is shown that the photovoltaic properties of these CdSe QD films are dominated by their surface state distribution.

  2. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite.

    PubMed

    Young, Steve M; Zheng, Fan; Rappe, Andrew M

    2012-12-07

    We compute the bulk photovoltaic effect (BPVE) in BiFeO(3) using first-principles shift current theory, finding good agreement with experimental results. Furthermore, we reconcile apparently contradictory observations: by examining the contributions of all photovoltaic response tensor components and accounting for the geometry and ferroelectric domain structure of the experimental system, we explain the apparent lack of BPVE response in striped polydomain samples that is at odds with the significant response observed in monodomain samples. We reveal that the domain-wall-driven response in striped polydomain samples is partially mitigated by the BPVE, suggesting that enhanced efficiency could be obtained in materials with cooperative rather than antagonistic interaction between the two mechanisms.

  3. Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance.

    PubMed

    Russo, Juan M; Zhang, Deming; Gordon, Michael; Vorndran, Shelby; Wu, Yuechen; Kostuk, Raymond K

    2014-03-10

    During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.

  4. The Effect of Lateralized Temporal Fringes on Fundamental Frequency Discrimination

    NASA Astrophysics Data System (ADS)

    Gockel, H.; Carlyon, R. P.; Micheyl, C.

    Fundamental frequency (FO) discrimination can be impaired substantially by the presence of another complex (the "fringe") immediately before and after the target complex. It has been shown [2] that for the impairment to occur (i) target and fringes have to be in the same frequency region; (ii) if all harmonics of target and fringes are unresolved then they may differ in F0; otherwise, they have to be similar. The present experiments investigated the effect of fringes lateralized differently from the target. In a 21-2AFC procedure, difference limens for FO for a 100-ms harmonic target complex were measured in the presence and absence of 200-ms harmonic fringes. The nominal FO was 88 Hz or 250 Hz. Stimuli were bandpass filtered between 125-625 Hz, 1375-1875 Hz, or 3900-5400 Hz. The target was presented monaurally, while the fringes were: (i) contralateral with the same level as the target, (ii) contralateral with a level increased by 20 dB, (iii) dichotic (ILD of +20 dB contralateral), (iv) diotic, and (v) ipsilateral. The effect of the fringes was reduced when their subjective location differed from that of the target. This reduction depended on the resolvability of both the fringes and the target. The results are consistent with the idea that the fringes produce interference when the listeners have difficulty segregating the target from the fringes.

  5. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  6. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  7. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  8. The effect of lateral confinement on gravel bed river morphology

    NASA Astrophysics Data System (ADS)

    Garcia Lugo, G. A.; Bertoldi, W.; Henshaw, A. J.; Gurnell, A. M.

    2015-09-01

    In this paper, we use a physical modeling approach to explore the effect of lateral confinement on gravel bed river planform style, bed morphology, and sediment transport processes. A set of 27 runs was performed in a large flume (25 m long, 2.9 m wide), with constant longitudinal slope (0.01) and uniform grain size (1 mm), changing the water discharge (1.5-2.5 L/s) and the channel width (0.15-1.5 m) to model a wide range of channel configurations, from narrow, straight, embanked channels to wide braided networks. The outcomes of each run were characterized by a detailed digital elevation model describing channel morphology, a map of dry areas and areas actively transporting sediment within the channel, and continuous monitoring of the amount of sediment transported through the flume outlet. Analysis reveals strong relationships between unit stream power and parameters describing the channel morphology. In particular, a smooth transition is observed between narrow channels with an almost rectangular cross-section profile (with sediment transport occurring across the entire channel width) and complex braided networks where only a limited proportion (30%) of the bed is active. This transition is captured by descriptors of the bed elevation frequency distribution, e.g., standard deviation, skewness, and kurtosis. These summary statistics represent potentially useful indicators of bed morphology that are compared with other commonly used summary indicators such as the braiding index and the type and number of bars.

  9. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  10. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  11. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  12. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  13. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  14. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  15. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1981-01-01

    The photoelectric effect in structures consisting of metal deposited barium titanate film silicon is described. A radio frequency sputtering technique is used to deposit ferroelectric barium titantate films on silicon and quartz. Film properties are measured and correlated with the photoelectric effect characteristics of the films. It was found that to obtain good quality pin hole free films, it is necessary to reduce the substrate temperature during the last part of the deposition. The switching ability of the device with internal applied voltage is improved when applied with a ferroelectric memory device.

  16. Effect of Lateral Epicondylosis on Grip Force Development

    PubMed Central

    Chourasia, Amrish O.; Buhr, Kevin A.; Rabago, David P.; Kijowski, Richard; Irwin, Curtis B.; Sesto, Mary E.

    2012-01-01

    Introduction While it is well known that grip strength is adversely affected by lateral epicondylosis (LE), the effect of LE on rapid grip force generation is unclear. Purpose The purpose of this study was to evaluate the effect of LE on the ability to rapidly generate grip force. Methods Twenty-eight participants with LE (13 unilateral and 15 bilateral LE) and 13 healthy controls participated in this study. A Multi-Axis Profile dynamometer was used to evaluate grip strength and rapid grip force generation. The ability to rapidly produce force is comprised of the electromechanical delay and rate of force development. Electromechanical delay is defined as the time between the onset of electrical activity and the onset of muscle force production. The Patient Rated Tennis Elbow Evaluation (PRTEE) questionnaire was used to assess pain and functional disability. Magnetic resonance imaging was used to evaluate tendon degeneration. Results LE-injured upper extremities had lower rate of force development (−50 lbs/sec, CI [−17, −84]) and less grip strength (−7.8 lbs, CI [−3.3, −12.4]) than non-injured extremities. Participants in the LE group had a longer electromechanical delay (+59%, CI [29,97]) than controls. Peak rate of force development had a higher correlation (r=0.56)(p<0.05) with PRTEE function than grip strength (r=0.47) (p<0.05) and electromechanical delay (r=0.30)(p>0.05) for participants with LE. Conclusion In addition to a reduction in grip strength, those with LE had a reduction in rate of force development and an increase in electromechanical delay. Collectively, these changes may contribute to an increase in reaction time, which may affect risk for recurrent symptoms. These findings suggest that therapists may need to address both strength and rapid force development deficits in patients with LE. PMID:22137195

  17. Update: Effective Load-Carrying Capability of Photovoltaics in the United States; Preprint

    SciTech Connect

    Perez, R.; Margolis, R.; Kmiecik, M.; Schwab, M.; Perez, M.

    2006-06-01

    This paper provides an update on the U.S. distribution of effective load-carrying capability (ELLC) for photovoltaics by analyzing recent load data from 39 U.S. utilities and time-coincident output of PV installations simulated from high-resolution, time/site-specific satellite data. Results show that overall regional trends identified in the early 1990s remain pertinent today, while noting a significant increase in PV ELCC in the western and northern United States, and a modest decrease in the central and eastern United States.

  18. Photovoltaic concepts inspired by coherence effects in photosynthetic systems.

    PubMed

    Brédas, Jean-Luc; Sargent, Edward H; Scholes, Gregory D

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder - structural and energetic - and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  19. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  20. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  1. Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots

    SciTech Connect

    Zhang, Y. Nagai, N.; Shibata, K.; Hirakawa, K.; Ndebeka-Bandou, C.; Bastard, G.

    2015-09-07

    We have observed a terahertz (THz) induced single electron photovoltaic effect in self-assembled InAs quantum dots (QDs). We used a single electron transistor (SET) geometry that consists of a single InAs QD and nanogap electrodes coupled with a bowtie antenna. Under a weak, broadband THz radiation, a photocurrent induced by THz intersublevel transitions in the QD is generated even when no bias voltage is applied to the SET. The observed single electron photovoltaic effect is due to an energy-dependent tunneling asymmetry in the QD-SET. Moreover, the tunneling asymmetry changes not only with the shell but also with the electron number in the QD, suggesting the manybody nature of the electron wavefunctions. The THz photovoltaic effect observed in the present QD-SET system may have potential applications to nanoscale energy harvesting.

  2. Photovoltaic properties of polymer films

    NASA Astrophysics Data System (ADS)

    Reucroft, P. J.; Ullal, H.

    1980-03-01

    The effect of metal electrode and film thickness on the photovoltaic energy conversion efficiency in (1:1) mole ratio films of poly (N-vinylcarbazole) (PVK) and 2,4,7-trinitrofluorenone (TNF) has been investigated. Low work function metals increase the Schottky barrier height which leads to increases in the photovoltaic energy conversion efficiency. A ten-fold decrease in film thickness produces a thousand-fold increase in photovoltaic energy conversion efficiency. A theoretical model which assumes that the photovoltaic current is limited by Child's law predicts photovoltaic efficiencies which are in good agreement with the measured efficiencies.

  3. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  4. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics.

    PubMed

    Yang, F; Han, M Y; Chang, F G

    2015-06-23

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10(-8) mV at 50 K with a laser intensity of 502 mW/cm(2). Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface.

  5. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating.

    PubMed

    Buscema, Michele; Groenendijk, Dirk J; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-08-28

    In conventional photovoltaic solar cells, photogenerated carriers are extracted by the built-in electric field of a semiconductor PN junction, defined by ionic dopants. In atomically thin semiconductors, the doping level can be controlled by the field effect, enabling the implementation of electrically tunable PN junctions. However, most two-dimensional (2D) semiconductors do not show ambipolar transport, which is necessary to realize PN junctions. Few-layer black phosphorus (b-P) is a recently isolated 2D semiconductor with direct bandgap, high mobility, large current on/off ratios and ambipolar operation. Here we fabricate few-layer b-P field-effect transistors with split gates and hexagonal boron nitride dielectric. We demonstrate electrostatic control of the local charge carrier type and density in the device. Illuminating a gate-defined PN junction, we observe zero-bias photocurrents and significant open-circuit voltages due to the photovoltaic effect. The small bandgap of the material allows power generation for illumination wavelengths up to 940 nm, attractive for energy harvesting in the near-infrared.

  6. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics

    PubMed Central

    Yang, F.; Han, M. Y.; Chang, F. G.

    2015-01-01

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727

  7. Effects on Photovoltaic Performance of Dialkyloxy-benzothiadiazole Copolymers by Varying the Thienoacene Donor.

    PubMed

    Kini, Gururaj P; Oh, Sora; Abbas, Zaheer; Rasool, Shafket; Jahandar, Muhammad; Song, Chang Eun; Lee, Sang Kyu; Shin, Won Suk; So, Won-Wook; Lee, Jong-Cheol

    2017-03-29

    A series of four donor-acceptor alternating copolymers based on dialkyloxy-benzothiadiazole (ROBT) as an acceptor and thienoacenes as donor units were synthesized and tested for polymer solar cells (PSCs). These new polymers had different donor units with varied electron-donating ability (thieno[3,2-b]thiophene (TT), dithieno[3,2-b:2',3'-d]thiophene (DTT), benzo[1,2-b:4,5-b']dithiophene (BDT), and naphtha[1,2-b:5,6-b']dithiophene (NDT)) in the polymer backbone. To understand the effect of these thienoacenes on the optoelectronic and photovoltaic properties of the copolymers, we systematically analyzed and compared the energy levels, crystallinity, morphology, charge recombination, and charge carrier mobility in the resulting polymers. In this series, optimized photovoltaic cells yielded power conversion efficiency (PCE) values of 6.25% (TT), 9.02% (DTT), 6.34% (BDT), and 2.29% (NDT) with different thienoacene donors. The introduction of DTT into the thienoacene-ROBT polymer enabled the generation of well-ordered molecular packings with a π-π stacking distance of 3.72 Å, high charge mobilities, and an interconnected nanofibrillar morphology in blend films. As a result, the PSC employing the polymer with DTT exhibited the highest PCE of 9.02%. Thus, our structure-property relationship studies of thienoacene-ROBT-based polymers emphasize that the molecular design of the polymers must be carefully optimized to develop high efficient PSCs. These findings will help us to understand the impact of the donor thienoacene on the optoelectronic and photovoltaic performance of polymers.

  8. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  9. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  10. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    NASA Astrophysics Data System (ADS)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  11. A laterality effect in isometric and isotonic labial tracking.

    PubMed

    Sussman, H M; Westbury, J R

    1978-09-01

    Hemispheric dominance for sensorimotor control of lip activity was investigated by use of a pursuit auditory tracking task. This task involves continuous frequency matching of a computer-generated target tone and a subject-controlled cursor tone. Thirty right-handed subjects were tested under isometric lip and hand control, and 20 right-handed subjects under isotonic lip control. Subjects tracked 10 1-min trials under each laterality condition--cursor/right ear, target/left ear, and vice versa. In both experiments tracking performance was better when the lip-controlled cursor tone was presented to the right ear (hence direct contralateral route to left hemisphere). A significant (p less than 0.05) cursor/right-ear advantage was found under isometric hand-tracking. Analysis routines examined relative laterality advantages across several time intervals within each 1-min trial. Consistent lateralization scores in favor of cursor/right-ear presentations (REAs) were independent of the time interval measured. For isometric tracking, 58% of subjects having laterality advantages (p less than 0.10) revealed REAs. For isotonic tracking, 71% of subjects revealed REAs. Implications of the latter finding are discussed relative to a left hemisphere mechanism specialized to integrate movement-generated auditory feedback with dynamic kinesthetic information from the articulators.

  12. Cerebral Laterality Effects in the Dual Processing of Prose.

    ERIC Educational Resources Information Center

    Dean, Raymond S.

    1984-01-01

    The degree to which concreteness of prose material presented in an auditory fashion would interact with learners' lateral preference under different right hemispheric presentation conditions was investigated with 96 adults. Subjects recalled a greater number of ideas when the passage was concrete. Abstractness interacted with cerebral dominance.…

  13. Transport Effects on Capacitance-Frequency Analysis for Defect Characterization in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Wang, Jian; Hsu, Julia W. P.

    2016-12-01

    Using capacitance-frequency (C -f ) analysis to characterize the density-of-states (DOS) distribution of defects has been well established for inorganic thin-film photovoltaic devices. While C -f analysis has also been applied to bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices, we show that the low carrier mobility in the BHJ material can severely alter the C -f behaviors and lead to misinterpretations. Because of the complicated nature of disorders in organic materials, artifacts from an erroneous C -f analysis are difficult to identify. Here we compare drift-diffusion simulations with experiments to reveal situations when the validity of C -f analysis for defect characterization breaks down. When a flat-band region is present in the low-mobility active layer, the capacitive response cannot follow the electrical modulation and behaves as if the active layer is a dielectric at frequencies higher than the characteristic frequency determined by carrier mobility and thickness. The transition produces a fictitious shallow defect when defect analysis is applied. Even in fully depleted devices, the defect distributions derived from C -f analysis can appear at spuriously deeper energies if the mobility is too low. Through simulations, we determine the ranges of mobility and thickness for which the C -f analysis can effectively yield credible defect DOS information. Insight from this study also sheds light on transport limitation when using capacitance spectroscopy for defect characterization in general.

  14. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Zheng, Fan; Young, Steve M.; Wang, Fenggong; Liu, Shi; Rappe, Andrew M.

    2016-08-01

    The bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorly understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.

  15. Effects of silicates from scaps of photovoltaic industries on powdery mildew of zucchini.

    PubMed

    Pugliese, M; Alvarez, M T Moreno; Gullino, M L; Garibaldi, A

    2012-01-01

    Silicon is the second most abundant element on earth's surface and its use can stimulate natural defense mechanisms in plants. The effect of silicate from scraps of photovoltaic industries against powdery mildew on zucchini (Cucurbita pepo) was evaluated under greenhouse conditions. Potted plants were inoculated with a spore suspension containing 1 x 10(5) cfu/ml. The following treatments have been carried out, 3 and 10 days after pathogen inoculation: chemical fungicide (propiconazole, TILT 25 EC, Syngenta); Bacillus subtilis (250 g/hl, Serenade, Intrachem); 1% and 0.1% sodium silicate (r = 1); 1% and 0.1% sodium silicate (r = 2); tap water as control. Disease incidence and severity were assessed 7, 14 and 21days after pathogen inoculation. Results showed that the application of 1% sodium silicate (r = 1) significantly reduced the powdery mildew to a level similar to chemical control. The other treatments, including Bacillus subtilis, reduced disease severity compared to water control, but were less efficient. The use of silicates from photovoltaic industries is a valid alternative for the control of powdery mildew on zucchini, in particular in organic farming. However, silicates might not be sufficient at higher disease incidence levels, and their use is more suitable within an integrated disease control strategy.

  16. Analysis of mismatch and shading effects in a photovoltaic array using different technologies

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.

    2014-06-01

    In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.

  17. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Yao, Kui; Wang, John

    2014-10-01

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In2O3-SnO2/ZnO/BiFeO3/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (Jsc) of 340 μA/cm2 and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n+-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  18. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  19. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    PubMed

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  20. Effects of various parameters on lateral displacement estimation in ultrasound elastography.

    PubMed

    Luo, Jianwen; Konofagou, Elisa E

    2009-08-01

    Complementary to axial, lateral displacement and strain can provide important information on the biological soft tissues. In this paper, the effects of key parameters (i.e., lateral displacement, pitch, beamwidth, beam overlap and interpolation) on lateral displacement estimation were investigated, in simulations and homogeneous phantom experiments, using lateral rigid motion only to study its fundamentals separately from the effects of axial motion and 2-D deformation on lateral displacement estimation. The performance of the lateral motion estimator was evaluated by measuring its associated bias, jitter and correlation coefficient. Simulation results showed that the bias and jitter of the lateral displacement estimation and correlation coefficient of RF signals undergo periodic variations depending on the lateral displacement, with a period equal to the pitch. The performance of the lateral estimation was improved when a smaller pitch or a larger beamwidth, was used. The effect of the pitch on the lateral estimation on lateral displacement estimation was found to be greater than the beamwidth effect. Therefore, a smaller pitch is preferred when the beam overlap remains the same. The use of cubic spline, instead of linear interpolation, increases the correlation coefficient, and decreases the jitter, with the trade-off of increased bias. The results of the phantom experiments were shown in good agreement with the simulation findings, including the periodic variation of the performance with lateral displacement and effects of pitch, beamwidth and interpolation method on lateral displacement estimation. In conclusion, smaller pitch, wider beamwidth and spline interpolation were shown to be key in reducing the jitter error in the lateral displacement estimation.

  1. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  2. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  3. Investigation of High-Voltage Photovoltaic Effect and Piezoeffect in Thin CdTe Films Depending on Their State,

    DTIC Science & Technology

    The article studies the dependence of the high-voltage photovoltaic effect (HVPVE) and piezoeffect on the state of the thin CdTe film crystalline ... structures . The properties of the macro- and microstructure of thin CdTe films with different polarities of the HVPVE are established. The change of

  4. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  5. Concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Dupas, A.

    1982-11-01

    Various configurations for concentrating photovoltaic systems are described and their operating principles are explained. The effects of temperature and series resistance on system efficiency are discussed. As an example, the french family of photovoltaic concentrating systems, SOPHOCLE, is described. The SOPHOCLE family of generators is characterized by the use of a heliostat with altazimuth mounting and by the choice of medium concentration (C=45) by fresnel lenses on silicon cells.

  6. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

  7. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (ϕ{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ{sub IQ} can be experimentally decomposed into carrier formation (ϕ{sub CF}) and carrier transfer (ϕ{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ϕ{sub CF} (=0.55) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  8. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  9. Effects of expiration of the Federal energy tax credit on the National Photovoltaics Program

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Projected 1986 sales are significantly reduced as a direct result of system price increases following from expiration of the Federal energy tax credits. There would be greatly reduced emphasis on domestic electric utility applications. Indirect effects arising from unrealized economies of scale and reduced private investment in PV research and development (R&D) and in production facilities could have a very large cumulative adverse impact on the U.S. PV industry. The industry forecasts as much as fourfold reduction in 1990 sales if tax credits expire, compared with what sales would be with the credits. Because the National Photovoltaics Program is explicitly structured as a government partnership, large changes in the motivation or funding of either partner can affect Program success profoundly. Reduced industry participation implies that such industry tasks as industrialization and new product development would slow or halt. Those research areas receiving heavy R&D support from private PV manufacturers would be adversely affected.

  10. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices.

    PubMed

    Wang, Jian; Xu, Liang; Lee, Yun-Ju; De Anda Villa, Manuel; Malko, Anton V; Hsu, Julia W P

    2015-11-11

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron-exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer doping low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. These understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.

  11. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-01

    The internal quantum efficiency ( ϕ IQ) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ IQ can be experimentally decomposed into carrier formation ( ϕ CF) and carrier transfer ( ϕ CT) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ CF in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C61-butyric acid methyl ester blend film. We found that ϕ CF ( = 0.55 ) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ CF indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  12. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  13. The Immediate Effect of Lateral Wedge Insoles, With and Without a Subtalar Strap, on the Lateral Trunk Lean Motion in Patients With Knee Osteoarthritis

    PubMed Central

    Esfandiari, Elham; Kamyab, Mojtaba; Yazdi, Hamid Reza; Foroughi, Nasim; Sanjari, Mohammad Ali

    2013-01-01

    Background: Orthotic interventions for knee osteoarthritis (OA) aim to reduce mechanical loading on the medial compartment of the knee and may lessen the lateral trunk lean as the most important compensatory gait strategy. The lateral wedge insole is a known orthotic intervention for knee OA. However, the question whether the addition of a subtalar strap to the wedge improves its effect has not been addressed in the literature. Objective: To compare the effects of lateral wedge insoles, with and without a subtalar strap, on the lateral trunk lean in patients with knee OA. Methods: Twenty-three patients aged over 40 years, with grade I or II OA of the medial compartment of one knee, based on the American College of Rheumatology criteria, were included in this study. The patients were diagnosed with OA based on a clinical examination, and the diagnosis was confirmed with radiographs. A 3-dimensional motion measurement system was used to collect the gait data for 3 different conditions: (1) with no insole, (2) with a lateral wedge insole, and (3) with a lateral wedge insole and a subtalar strap. The immediate effect of the 3 test conditions on the lateral trunk lean was compared during a gait cycle a stance phase and at the point of midstance. Results: Based on the laboratory coordinate system, the 3 conditions had no significant effect on the lateral trunk lean during a gait cycle and a stance phase and at the point of midstance in patients with knee OA. Conclusion: The results of this study demonstrated that the lateral wedge insoles, with and without a subtalar strap, had no immediate effect on the lateral trunk lean in patients with knee OA. However, the long-term effect of lateral wedge insoles on the lateral trunk lean in these patients requires further investigation. PMID:24600533

  14. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    PubMed Central

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  15. A Test for Lateralization of the Mozart Effect.

    ERIC Educational Resources Information Center

    Bates, Angela; Cagle, Stacy; Rideout, Bruce

    The Mozart effect involves the enhancement of spatial processing after listening to a Mozart piano sonata (Rauscher, Dhaw, and Ky, 1993). Efforts to replicate the Mozart effect have been mixed, possibly due to differences in dependent variable operationalization across studies or large individual differences in magnitude of effect. Chabria and…

  16. Photovoltaic cell with thin CS layer

    SciTech Connect

    Jordan, J.F.; Albright, S.P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick CdS layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the CdS layer. 4 figures.

  17. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  18. Communication Effectiveness of Individuals with Amyotrophic Lateral Sclerosis

    ERIC Educational Resources Information Center

    Ball, Laura J.; Beukelman, David R.; Pattee, Gary L.

    2004-01-01

    The purpose of this study was to examine the relationships among speech intelligibility and communication effectiveness as rated by speakers and their listeners. Participants completed procedures to measure (a) speech intelligibility, (b) self-perceptions of communication effectiveness, and (c) listener (spouse or family member) perceptions of…

  19. Perinatal dioxin exposure and later effects--a review.

    PubMed

    ten Tusscher, Gavin W; Koppe, Janna G

    2004-03-01

    Negative effects of perinatal exposure to background levels of dioxins and PCBs in Europe and the USA have been documented. Four facets of development are reviewed in this paper: 1. Brain development and thyroid hormone metabolism. 2. Hepatic effects. 3. Hematopoietic system effects. 4. Lung function. Effects on IQ and behaviour have been documented in children on both sides of the Atlantic Ocean. Non-dioxin-like PCBs, measured in maternal and cord blood and current plasma samples have been implicated. Interference with thyroid hormone metabolism in the mother, in the foetus and in the newborn baby could be responsible for these effects on brain development. During early gestation the foetus is completely dependent on maternal thyroxine (T4). Lower T4 levels in the mother, caused by dioxins and PCBs, might negatively influence (early) brain development. It is plausible that the intrauterine dependency on maternal T4 and the high T4 need shortly after birth makes both these periods vulnerable for environmental influences. Effects of dioxin exposure on thyroid hormone metabolism have been described in the period shortly after birth. These effects are no longer found after two years of age indicating a transient effect. In animal studies, in utero exposure has led to effects on brain development due to abnormal induction of liver enzymes. This induction resulted in lower testosterone and estrogen levels, interfering with brain development in the vulnerable period of language development and the development of visuo-spatial abilities. In humans this developmental period occurs around the thirtieth week of pregnancy. Follow-up studies in puberty and adolescence of the different cohorts studied is necessary to evaluate these negative influences. Damaging effects on the liver found shortly after birth have proven to be transient. Effects on the haematopoietic system are clear immediately after birth, for instance on white blood cells and thrombocytes. An increase in

  20. Sex Specific Effect of Prenatal Testosterone on Language Lateralization in Children

    ERIC Educational Resources Information Center

    Lust, J. M.; Geuze, R. H.; Van de Beek, C.; Cohen-Kettenis, P. T.; Groothuis, A. G. G.; Bouma, A.

    2010-01-01

    Brain lateralization refers to the division of labour between the two hemispheres in controlling a wide array of functions and is remarkably well developed in humans. Based on sex differences in lateralization of handedness and language, several hypotheses have postulated an effect of prenatal exposure to testosterone on human lateralization…

  1. Effects of later-occurring nonlinguistic sounds on speech categorization.

    PubMed

    Wade, Travis; Holt, Lori L

    2005-09-01

    Nonspeech stimuli influence phonetic categorization, but effects observed so far have been limited to precursors' influence on perception of following speech. However, both preceding and following speech affect phonetic categorization. This asymmetry raises questions about whether general auditory processes play a role in context-dependent speech perception. This study tested whether the asymmetry stems from methodological issues or genuine mechanistic limitations. To determine whether and how backward effects of nonspeech context on speech may occur, one experiment examined perception of CVC words with [ga]-[da] series onsets followed by one of two possible embedded tones and one of two possible final consonants. When the tone was separated from the target onset by 100 ms, contrastive effects of tone frequency similar to those of previous studies were observed; however, when the tone was moved closer to the target segment assimilative effects were observed. In another experiment, contrastive effects of a following tone were observed in both CVC words and CV nonwords, although the size of the effects depended on syllable structure. Results are discussed with respect to contrastive mechanisms not speech-specific but operating at a relatively high level, taking into account spectrotemporal patterns occurring over extended periods before and after target events.

  2. Polarity correspondence effect between loudness and lateralized response set

    PubMed Central

    Chang, Seah; Cho, Yang Seok

    2015-01-01

    Performance is better when a high pitch tone is associated with an up or right response and a low pitch tone with a down or left response compared to the opposite pairs, which is called the spatial-musical association of response codes effect. The current study examined whether polarity codes are formed in terms of the variation in loudness. In Experiments 1 and 2, in which participants performed a loudness-judgment task and a timbre-judgment task respectively, the correspondence effect was obtained between loudness and response side regardless of whether loudness was relevant to the task or not. In Experiments 3 and 4, in which the identical loudness- and timbre-judgment tasks were conducted while the auditory stimulus was presented only to the left or right ear, the correspondence effect was modulated by the ear to which the stimulus was presented, even though the effect was marginally significant in Experiment 4. The results suggest that loudness produced polarity codes that influenced response selection (Experiments 1 and 2), and additional spatial codes provided by stimulus position modulated the effect, generating the stimulus eccentricity effect (Experiments 3 and 4), which is consistent with the polarity correspondence principle. PMID:26052305

  3. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-10-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  4. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    PubMed Central

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-01-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations. PMID:27733772

  5. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures.

    PubMed

    Barron-Gafford, Greg A; Minor, Rebecca L; Allen, Nathan A; Cronin, Alex D; Brooks, Adria E; Pavao-Zuckerman, Mitchell A

    2016-10-13

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a "heat island" (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3-4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  6. The effect of lateral banking on the kinematics and kinetics of the lower extremity during lateral cutting movements.

    PubMed

    Wannop, John W; Graf, Eveline S; Stefanyshyn, Darren J

    2014-02-01

    There are many aspects of cutting movements that can limit performance, however, the implementation of lateral banking may reduce some of these limitations. Banking could provide a protective mechanism, placing the foot and ankle in orientations that keep them out of dangerous positions. This study sought to determine the effect of two banking angles on the kinematics and kinetics of the lower extremity during two athletic maneuvers. Kinematic and kinetic data were collected on 10 recreational athletes performing v-cuts and side shuffle movements on different banked surfaces (0°, 10°, 20°). Each sample surface was rigidly attached to the force platform. Joint moments were calculated and compared between conditions using a repeated measures ANOVA. Banking had a pronounced effect on the ankle joint. As banking increased, the amount of joint loading in the transverse and frontal planes decreased likely leading to a reduction in injury risk. Also an increase in knee joint loading in the frontal plane was seen during the 20° bank during the v-cut. Conversely loading in the sagittal plane at the ankle joint increased with banking and coupled with a reorientation of the ground reaction vector may facilitate a performance increase. The current study indicates that the 10° bank may be the optimal bank, in that it decreases ankle joint loading, as well as increases specific performance variables while not increasing frontal plane knee joint loading. If banking could be incorporated in footwear it may be able to provide a protective mechanism for athletes.

  7. Five Years Later: Achieving Professional Effectiveness to Move Neurorehabilitation Forward

    PubMed Central

    2013-01-01

    The AOTA Centennial Vision outlined in 2007 challenged the occupational therapy profession to become a “powerful, widely recognized, science-driven, and evidence-based” profession that could adapt to changing societal and cultural needs and flourish well into the future. That challenge can be met by simply being effective at what we do; this will increase our value and validate our worth. Neurorehabilitation in occupational therapy can also thrive if we verify that the interventions we use and the strategies we implement are grounded in evidence. Professional effectiveness will emerge by (1) increasing the dissemination of research that supports the methods we use and informs others of the successful patient outcomes we achieve and (2) expanding development and validation of instruments that quantitatively and qualitatively measure functional outcomes. Occupational therapists can individually develop professional effectiveness by fostering greater academic–clinical alliances, objectifying evaluation and intervention methods, and preparing future practitioners appropriately for evidence-driven practice. PMID:23968801

  8. Comparison of Therapeutic Effect of Extracorporeal Shock Wave in Calcific Versus Noncalcific Lateral Epicondylopathy

    PubMed Central

    Park, Jong Wook; Hwang, Ji Hye; Choi, Yoo Seong

    2016-01-01

    Objective To assess the therapeutic effect of extracorporeal shock wave therapy (ESWT) in lateral epicondylopathy with calcification, and compare it to the effect of ESWT in lateral epicondylopathy without calcification. Methods A retrospective study was conducted. Forty-three patients (19 with calcific and 24 with noncalcific lateral epicondylopathy in ultrasound imaging) were included. Clinical evaluations included the 100-point score, Nirschl Pain Phase scale before and after ESWT, and Roles and Maudsley (R&M) scores after ESWT. ESWT (2,000 impulses and 0.06–0.12 mJ/mm2) was performed once a week for 4 weeks. Results The 100-point score and Nirschl Pain Phase scale changed significantly over time (p<0.001), but there was no significant difference between groups (p=0.555). The R&M scores at 3 and 6 months after ESWT were not significantly different between groups. In the presence of a tendon tear, those in the calcific lateral epicondylopathy group showed poor improvement of 100-point scores compared to the noncalcific group (p=0.004). Conclusion This study demonstrated that the therapeutic effect of ESWT in calcific lateral epicondylopathy was not significantly different from that in noncalcific lateral epicondylopathy. When a tendon tear is present, patients with calcific lateral epicondylopathy might show poor prognosis after ESWT relative to patients with noncalcific lateral epicondylopathy. PMID:27152280

  9. Transposed-Letter and Laterality Effects in Lexical Decision

    ERIC Educational Resources Information Center

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  10. Free School Fruit--Sustained Effect 1 Year Later

    ERIC Educational Resources Information Center

    Bere, E.; Veierod, M. B.; Bjelland, M.; Klepp, K.-I.

    2006-01-01

    This study reports the effect of a school-randomized fruit and vegetable intervention consisting of a subscription to the Norwegian School Fruit Programme at no parental cost, and the Fruit and Vegetables Make the Marks (FVMM) educational programme, both delivered in the school year of 2001-02. Nine randomly chosen schools received the…

  11. Review of the environmental effects on the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low earth orbit (LEO), the interaction of this environment with the photovoltaic (PV) power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interaction of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  12. Review of the environmental effects of the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  13. Cost effective flat plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  14. Lateralized goal framing: how selective presentation impacts message effectiveness.

    PubMed

    McCormick, Michael; Seta, John J

    2012-11-01

    We tested whether framing a message as a gain or loss would alter its effectiveness by using a dichotic listening procedure to selectively present a health related message to the left or right hemisphere. A significant goal framing effect (losses > gains) was found when right, but not left, hemisphere processing was initially enhanced. The results support the position that the contextual processing style of the right hemisphere is especially sensitive to the associative implications of the frame. We discussed the implications of these findings for goal framing research, and the valence hypothesis. We also discussed how these findings converge with prior valence framing research and how they can be of potential use to health care providers.

  15. Effects of Social Development Intervention in Childhood Fifteen Years Later

    PubMed Central

    Hawkins, J. David; Kosterman, Rick; Catalano, Richard F.; Hill, Karl G.; Abbott, Robert D.

    2008-01-01

    Objective To examine long-term effects of a universal intervention in elementary schools in promoting positive functioning in school, work, and community, and preventing mental health problems, risky sexual behavior, substance misuse, and crime at ages 24 and 27. Design Nonrandomized controlled trial followed participants to age 27, 15 years after the intervention ended. Three intervention conditions were compared: a full intervention group, assigned to intervention in grades 1 through 6; a late intervention group, assigned to intervention in grades 5 and 6 only; and a no-treatment control group. Setting Fifteen public elementary schools serving diverse neighborhoods including high-crime neighborhoods of Seattle. Participants A gender-balanced and multiethnic sample of 598 participants at ages 24 and 27 (93% of original sample in these conditions). Interventions Teacher training in classroom instruction and management, child social and emotional skill development, and parent workshops. Outcome Measures Self-reports of functioning in school, work and community, mental health, sexual behavior, substance use, and crime, and court records. Results A significant multivariate intervention effect across all 16 primary outcome indices was found. Specific effects included significantly better educational and economic attainment, mental health, and sexual health by age 27 (all p < .05). Hypothesized effects on substance use and crime were not found at ages 24 or 27. Conclusions A universal intervention for urban elementary school children, focused on classroom management and instruction, children’s social competence, and parenting practices, positively affected educational and economic attainment, mental health, and sexual health 15 years following the intervention’s end. PMID:19047540

  16. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  17. Effects of moving cloud shadows on electric utilities with dispersed solar photovoltaic generation

    SciTech Connect

    Jewell, W.T.

    1986-01-01

    Residential utility-interactive solar photovoltaic (PV) generators were simulated throughout the southeast Tulsa, Oklahoma area. As cloud shadows pass over such PV systems, their generation varies with the incident solar radiation (insolation), and the electric utility must follow these changes with its own generators, similar to how it now follows continuous changes in electrical loads. A two-dimensional simulation of time-varying incident solar radiation was developed and used to study the effect of moving cloud shadows on the Public Service Company of Oklahoma (PSO) electric utility system, to which the PV generator were connected. The insolation simulation was first combined with a distribution feeder model to estimate possible changes in PV generation over several time periods. The insolation and feeder models were then used to provide data to the PSO power-flow simulation to estimate the effects on the PSO system. During the worst cumulus cloud pattern at peak-solar-radiation times, PSO will begin to see significant effects from the dispersed PV generation when PV installed penetration in southeast Tulsa reaches approximately 15% (when PV represents approximately 15% of the installed generation in southeast Tulsa.

  18. The photovoltaic effect and charge carrier mobility in layered compositions of bithiophene or related rotaxane copolymer with C70 fullerene derivative

    NASA Astrophysics Data System (ADS)

    Kostromin, S. V.; Malov, V. V.; Tameev, A. R.; Bronnikov, S. V.; Farcas, A.

    2017-02-01

    Organic photovoltaic cells with a bulk heterojunction have been manufactured in which the photoactive layer consists of a mixture of bithiophene copolymer or related rotaxane with a fullerene derivative (PC70BM). The mobility of charge carriers in photoactive layers has been determined, the current-voltage characteristics of photovoltaic cells have been measured, and the energy level diagram of cell components has been constructed. It is established that the polyrotaxane component (macrocycle) insulates a part of thiophene fragments of the macromolecule, thus hindering the transport of carriers and leading to large energy losses for exciton dissociation, which results in a decreasing photovoltaic effect.

  19. Effects of amyotrophic lateral sclerosis sera on cultured cholinergic neurons

    SciTech Connect

    Touzeau, G.; Kato, A.C.

    1983-03-01

    Dissociated monolayer cultures of chick ciliary ganglion neurons have been used to study the effects of control and ALS sera. The cultured neurons survive and extend neurites for a minimum of 2 weeks in a standard tissue culture medium that contains 10% heat-inactivated human serum. Three parameters of the neurons have been examined when cultured in control and ALS sera for 8 to 12 days: (1) neuronal survival, (2) activity of the enzyme choline acetyltransferase, and (3) synthesis of /sup 3/H-acetylcholine using /sup 3/H-choline as precursor. ALS sera cause a small decrease in these three parameters, but this difference is not significant.

  20. Influence Of Lateral Load Distributions On Pushover Analysis Effectiveness

    NASA Astrophysics Data System (ADS)

    Colajanni, P.; Potenzone, B.

    2008-07-01

    The effectiveness of two simple load distributions for pushover analysis recently proposed by the authors is investigated through a comparative study, involving static and dynamic analyses of seismic response of eccentrically braced frames. It is shown that in the upper floors only multimodal pushover procedures provide results close to the dynamic profile, while the proposed load patterns are always conservative in the lower floors. They over-estimate the seismic response less than the uniform distribution, representing a reliable alternative to the uniform or more sophisticated adaptive procedures proposed by seismic codes.

  1. Manipulations of attention during eating and their effects on later snack intake.

    PubMed

    Higgs, Suzanne

    2015-09-01

    Manipulation of attention during eating has been reported to affect later consumption via changes in meal memory. The aim of the present studies was to examine the robustness of these effects and investigate moderating factors. Across three studies, attention to eating was manipulated via distraction (via a computer game or TV watching) or focusing of attention to eating, and effects on subsequent snack consumption and meal memory were assessed. The participants were predominantly lean, young women students and the designs were between-subjects. Distraction increased later snack intake and this effect was larger when participants were more motivated to engage with the distracter and were offset when the distractor included food-related cues. Attention to eating reduced later snacking and this effect was larger when participants imagined eating from their own perspective than when they imagined eating from a third person perspective. Meal memory was impaired after distraction but focusing on eating did not affect later meal memory, possibly explained by ceiling effects for the memory measure. The pattern of results suggests that attention manipulations during eating have robust effects on later eating and the effect sizes are medium to large. The data are consistent with previous reports and add to the literature by suggesting that type of attention manipulation is important in determining effects on later eating. The results further suggest that attentive eating may be a useful target in interventions to help with appetite control.

  2. An Approximation of the Smoothing Effect on the Output Variation of Photovoltaic Generation Systems Installed Densely in a Bounded Area

    NASA Astrophysics Data System (ADS)

    Murata, Akinobu; Yamaguchi, Hiroshi; Otani, Kenji

    The purpose of this study is to propose a method to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area. This paper comprises two parts. The first part shows the result of analysis about output fluctuation, which is observed during four months in summer at ten groups of photovoltaic generation systems, located in AIST Tsukuba Central and totaling 844kW, and presents findings about a geographical smoothing effect on output fluctuation in the light of statistical characteristics such as the standard deviation of output variation and correlation factors between the output variations of different systems. The second part contains a mathematical modeling of a geographical smoothing effect in a bounded area based on the findings presented in the previous part and proposes a set of formulas to evaluate approximately a geographical smoothing effect on the output fluctuation of photovoltaic generation systems installed densely in a bounded area only using geometrical information about the area.

  3. Effect of row-to-row shading on the output of flat-plate south-facing photovoltaic arrays

    SciTech Connect

    Goswami, D.Y.; Hassan, A.Y.; Collis, J. ); Stefanakos, E.K. )

    1989-08-01

    When solar arrays (photovoltaic, thermal, etc.) are arranged in multiple rows of modules, all but the first row suffer reduction in (power) output, even when sufficient spacing between rows is provided. The reduction in output power occurs because the first row prevents some of the diffuse and reflected radiation from reaching the row directly behind it. This work presents estimates of the effect of shading on the amounts of solar radiation received by consecutive rows of flat-plate arrays.

  4. Using Seismic Tomography to Estimate the Magnitude of Lateral Variation in effective Mantle Viscosity

    NASA Technical Reports Server (NTRS)

    Sammis, C.; Ivins, E.

    1994-01-01

    Recent tomographic views of mantle are used to estimate corresponding lateral variations in effective viscosity under the assumption that temperature fluctuations about spherically symmetric mean values are the sole source of shear wave velocity anomalies.

  5. Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect

    NASA Astrophysics Data System (ADS)

    de Rosis, Alessandro

    2014-02-01

    In this paper, numerical analysis aiming at simulating biological organisms immersed in a fluid are carried out. The fluid domain is modeled through the lattice Boltzmann (LB) method, while the immersed boundary method is used to account for the position of the organisms idealized as rigid bodies. The time discontinuous Galerkin method is employed to compute body motion. An explicit coupling strategy to combine the adopted numerical methods is proposed. The vertical take-off of a couple of butterflies is numerically simulated in different scenarios, showing the mutual interaction that a butterfly exerts on the other one. Moreover, the effect of lateral wind is investigated. A critical threshold value of the lateral wind is defined, thus corresponding to an increasing arduous take-off.

  6. Investigation of the effect of beta source and phosphors on photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yürük, Reyyan Kavak; Tütüncüler, Hayriye

    2017-02-01

    In this study, conversion of kinetic energy from the decay of a radioactive isotope to electricity is investigated by using the direct and the indirect conversion methods. In this context, simple nuclear battery models are designed. Analysis for the effect of low-activity radiation from Pm147 and Sr90 beta sources on photovoltaic Si solar cell is presented. Beta radioluminescence nuclear battery models consist of a beta source, a phosphor layer and a solar cell. Phosphor layers with different mass thicknesses are prepared from ZnS:CuCl and SrAl2O4:Eu2+,Dy3+ phosphors. Both the influence of beta sources and the phosphor layers on battery performance is analyzed separately. Effect of beta sources, phosphors are observed on solar cell by measuring the short circuit current and open circuit voltage. The efficiency of the battery models is determined with the obtained results. Furthermore, short circuit current values are analyzed at various times during the irradiation.

  7. PASP Plus: An experiment to measure space-environment effects on photovoltaic power subsystems

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostic experiment (PASP Plus) was accepted as part of the APEX Mission payload aboard a Pegastar satellite to be orbited by a Pegasus launch vehicle in late 1992. The mission's elliptical orbit will allow us to investigate both space plasma and space radiation effects. PASP Plus will have eleven types of solar arrays and a full complement of environmental and interactions diagnostic sensors. Measurements of space-plasma interactions on the various solar arrays will be made at large negative voltages (to investigate arcing parameters) and at large positive voltages (to investigate leakage currents) by biasing the arrays to various levels up to -500 and +500 volts. The long-term deterioration in solar array performance caused by exposure to space radiation will also be investigated; radiation dosage will be measured by an electron/proton dosimeter included in the environmental sensor complement. Experimental results from PASP Plus will help establish cause-and-effect relationships and lead to improved design guidelines and test standards for new-technology solar arrays.

  8. Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokhande, A. C.; Gurav, K. V.; Jo, Eunjin; He, Mingrui; Lokhande, C. D.; Kim, Jin Hyeok

    2016-04-01

    Copper tin sulfide (CTS) is an emerging candidate for solar application due to its favorable band gap and higher optical absorption coefficient. Kuramite-Tetragonal Cu3SnS4 (CTS) monodisperse nanoparticles are prepared by hot injection technique involving cost effective sulfate metal precursor source. A protocol for controlled crystal structure has been demonstrated by variation of cationic Cu:Sn ratio. The crystal structure, size, phase purity, atomic composition, oxidation state and optical properties of the nanoparticles are confirmed from X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and UV-visible spectroscopy, respectively. Hexagonal shaped particles within the size distribution of 7-9 nm with an optimal band gap of 1.28 eV are obtained. XPS study shows the Cu1+, Sn4+ and S2- oxidation states. The effects of influential factors such as metal precursor ratio, metal precursor source, reaction time, heating rate and solvents have been demonstrated systematically on the synthesis of CTS nanoparticles. The plausible mechanism of the formation of CTS nanoparticles has been proposed. The obtained results provide new insight for applying CTS nanoparticles in photovoltaic applications.

  9. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    SciTech Connect

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  10. The effect of childhood trauma on later psychological adjustment.

    PubMed

    Browne, Caroline; Winkelman, Cecelia

    2007-06-01

    This study examined whether adult attachment and cognitive distortion mediate the relationship between childhood trauma and psychological adjustment. The participants were 219 students (40 men and 117 women) enrolled in a university degree. Participants completed the Childhood Trauma Questionnaire, which assessed retrospective accounts of childhood trauma; the Relationships Scales Questionnaire, which measured two dimensions of adult attachment (model-of-self and model-of-other); the Cognitive Distortions Scale, which measured internal attributions and perceptions of controllability; and the Trauma Symptom Inventory, which assessed posttraumatic symptoms and was used in this study to measure psychological adjustment. Results supported the hypothesis that model-of-self and cognitive distortion are related constructs. The influence of model-of-self on psychological adjustment however was only via its effect on cognitive processes. In other words, a negative model-of-self influenced cognitive distortion, which in turn influenced the expression of symptoms in adults reporting a history of childhood trauma. The implications for therapy were considered.

  11. Reynolds Number Effects on the Performance of Lateral Control Devices

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    2000-01-01

    The influence of Reynolds number on the performance of outboard spoilers and ailerons was investigated on a generic subsonic transport configuration in the National Transonic Facility over a chord Reynolds number range 41 from 3x10(exp 6) to 30xl0(exp 6) and a Mach number range from 0.50 to 0.94, Spoiler deflection angles of 0, 10, 15, and 20 deg and aileron deflection angles of -10, 0, and 10 deg were tested. Aeroelastic effects were minimized by testing at constant normalized dynamic pressure conditions over intermediate Reynolds number ranges. Results indicated that the increment in rolling moment due to spoiler deflection generally becomes more negative as the Reynolds number increases from 3x10(exp 6) to 22x10(exp 6) with only small changes between Reynolds numbers of 22x10(exp 6) and 30x10(exp 6). The change in the increment in rolling moment coefficient with Reynolds number for the aileron deflected configuration is generally small with a general trend of increasing magnitude with increasing Reynolds number.

  12. Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption

    NASA Astrophysics Data System (ADS)

    Tatapudi, Sai Ravi Vasista

    Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module’s glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60°C and 85°C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity

  13. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices

    NASA Technical Reports Server (NTRS)

    Cho, Pak S.; Goldhar, Julius; Lee, Chi H.; Saddow, Stephen E.; Neudeck, Philip

    1995-01-01

    The optoelectronic properties of high-resistivity p-type hexagonal silicon carbide (6H-SiC) have been investigated using lateral photoconductive switches. Both photovoltaic and photoconductive effects are reported, measured at 337 nm, which is above the 6H-SiC absorption edge. These photoconductive switches have been fabricated with dark resistances of up to 1 M omega; photoconductive switching efficiencies of more than 80% have been achieved. In addition, these devices displayed a high-speed photovoltaic response to nanosecond laser excitations in the ultraviolet spectral region; in particular, the observed photovoltaic response pulse width can be shorter than the exciting laser pulse width. This subnanosecond photovoltaic response has been modeled and good qualitative agreement with experiment has been obtained.

  14. Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures

    NASA Astrophysics Data System (ADS)

    Gao, Rongli; Fu, Chunling; Cai, Wei; Chen, Gang; Deng, Xiaoling; Cao, Xianlong

    2017-04-01

    BiFeO3 (BFO) thin films with different layers were deposited on Pt/Ti/SiO2/Si substrates via the sol-gel method, and the effect of nonuniform electric field formed by asymmetry electrodes on the photovoltaic properties has been investigated through experimental approaches. The Au/BFO/Pt heterostructures show 1.3 V open-circuit voltages and ˜0.242% photovoltaic power conversion efficiency when illuminated under sunlight (AM 1.5), this high efficiency is at least one order of magnitude larger than many other values thus far reported for BFO-based devices prepared by the spin coated method. The film layer dependence of the photovoltaic effect suggests that the large open-circuit voltage and high efficiency are contributed by both the ferroelectric polarization and the asymmetric structures formed by top and bottom electrodes. Theoretical analysis indicates that the efficiency may be further significantly improved by increasing the number of film layers and the nonuniform depolarization field, implying potential applications.

  15. Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction

    PubMed Central

    An, Hyunji; Han, Jun Young; Kim, Bongjae; Song, Jaesun; Jeong, Sang Yun; Franchini, Cesare; Bark, Chung Wung; Lee, Sanghan

    2016-01-01

    Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1 eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500 nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350 nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications. PMID:27313099

  16. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions

    PubMed Central

    Fontana, Marcio; Deppe, Tristan; Boyd, Anthony K.; Rinzan, Mohamed; Liu, Amy Y.; Paranjape, Makarand; Barbara, Paola

    2013-01-01

    Semiconducting molybdenum disulfphide has emerged as an attractive material for novel nanoscale optoelectronic devices due to its reduced dimensionality and large direct bandgap. Since optoelectronic devices require electron-hole generation/recombination, it is important to be able to fabricate ambipolar transistors to investigate charge transport both in the conduction band and in the valence band. Although n-type transistor operation for single-layer and few-layer MoS2 with gold source and drain contacts was recently demonstrated, transport in the valence band has been elusive for solid-state devices. Here we show that a multi-layer MoS2 channel can be hole-doped by palladium contacts, yielding MoS2 p-type transistors. When two different materials are used for the source and drain contacts, for example hole-doping Pd and electron-doping Au, the Schottky junctions formed at the MoS2 contacts produce a clear photovoltaic effect. PMID:23567328

  17. The effects of lunar dust accumulation on the performance of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Katzan, Cynthia M.; Brinker, David J.; Kress, Robert

    1991-01-01

    Lunar base activity, particularly rocket launch and landing, will suspend and transport lunar dust. From preliminary models, the resulting dust accumulation can be significant, even as far as 2 km from the source. For example, at 2 km approximately 0.28 mg/sq cm of dust is anticipated to accumulate after only 10 surface missions with a 26,800 N excursion vehicle. The possible associated penalties in photovoltaic array performance were therefore the subject of experimental as well as theoretical investigation. To evaluate effects of dust accumulation on relative power output, current-voltage characteristics of dust-covered silicon cells were determined under the illumination of a Spectrolab X-25L solar simulator. The dust material used in these experiments was a terrestrial basalt which approximated lunar soil in particle size and composition. Cell short circuit current, an indicator of the penetrating light intensity, was found to decrease exponentially with dust accumulation. This was predicted independently by modeling the light occlusion caused by a growing layer of dust particles. Moreover, the maximum power output of dust-covered cells, derived from the I-V curves, was also found to degrade exponentially. Experimental results are presented and potential implications discussed.

  18. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  19. [The effect of coping and appraisal for coping on mental health and later coping].

    PubMed

    Takamoto, Masahiro; Aikawa, Atsushi

    2013-02-01

    This study examined the effect of coping and appraisal for coping on mental health and later coping in two longitudinal studies. In Study 1 (Time 1: n = 342, Time 2: n = 367) investigated the influence of selected coping and coping for appraisal on mental health and assumed coping. In Study 2 (Time 1: n = 161, Time 2: n = 154) investigated the influence of selected coping and coping for appraisal on mental health and later coping. The results indicated that coping and coping for appraisal affected mental health and later coping. However, the influence of the coping for appraisal was more limited than selected coping.

  20. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  1. Cost-effective flat-plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in thick films is extended to form a design guide for photovoltaic engineers. Details of the methods, techniques, and considerations that are used in the definition and analysis of light trapping photovoltaic panels are provided. Assumptions, sources of data, optical and cost modeling methods and the techniques used in the analysis are included. The ways to use light trapping are discussed, and methods are described to use simplified design and costing equations to predict performance and cost benefits. Four significant ways to use the findings presented are: a minimum design change module; an optimum packing factor module concept; roof or wall integrated panels; and modules using light trapping from cell grids. Finally, a design guide is included which shows how to construct photovoltaic modules to exploit light trapping. It is claimed that up to 20% improvements in standard module performance can be expected. (LEW)

  2. DNA-quantum dot sensing platform with combined Förster resonance energy transfer and photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Qi, Huijie; Wang, Lixiang; Wong, Ka-wai; Du, Zuliang

    2009-04-01

    A special DNA sensing platform based on a network of hybrid DNA-quantum dot system was designed and fabricated. Upon attachment of hybridized complementary DNA sequences, the molecular switch system can exhibit both photoinduced Förster resonance energy transfer (FRET) and photovoltaic (PV) effects simultaneously, but will give much weakened or no effect for the capture of hybridized products from "mismatched" DNA sequences. This dual sensing scheme based on combined FRET and PV effects can safeguard the accuracy of sensing, as FRET and PV can be singly induced even in the case of mismatch.

  3. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  4. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films.

    PubMed

    Guo, Yiping; Guo, Bing; Dong, Wen; Li, Hua; Liu, Hezhou

    2013-07-12

    The diode and photovoltaic effects of BiFeO3 and Bi0.9Sr0.1FeO(3-δ) polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi0.9Sr0.1FeO(3-δ) thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.

  5. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  6. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  7. Effect of the chain length on the thermal and analytical properties of laterally biforked nematogens.

    PubMed

    Dahmane, Mohamed; Athman, Fatiha; Sebih, Saïd; Guermouche, Moulay-Hassane; Bayle, Jean-Pierre; Boudah, Soulimane

    2010-10-15

    Three laterally substituted liquid crystals were synthesized in order to investigate the effect of a lateral biforked chain on the thermal and analytical properties. The mesogenic molecules have the same core containing four aromatic rings connected by two ester and one diazo linkages, they differ by the length of one chain within the lateral biforked substituent. The phase transition temperatures were obtained by polarized light microscopy and differential scanning calorimetry (DSC). The clearing temperature and the nematic range decrease with increasing length of the lateral biforked chain. The stationary phases derived from these nematogens provide excellent resolution of various classes of compounds, including aromatic hydrocarbons (AH), substituted benzenes, polycyclic aromatic hydrocarbons (PAH), phenols and volatile organic compounds (VOC) present in the essential oils. The selectivities of the stationary phases were found to decrease according to the length of the side chain.

  8. Effects of aging on the lateral transmission of force in rat skeletal muscle.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2014-03-21

    The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.

  9. Effects of anthropogenic water regulation and groundwater lateral flow on land processes

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Zou, Jing; Qin, Peihua; Jia, Binghao

    2016-09-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. In this study, schemes describing groundwater lateral flow and human water regulation were developed and incorporated into the Community Land Model 4.5. To investigate the effects of human water regulation and groundwater lateral flow on land processes as well as the relationship between the two processes, three simulations using the model were conducted for the years 2003-2013 over the Heihe River Basin in northwestern China. Simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the Heihe River Basin and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions.

  10. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.

    PubMed

    Heintges, Gaël H L; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-01-04

    The impact of branching in a diketopyrrolopyrrole polymer on the performance of polymer-fullerene photovoltaic cells is investigated. Compared to the linear polymer, the branched polymer affords a more finely dispersed fibrillar network in the photoactive layer and as a result a large enhancement of the photocurrent and power conversion efficiency.

  11. An investigation of the effect of wind cooling on photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1982-01-01

    Convective cooling of photovoltaic modules for different wind conditions, including steady state controlled testing in a solar simulator and natural test environments in a field was investigated. Analytical thermal models of different module designs were used to correlate experimental data. The applicability of existing heat transfer correlations is confirmed. Reasonable agreement is obtained by applying a power law wind profile.

  12. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    PubMed

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor.

  13. Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Lentine, Anthony L.; Sweatt, William C.; Gupta, Vipin P.; Nelson, Jeffrey S.

    2012-06-01

    Current solar power systems using crystalline silicon wafers, thin film semiconductors (i.e., CdTe, amorphous Si, CIGS, etc.), or concentrated photovoltaics have yet to achieve the cost reductions needed to make solar power competitive with current grid power costs. To overcome this cost challenge, we are pursuing a new approach to solar power that utilizes micro-scale solar cells (5 to 20 μm thick and 100 to 500 μm across). These micro-scale PV cells allow beneficial scaling effects that are manifested at the cell, module, and system level. Examples of these benefits include improved cell performance, better thermal management, new module form-factors, improved robustness to partial shading, and many others. To create micro-scale PV cells we are using technologies from the MEMS, IC, LED, and other micro and nanosystem industries. To date, we have demonstrated fully back-contacted crystalline silicon (c-Si), GaAs, and InGaP microscale solar cells. We have demonstrated these cells individually (c-Si, GaAs), in dual junction arrangements (GaAs, InGaP), and in a triple junction cell (c-Si, GaAs, InGaP) using 3D integration techniques. We anticipate two key systems resulting from this work. The first system is a high-efficiency, flexible PV module that can achieve greater than 20% conversion efficiency and bend radii of a few millimeters (both parameters greatly exceeding what currently available flexible PV can achieve). The second system is a utility/commercial scale PV system that cost models indicate should be able to achieve energy costs of less than $0.10/kWh in most locations.

  14. Photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Boes, E. C.

    1980-01-01

    A status report on photovoltaic (PV) concentrators technology is presented. The major topics covered are as follows: (1) current PV concentrator arrays; designs, performances, and costs; (2) current PV concentrator array components; cells and cell assemblies, optical concentrators, support structures, tracking, and drive; (3) design of PV concentrator arrays; and (4) array manufacturing technology.

  15. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  16. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis.

    PubMed

    Vucic, Steve; Lin, Cindy Shin-Yi; Cheah, Benjamin C; Murray, Jenna; Menon, Parvathi; Krishnan, Arun V; Kiernan, Matthew C

    2013-05-01

    Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0

  17. Effect of biomechanical constraints in the hand laterality judgment task: where does it come from?

    PubMed Central

    Vannuscorps, Gilles; Pillon, Agnesa; Andres, Michael

    2012-01-01

    Several studies have reported that, when subjects have to judge the laterality of rotated hand drawings, their judgment is automatically influenced by the biomechanical constraints of the upper limbs. The prominent account for this effect is that, in order to perform the task, subjects mentally rotate their upper limbs toward the position of the displayed stimulus in a way that is consistent with the biomechanical constraints underlying the actual movement. However, the effect of such biomechanical constraints was also found in the responses of motor-impaired individuals performing the hand laterality judgment (HLJ) task, which seems at odds with the “motor imagery” account for this effect. In this study, we further explored the source of the biomechanical constraint effect by assessing the ability of an individual (DC) with a congenital absence of upper limbs to judge the laterality of rotated hand or foot drawings. We found that DC was as accurate and fast as control participants in judging the laterality of both hand and foot drawings, without any disadvantage for hands when compared to feet. Furthermore, DC's response latencies (RLs) for hand drawings were influenced by the biomechanical constraints of hand movements in the same way as control participants' RLs. These results suggest that the effect of biomechanical constraints in the HLJ task is not strictly dependent on “motor imagery” and can arise from the visual processing of body parts being sensitive to such constraints. PMID:23125830

  18. Zero temperature coefficient of resistivity induced by photovoltaic effect in Y Ba2Cu3O6.96 ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Han, Mengyuan; Chang, Fanggao

    2015-01-01

    I-V characteristics of YBCO-Ag system under blue laser (λ = 450 nm) illumination were studied from 100 to 300 K and obvious photovoltaic effects were observed. All the I-V curves in the temperature range intersect at a point in the first quadrant while the laser points to the cathode electrode, indicating a zero temperature coefficient of resistivity. This implies that the outputting voltage keeps constant in a broad temperature range when a critical bias current is assigned. The intersection points of different laser intensities fall in a straight line, the slope of which (Rc) is independent of temperature and laser intensity.

  19. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  20. Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.

    PubMed

    Schaffer, Christoph J; Schlipf, Johannes; Dwi Indari, Efi; Su, Bo; Bernstorff, Sigrid; Müller-Buschbaum, Peter

    2015-09-30

    The use of solvent additives in the fabrication of bulk heterojunction polymer:fullerene solar cells allows to boost efficiencies in several low bandgap polymeric systems. It is known that solvent additives tune the nanometer scale morphology of the bulk heterojunction. The full mechanism of efficiency improvement is, however, not completely understood. In this work, we investigate the influences of blend composition and the addition of 3 vol % 1,8-octanedithiol (ODT) as solvent additive on polymer crystallization and both, vertical and lateral morphologies of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] and [6,6]-phenyl C71-butyric acid methyl ester (PCPDTBT:PC71BM) blend thin films processed from chlorobenzene-based solutions. The nanoscale morphology is probed with grazing incidence small- and wide-angle X-ray scattering as well as X-ray reflectivity and complemented with UV/vis spectroscopy. In PCPDTBT:PC71BM films the use of ODT is found to lower the solubility of fullerene in the polymer matrix and to promote polymer crystallization, both vertical and lateral microphase separation with morphological coarsening, and formation of a fullerene-rich topping layer. The enhanced photovoltaic performance is explained by these findings.

  1. Photovoltaic Systems Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Ali, Mir Shahed

    2010-11-01

    This thesis deals with the implementation of generalized photovoltaic model and integration of the same with 7-bus electrical utility system to evaluate the impact that the photovoltaic generator have on the utility system. Among all the impacts that the photovoltaic generator have on the utility system, voltage rise of the power distribution line at the position where the Photovoltaic generator is connected due to reverse power flow from the photovoltaic model has been one of the major problem. Therefore, this thesis proposes the steady-state simulations to evaluate the effectiveness of battery-integrated PV system on avoiding the over voltage problem. Further, fault analysis is done to study the effect of the PV model on the utility network during faults and it is deduced that the impact of the PV model on the utility system voltage during faults is nominal. The photovoltaic model/generator and the 7-bus utility system is developed using Matlab/Simulink software package. The developed photovoltaic model can be represented as PV cell, module or an array. The model is developed with icons that are easy to understand. The developed model takes into consideration cell's working temperature, amount of sunlight (irradiance) available, voltage of the circuit when the circuit is open and current of the circuit when it is shorted. The developed Photovoltaic model is then integrated with a Li-ion battery, over here battery serves two purposes first it will store the excess power from the Photovoltaic generator if any, during the day time and in night the battery acts as an generator and deliver the power to the utility or connected load with the help of an invertors.

  2. Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation.

    PubMed

    Li, Mingguang; Wang, Lei; Liu, Jiangang; Zhou, Ke; Yu, Xinhong; Xing, Rubo; Geng, Yanhou; Han, Yanchun

    2014-03-14

    In this work, solvent chloronaphthalene (CN) and polymer acceptor an alternating copolymer of perylene diimide and carbazole (PCPDI) were utilized as co-additives to optimize the nanoscale phase-separated morphology and photovoltaic properties of bulk-heterojunction (BHJ) polymer solar cells based on the poly(3-hexyl thiophene) (P3HT)/N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) system. The domain size of EP-PDI molecules together with that of P3HT distinctly decreased by adding a 0.75 vol% CN additive. The optimized lateral phase separation increased the donor-acceptor interfacial area and facilitated the exciton dissociation process, leading to 5-fold enhancement of short-circuit current (JSC). Furthermore, when PCPDI was employed as a co-additive, acceptor materials (including PCPDI and EP-PDI) were prone to aggregation towards the top surface of blend films, improving vertical phase separation of active layers. PCPDI incorporation, which improved the percolation pathways for electron carriers, suppressed the crystallinity of P3HT distinctly. Thus, much more balanced charge transport was achieved by PCPDI addition, which resulted in almost 1-fold enhancement of open-circuit voltage (VOC) by reducing nongeminate recombination. As a consequence, cooperative effects of CN and PCPDI additives improved the nanoscale phase-separated morphology in lateral and vertical directions simultaneously, achieving the enhancement in both VOC and JSC.

  3. Proceedings of the 15th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila (Compiler)

    2004-01-01

    Reports from the 15th Space Photovoltaic Research and Technology Conference included topics on space solar cell research, space photovoltaics, multibandgap cells,thermophotovoltaics,flight experiments, environmental effects; calibration and characterization; and photovoltaics for planetary surfaces.

  4. The Effects of Bilingualism on Efficiency and Lateralization of Attentional Networks

    ERIC Educational Resources Information Center

    Marzecova, Anna; Asanowicz, Dariusz; Kriva, L'Uba; Wodniecka, Zofia

    2013-01-01

    The present study investigated the impact of bilingualism on efficiency of alerting, orienting and executive attention by means of the Lateralized Attention Network Test (LANT). Young adult bilinguals who had been exposed to their second language before the age of four years showed a reduced conflict cost and a larger alerting effect in terms of…

  5. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  6. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics.

    PubMed

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Lee, Hee Jae; Lee, Seung Joo; Kim, Hyo Min; Seo, Gi Jun; Youn, Jun Ho; Jang, Jin

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of -6.14 mA/cm(2) along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV.

  7. Effect of diffusion of light on thin-film photovoltaic laminates

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Wittkopf, Stephen K.

    A large fraction of the daylight incident on building-integrated photovoltaic (BIPV) laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV) laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters.

  8. Effect of Diels-Alder Reaction in C60-Tetracene Photovoltaic Devices.

    PubMed

    Proudian, Andrew P; Jaskot, Matthew B; Lyiza, Christelle; Diercks, David R; Gorman, Brian P; Zimmerman, Jeramy D

    2016-10-12

    Developing organic photovoltaic materials systems requires a detailed understanding of the heterojunction interface, as it is the foundation for photovoltaic device performance. The bilayer fullerene/acene system is one of the most studied models for testing our understanding of this interface. We demonstrate that the fullerene and acene molecules chemically react at the heterojunction interface, creating a partial monolayer of a Diels-Alder cycloadduct species. Furthermore, we show that the reaction occurs during standard deposition conditions and that thermal annealing increases the concentration of the cycloadduct. The cycloaddition reaction reduces the number of sites available at the interface for charge transfer exciton recombination and decreases the charge transfer state reorganization energy, increasing the open circuit voltage. The submonolayer quantity of the cycloadduct renders it difficult to identify with conventional characterization techniques; we use atom probe tomography to overcome this limitation while also measuring the spatial distribution of each chemical species.

  9. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics

    PubMed Central

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340

  10. Interaction effects and pseudogap in two-dimensional lateral tunnel junctions.

    PubMed

    Jiang, P; Yang, I; Kang, W; Pfeiffer, L N; Baldwin, K W; West, K W

    2006-03-31

    Tunneling characteristics of a two-dimensional lateral tunnel junction are reported. A pseudogap on the order of Coulomb energy is detected in the tunneling density of states (TDOS) when two identical two-dimensional electron systems are laterally separated by a thin energy barrier. The Coulombic pseudogap remains robust well into the quantum Hall regime until it is overshadowed by the cyclotron gap in the TDOS. The pseudogap is modified by the in-plane magnetic field, demonstrating a nontrivial effect of the in-plane magnetic field on the electron-electron interaction.

  11. Dichaptic scanning of Braille letters by skilled blind readers: lateralization effects.

    PubMed

    Semenza, C; Zoppello, M; Gidiuli, O; Borgo, F

    1996-06-01

    Dichaptic scanning of Braille letters was studied in 14 skilled blind readers, using Posner's paradigm. A right-hand (left-hemisphere) advantage was found when letters could be matched on the basis of their names (Name Identity Condition), a genuinely linguistic task, while no effects of lateralization appeared when matching could be performed on the basis of perceptual identity (Perceptual Identity Condition) or on "Different" responses. This result provides information about the cerebral lateralization of Braille reading and casts doubts about the current claim that linguistic material, when presented in the tactile modality, is initially analysed in a spatial code by the right hemisphere.

  12. The Effect of Temperature on the Optimization of Photovoltaic Cells Using Silvaco ATLAS Modeling

    DTIC Science & Technology

    2010-09-01

    and improve the efficiency of multijunction solar cells based on this analysis. The author conducts all tests using Silicon Valley Company...photovoltaic cells can be either elemental or compound. Silicon (Si) and Germanium (Ge) are two popular materials in solar cells . These two elemental...antireflection coating, such as Silicon Oxide (SiO), and surface texturing are used [10]. • Surface texturing alone can increase solar cell efficiency by

  13. Large area InN terahertz emitters based on the lateral photo-Dember effect

    SciTech Connect

    Wallauer, Jan Grumber, Christian; Walther, Markus; Polyakov, Vladimir; Iannucci, Robert; Cimalla, Volker; Ambacher, Oliver

    2015-09-14

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room for improvement by optimizing the masking structures.

  14. Effect of Adding on the Critical Current Density and Lateral Levitation Force of Bulk

    NASA Astrophysics Data System (ADS)

    Savaşkan, B.; Koparan, E. Taylan; Güner, S. B.; Çelik, Ş.; Öztürk, K.; Yanmaz, E.

    2015-10-01

    We fabricated malic acid -added bulks by wet mixing and "Two-step solid state reaction method". The effects of adding malic acid on , behaviour and lateral levitation force features of bulk have been investigated. A systematic decrease in the critical temperature with increasing adding level confirms the substitution of C at the B site of . While the 4 wt% sample showed the best of at 4 T and 5 K, 15 wt% sample showed uncompetitive lower critical current density , which ascribes the poor connectivity due to the excessive unsubstituted C distribution at grain boundaries and the presence of high MgO amount. At 24 and 28 K, the 4 and 6 wt% malic-acid-added samples exhibit a higher lateral force than pure sample. Based on the observed values of M- H, ( H) and lateral levitation force , it can be concluded that the 4 wt% malic-acid-added sample is the best of the studied samples.

  15. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  16. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  17. Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery

    NASA Astrophysics Data System (ADS)

    Ward, James D.; Simmons, Craig T.; Dillon, Peter J.; Pavelic, Paul

    2009-05-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.

  18. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    SciTech Connect

    Kostritskii, S. M.; Aillerie, M.

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  19. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  20. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  1. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    PubMed Central

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs. PMID:25585937

  2. Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow

    NASA Astrophysics Data System (ADS)

    Carapella, G.; Sabatino, P.; Gombos, M.

    2017-02-01

    We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.

  3. Effect of Posterior Cruciate Ligament Rupture on Biomechanical and Histological Features of Lateral Femoral Condyle

    PubMed Central

    Deng, Zhenhan; Li, Yusheng; Liu, Hong; Li, Kanghua; Lei, Guanghua; Lu, Bangbao

    2016-01-01

    Background The aim of this study was to investigate bone mineral density (BMD) and the biomechanical and histological effects of posterior cruciate ligament (PCL) rupture on the lateral femoral condyle. Material/Methods Strain on different parts of the lateral femoral condyle from specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle, 6 ruptures of the postmedial bundle, and 12 complete ruptures, was tested when loaded with different loads on the knee at various flexion angles. Lateral femoral condyles were also collected randomly from both the experimental side in which the PCLs were transected and the control side from 4 sets of 12 matched-mode pairs of rabbits at 4, 8, 16, and 24 weeks after surgery, and their BMD and morphological and histological changes were observed. Results Partial and complete rupture of the PCL may cause an abnormal load on all parts of the lateral femoral condyle with any axial loading at all positions. Noticeable time-dependent degenerative histological changes of the lateral femoral condyle were observed in the rabbit model of PCL rupture. All of the PCL rupture groups had a higher expression of matrix metalloproteinase-7 (MMP-7) and collagen type II than the control group at all time points (P<0.05), but no significant difference in BMD (P>0.05). Conclusions Rupture of the PCL may trigger a coordinated response of lateral femoral condyle degeneration in a time-dependent manner, to which the high level of expression of MMP-7 and collagen type II could contribute. PMID:27843134

  4. Effects of lateral osteotomy on nasal sound intensity levels in patients who underwent rhinoplasty.

    PubMed

    Acar, Mustafa; Ulusoy, Seçkin; Seren, Erdal; Muluk, Nuray Bayar; Cingi, Cemal; Hanci, Deniz

    2014-11-01

    We investigated the effects of lateral osteotomy on nasal sound intensity levels in 34 patients who underwent rhinoplasty. Four groups were evaluated: group 1, preoperative rhinoplasty with lateral osteotomy (Preop-RPwithLO); group 2, postoperative rhinoplasty with lateral osteotomy (Postop-RPwithLO); group 3, preoperative rhinoplasty without lateral osteotomy (Preop-RPwithoutLO); and group 4, postoperative rhinoplasty without lateral osteotomy (Postop-RPwithoutLO). By sound analysis, low-frequency (Lf; 500-1000 Hz), medium-frequency (Mf; 1-2 kHz), and high-frequency (Hf; 2-4 and 4-6 kHz) nasal sound intensities were defined. Mf-left values of Postop-RPwithLO were significantly lower than those of Preop-RPwithLO, and Mf-left values of Postop-RPwithoutLO were significantly higher than those of Postop-RPwithLO and Preop-RPwithoutLO. Hf-right values of Preop-RPwithoutLO were significantly higher than those of Postop-RPwithLO and Postop-RPwithoutLO. Hf-total values of Postop-RPwithoutLO were significantly lower than those of Preop-RPwithoutLO. Nasal airway width decreased and nasal sounds, especially Mf sound intensities, increased in the nonlateral osteotomy group (group 4). When lateral osteotomy is performed, the nasal air passage may be adjusted as required by the surgeon, the air passage in the nasal valve region may not be narrowed, and nasal sound intensities may decrease. During postoperative follow-ups, increased Mf and Lf nasal sound intensities should be considered for the narrowness of the nasal passage and lower patency of the nasal cavities. Nasal sound analysis is a noninvasive technique and can also be used to evaluate nasal patency in septoplasty and rhinoplasty patients and children and for cases in which official reports are needed in addition to acoustic rhinometry measurements.

  5. Effects of set-size and lateral masking in visual search.

    PubMed

    Põder, Endel

    2004-01-01

    In the present research, the roles of lateral masking and central processing limitations in visual search were studied. Two search conditions were used: (1) target differed from distractors by presence/absence of a simple feature; (2) target differed by relative position of the same components only. The number of displayed stimuli (set-size) and the distance between neighbouring stimuli were varied as independently as possible in order to measure the effect of both. The effect of distance between stimuli (lateral masking) was found to be similar in both conditions. The effect of set-size was much larger for relative position stimuli. The results support the view that perception of relative position of stimulus components is limited mainly by the capacity of central processing.

  6. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow

    DTIC Science & Technology

    2015-07-01

    ARL-TR-7332 ● JULY 2015 US Army Research Laboratory Effects of Turbulence Model on Prediction of Hot -Gas Lateral Jet Interaction...Effects of Turbulence Model on Prediction of Hot -Gas Lateral Jet Interaction in a Supersonic Crossflow by James DeSpirito Weapons and Materials...December 2014 4. TITLE AND SUBTITLE Effects of Turbulence Model on Prediction of Hot -Gas Lateral Jet Interaction in a Supersonic Crossflow 5a

  7. Investigating the effect of lateral viscosity variations in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    O'Farrell, K. A.; Lithgow-Bertelloni, C. R.

    2015-12-01

    Seismic tomography can be used to investigate radial viscosity variations on instantaneous flow models by predicting the global geoid and comparing with the observed geoid. This method is one of many that has been used to constrain viscosity structure in the Earth's mantle in the last few decades. Using the 3D mantle convection model, Stag-YY (e.g., Hernlund and Tackley, 2008), we are further able to explore the effect of lateral variations in viscosity in addition to the radial variations. Examining over 50 tomographic models we found notable differences by comparing a synthetically produced geoid with the observed geoid. Comparing S- and P-wave tomographic models, the S-wave models provided a better fit to the observed geoid. Using this large suite of 50 tomographic models, we have been able to constrain the radial viscosity structure of the Earth. We found that two types of viscosity profiles yielded equally good fits. A viscosity profile with a low transition zone viscosity and a lower mantle viscosity equal to the upper mantle, or a profile with a large lower mantle viscosity and a transition zone viscosity similar to the upper mantle. Using the set of radial viscosity profiles that gave the best fit to the observed geoid, we can explore a range of lateral viscosity variations and see how they affect the different types of tomographic models. Improving on previous studies of lateral viscosity variations (e.g. Ghosh, Becker and Zhong, 2010), we systematically explore a large range of tomographic models and density-velocity conversion factors. We explore which type of tomographic model (S- or P- wave) is more strongly affected by lateral viscosity variations, as well as the effect on isotropic and anisotropic models. We constrain the strength of lateral viscosity variations necessary to produce a high correlation between observed and predicted geoid anomalies. We will discuss the wavelength of flow that is most affected by the lateral viscosity variations

  8. Photovoltaic cell with thin CS layer

    DOEpatents

    Jordan, John F.; Albright, Scot P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  9. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO{sub 3}/Pt heterostructure

    SciTech Connect

    Fan, Zhen; Yao, Kui E-mail: msewangj@nus.edu.sg; Wang, John E-mail: msewangj@nus.edu.sg

    2014-10-20

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In{sub 2}O{sub 3}-SnO{sub 2}/ZnO/BiFeO{sub 3}/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (J{sub sc}) of 340 μA/cm{sup 2} and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n{sup +}-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  10. Doping effects of fluorinated organic dyes on the open-circuit voltage of bulk-heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Yamashita, Kenichi

    2015-08-01

    We have investigated photovoltaic properties of bulk-heterojunction (BHJ) organic absorption layer doped with fluorinated Coumarin dyes. By dilute doping of a fluorinated Coumarin dye, Coumarin 307, into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) BHJ absorption layer, the open-circuit voltage of photovoltaic device increased by ∼90 mV without the significant degradation in the short-circuit current density. On the other hand, the doping of non-fluorinated Coumarin dye such as Coumarin 2 did not induce such the enhancement effect in the open-circuit voltage. In ultraviolet photoelectron spectroscopies, the doping of Coumarin 307 was found to have no impact on P3HT, but the density of state of PCBM was significantly modified by the doping. The change in the density of state was confirmed also in ultraviolet absorption measurement. Possible explanations for the enhancement in the open-circuit voltage are discussed from the experimental results, and a shift of the vacuum level by the doping can be considered as a direct origin.

  11. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  12. Effects of oriented surface dipole on photoconversion efficiency in an alkane/lipid-hybrid-bilayer-based photovoltaic model system.

    PubMed

    Liu, Lixia; Xie, Hong; Bostic, Heidi E; Jin, Limei; Best, Michael D; Zhang, X Peter; Zhan, Wei

    2013-08-26

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60% increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix.

  13. Effect of potassium iodide on luminescent and photovoltaic properties of organic solar cells P3HT-PCBM

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Afanasyev, D. A.; Zhapabaev, K. A.

    2016-02-01

    It has been investigated spectral-luminescence properties of polymer films, doped with potassium iodide (KI). Using of KI didn't lead to the gradual changes of optical density of polymer films and the range of band gap semiconductor polymer P3HT. The fluorescence intensity of P3HT decreased and changed by use of KI. Using of 1% KI in polymer leaded to decrease of fluorescence lifetime. Influence of heavy atom on photovoltaic effect of organic solar cells has been investigated. 1% of KI in polymer film leaded to decrease of Isc and slightly decrease of Uoc. Investigation shows that magnetic field does not affect on photovoltaic properties of cells P3HT-PCBM. Magnetic field increased of open circuit voltage and short circuit current of solar cells with 1% of KI. Study of electrical impedance of cells revealed the magnetic sensivity of solar cells with KI additives. The lifetime of free charge carriers increased in the magnetic field for solar cells with KI additives.

  14. Photovoltaic Materials

    SciTech Connect

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  15. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  16. Effect of Spinal Manipulation Thrust Magnitude on Trunk Mechanical Thresholds of Lateral Thalamic Neurons

    PubMed Central

    Reed, William R.; Pickar, Joel G.; Sozio, Randall S.; Long, Cynthia R.

    2014-01-01

    Objectives High velocity low amplitude spinal manipulation (HVLA-SM), as performed by manual therapists (eg, doctors of chiropractic and osteopathy) results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Methods Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields which included the lumbar dorsal-lateral trunk were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in three directions (dorsal-ventral, 45°caudalward, and 45°cranialward) prior to and immediately following the dorsal-ventral delivery of a 100ms HVLA-SM at three thrust magnitudes (control, 55%, 85% body weight; (BW)). Results There was a significant difference in mechanical threshold between 85% BW manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (p=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. Conclusions This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. PMID:24928636

  17. Effects of piping irrigation laterals on selenium and salt loads, Montrose Arroyo Basin, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    2001-01-01

    Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.

  18. Effective lateral modulations with applications to shear modulus reconstruction using displacement vector measurement.

    PubMed

    Sumi, Chikayoshi; Noro, Toshinori; Tanuma, Atsushi

    2008-12-01

    High accuracy in measuring target motions can be realized by combined use of our previously developed lateral Gaussian envelope cosine modulation method (LGECMM) and displacement vector measurement methods that enable simultaneous axial and lateral displacement measurements, such as the multidimensional autocorrelation method (MAM). In this paper, LGECMM is improved by using parabolic functions and Hanning windows instead of Gaussian functions in the apodization function, i.e., parabolic apodization and Hanning apodization. The new modulations enable decreases in effective aperture length (i.e., channels) and yield more accurate displacement vector measurements than LGECMM due to increased echo signal-to-noise ratio and lateral spatial resolution. That is, on the basis of a priori knowledge about ultrasound propagation using the focusing scheme and shape of the apodization function, we stopped using Fraunhofer approximation. As practical applications of the modulations, for an agar phantom that is deformed in a lateral direction, stable and accurate 2-D shear modulus reconstructions are performed using our previously developed direct inversion approach together with 2-D strain tensor measurements using MAM.

  19. Effects of bilateral lesions of the central and lateral amygdala on free operant successive discrimination.

    PubMed

    Peinado-Manzano, A

    1988-07-01

    Male rats received either ibotenic acid (IBO) or sham lesions bilaterally into the central or lateral amygdala or were assigned to an unoperated control group. After the postoperation recovery period all lesioned and unoperated animals were tested for open field behaviour and for the ability to master a free operant successive discrimination. Retention of the discrimination learning was evaluated 48 h later for the original and reversal problem. After the reversal learning retention test the unoperated animals were assigned at random to one unoperated control and two IBO amygdaloid lesioned groups (central and lateral) and these, unoperated and lesioned animals, received additional free operant successive discrimination retraining after the surgery recovery period. Significant lesion effects were found in the emotional indices in the open field test. The lesions significantly impaired the postoperative acquisition of a free operant successive discrimination and its reversal and diminished its retention but did not impair the retention of such a discrimination task acquired before the lesion. The contribution of central and lateral amygdala in open field behaviour and in the major components of a free operant successive discrimination is discussed. In order to know how the amygdala is involved in association of sensorial stimuli with reinforcement we suggest experimental designs controlling the detailed components of such an association.

  20. Effect of lateral meniscus allograft on shoulder articular contact areas and pressures.

    PubMed

    Creighton, R Alexander; Cole, Brian J; Nicholson, Gregory P; Romeo, Anthony A; Lorenz, Eric P

    2007-01-01

    The objective of this study was to determine the effect of a lateral meniscus allograft on the articular contact area and pressures across the glenohumeral joint under compressive loads of 220 N and 440 N. Eight fresh-frozen shoulders were used, and contact areas and pressures were determined with a Tekscan flexible tactile force sensor. Testing conditions included a normal glenohumeral joint and one interposed with a lateral meniscus allograft. Using the Tekscan sensing equipment, we evaluated the total force (in Newtons), contact area (in square millimeters), mean contact pressure (in kilograms per square centimeter), peak force (in Newtons), and peak contact pressure (in kilograms per square centimeter). The interposed lateral meniscus allograft group showed a statistically significant decrease in total force at both 220 N and 440 N, as well as a decrease in contact area for the 220-N testing condition. There were no statistically significant differences between the two groups in contact area at 440 N or in peak forces or peak contact areas for either 220-N or 440-N testing condition. Biomechanically biologic resurfacing with a lateral meniscus allograft of the glenohumeral joint is supported by decreased forces on the glenoid surface.

  1. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  2. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  3. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  4. An analytical study of the effect of airplane wake on the lateral dispersion of aerial sprays

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H , III

    1954-01-01

    Calculations are made to determine the trajectories of liquid droplets introduced into the air disturbances generated by an airplane engaged in aerial spraying. The effects of such factors as the positions at which droplets are ejected into the disturbances, airplane lift coefficient, and altitude are investigated. The distribution of deposit on the ground is computed for several droplet-size spectra, variations in the rate at which mass is ejected along the span, and lateral flight-path spacings. Consideration is then given to the problem of adjusting these factors with the aim of improving the uniformity and increasing the effective width of the deposit. The results indicate that the lateral dispersion of droplets is increased when the spanwise position at which particles are ejected is moved toward the wing tip. Greater dispersion also results when the airplane lift coefficient or altitude is increased.

  5. Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes

    SciTech Connect

    Armstrong, Clare L; Barrett, M; Heiss, Arno; Salditt, Tim; Katsaras, John; Shi, An-Chang; Rheinstadter, Maikel C

    2012-01-01

    Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be softer than fluid bilayers, but better ordered than bilayers in the gel phase.

  6. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic

  7. Optimal velocity model with consideration of the lateral effect and its feedback control research

    NASA Astrophysics Data System (ADS)

    Zheng, Y. Z.; Ge, H. X.

    2016-06-01

    In this paper, a car-following model with the consideration of lateral effect is constructed. An improved control signal with considering more comprehensive information is introduced according to the feedback control theory. The stability conditions with control signal or not are derived. Numerical simulations are carried out to illustrate the advantage of the modified model with and without the control signal, and the results are consistent with the analytical ones.

  8. Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish

    PubMed Central

    Domenichini, Alice; Dadda, Marco; Facchin, Lucilla; Bisazza, Angelo; Argenton, Francesco

    2011-01-01

    In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw), a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a “viewing test”. As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors. PMID:22022484

  9. The effects of thermal capsulorrhaphy of medial parapatellar capsule on patellar lateral displacement

    PubMed Central

    Zheng, Naiquan; Davis, Brent R; Andrews, James R

    2008-01-01

    Background The effectiveness of thermal shrinkage on the medial parapatellar capsule for treating recurrent patellar dislocation is controversial. One of reasons why it is still controversial is that the effectiveness is still qualitatively measured. The purpose of this study was to quantitatively determine the immediate effectiveness of the medial parapatellar capsule shrinkage as in clinical setting. Methods Nine cadaveric knees were used to collect lateral displacement data before and after medial shrinkage or open surgery. The force and displacement were recorded while a physician pressed the patella from the medial side to mimic the physical exam used in clinic. Ten healthy subjects were used to test the feasibility of the technique on patients and establish normal range of lateral displacement of the patella under a medial force. The force applied, the resulting displacement and the ratio of force over displacement were compared among four data groups (normal knees, cadaveric knees before medial shrinkage, after shrinkage and after open surgery). Results Displacements of the cadaveric knees both before and after thermal modification were similar to normal subjects, and the applied forces were significantly higher. No significant differences were found between before and after thermal modification groups. After open surgery, displacements were reduced significantly while applied forces were significantly higher. Conclusion No immediate difference was found after thermal shrinkage of the medial parapatellar capsule. Open surgery immediately improved of the lateral stiffness of the knee capsule. PMID:18826583

  10. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview.

    PubMed

    Roseboom, T J; van der Meulen, J H; Ravelli, A C; Osmond, C; Barker, D J; Bleker, O P

    2001-12-20

    Chronic diseases are the main public health problem in Western countries. There are indications that these diseases originate in the womb. It is thought that undernutrition of the fetus during critical periods of development would lead to adaptations in the structure and physiology of the fetal body, and thereby increase the risk of diseases in later life. The Dutch famine--though a historical disaster--provides a unique opportunity to study effects of undernutrition during gestation in humans. This thesis describes the effects of prenatal exposure to the Dutch famine on health in later life. We found indications that undernutrition during gestation affects health in later life. The effects on undernutrition, however, depend upon its timing during gestation and the organs and systems developing during that critical time window. Furthermore, our findings suggest that maternal malnutrition during gestation may permanently affect adult health without affecting the size of the baby at birth. This may imply that adaptations that enable the fetus to continue to grow may nevertheless have adverse consequences of improved nutrition of pregnant women will be underestimated if these are solely based on the size of the baby at birth. Little is known about what an adequate diet for pregnant women might be. In general, women are especially receptive to advice about diet and lifestyle before and during a pregnancy. This should be exploited to improve the health of future generations.

  11. US photovoltaic patents: 1991--1993

    SciTech Connect

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  12. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  13. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-07

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection.

  14. Correction: Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Dajung; An, Jongdeok; Im, Chan; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2016-02-21

    Correction for 'Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells' by Kyung-Jun Hwang et al., Phys. Chem. Chem. Phys., 2015, 17, 21974-21981.

  15. Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer.

    PubMed

    Dong, Wen; Guo, Yiping; Guo, Bing; Li, Hua; Liu, Hezhou; Joel, Thia Weikang

    2013-08-14

    The photovoltaic effect of BiVO4 semiconductor was investigated by incorporating an ultrathin BiFeO3 ferroelectric layer. It is found that the ultrathin ferroelectric layer with strong self-polarization and high carrier density is desirable to enhance the photovoltaic effect and to manipulate the photovoltaic polarity of the semiconductors. The photovoltage increases by 5-fold to 1 V, and the photocurrent density increases by 2-fold to 140 μA/cm(2), in which the photovoltage is the highest compared with the reported values in polycrystalline and epitaxial ferroelectric thin film solar cells. The mechanism for the observed effect is discussed on the basis of a polarization-induced Schottky-like barrier at the BiFeO3/fluorine doped tin oxide interface. Our work provides good guidance for fabrication of cost-effective semiconductor photovoltaic devices with high performance, and this kind of ultrathin ferroelectric film may also have promising applications in copper indium gallium selenide solar cell, dye-sensitized TiO2 solar cell, lighting emitting diode, and other photoelectron related devices.

  16. Liquid Crystals for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    As discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2), 3 (10.1007/978-90-481-2873-3), 5 (10.1007/978-90-481-2873-5) and 6 (10.1007/978-90-481-2873-6), columnar, smectic and, more recently, nematic liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. This and their broad absorption spectra make them suitable as active materials for organic photovoltaic devices. In this chapter, we discuss the use of liquid crystals in such devices. Firstly, we examine the principle of power generation via the photovoltaic effect in organic materials and the various device configurations that can optimise efficiency. Then we discuss photovoltaic devices incorporating columnar liquid crystals combined with electron accepting materials based on either perylene or fullerene. The use of nematic and sanditic liquid crystals in photovoltaics is investigated as well as a novel solar cell concentrator incorporating liquid crystals. Finally, we analyse the benefits and limitations of liquid-crystal-based photovoltaics in the context of the state-of-the-art for organics photovoltaics.

  17. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects.

    PubMed

    De Neve, Jan-Emmanuel; Oswald, Andrew J

    2012-12-04

    The question of whether there is a connection between income and psychological well-being is a long-studied issue across the social, psychological, and behavioral sciences. Much research has found that richer people tend to be happier. However, relatively little attention has been paid to whether happier individuals perform better financially in the first place. This possibility of reverse causality is arguably understudied. Using data from a large US representative panel, we show that adolescents and young adults who report higher life satisfaction or positive affect grow up to earn significantly higher levels of income later in life. We focus on earnings approximately one decade after the person's well-being is measured; we exploit the availability of sibling clusters to introduce family fixed effects; we account for the human capacity to imagine later socioeconomic outcomes and to anticipate the resulting feelings in current well-being. The study's results are robust to the inclusion of controls such as education, intelligence quotient, physical health, height, self-esteem, and later happiness. We consider how psychological well-being may influence income. Sobel-Goodman mediation tests reveal direct and indirect effects that carry the influence from happiness to income. Significant mediating pathways include a higher probability of obtaining a college degree, getting hired and promoted, having higher degrees of optimism and extraversion, and less neuroticism.

  18. Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique

    NASA Technical Reports Server (NTRS)

    Maise, G.; Rossi, M. J.

    1974-01-01

    A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.

  19. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  20. Revisit the spin-FET: Multiple reflection, inelastic scattering, and lateral size effects

    PubMed Central

    Xu, Luting; Li, Xin-Qi; Sun, Qing-feng

    2014-01-01

    We revisit the spin-injected field effect transistor (spin-FET) in a framework of the lattice model by applying the recursive lattice Green's function approach. In the one-dimensional case the results of simulations in coherent regime reveal noticeable differences from the celebrated Datta-Das model, which lead us to an improved treatment with generalized result. The simulations also allow us to address inelastic scattering and lateral confinement effects in the control of spins. These issues are very important in the spin-FET device. PMID:25516433

  1. Effects of cortisol on the laterality of the neural correlates of episodic memory.

    PubMed

    Alhaj, Hamid A; Massey, Anna E; McAllister-Williams, R Hamish

    2008-10-01

    Alterations in the laterality of cortical activity have been shown in depressive illnesses. One possible pathophysiological mechanism for this is an effect of corticosteroids. We have previously demonstrated that endogenous cortisol concentrations correlate with the asymmetry of cortical activity related to episodic memory in healthy subjects and depressed patients. To further-examine whether this is due to a causal effect of cortisol on the laterality of episodic memory, we studied the effect of exogenous administration of cortisol in healthy subjects. Twenty-three right-handed healthy male volunteers were tested in a double-blind cross-over study. Event-related potentials (ERPs) were recorded during an episodic memory task following a four-day course of 160mg/day cortisol or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to identify brain regions involved in the neurocognitive task. Cortisol levels were measured in saliva samples. ERP and LORETA analysis following placebo demonstrated significant left parahippocampal activation associated with successful retrieval. Cortisol led to a decrease in the mean early frontal ERP voltage and an increase in the late right ERP voltage. LORETA suggested this to be due to a significant increased late activation of the right superior frontal gyrus. There was no significant effect of cortisol on episodic memory performance. This study suggests that exogenous cortisol leads to more positive-going waveforms over the right than the left hemisphere, possibly due to increased monitoring of the products of retrieval. The results support the hypothesis of causal effects of cortisol on the laterality of cortical activity occurring during an episodic memory task.

  2. Effect of magnetic field on the photovoltaic properties of YBa2Cu3O6.96/Ag heterojunction

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Han, Mengyuan; Chu, Zhuang; Ma, Zhipan; Chang, Fanggao

    2017-02-01

    The obvious photovoltaic effect (Voc ˜ 30 μV) induced by purple-laser illumination at high Tc superconductor YBa2Cu3O6.96/Ag (YBCO/Ag) heterojunction has been observed, revealing that there exists an electrical field across the YBCO/Ag interface. It has been found that magnetic field can dramatically change the photo-induced voltage in the vicinity of superconducting transition. With increasing magnetic fields up to 3 T, the photovoltage at 74 K and 30 mW/mm2 is reduced from 15 μV to zero and then reaches -15 μV. The polarity of the voltage can be switched by applying an external magnetic field, as well as by varying the laser intensity. Our results can be understood in terms of the magnetic vortex penetrating in high Tc superconductors and provide strong evidence for the existence of an interface electrical field in the superconductor/metal heterojunction.

  3. Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Steindamm, A.; Brendel, M.; Topczak, A. K.; Pflaum, J.

    2012-10-01

    In this work, we address the microscopic effects related to the implementation of a bathophenanthroline (BPhen) exciton blocking layer (EBL) sandwiched between Ag cathode and molecular diindenoperylene (DIP)/C60 bilayer of a photovoltaic cell. Complementary studies of current density, external quantum efficiency, and photoluminescence quenching for EBL thicknesses up to 50 nm indicate that Ag atoms are able to penetrate through the whole 35 nm thick C60 film into the polycrystalline DIP layer underneath, thereby enhancing exciton quenching if no blocking layer is applied. In contrast, an optimal trade-off between exciton blocking, suppression of metal penetration, and electron transport is achieved for a 5 nm thick BPhen layer yielding an improvement of power conversion efficiency by more than a factor of 2.

  4. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    PubMed

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  5. Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.

    1973-01-01

    The optical and electronic properties of single crystal Cu2S-CdS photovoltaic cells were investigated. In these cells trapped charge near the interface which is manifested by a persistent increase in junction capacitance (the photocapacitance) plays a significant role in determining the carrier transport properties. It was found that the severe degradation in short-circuit current observed in heat-treated cells can be separated into two components: (1) a relatively small thermal component occurring on heat-treatment in the dark, and (2) a much larger degradation caused by exposure to light at room temperature. By a short additional heat-treatment above approximately 100 C the cell can be completely restored to its condition before the optically caused degradation with no effect on the depletion layer width.

  6. The effects of controls and controllable and storage loads on the performance of stand-alone photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1981-01-01

    Stand-alone photovoltaic systems have been modeled and analyzed from sunlight in to consumer product out. By including the consumer product in the analysis, concepts such as 'product storage' (a storage tank for water or cold-plates for refrigeration) and loads controllable by the system controller have been added to the system analysis. From a controls analysis viewpoint, this adds state variables to the system. The result is that the system controller can make operating control decisions on the energy flow between these various system elements to optimize system performance and reduce system cost. The effects on system performance of various control schemes employing these concepts are presented. Analysis of water pumping and/or refrigeration systems show possible performance improvements of greater than 15% with the addition of controllable loads with product storage.

  7. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  8. Magnetical and electrical tuning of transient photovoltaic effects in manganite-based heterojunctions.

    PubMed

    Ni, Hao; Yue, Zengji; Zhao, Kun; Xiang, Wenfeng; Zhao, Songqing; Wang, Aijun; Kong, Yu-Chau; Wong, Hong-Kuen

    2012-05-07

    Magnetically and bias current tunable transient photovoltaic (TPV) responses have been investigated in a manganite-based heterojunction composed of a La2/3Ca1/3MnO3 film and an n-type Si substrate at ambient temperature. Under irradiation of 248 nm pulsed laser with 20 ns duration the TPV peak values can be modulated in a range of -125 to 138 mV when the applied magnetic field perpendicular to the interface changes from -6.4 to + 6.4 kOe, and the relative variations (TPV(H) - TPV(0))/TPV(0) reach up to about 1000%. In addition, TPV responses can be also affected by bias current, and the photoresponse peaks change from positive to negative with the currents from -350 to 350 μA. These results indicate that the manganite-based heterojunction can be used for magnetically and electrically tunable ultraviolet photodetectors.

  9. Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-06-14

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  10. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    SciTech Connect

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  11. The effect of resistance exercise direction for hip joint stabilization on lateral abdominal muscle thickness

    PubMed Central

    Jung, Ju-Hyeon; Lee, Sang-Yeol

    2016-01-01

    The aim of this study was to determine the effects of resistance direction in hip joint stabilization exercise on change in lateral abdominal muscle thickness in healthy adults. Twenty-six healthy adults were randomly allocated to either a hip stabilization exercise by hip straight resistance group (n=12) or a hip diagonal resistance group (n=14). The outcome measures included contraction thickness ratio in transversus abdominis (TrA), internal oblique (IO) and external oblique, and TrA lateral slide were assessed during the abdominal drawing-in maneuver by b-mode ultrasound. The researcher measured the abdominal muscle thickness of each participant before the therapist began the intervention and at the moment intervention was applied. There was a significant difference in lateral abdominal muscle thickness between the straight resistance exercise of hip joint group and the diagonal resistance exercise of hip joint group. Significant differences were found between the two groups in the percentage of change of muscle thickness of the TrA (P=0.018) and in the thickness ratio of the TrA (P=0.018). Stability exercise accompanied by diagonal resistance on the hip joint that was applied in this study can induce automatic contraction of the IO and TrA, which provides stability to the lumbar spine. PMID:27807520

  12. Photovoltaic panel support assembly

    SciTech Connect

    Barker, J.M.; Underwood, J.C.; Shingleton, J.

    1993-07-20

    A solar energy electrical power source is described comprising in combination at least two flat photovoltaic panels disposed side-by-side in co-planar relation with one another, a pivot shaft extending transversely across the panels, at least two supports spaced apart lengthwise of the pivot shaft, means for connecting the pivot shaft to the at least two supports, attachment means for connecting the at least two panels to the pivot shaft so that the panels can pivot about the longitudinal axis of the shaft, coupling means mechanically coupling all of the panels together so as to form a unified flat array, and selectively operable drive means for mechanically pivoting the unified flat array about the axis; wherein each of the flat photovoltaic panels comprises at least two modules each comprising a plurality of electrically interconnected photovoltaic cells, the at least two modules being aligned along a line extending at a right angle to the pivot shaft, and the coupling means comprises (a) an elongate member extending parallel to and spaced from the pivot shaft and (b) means for attaching the elongate member to the panels; and further wherein each flat photovoltaic panel comprises a unitary frame consisting of a pair of end frame members extending parallel to the pivot shaft, a pair of side frame members extending between and connected to the end frame members, and a pair of spaced apart cross frame members, with one of the two modules being embraced by and secured to the side frame members and a first one of each of the end and cross frame members, and the other of the two modules being embraced by and secured to the side frame members and the second one of each of the end and cross frame members, whereby the gap created by the spaced apart cross frame members allow air to pass between them in order to reduce the sail effect when the solar array is subjected to buffeting winds.

  13. Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics.

    PubMed

    Liu, Chang-Hua; Chang, You-Chia; Lee, Seunghyun; Zhang, Yaozhong; Zhang, Yafei; Norris, Theodore B; Zhong, Zhaohui

    2015-06-10

    The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graphene due to its electron-hole symmetry. Here, we report the observation of a strong lateral photo-Dember effect induced by nonequilibrium hot carrier dynamics when exciting a graphene-metal interface with a femtosecond laser. Scanning photocurrent measurements reveal the extraction of photoexcited hot carriers is driven by the transient photo-Dember field, and the polarity of the photocurrent is determined by the device's mobility asymmetry. Furthermore, ultrafast pump-probe measurements indicate the magnitude of photocurrent is related to the hot carrier cooling rate. Our simulations also suggest that the lateral photo-Dember effect originates from graphene's 2D nature combined with its unique electrical and optical properties. Taken together, these results not only reveal a new ultrafast photocurrent generation mechanism in graphene but also suggest new types of terahertz sources based on 2D nanomaterials.

  14. Word and pseudoword superiority effects in a shallow orthography language: the role of hemispheric lateralization.

    PubMed

    Ripamonti, Enrico; Traficante, Daniela; Crippa, Franca; Luzzattii, Claudio

    2014-04-01

    The word superiority effect (WSE) has made it possible to demonstrate the automatic activation of lexical-orthographic entries in reading. The observation of this effect is important since it led to experimental support of the main cognitive reading models. These models were mostly developed on English data, hence the verification in different orthography systems is relevant. The present study tested WSE in Italian, a language in which this effect was predicted to be less constant given the highly consistent correspondence between orthography and phonology. Moreover, the presentation of the items in a lateralized visual field condition allowed testing of assumptions about the roles of the right and left hemispheres in written word recognition and, in particular, on the hemispheric lateralization of lexical processing. Two experiments were conducted with undergraduate students who had to recognize a target letter within a word, pseudoword, or nonword. In Experiment 1, prime and probe letters were in the same letter case, while in Experiment 2 they were in different letter cases. Error rates and reaction times were analyzed with mixed models. The results showed a superiority of pseudowords (pseudoword superiority effect; PSE) over illegal strings with no evidence of a clear superiority of words over pseudowords for both left and right visual field presentations. This suggests that in Italian, the sub-lexical route could play a major role in reading and that this route relies on a visual-perceptual orthographic coding concerning familiarity of letter combinations, which is also available to the right hemisphere.

  15. Characterizing the Lateral Border of the Frontalis for Safe and Effective Injection of Botulinum Toxin

    PubMed Central

    Choi, You-Jin; Won, Sung-Yoon; Lee, Jae-Gi; Hu, Kyung-Seok; Kim, Sung-Taek; Tansatit, Tanvaa; Kim, Hee-Jin

    2016-01-01

    Background The forehead is a common site for injection of botulinum neurotoxin type A (BoNT-A) to treat hyperactive facial muscles. Unexpected side effects of BoNT-A injection may occur because the anatomy of the forehead musculature is not fully characterized. Objectives The authors described the lateral border of the frontalis in terms of facial landmarks and reference lines to determine the safest and most effective forehead injection sites for BoNT-A. Methods The hemifaces of 49 embalmed adult Korean cadavers were dissected in a morphometric analysis of the frontalis. L2 was defined in terms of FT (the most protruding point of the frontotemporal region), L0 (the line connecting the infraorbital margin with the tragus), and L1 (the line parallel to L0 and passing through FT) such that L2 was positioned 45° from L1 and passed through FT. Results The distance from FT to the superior margin of the orbicularis oculi was 12.3 ± 3.3 mm. The frontalis extended more than 5 cm along L2 in 49 of 49 cases (100%), more than 6 cm in 47 cases (95.9%), more than 7 cm in 34 cases (69.4%), more than 8 cm in 11 cases (22.4%), and more than 9 cm in 3 cases (6.1%). The lateral border of the frontalis ran parallel to and within 1 cm of the medial side of L2. Conclusions Surface anatomy mapping can assist with predicting the lateral border of the frontalis to minimize the side effects and maximize the efficiency of BoNT-A injections into the forehead. PMID:26507959

  16. Thinking about my generation: adaptive effects of a dual age identity in later adulthood.

    PubMed

    Weiss, David; Lang, Frieder R

    2009-09-01

    Growing old involves experiences of losses. Yet, it is not clear whether one's cohort group membership poses a resource in later adulthood. The authors examined the role of a dual age identity (age group vs. generation) across adulthood and possible adaptive effects on future time perspective and well-being. Findings suggest that when generation membership is salient, older (but not young and middle-aged) participants display a stronger identification with same-aged people than when age group membership is salient. Additionally, results demonstrate that the dual age identity represents a significant component of the self-concept and well-being in older adults.

  17. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  18. Effect of lateral structure parameters of SiGe HBTs on synthesized active inductors

    NASA Astrophysics Data System (ADS)

    Yan-Xiao, Zhao; Wan-Rong, Zhang; Huang, Xin; Hong-Yun, Xie; Dong-Yue, Jin; Qiang, Fu

    2016-03-01

    The effect of lateral structure parameters of transistors including emitter width, emitter length, and emitter stripe number on the performance parameters of the active inductor (AI), such as the effective inductance Ls, quality factor Q, and self-resonant frequency ω0 is analyzed based on 0.35-μm SiGe BiCMOS process. The simulation results show that for AI operated under fixed current density JC, the HBT lateral structure parameters have significant effect on Ls but little influence on Q and ω0, and the larger Ls can be realized by the narrow, short emitter stripe and few emitter stripes of SiGe HBTs. On the other hand, for AI with fixed HBT size, smaller JC is beneficial for AI to obtain larger Ls, but with a cost of smaller Q and ω0. In addition, under the fixed collector current IC, the larger the size of HBT is, the larger Ls becomes, but the smaller Q and ω0 become. The obtained results provide a reference for selecting geometry of transistors and operational condition in the design of active inductors. Project supported by the Natural Science Foundation of Beijing, China (Grant Nos. 4142007 and 4122014), the National Natural Science Foundation of China (Grant No. 61574010), and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J13LN09).

  19. Lateralized effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory.

    PubMed

    Weigand, Anne; Grimm, Simone; Astalosch, Antje; Guo, Jia Shen; Briesemeister, Benny B; Lisanby, Sarah H; Luber, Bruce; Bajbouj, Malek

    2013-05-01

    Little is known about the neural correlates underlying the integration of working memory and emotion processing. We investigated the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left or right dorsolateral prefrontal cortex (DLPFC) on emotional working memory. In a sham-controlled crossover design, participants performed an emotional 3-back task (EMOBACK) at baseline and after stimulation (1 Hz, 15 min, 110 % of the resting motor threshold) in two subsequent sessions. Stimuli were words assigned to the distinct emotion categories fear and anger as well as neutral words. We found lateralized rTMS effects in the EMOBACK task accuracy for fear-related words, with enhanced performance after rTMS applied over the right DLPFC and impaired performance after rTMS applied over the left DLPFC. No significant stimulation effect could be found for anger-related and neutral words. Our findings are the first to demonstrate a causal role of the right DLPFC in working memory for negative, withdrawal-related words and provide further support for a hemispheric lateralization of emotion processing.

  20. [Lateralized brain language semantic network demonstrated by word repetition suppression effect in MEG].

    PubMed

    Nikolaeva, A Yu; Butorina, A V; Prokofyev, A O; Stroganova, T A

    2015-01-01

    We studied auditory word repetition suppression effect using magnetoencephalography while subjects listened to "new" and "old" words whose familiarity they had to judge upon presentation. The lateralization of brain magnetic activity during processing of "new" and "old" words were estimated by computing RMS measure of whole-brain magnetic response within time window of semantic N400 (350-450 ms). A magnetic N400 was significantly stronger in the left than in the right hemisphere for the "new" words only. Repetition of "new" words led to sharp decrease of N400 response RMS in the left hemisphere but did not change right-hemispheric N400 RMS. The asymmetry index of this repetition suppression effect was lateralized to the left hemisphere for the majority of the participants and its magnitude was related to memory task performance. The findings point to a strong left-hemispheric dominance of word repetition suppression effect within the brain semantic networks at the level of whole-network response.

  1. The effect of brain tumour laterality on anxiety levels among neurosurgical patients

    PubMed Central

    Mainio, A; Hakko, H; Niemela, A; Tuurinkoski, T; Koivukangas, J; Rasanen, P

    2003-01-01

    Objectives: The aim of this study was to investigate the level of anxiety in patients with a primary brain tumour and to analyse the effect of tumour laterality and histology on the level of anxiety. Recurrent measurements were assessed preoperatively, three months, and one year after operation. Methods: The study population consisted of 101 patients with a primary brain tumour from unselected and homogeneous population in northern Finland. The patients were studied preoperatively with CT or MRI to determine the location of the tumour. The histology of the tumour was defined according to WHO classification. The level of anxiety was obtained by Crown-Crisp Experiential Index (CCEI) scale. Results: The patients with a tumour in the right hemisphere had statistically significantly higher mean anxiety scores compared to the patients with a tumour in the left hemisphere before surgery of the tumour. By three months and by one year after surgical resection of the tumour, the level of anxiety declined in patients with a tumour in the right hemisphere. A corresponding decline was not found in patients with a tumour in the left hemisphere. According to laterality by tumour histology, the level of anxiety decreased significantly in male and female patients with a glioma in the right hemisphere, but a corresponding decline was not significant in the female patients with a meningioma in the right hemisphere. Decreased level of anxiety was not found in patients with gliomas or meningiomas in the left hemisphere by follow up measurements. Conclusions: Primary brain tumour in right hemisphere is associated with anxiety symptoms. The laterality of anxiety seems to reflect the differentiation of the two hemispheres. The level of anxiety declined after operation of right tumour, approaching that of the general population. The effect of right hemisphere gliomas on anxiety symptoms deserves special attention in future research. PMID:12933936

  2. Silicon purification melting for photovoltaic applications

    SciTech Connect

    VAN DEN AVYLE,JAMES A.; HO,PAULINE; GEE,JAMES M.

    2000-04-01

    The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

  3. Effects on lipid bilayer and nitrogen distribution induced by lateral pressure.

    PubMed

    Wang, Yu; Chen, Liang; Wang, Xiaogang; Dai, Chaoqing; Chen, Junlang

    2015-05-01

    The lateral pressure exerted on cell membrane is of great importance to signal transduction. Here, we perform molecular dynamics simulation to explore how lateral pressure affects the biophysical properties of lipid bilayer as well as nitrogen distribution in the membrane. Our results show that both physical properties of cell membrane and nitrogen distribution are highly sensitive to the lateral pressure. With the increasing lateral pressure, area per lipid drops and thickness of membrane increases obviously, while nitrogen molecules are more congested in the center of lipid bilayer than those under lower lateral pressure. These results suggest that the mechanism of nitrogen narcosis may be related to the lateral pressure.

  4. Band structures of laterally coupled quantum dots, accounting for electromechanical effects

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Patil, Sunil

    2010-09-01

    In a series of recent papers we demonstrated that coupled electro-mechanical effects can lead to pronounced contributions in band structure calculations of low dimensional semiconductor nanostructures (LDSNs) such as quantum dots, wires, and even wells. Some such effects are essentially nonlinear. Both strain and piezoelectric effects have been used as tuning parameters for the optical response of LDSNs in photonics, band gap engineering and other applications. However, these effects have been largely neglected in literature while laterally coupled quantum dots (QDs) have been studied. The superposition of electron wave functions in these QDs become important in the design of optoelectronic devices as well in tayloring properties of QDs in other applications areas. At the same time, laterally grown QDs coupled with electric and mechanical fields are becoming increasingly important in many applications of LDSN-based systems, in particular where the tunneling of electron wave function through wetting layer (WL) becomes important and the distance between the dots is treated as a tuning parameter. Indeed, as electric and elastic effects are often significant in LDSNs, it is reasonable to expect that the separation between the QDs may also be used as a tuning parameter in the application of logic devices, for example, OR gates, AND gates and others. In this contribution, by using the fully coupled model of electroelasticity, we build on our previous results while analyzing the influence of these effects on optoelectronic properties of QDs. Results are reported for III-V type semiconductors with a major focus given to GaN/AlN based QD systems.

  5. Lateral spin-orbit coupling and the Kondo effect in quantum dots

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Ngo, Anh; Ulloa, Sergio

    2010-03-01

    We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).

  6. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    PubMed

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  7. Effect of gyro verticality error on lateral autoland tracking performance for an inertially smoothed control law

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1977-01-01

    The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.

  8. Effects of platelet-rich plasma on lateral epicondylitis of the elbow: prospective randomized controlled trial☆

    PubMed Central

    Palacio, Evandro Pereira; Schiavetti, Rafael Ramos; Kanematsu, Maiara; Ikeda, Tiago Moreno; Mizobuchi, Roberto Ryuiti; Galbiatti, José Antônio

    2016-01-01

    Objective To evaluate the effects of platelet-rich plasma (PRP) infiltration in patients with lateral epicondylitis of the elbow, through analysis of the Disabilities of the Arm, Shoulder and Hand (DASH) and Patient-Rated Tennis Elbow Evaluation (PRTEE) questionnaires. Methods Sixty patients with lateral epicondylitis of the elbow were prospectively randomized and evaluated after receiving infiltration of three milliliters of PRP, or 0.5% neocaine, or dexamethasone. For the scoring process, the patients were asked to fill out the DASH and PRTEE questionnaires on three occasions: on the day of infiltration and 90 and 180 days afterwards. Results Around 81.7% of the patients who underwent the treatment presented some improvement of the symptoms. The statistical tests showed that there was evidence that the cure rate was unrelated to the substance applied (p = 0.62). There was also intersection between the confidence intervals of each group, thus demonstrating that the proportions of patients whose symptoms improved were similar in all the groups. Conclusion At a significance level of 5%, there was no evidence that one treatment was more effective than another, when assessed using the DASH and PRTEE questionnaires. PMID:26962506

  9. The PRP Effect Following Callosotomy: Residual Interference Despite Uncoupling of Lateralized Response Codes

    NASA Technical Reports Server (NTRS)

    Ivry, Richard B.; Franz, Elizabeth A.; Kingstone, Alan; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    A callosotomy patient was tested in two dual-task experiments requiring successive speeded responses to lateralized stimuli. In accord with the recent findings of Pashler, O'Brien, Luck, Hillyard, Mangun, and Gazzaniga (in press), the patient showed a robust psychological refractory period effect (PRP) responses on Task 2 were inversely related to the stimulus-onset asynchrony (SOA). However, three aspects of our data indicated that the processing limitations for the patient were different than those observed with control subjects. First, the split-brain patient did not show an increase in reaction time when the two tasks required responses from a common output system (i.e., both manual responses) in comparison to when different output systems were used (i.e., manual-vocal). Second, inconsistent stimulus-response mappings for the two tasks greatly inflated response latencies for the control subjects, but had minimal effect on the performance of the split-brain patient. Third, the consistency manipulation was underadditive with SOA for only the patient, suggesting a later bottleneck in processing following callosotomy than was observed for the control subjects. It is proposed that sectioning the corpus callosum eliminates interference resulting from competing stimulus response codes. Nonetheless, dual-task interference persists for the split-brain subject because a subcortical gate constrains when selected responses can be implemented.

  10. The lateral prefrontal cortex mediates the hyperalgesic effects of negative cognitions in chronic pain patients

    PubMed Central

    Loggia, Marco L.; Berna, Chantal; Kim, Jieun; Cahalan, Christine M.; Martel, Marc-Olivier; Gollub, Randy L.; Wasan, Ajay D.; Napadow, Vitaly; Edwards, Robert R.

    2015-01-01

    While high levels of negative affect and cognitions have been associated in chronic pain conditions with greater pain sensitivity, the neural mechanisms mediating the hyperalgesic effect of psychological factors in patients with pain disorders are largely unknown. In this cross-sectional study, we hypothesized that 1) catastrophizing modulates brain responses to pain anticipation, and that 2) anticipatory brain activity mediates the hyperalgesic effect of different levels of catastrophizing, in fibromyalgia (FM) patients. Using functional Magnetic Resonance Imaging, we scanned the brains of 31 FM patients exposed to visual cues anticipating the onset of moderately intense deep-tissue pain stimuli. Our results indicated the existence of a negative association between catastrophizing and pain-anticipatory brain activity, including in the right lateral prefrontal cortex (IPFC). A bootstrapped mediation analysis revealed that pain-anticipatory activity in lateral prefrontal cortex (IPFC) mediates the association between catastrophizing and pain sensitivity. These findings highlight the role of IPFC in the pathophysiology of FM related hyperalgesia, and suggest that deficits in the recruitment of pain-inhibitory brain circuitry during pain-anticipatory periods may play an important contributory role in the association between various degrees of widespread hyperalgesia in FM and levels of catastrophizing, a well validated measure of negative cognitions and psychological distress. Perspective This article highlights the presence of alterations in pain-anticipatory brain activity in FM. These findings provide the rationale for the development of psychological or neurofeedback-based techniques aimed at modifying patients' negative affect and cognitions towards pain. PMID:25937162

  11. Effects of early language, speech, and cognition on later reading: a mediation analysis

    PubMed Central

    Durand, Vanessa N.; Loe, Irene M.; Yeatman, Jason D.; Feldman, Heidi M.

    2013-01-01

    This longitudinal secondary analysis examined which early language and speech abilities are associated with school-aged reading skills, and whether these associations are mediated by cognitive ability. We analyzed vocabulary, syntax, speech sound maturity, and cognition in a sample of healthy children at age 3 years (N = 241) in relation to single word reading (decoding), comprehension, and oral reading fluency in the same children at age 9–11 years. All predictor variables and the mediator variable were associated with the three reading outcomes. The predictor variables were all associated with cognitive abilities, the mediator. Cognitive abilities partially mediated the effects of language on reading. After mediation, decoding was associated with speech sound maturity; comprehension was associated with receptive vocabulary; and oral fluency was associated with speech sound maturity, receptive vocabulary, and syntax. In summary, all of the effects of language on reading could not be explained by cognition as a mediator. Specific components of language and speech skills in preschool made independent contributions to reading skills 6–8 years later. These early precursors to later reading skill represent potential targets for early intervention to improve reading. PMID:24027549

  12. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview.

    PubMed

    Roseboom, T J; van der Meulen, J H; Ravelli, A C; Osmond, C; Barker, D J; Bleker, O P

    2001-10-01

    People who were small at birth have been shown to have an increased risk of CHD and chronic bronchitis in later life. These findings have led to the fetal origins hypothesis that proposes that the fetus adapts to a limited supply of nutrients, and in doing so it permanently alters its physiology and metabolism, which could increase its risk of disease in later life. The Dutch famine--though a historical disaster--provides a unique opportunity to study effects of undernutrition during gestation in humans. People who had been exposed to famine in late or mid gestation had reduced glucose tolerance. Whereas people exposed to famine in early gestation had a more atherogenic lipid profile, somewhat higher fibrinogen concentrations and reduced plasma concentrations of factor VII, a higher BMI and they appeared to have a higher risk of CHD. Though the latter was based on small numbers, as could be expected from the relatively young age of the cohort. Nevertheless, this is the first evidence in humans that maternal undernutrition during gestation is linked with the risk of CHD in later life. Our findings broadly support the hypothesis that chronic diseases originate through adaptations made by the fetus in response to undernutrition. The long-term effects of intrauterine undernutrition, however, depend upon its timing during gestation and on the tissues and systems undergoing critical periods of development at that time. Furthermore, our findings suggest that maternal malnutrition during gestation may permanently affect adult health without affecting the size of the baby at birth. This gives the fetal origins hypothesis a new dimension. It may imply that adaptations that enable the fetus to continue to grow may nevertheless have adverse consequences for health in later life. CHD may be viewed as the price paid for successful adaptations to an adverse intra-uterine environment. It also implies that the long-term consequences of improved nutrition of pregnant women will be

  13. Perfectionism, neuroticism, and daily stress reactivity and coping effectiveness 6 months and 3 years later.

    PubMed

    Dunkley, David M; Mandel, Tobey; Ma, Denise

    2014-10-01

    The present study addressed a fundamental gap between research and clinical work by advancing longitudinal explanatory conceptualizations of stress and coping processes that trigger daily affect in the short- and long-term for individuals with higher levels of personality vulnerability. Community adults completed measures of 2 higher order dimensions of perfectionism (personal standards [PS], self-criticism [SC]), neuroticism, and conscientiousness. Then, 6 months later and again 3 years later, participants completed daily questionnaires of stress, coping, and affect for 14 consecutive days. PS was associated with aggregated daily problem-focused coping and positive reinterpretation, whereas SC was uniquely associated with daily negative social interactions, avoidant coping, negative affect, and sadness at Month 6 and Year 3. Multilevel modeling results demonstrated that both individuals with higher PS and those with higher SC were emotionally reactive to event stress, negative social interactions, and avoidant coping at Month 6 and Year 3 and to less perceived control at Year 3. Positive reinterpretation was especially effective for individuals with higher SC at Month 6 and Year 3. The effects of PS on daily stress reactivity and coping (in)effectiveness were clearly distinguished from the effects of neuroticism and conscientiousness, whereas the SC effects were due to shared overlap with PS and neuroticism. The present findings demonstrate the promise of using repeated daily diary methodologies to help therapists and clients reliably predict future client reactions to daily stressors, which, in turn, could help guide interventions to break apart dysfunctional patterns connected to distress and build resilience for vulnerable individuals.

  14. Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Wang, N. N.; Yu, J. S.; Yuan, Z. L.; Jiang, Y. D.

    2012-05-01

    Organic photovoltaic (OPV) cells with improved efficiency using thermal annealing-induced nanostructured copper phthalocyanine as a donor layer were fabricated. A power conversion efficiency of 1.47% in the OPV cell with interdigitated CuPc/C60 bulk heterojunction has been obtained under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which is higher than 0.63% of CuPc/C60 planar cell. Through varying the annealing temperature of CuPc films, the influence of interface morphology and crystallinity of CuPc films on the performance of OPV cells was systematically studied. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and spectrophotometry were used to characterize the CuPc films. The results showed that at an optimal annealing temperature, the crystalline nature and vertical orientation of nanostructured CuPc have been modified, which can facilitate the separation of interfacial electron-hole pairs and charge carrier transport to electrodes.

  15. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  16. Silicon Substrate Strained and Structured via Cavitation Effect for Photovoltaic and Biomedical Application.

    PubMed

    Savkina, Rada K; Gudymenko, Aleksandr I; Kladko, Vasyl P; Korchovyi, Andrii A; Nikolenko, Andrii S; Smirnov, Aleksey B; Stara, Tatyana R; Strelchuk, Viktor V

    2016-12-01

    A hybrid structure, which integrates the nanostructured silicon with a bio-active silicate, is fabricated using the method of MHz sonication in the cryogenic environment. Optical, atomic force, and scanning electron microscopy techniques as well as energy dispersive X-ray spectroscopy were used for the investigation of the morphology and chemical compound of the structured surface. Micro-Raman as well as X-ray diffraction, ellipsometry, and photovoltage spectroscopy was used for the obtained structures characterization. Ellipsometer measurements demonstrated the formation of the layer with the thicknesses ~700 nm and optical parameters closed to SiO2 compound with an additional top layer of the thicknesses ~15 nm and the refractive index ~1. Micro-Raman investigation detects an appearance of Ca-O local vibrational mode, and the stretching vibration of SiO4 chains characterized the wollastonite form of CaSiO3. A significant rise in the value and an expansion of the spectral range of the surface photovoltage for silicon structured via the megasonic processing was found. The concept of biocompatible photovoltaic cell on the base of Si\\CaSiO3 structure for the application in bioelectronics was proposed.

  17. Silicon Substrate Strained and Structured via Cavitation Effect for Photovoltaic and Biomedical Application

    NASA Astrophysics Data System (ADS)

    Savkina, Rada K.; Gudymenko, Aleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.; Nikolenko, Andrii S.; Smirnov, Aleksey B.; Stara, Tatyana R.; Strelchuk, Viktor V.

    2016-04-01

    A hybrid structure, which integrates the nanostructured silicon with a bio-active silicate, is fabricated using the method of MHz sonication in the cryogenic environment. Optical, atomic force, and scanning electron microscopy techniques as well as energy dispersive X-ray spectroscopy were used for the investigation of the morphology and chemical compound of the structured surface. Micro-Raman as well as X-ray diffraction, ellipsometry, and photovoltage spectroscopy was used for the obtained structures characterization. Ellipsometer measurements demonstrated the formation of the layer with the thicknesses ~700 nm and optical parameters closed to SiO2 compound with an additional top layer of the thicknesses ~15 nm and the refractive index ~1. Micro-Raman investigation detects an appearance of Ca-O local vibrational mode, and the stretching vibration of SiO4 chains characterized the wollastonite form of CaSiO3. A significant rise in the value and an expansion of the spectral range of the surface photovoltage for silicon structured via the megasonic processing was found. The concept of biocompatible photovoltaic cell on the base of Si/CaSiO3 structure for the application in bioelectronics was proposed.

  18. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana.

    PubMed

    Feng, Zhenhua; Zhu, Jian; Du, Xiling; Cui, Xianghuan

    2012-10-01

    In Arabidopsis, two Auxin Response Factors (ARF7 and ARF19) and several Aux/IAAs regulate auxin-induced lateral root (LR) formation. As direct targets of ARF7 and ARF19, Lateral Organ Boundaries Domain 16 (LBD16), LBD29, and LBD18 have a biological function in the formation of lateral roots (LRs). However, the details of the functions of these three LBDs have remained unclear. Each single T-DNA insert mutant has been shown to have slightly fewer LRs than the wild type. We then created a triple mutant, which exhibited a dramatic defect in the LR formation. Our results show that the lbd mutations can lead to impairment in auxin-induced pericycle cell division and in the expression levels of some D-type cyclins (CYCDs). Simultaneously, Plethora (PLT) and PIN-formed (PIN), which have been well documented to promote cell mitotic activity and are required for auxin response effects, were down-regulated by these lbd mutations. Our results so far indicate that CYCDs, PLT, and PINs are the main targets of the LBDs. We believe that these three LBDs are involved in cell cycle progression of the pericycle in response to auxin. Overexpression of any of these three LBD genes in the triple mutant was found incapable of completely replacing the other two LBDs. The phenotypes of lbd29 mutants were not completely consistent with lbd16 or lbd18 mutants. This indicates that LBD29 may play a distinctive role compared with LBD16 or LBD18 and LBDs might play partially independent roles during the formation of LRs.

  19. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.

    PubMed

    Osella, Silvio; Narita, Akimitsu; Schwab, Matthias Georg; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus; Beljonne, David

    2012-06-26

    Graphene nanoribbons (GNRs) are strips of graphene cut along a specific direction that feature peculiar electronic and optical properties owing to lateral confinement effects. We show here by means of (time-dependent) density functional theory calculations that GNRs with properly designed edge structures fulfill the requirements in terms of electronic level alignment with common acceptors (namely, C(60)), solar light harvesting, and singlet-triplet exchange energy to be used as low band gap semiconductors for organic photovoltaics.

  20. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  1. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  2. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  3. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  4. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  5. High density photovoltaic

    SciTech Connect

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  6. The effect of musical experience on hemispheric lateralization in musical feature processing.

    PubMed

    Ono, Kentaro; Nakamura, Akinori; Yoshiyama, Kenji; Kinkori, Takeshi; Bundo, Masahiko; Kato, Takashi; Ito, Kengo

    2011-06-01

    Music consists of a variety of spectral and temporal features. Generally, brain processing of these features is reported as being right hemisphere dominant. However, there are contradicting results as to whether musical experience affects hemispheric laterality or not. In the present study, we investigated the effect of musical experience on hemispheric lateralization of musical feature processing using magnetoencephalography (MEG). Mismatch fields (MMFs) were measured from 8 musicians and 8 nonmusicians in oddball tasks with four different musical features, including pitch, chord, timbre and rhythm. Regardless of the features, the MMFs showed right-hemispheric dominance in nonmusicians, whereas musicians showed symmetrical MMF amplitudes in both hemispheres. The electrical activity around the auditory cortex to the MMFs also supported the right-hemispheric dominance in nonmusicians and bilateral activation in musicians. Voxel-based morphometry did not detect any group differences around the auditory cortices. These results suggest that musical training changes the hemispheric roles for musical feature processing in the pre-attentive stage, and this functional alteration can occur without apparent anatomical changes.

  7. Effect of lateral excursive movements on the progression of abfraction lesions.

    PubMed

    Wood, Ian David; Kassir, Ali Sabet Abbas; Brunton, Paul Anthony

    2009-01-01

    The theory of abfraction suggests that tooth flexure arising from occlusal loads causes the formation and progression of abfraction lesions. The current study investigated whether reducing occlusal loading by adjusting the occlusion on a tooth during lateral excursive movements had any effect on the rate of progression of existing abfraction lesions. Recruited were 39 subjects who had two non-carious cervical lesions in the maxillary arch that did not need restoration and were in group function during lateral excursive movements of the mandible. One of the teeth was randomly selected to have the excursive occlusal contacts reduced by using a fine grain diamond bur. Centric occlusal contacts were not reduced. Impressions of the lesion were taken over a 30-month period to enable monitoring of the wear rate, and duplicate dies were poured into epoxy resin to allow for sectioning. The size of the lesions was measured using stereomicroscopic analysis of the sectioned epoxy resin dies, and the results were analyzed using an Independent t-test. No statistically significant difference in wear rates between the adjusted and non-adjusted teeth was found (p > 0.05). Within the limitations of the current study, it was concluded that occlusal adjustment does not appear to halt the progression of non-carious cervical lesions; consequently, this procedure cannot be recommended.

  8. Effects of wheel/rail contact patterns and vehicle parameters on lateral stability

    NASA Astrophysics Data System (ADS)

    Wilson, Nicholas; Wu, Huimin; Tournay, Harry; Urban, Curtis

    2010-12-01

    In North American freight service, lateral instability (vehicle hunting) is normally associated with light vehicles and high-speed operations. However, recent research conducted by Transportation Technology Center, Inc. (TTCI), under the Association of American Railroads' Strategic Research Initiatives Program, has shown that some new designs of heavy axle load freight cars are now susceptible to hunting when fully loaded at normal freight train operating speeds. Undesirable wheel/rail (W/R) contact conditions interacting with the car body dimensions and inertial parameters, combined with the characteristics of the suspensions, contribute to hunting. A summary of the investigation is presented here, which includes results of the vehicle tests, wheel and rail profile measurements and analyses, and NUCARS®1 computer simulations. The effects of the vehicle suspension parameters and car body inertial parameters, combined with undesirable W/R contact patterns, are shown to have a significant influence on the vehicle's lateral stability performance, with potential consequences for damage to both vehicles and track, and increased potential for derailment.

  9. Tuning the photovoltaic effect of multiferroic CoFe2O4/Pb(Zr, Ti)O3 composite films by magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Chen, Guang-Yi; Bi, Gui-Feng; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-05-01

    The 0-3 type CoFe2O4-Pb(Zr,Ti)O3 (CFO-PZT) multiferroic composite films have been prepared by a sol-gel process and spin-coating technique. A confirmable photovoltaic effect is observed under ultraviolet light irradiation. Moreover, this photovoltaic effect can be tuned by external magnetic fields. The maximum magnetic modulation ratios of short-circuit current density and open-circuit voltage can reach as high as 13.7% and 12.8% upon the application of 6 kOe DC magnetic field. Through remnant polarization measurements under various magnetic fields and detailed analysis of the energy band structures, we elucidate the mechanism of tuning photovoltaic effect by magnetic fields and attribute it to the combination of two factors. One is the decreased ferroelectric-polarization-induced depolarization electric field and another is the band structure reconstruction at CFO-PZT interfaces, both of which are dominated by the magnetoelectric coupling via interfacial stress transferring at nanoscale. This work makes some attempts of coupling photo-induced effects with magnetoelectric effect in multiferroic materials and will widen the practical ranges of multiferroic-based applications.

  10. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  11. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    DOE PAGES

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; ...

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less

  12. Carrier-tunneling-induced photovoltaic effect of InAs/GaAs quantum-dot solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Kim, Jong Su; Lee, Sang Jun

    2016-08-01

    This study reports the observation of the carrier-tunneling-induced photovoltaic (PV) effect in an InAs/GaAs quantum-dot solar cell (QDSC). The illuminated current-voltage (J-V) characteristics and the applied-bias-dependent electroreflectance (ER) were measured at 12 K by using an excitation laser with a wavelength of 975 nm (1.27 eV), which excites only the quantum-dot (QD) states below the GaAs band gap. The J-V results showed a peculiar current curve in the reverse bias region caused by carrier tunneling. The ER results showed that the junction electric field ( F) decreased with increasing intensity of the excitation laser ( I ex ) at different applied-bias-voltages ( V a ) due to the tunneling-induced PV effect. The PV effect was enhanced by improved tunneling with increasing reverse bias voltage. We also evaluated the tunneling carrier density ( σ pv ) as a function of V a in the QDSC.

  13. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    PubMed

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  14. A Systematic Review of the Effectiveness of Manipulative Therapy in Treating Lateral Epicondylalgia

    PubMed Central

    Herd, Christopher R.; Meserve, Brent B.

    2008-01-01

    Lateral epicondylalgia is a commonly encountered musculoskeletal complaint. Currently, there is no agreement regarding the exact underlying pathoanatomical cause or the most effective management strategy. Various forms of joint manipulation have been recommended as treatment. The purpose of this study was to systematically review available literature regarding the effectiveness of manipulation in treating lateral epicondylalgia. A comprehensive search of Medline, CINAHL, Health Source, SPORTDiscus, and the Physiotherapy Evidence Database ending in November 2007 was conducted. Thirteen studies, both randomized and non-randomized clinical trials, met inclusion criteria. Articles were assessed for quality by one reviewer using the 10-point PEDro scale. Quality scores ranged from 1–8 with a mean score of 5.15 ± 1.85. This score represented fair quality overall; however, trends indicated the presence of consistent methodological flaws. Specifically, no study achieved successful blinding of the patient or treating therapist, and less than 50% used a blinded outcome assessor. Additionally, studies varied significantly in terms of outcome measures, follow-up, and comparison treatments, thus making comparing results across studies difficult. Results of this review support the use of Mulligan's mobilization with movement in providing immediate, short-, and long-term benefits. In addition, positive results were demonstrated with manipulative therapy directed at the cervical spine, although data regarding long-term effects were limited. Currently, limited evidence exists to support a synthesis of any particular technique whether directed at the elbow or cervical spine. Overall, this review identified the need for further high-quality studies using larger sample sizes, valid functional outcome measures, and longer follow-up periods. PMID:19771195

  15. Perceptual and motor laterality effects in pianists during music sight-reading.

    PubMed

    D'Anselmo, Anita; Giuliani, Felice; Marzoli, Daniele; Tommasi, Luca; Brancucci, Alfredo

    2015-05-01

    Forty-six right-handed pianists were tested in a music sight-reading task in which they had to perform on a keyboard. Stimuli were single notes or single triads (chords) presented tachistoscopically in the left or right visual field in form of musical notation or verbal labels. Left-hand, right-hand or two-hands performance was required. Results showed, besides the expected Simon effect producing faster responses for stimuli to be performed with the hand ipsilateral to the side of presentation, a complex pattern of laterality which depended primarily upon the requested motor output. A tendency in favor of the left hemisphere (right visual field, RVF) was observed, this asymmetry being significant only in the single-hand tasks. On the contrary, in the two-hands task an opposite asymmetry was observed with musical notation. Moreover, a strong unexpected role of the bass clef was observed, which penalized left hand performance in particular with LVF stimuli. This effect even overcame the Simon effect, suggesting the presence of a bias in favor of the left hemisphere in musical transposition. Results point to a variegated pattern of hemispheric asymmetries in music sight-reading which depend on both stimulus coding and motor output type (e.g. two- or single-hand performance). A RH asymmetry was observed during two-hands playing with musical notation. Conversely, playing with one hand seems more leftward lateralized. This pattern of asymmetry would reflect a LH ability in simple "core" music reading together with a RH ability in the coordination of simultaneous responses by the two hands.

  16. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation.

    PubMed

    Bergonci, Tábata; Ribeiro, Bianca; Ceciliato, Paulo H O; Guerrero-Abad, Juan Carlos; Silva-Filho, Marcio C; Moura, Daniel S

    2014-05-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.

  17. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  18. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  19. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  20. Europe's space photovoltaics programme

    NASA Technical Reports Server (NTRS)

    Bogus, Klaus P.

    1994-01-01

    The current space PV (photovoltaic) technology development program of ESA is described. The program is closely coupled to the European space mission scenario for the next 10 year period and has as its main objective to make the most effective use of the limited resources available for technology in the present economical climate. This requires a well-balanced approach between concentration on very few options and keeping the competition alive if more than one promising technology exists. The paper describes ESA's main activities in the areas of solar array technology, solar cell technology, solar cell assembly technology, and special test and verification activities including the in-orbit demonstration of new technologies.

  1. Terrestrial Photovoltaic System Analysis.

    DTIC Science & Technology

    1980-07-01

    tanks is cost Iv (P3 per Watt) bet’aulse ofanll-t distri bution svsteri and uise if exit ic heat. 01latgr 1 C 01:1 li:-iorn. ItIe r e1o0re iS t i a1t...install an array size ot at least 300i kW. The estimated initial instal led cost oi th., cmibiiid phit,)voltaic!tLier- mal system is $28 per watt. The use...conclusion, theretore, is that ;al electric - only photovoltaic system is more cost effective. The daily average power requirement of the

  2. Basic photovoltaic principles and methods

    SciTech Connect

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  3. Effect of fullerene tris-adducts on the photovoltaic performance of P3HT:fullerene ternary blends.

    PubMed

    Kang, Hyunbum; Kim, Ki-Hyun; Kang, Tae Eui; Cho, Chul-Hee; Park, Sunhee; Yoon, Sung Cheol; Kim, Bumjoon J

    2013-05-22

    Fullerene tris-adducts have the potential of achieving high open-circuit voltages (V(OC)) in bulk heterojunction (BHJ) polymer solar cells (PSCs), because their lowest unoccupied molecular orbital (LUMO) level is higher than those of fullerene mono- and bis-adducts. However, no successful examples of the use of fullerene tris-adducts as electron acceptors have been reported. Herein, we developed a ternary-blend approach for the use of fullerene tris-adducts to fully exploit the merit of their high LUMO level. The compound o-xylenyl C60 tris-adduct (OXCTA) was used as a ternary acceptor in the model system of poly(3-hexylthiophene) (P3HT) as the electron donor and the two soluble fullerene acceptors of OXCTA and fullerene monoadduct (o-xylenyl C60 monoadduct (OXCMA), phenyl C61-butyric acid methyl ester (PCBM), or indene-C60 monoadduct (ICMA)). To explore the effect of OXCTA in ternary-blend PSC devices, the photovoltaic behavior of the device was investigated in terms of the weight fraction of OXCTA (W(OXCTA)). When W(OXCTA) is small (<0.3), OXCTA can generate a synergistic bridging effect between P3HT and the fullerene monoadduct, leading to simultaneous enhancement in both V(OC) and short-circuit current (J(SC)). For example, the ternary PSC devices of P3HT:(OXCMA:OXCTA) with W(OXCTA) of 0.1 and 0.3 exhibited power-conversion efficiencies (PCEs) of 3.91% and 3.96%, respectively, which were significantly higher than the 3.61% provided by the P3HT:OXCMA device. Interestingly, for W(OXCTA) > 0.7, both V(OC) and PCE of the ternary-blend PSCs exhibited nonlinear compositional dependence on W(OXCTA). We noted that the nonlinear compositional trend of P3HT:(OXCMA:OXCTA) was significantly different from that of P3HT:(OXCMA:o-xylenyl C60 bis-adduct (OXCBA)) ternary-blend PSC devices. The fundamental reasons for the differences between the photovoltaic trends of the two different ternary-blend systems were investigated systemically by comparing their optical, electrical

  4. Lateralized direct and indirect semantic priming effects in subjects with paranormal experiences and beliefs.

    PubMed

    Pizzagalli, D; Lehmann, D; Brugger, P

    2001-01-01

    The present investigation tested the hypothesis that, as an aspect of schizotypal thinking, the formation of paranormal beliefs was related to spreading activation characteristics within semantic networks. From a larger student population (n = 117) prescreened for paranormal belief, 12 strong believers and 12 strong disbelievers (all women) were invited for a lateralized semantic priming task with directly and indirectly related prime-target pairs. Believers showed stronger indirect (but not direct) semantic priming effects than disbelievers after left (but not right) visual field stimulation, indicating faster appreciation of distant semantic relations specifically by the right hemisphere, reportedly specialized in coarse rather than focused semantic processing. These results are discussed in the light of recent findings in schizophrenic patients with thought disorders. They suggest that a disinhibition with semantic networks may underlie the formation of paranormal belief. The potential usefulness of work with healthy subjects for neuropsychiatric research is stressed.

  5. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  6. Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach.

    PubMed

    Ferraro, P; Del Core, C; Miccio, L; Grilli, S; De Nicola, S; Finizio, A; Coppola, G

    2007-08-01

    In digital holography (DH) the numerical reconstruction of the whole wavefront allows one to extract the wrapped phase map mod, 2 pi. It can occur that the reconstructed wrapped phase map in the image plane is undersampled because of the limited pixel size in that plane. In such a case the phase distribution cannot be retrieved correctly by the usual unwrapping procedures. We show that the use of the digital lateral-shearing interferometry approach in DH provides the correct reconstruction of the phase map in the image plane, even in extreme cases where the phase profile changes very rapidly. We demonstrate the effectiveness of the method in a particular case where the profile of a highly curved silicon microelectromechanical system membrane has to be reconstructed.

  7. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  8. Flate-plate photovoltaic power systems handbook for Federal agencies

    NASA Technical Reports Server (NTRS)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  9. A Major Effect QTL on Chromosome 18 for Noise Injury to the Mouse Cochlear Lateral Wall

    PubMed Central

    Ohlemiller, Kevin K.; Rosen, Allyson D.; Gagnon, Patricia M.

    2009-01-01

    We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M. 2007. Genetic dependence of cochlear cells and structures injured by noise. Hearing Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8 weeks later. Analysis of B6×CBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBA×B6) × B6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for Noise-induced reduction in EP QTL), and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic ‘reserve’ of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability. PMID:19913606

  10. Effects of ytterbium on electrical and optical properties of BCP/Ag/WO3 transparent electrode based organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Oh, Il Soo; Ji, Chan Hyuk; Oh, Se Young

    2016-01-01

    This study introduces dielectric/metal/dielectric multilayers based on a WO3/Ag/WO3 (WAW) anode and Yb/BCP/Ag/WO3 (Yb/BAW) cathode for use in organic photovoltaic cells (OPVs). Here, the Yb/BCP hybrid multilayer provides an effective electron transport layer (ETL), while the Yb doping ensures that voltage loss due to interfacial band bending is effectively suppressed. Transparent OPVs produced with a structure of WAW/P3HT:PCBM/Yb/BAW are shown to exhibit a power conversion efficiency (PCE) of up to 2.42%, achieving a 65.4% fill factor (FF) under one sun irradiation. These results indicate that the use of Yb in transparent OPVs is vastly superior to other ETLs, as it improves the majority of critical parameters such as short circuit current (Jsc), fill factor (FF) and PCE. This is attributed to a decrease in the series resistance and increase in the shunt resistance, while an increase in electron mobility also helps to ensure faster sweep out. [Figure not available: see fulltext.

  11. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    PubMed

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  12. Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films

    NASA Astrophysics Data System (ADS)

    Visalakshi, S.; Kannan, R.; Valanarasu, S.; Kim, Hyun-Seok; Kathalingam, A.; Chandramohan, R.

    2015-09-01

    Solar cell property of p-CuO/n-Si heterojunction was investigated using SILAR-deposited CuO thin films. The effects of copper salt concentration on the growth of CuO films and its effect on the efficiency in solar cell conversion were investigated. Structural, morphological, optical and electrical studies of the CuO thin films deposited at 90 °C with different copper sulphate concentrations are reported. Crystallinity of the film is found to increase with the increase in copper sulphate concentration. The measured Raman spectrum of the deposited film showed peaks corresponding to CuO phase. It is observed by the SEM that the film is homogeneous fully covering the substrate. The optical band gap of the deposited film has exhibited a decrease in band gap from 1.76 to 1.57 eV with the increase in copper sulphate concentration. Solar cell device was constructed using the p-CuO film deposited on n-silicon substrate, and its photovoltaic response was measured. It showed increasing photoresponse with increasing concentration of copper sulphate.

  13. The Photovoltaic Effect of CdS Quantum Dots Synthesized in Inverse Micelles and R-Phycoerythrin Tunnel Cavities.

    PubMed

    Bekasova, Olga D; Revina, Alexandra A; Kornienko, Ekaterina S; Kurganov, Boris I

    2015-06-01

    CdS quantum dots (CdS QDs) 4.3 nm in diameter synthesized in an AOT/isooctane/water microemulsion and in R-phycoerythrin tunnel cavities (3.5 × 6.0 nm) were analyzed for photoelectrochemical properties. The CdS QDs preparations were applied onto a platinum electrode to obtain solid films. Experiments were performed in a two-section vessel, with one section filled with ethanol and the other, with 3 M KCl. The sections were connected through an agar stopper. It was found that illumination of the films resulted in a change of the electrode potential. The magnitude of this change and the kinetics of the appearance and disappearance of the photopotential, i.e., the difference between the electrode potential on the light and in dark, depended on the nature of the QD shell. The photovoltaic effect of CdS QDs in R-phycoerythrin, compared to that of CdS QDs in AOT/isooctane micelles, is three to four times greater due to the photosensitizing action of R-phycoerythrin. The photosensitized effect was markedly higher than the photoelectric sensitivity of R-phycoerythrin and had the opposite polarity. Changes in the potential upon turning the light on and off could be observed repeatedly.

  14. Effects of ventromedial and lateral hypothalamic stimulation on chemically-induced liver injury in rats

    SciTech Connect

    Iwai, M.; Shimazu, T.

    1988-01-01

    The effects of hypothalamic stimulation on experimental liver injury induced by carbon tetrachloride (CCL/sub 4/) or dimethylnitrosamine (DMN) were studied in rats, by measuring plasma alanine amino-transferase (ALT) activity as an index of acute liver injury. Electrical stimulation of the ventromedial hypothalamus (VHM) in CCl/sub 4/-treated rats caused a marked increase in plasma ALT activity, accompanied by a significant decrease in ALT activity in the liver, although CCl4 treatment alone had no significant effect on plasma ALT activity. A similar effect of VHM stimulation on plasma ALT activity was observed in rats treated with DMN, another hepatotoxic chemical. No such exaggerated effect of VMH stimulation on plasma ALT activity was observed after stimulation of the lateral hypothalamic area (LH). Surgical sympathetic denervation of the liver greatly suppressed the increase in plasma ALT activity after CCl/sub 4/ injection and VMH stimulation. Measurement of regional blood flow indicated that VMH stimulation did not produce a significant change in blood flow to the liver. These results suggest that the VMH is involved in the progress of chemically-induced liver injury through activation of the sympathetic nerve, possibly by affecting liver metabolism more than the blood flow change to the liver.

  15. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  16. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  17. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  18. The Persistent Effects of Minimum Legal Drinking Age Laws on Drinking Patterns Later in Life

    PubMed Central

    Plunk, Andrew D.; Cavazos-Rehg, Patricia; Bierut, Laura J.; Grucza, Richard A.

    2012-01-01

    Background Exposure to permissive minimum legal drinking age (MLDA) laws not only affects young adults in the short term, but also later in life; for example, individuals who could legally purchase alcohol before age 21 are more likely to suffer from drinking problems as older adults, long after the laws had been changed. However, it is not known how permissive MLDA exposure affects specific drinking behavior. This present study uses changes in MLDA laws during the 1970s and 1980s as a natural experiment to investigate the potential impact of permissive MLDA exposure on average alcohol consumption, frequency of drinking, and on patterns of binging and more moderate, non-heavy drinking. Methods Policy exposure data were paired with alcohol use data from the 1991–1992 National Longitudinal Alcohol Epidemiologic Survey and the 2001–2002 National Epidemiologic Survey on Alcohol and Related Conditions. Past-year drinkers born between 1949 and 1972 (n = 24,088) were included. Average daily intake, overall drinking frequency, and frequency of both binge episodes (5+ drinks) and days without a binge episode (non-heavy drinking) for the previous year at the time of interview were tracked for each respondent. Results Exposure to permissive MLDAs was associated with higher odds to report frequent binging and lower odds to report any moderate drinking; these associations were largely driven by men and those who did not attend college. Overall drinking frequency and average alcohol consumption were not affected by MLDA exposure. Conclusions The ability to legally purchase alcohol before age 21 does not seem to increase overall drinking frequency, but our findings suggest that it is associated with certain types of problematic drinking behaviors that persist into later adulthood: more frequent binge episodes and less frequent non-heavy drinking. We also propose that policymakers and critics should not focus on college drinking when evaluating the effectiveness of MLDAs. PMID

  19. Effects of bilateral and non-dominant practices on the lateral preference in judo matches.

    PubMed

    Iglesias-Soler, Eliseo; Mayo, Xian; Dopico, Xurxo; Fernández-Del-Olmo, Miguel; Carballeira, Eduardo; Fariñas, Juan; Fernández-Uribe, Sergio

    2017-01-26

    This study analysed the effects of bilateral and non-dominant practice on novice practitioners' lateral preference for judo skills in a combat context (i.e., randori). Thirty sports sciences students (22 men and 8 women; mean age 19 ± 1 years) with right hand, foot, and counterclockwise rotation preferences were divided into 3 groups: bilateral (BG; n = 8), non-dominant (NDG; n = 11), and control (CG; n = 11). Participants received 8 weeks of training at a rate of 3 days per week. The NDG was trained to perform judo skills exclusive with their non-dominant side, while the BG performed every task symmetrically. Before and after training, participants were recorded during two 3-min randoris to obtain the percentage of their engagement in dominant side actions. Pretest percentages were 73.1 ± 19.9%, 77.8 ± 18.8%, and 68.9 ± 27.2% for BG, NDG, and CG, respectively. Post-test values were 75.0 ± 15.6%, 23.3 ± 27.9%, and 72.2.9 ± 20.4%, respectively. Significant differences were observed between NDG and each of the other groups after the training. Changes from pretest were only significant for NDG (P = 0.003). These results suggest that lateral preference among novice judo practitioners during randori can be modulated by the type of practice.

  20. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks.

    PubMed

    Zelenin, P V; Lyalka, V F; Orlovsky, G N; Deliagina, T G

    2016-12-17

    In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions.

  1. Effect of different lateral occlusion schemes on peri-implant strain: A laboratory study

    PubMed Central

    Lo, Jennifer; Palamara, Joseph

    2017-01-01

    PURPOSE This study aims to investigate the effects of four different lateral occlusion schemes and different excursions on peri-implant strains of a maxillary canine implant. MATERIALS AND METHODS Four metal crowns with different occlusion schemes were attached to an implant in the maxillary canine region of a resin model. The included schemes were canine-guided (CG) occlusion, group function (GF) occlusion, long centric (LC) occlusion, and implant-protected (IP) occlusion. Each crown was loaded in three sites that correspond to maximal intercuspation (MI), 1 mm excursion, and 2 mm excursion. A load of 140 N was applied on each site and was repeated 10 times. The peri-implant strain was recorded by a rosette strain gauge that was attached on the resin model buccal to the implant. For each loading condition, the maximum shear strain value was calculated. RESULTS The different schemes and excursive positions had impact on the peri-implant strains. At MI and 1 mm positions, the GF had the least strains, followed by IP, CG, and LC. At 2 mm, the least strains were associated with GF, followed by CG, LC, and IP. However, regardless of the occlusion scheme, as the excursion increases, a linear increase of peri-implant strains was detected. CONCLUSION The peri-implant strain is susceptible to occlusal factors. The eccentric location appears to be more influential on peri-implant strains than the occlusion scheme. Therefore, adopting an occlusion scheme that can reduce the occurrence of occlusal contacts laterally may be beneficial in reducing peri-implant strains. PMID:28243391

  2. Effective elastic thickness of the Venusian lithosphere with lateral viscosity variations in the mantle

    NASA Technical Reports Server (NTRS)

    Moresi, Louis

    1993-01-01

    Both the Earth and Venus have a convecting mantle at the top of which is a relatively strong, mechanical boundary layer. The surface topography and gravity signals which result from the convection within the viscous mantle are modified by the elastic properties of this lithospheric boundary layer. In particular the ability of the lithosphere to support loads and transmit stresses from below is a function of the wavelength of the load--the lithosphere is strong to loading at shorter wavelengths. As a consequence it is usual to expect that long wavelength topography cannot be supported by the mechanical strength of the lithosphere and must be compensated--isostatically or dynamically--within the uppermost mantle or the crust. The flexural rigidity of the lithosphere can therefore be determined by estimating the greatest wavelength at which uncompensated surface topography can be supported, usually by measuring the admittance as a function of wavelength. In fact this procedure for determining the elastic thickness relies upon being able to distinguish topography with underlying support from that supported by the brittle lithosphere on the basis of their each having a characteristic value of the admittance. However, in the presence of lateral viscosity variations in the mantle, it is possible for topography to be generated which is NOT compensated by density anomalies in the underlying mantle at the same wavelength. Although this effect is not likely to be important for the Earth, on Venus, where the high surface temperatures would be expected to give a weaker lithosphere, lateral viscosity variations in the mantle can give a misleadingly large apparent elastic thickness for the lithosphere.

  3. The impact of laterally coupled grating microstructure on effective coupling coefficients.

    PubMed

    Millett, R; Hinzer, K; Benhsaien, A; Hall, T J; Schriemer, H

    2010-04-02

    Lithographic fabrication may be used to define laterally coupled gratings of high refractive index contrast on waveguide ridges, eliminating the need for regrowth steps in such distributed feedback lasers. These may be made more amenable to fabrication by employing higher-order gratings. Reliable exploration of the laser design space requires that the radiating partial waves be accurately incorporated in numerical simulations. We modify the coupled-mode approach to fully consider the two-dimensional cross section, analyzing rectangular, sinusoidal, triangular and trapezoidal grating shapes. Effective coupling coefficients are determined for grating orders from first to third. We show that, by tailoring the grating microstructure, effective coupling coefficients up to double that of a 0.5 duty cycle rectangular grating can be achieved. The actual grating microstructure of an as-fabricated grating was analyzed and its effective coupling coefficient predicted as [Formula: see text]. This was found to be in excellent agreement with the value extracted from the amplified spontaneous emission spectrum, [Formula: see text].

  4. Influence of Atmospheric Variations on Photovoltaic Performance and Modeling Their Effects for Days with Clear Skies: Preprint

    SciTech Connect

    Marion, B.

    2012-06-01

    Although variation in photovoltaic (PV) performance is predominantly influenced by clouds, performance variations also exist for days with clear skies with different amounts of atmospheric constituents that absorb and reflect different amounts of radiation as it passes through the earth's atmosphere. The extent of the attenuation is determined by the mass of air and the amounts of water vapor, aerosols, and ozone that constitute the atmosphere for a particular day and location. Because these constituents selectively absorb radiation of particular wavelengths, their impact on PV performance is sensitive to the spectral response of the PV device. The impact may be assessed by calculating the spectral mismatch correction. This approach was validated using PV module performance data at the National Renewable Energy Laboratory (NREL) for summer, fall, and winter days with clear skies. The standard deviation of daily efficiencies for single-crystal Si, a-Si/a-Si/a-Si:Ge, CdTe, and CIGS PV modules were reduced to 0.4% to 1.0% (relative) by correcting for spectral mismatch, temperature, and angle-of-incidence effects.

  5. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    NASA Astrophysics Data System (ADS)

    Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.

    2015-09-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.

  6. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect.

    PubMed

    Tang, Longhua; Zhu, Yihua; Yang, Xiaoling; Sun, Jinjie; Li, Chunzhong

    2008-10-15

    A novel multi-components hybrid material, self-assembled quantum dots (CdS) and glutamate dehydrogenase (GDH) onto multiwall carbon nanotubes (CNTs), was designed for amperometric biosensing system. The zeta-potential and transmission electron microscopy (TEM) analyses confirmed the uniform growth of the CdS/GDH onto carboxyl-functionalized CNTs. Compared with the single CdS, the resulting hybrid material showed more efficient generation of photocurrent upon illumination. The incident light excites CdS and generates charge carriers, and then CNTs facilitates the charge transfer. For dehydrogenase-based biosensor, normally, the cofactor of beta-nicotinamide adenine dinucleotide (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate (NADP(+)) is necessary. Furthermore, we found the photovoltaic effect of CNTs/CdS/GDH can trigger the dehydrogenase enzymatic reaction in the absence of the NAD(+) or NADP(+) cofactors. The electrochemical experiment results also demonstrate that the cofactor-independent dehydrogenase biosensing system had series attractive characteristics, such as a good sensitivity (11.9 nA/microM), lower detection limit (up to 50 nM), an acceptable reproducibility and stability. These studies aid in understanding the combination of the semiconductor nanohybrids (CNTs/QDs, etc.) and biomolecules (enzymes, etc.), which has potential for the applications in biosensor, biofuel cell, biomedical and other bioelectronics field.

  7. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3

    PubMed Central

    Peng, Yi-Ting; Chiou, Shan-Haw; Hsiao, Ching-Hung; (Hao) Ouyang, Chuenhou; Tu, Chi-Shun

    2017-01-01

    Remarkably enhanced photovoltaic effects have been observed in the heterostructures of p-type A-site Nd3+-doped BiFeO3 (Bi0.9375Nd0.0625)FeO3 (or BFONd) polycrystalline ceramics and the n-type ITO thin film. The maximum power conversion is ~0.82%, which is larger than 0.015% in BiFeO3 (BFO) under blue-ultraviolet irradiation of wavelength λ = 405 nm. The current-voltage (I-V) characteristic curve suggests a p-n junction interface between the ITO thin film and BFO (or BFONd) ceramics. The band gaps calculated from first-principles for BFO and BFONd are respectively 2.25 eV and 2.23 eV, which are consistent with the experimental direct band gaps of 2.24 eV and 2.20 eV measured by optical transmission spectra. The reduction of the band gap in BFONd can be explained by the lower electronic Fermi level due to acceptor states revealed by first-principles calculations. The optical calculations show a larger absorption coefficient in BFONd than in BFO. PMID:28337977

  8. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Peng, Yi-Ting; Chiou, Shan-Haw; Hsiao, Ching-Hung; (Hao) Ouyang, Chuenhou; Tu, Chi-Shun

    2017-03-01

    Remarkably enhanced photovoltaic effects have been observed in the heterostructures of p-type A-site Nd3+-doped BiFeO3 (Bi0.9375Nd0.0625)FeO3 (or BFONd) polycrystalline ceramics and the n-type ITO thin film. The maximum power conversion is ~0.82%, which is larger than 0.015% in BiFeO3 (BFO) under blue-ultraviolet irradiation of wavelength λ = 405 nm. The current-voltage (I-V) characteristic curve suggests a p-n junction interface between the ITO thin film and BFO (or BFONd) ceramics. The band gaps calculated from first-principles for BFO and BFONd are respectively 2.25 eV and 2.23 eV, which are consistent with the experimental direct band gaps of 2.24 eV and 2.20 eV measured by optical transmission spectra. The reduction of the band gap in BFONd can be explained by the lower electronic Fermi level due to acceptor states revealed by first-principles calculations. The optical calculations show a larger absorption coefficient in BFONd than in BFO.

  9. The effect of optical properties on photovoltaic performance in dye-sensitized TiO2 nanocrystalline solar cells.

    PubMed

    Ji, Ya-Jun; Zhang, Ming-Dao; Cui, Jie-Hu; Zheng, He-Gen; Zhu, Jun-Jie

    2013-06-01

    In this study, well-crystallized TiO2 nanoparticles with average size of -20 nm were synthesized by hydrolysis of titania salt in aqueous medium. The effect of the optical properties of the obtained titania particles based thin films with different thickness on the photovoltaic performance of dye-sensitized solar cells were investigated. Differential thermal analysis/thermo-gravimetric analysis, scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the morphology, structure and crystal formation of the obtained samples. The optical properties such as reflectance and transmittance of the photoanodes with different thickness were systematically investigated. The reflectance property increased with increasing the film thickness, however, the transmittance property showed the opposite way. The improved scattering property with increasing the film thickness facilitated efficient utilization of solar spectrum, which was verified by incident photon-to-current conversion efficiency. The maximum energy conversion efficiency of 5.0% was achieved on photoelectrode film with 17.8 microm.

  10. Effect of sulfur doped TiO2 on photovoltaic properties of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Nam, Sang-Hun; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Boo, Jin-Hyo

    2016-07-01

    In a dye-sensitized solar cell (DSC), a nano-porous semiconductor layer plays an important role in the performance. It determines open-circuit voltage and it affects the dye adsorption capacity and charge transfer, which are closely associated with photocurrent and overall performance. TiO2 is the most proper material for nano-porous layer since the first development of DSCs. This work focuses on the enhancement of TiO2 by doping. Sulfur (S) doping enhances charge transfer and the photoconversion of TiO2. Therefore, the increase in photocurrent and efficiency is expected by S doping. S is doped into TiO2 by hydrolysis method. The amount of S is varied and their photo-responses are verified. The most effective S doped TiO2 is applied to DSCs. Overall performance of DSC is enhanced by the addition of S doped TiO2. Especially, the photocurrent is much increased by the improvement on charge transfer, electron lifetime, and photo-conversion. The photovoltaic properties of DSCs are investigated with various ratios of undoped and S doped TiO2. Finally, a DSC based on undoped and S doped TiO2 ratio of 1:1 has the highest efficiency, better than that of a standard DSC based on undoped TiO2. [Figure not available: see fulltext.

  11. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect

    PubMed Central

    Zhang, Ganghua; Wu, Hui; Li, Guobao; Huang, Qingzhen; Yang, Chongyin; Huang, Fuqiang; Liao, Fuhui; Lin, Jianhua

    2013-01-01

    Intrinsic polarization of ferroelectrics (FE) helps separate photon-generated charge carriers thus enhances photovoltaic effects. However, traditional FE with transition-metal cations (M) of d0 electron in MO6 network typically has a band gap (Eg) exceeding 3.0 eV. Although a smaller Eg (2.6 eV) can be obtained in multiferroic BiFeO3, the value is still too high for optimal solar energy applications. Computational “materials genome” searches have predicted several exotic MO6 FE with Eg < 2.0 eV, all thus far unconfirmed because of synthesis difficulties. Here we report a new FE compound with MO4 tetrahedral network, KBiFe2O5, which features narrow Eg (1.6 eV), high Curie temperature (Tc ~ 780 K) and robust magnetic and photoelectric activities. The high photovoltage (8.8 V) and photocurrent density (15 μA/cm2) were obtained, which is comparable to the reported BiFeO3. This finding may open a new avenue to discovering and designing optimal FE compounds for solar energy applications. PMID:23405279

  12. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    PubMed

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers.

  13. The effects of parental divorce: experiences of the child in later latency.

    PubMed

    Wallerstein, J S; Kelly, J B

    1976-04-01

    This paper discusses the impact of divorce on 31 children in later latency, as observed shortly after the initial parental separation and one year later. The material is part of an on-going clinical study, begun in 1970, of 131 children and adolescents from 60 divorcing families in Northern California.

  14. Nicotinic receptor-mediated biphasic effect on neuronal excitability in chick lateral spiriform neurons.

    PubMed

    Liu, Y-B; Guo, J-Z; Chiappinelli, V A

    2007-09-21

    Local neuronal circuits integrate synaptic information with different excitatory or inhibitory time windows. Here we report that activation of nicotinic acetylcholine receptors (nAChRs) leads to biphasic effects on excitability in chick lateral spiriform (SPL) neurons during whole cell recordings in brain slices. Carbachol (100 microM in the presence of 1 microM atropine) produced an initial short-term increase in the firing rates of SPL neurons (125+/-14% of control) that was mediated by postsynaptic nAChRs. However, after 3 min exposure to nicotinic agonists, the firing rate measured during an 800 ms depolarizing pulse declined to 19+/-7% (100 microM carbachol) or 26+/-8% (10 microM nicotine) of the control rate and remained decreased for 10-20 min after washout of the agonists. Similarly, after 60 s of electrically-stimulated release of endogenous acetylcholine (ACh) from cholinergic afferent fibers, there was a marked reduction (45+/-5% of control) in firing rates in SPL neurons. All of these effects were blocked by the nAChR antagonist dihydro-beta-erythroidine (30 microM). The inhibitory effect was not observed in Ca(2+)-free buffer. The nAChR-mediated inhibition depended on active G-proteins in SPL neurons and was prevented by the GABA(B) receptor antagonist phaclofen (200 microM), while the GABA(B) receptor agonist baclofen (10 microM) decreased firing rate in SPL neurons to 13+/-1% of control. The inhibitory response thus appears to be due to a nAChR-mediated enhancement of presynaptic GABA release, which then activates postsynaptic GABA(B) receptors. In conclusion, activation of nAChRs in the SPL initiates a limited time window for an excitatory period, after which a prolonged inhibitory effect turns off this window. The prolonged inhibitory effect may serve to protect SPL neurons from excessive excitation.

  15. β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS).

    PubMed

    Bartus, Raymond T; Bétourné, Alexandre; Basile, Anthony; Peterson, Bethany L; Glass, Jonathan; Boulis, Nicholas M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved β2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although β2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of β2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of β2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of β-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that β2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of β2-agonists are evaluated. In sum, effective, safe and orally-active β2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need.

  16. Screening-engineered Field-effect Photovoltaics and Synthesis, Characterization, and Applications of Carbon-based and Related Nanomaterials

    NASA Astrophysics Data System (ADS)

    Regan, William Raymond

    Carbon nanomaterials, and especially graphene (a 2D carbon allotrope), possess unique electronic, optical, and mechanical properties and allow access to both new physical phenomena and reinventions of familiar technologies. In the first part of this thesis (chapter 2), the low carrier density and high conductivity of graphene are used to repurpose the electric field effect (used for many decades in transistors) into a universally-applicable doping method for electrically-contacted semiconductors. This method, referred to as "screening-engineered field-effect photovoltaics" as the electric field doping is enabled by a carefully-designed poorly-screening electrode (e.g. graphene), is shown to open up many new low-cost and abundant semiconductors for use in high efficiency solar cells. We extend this method beyond ultrathin materials such as graphene and show that 1D nanowire electrodes made of any material also allow penetration of applied electric fields. The next part of this thesis (chapter 3) focuses on the fundamental properties of graphene -- its structure, synthesis, characterization, and manipulation -- and on using graphene as a building block for other nanostructures: grafold, graphene sandwiches and veils, and graphritos. In chapter 4, various graphene electronics are constructed and tested. Graphene field-effect transistors (FETs) and p-n junctions are fabricated to study the influence of the substrate on graphene carrier mobility and doping. Graphene nanoribbons and grafold FETs are made to investigate the effects of additional confinement on electronic transport. Chapter 5 summarizes synthesis methods and additional experiments with other nanomaterials, including dichalcogenides and chalcogenides (magnesium diboride, gallium selenide, and tin sulfide), carbon nanomaterials (carbon nanotubes and graphene), and copper oxide. Additional measurement and fabrication methods are discussed in appendix A.

  17. Drag measurements in laterally confined 2D canopies: Reconfiguration and sheltering effect

    NASA Astrophysics Data System (ADS)

    Barsu, Sylvie; Doppler, Delphine; Jerome, J. John Soundar; Rivière, Nicolas; Lance, Michel

    2016-10-01

    Plants in aquatic canopies deform when subjected to a water flow and so, unlike a rigid bluff body, the resulting drag force FD grows sub-quadratically with the flow velocity U ¯ . In this article, the effect of density on the canopy reconfiguration and the corresponding drag reduction is experimentally investigated for simple 2D synthetic canopies in an inclinable, narrow water channel. The drag acting on the canopy, and also on individual sheets, is systematically measured via two independent techniques. Simultaneous drag and reconfiguration measurements demonstrate that data for different Reynolds numbers (400-2200), irrespective of sheet width (w) and canopy spacing (ℓ), collapse on a unique curve given by a bending beam model which relates the reconfiguration number and a properly rescaled Cauchy number. Strikingly, the measured Vogel exponent V and hence the drag reduction via reconfiguration is found to be independent of the spacing between sheets and the lateral confinement; only the drag coefficient decreases linearly with the sheet spacing since a strong sheltering effect exists as long as the spacing is smaller than a critical value depending on the sheet width.

  18. Effective Modulation of Male Aggression through Lateral Septum to Medial Hypothalamus Projection.

    PubMed

    Wong, Li Chin; Wang, Li; D'Amour, James A; Yumita, Tomohiro; Chen, Genghe; Yamaguchi, Takashi; Chang, Brian C; Bernstein, Hannah; You, Xuedi; Feng, James E; Froemke, Robert C; Lin, Dayu

    2016-03-07

    Aggression is a prevalent behavior in the animal kingdom that is used to settle competition for limited resources. Given the high risk associated with fighting, the central nervous system has evolved an active mechanism to modulate its expression. Lesioning the lateral septum (LS) is known to cause "septal rage," a phenotype characterized by a dramatic increase in the frequency of attacks. To understand the circuit mechanism of LS-mediated modulation of aggression, we examined the influence of LS input on the cells in and around the ventrolateral part of the ventromedial hypothalamus (VMHvl)-a region required for male mouse aggression. We found that the inputs from the LS inhibited the attack-excited cells but surprisingly increased the overall activity of attack-inhibited cells. Furthermore, optogenetic activation of the projection from LS cells to the VMHvl terminated ongoing attacks immediately but had little effect on mounting. Thus, LS projection to the ventromedial hypothalamic area represents an effective pathway for suppressing male aggression.

  19. TiO2 photoanode sensitized with nanocrystalline Bi2S3: the effect of sensitization time and annealing on its photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anil N.; Rajendra Prasad, M. B.; Pathan, Habib M.; Patil, Rajendra S.

    2016-04-01

    This work deals with the sensitization of the porous TiO2 films of thickness about 4 µm deposited on fluorine-doped tin oxide with nanocrystalline Bi2S3 for photovoltaic application. The sensitization was achieved for four different sensitization times employing chemical solution deposition with bismuth nitrate and sodium thiosulphate as precursors for Bi3+ and S2-, respectively. The unsensitized and sensitized photoelectrodes were characterized using X-ray diffractometry, scanning electron microscopy and diffused reflectance spectroscopy. XRD patterns show the signatures of both anatase TiO2 and orthorhombic Bi2S3 in the sensitized photoanodes. However, crystallinity of Bi2S3 increased with increase in sensitization time from 10 to 40 min. The temporal effect of sensitization and annealing on the photovoltaic performance of the solar cells fabricated using four different photoelectrodes was studied using the photocurrent density versus photovoltage curves. Annealing apparently improved the photovoltaic performance of photoanodes. The best performance was obtained for cell fabricated using annealed TiO2/Bi2S3 photoanode after 30 min sensitization time showing V oc ~ 0.37 mV, J sc ~ 0.52 mA/cm2, FF ~ 68 and 0.43 %.

  20. Adverse Effects of Excess Residual PbI2 on Photovoltaic Performance, Charge Separation, and Trap-State Properties in Mesoporous Structured Perovskite Solar Cells.

    PubMed

    Wang, Hao-Yi; Hao, Ming-Yang; Han, Jun; Yu, Man; Qin, Yujun; Zhang, Pu; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping

    2017-03-17

    Organic-inorganic halide perovskite solar cells have rapidly come to prominence in the photovoltaic field. In this context, CH3 NH3 PbI3 , as the most widely adopted active layer, has been attracting great attention. Generally, in a CH3 NH3 PbI3 layer, unreacted PbI2 inevitably coexists with the perovskite crystals, especially following a two-step fabrication process. There appears to be a consensus that an appropriate amount of unreacted PbI2 is beneficial to the overall photovoltaic performance of a device, the only disadvantageous aspect of excess residual PbI2 being viewed as its insulating nature. However, the further development of such perovskite-based devices requires a deeper understanding of the role of residual PbI2 . In this work, PbI2 -enriched and PbI2 -controlled perovskite films, as two extreme cases, have been prepared by modulating the crystallinity of a pre-deposited PbI2 film. The effects of excess residual PbI2 have been elucidated on the basis of spectroscopic and optoelectronic studies. The initial charge separation, the trap-state density, and the trap-state distribution have all been found to be adversely affected in PbI2 -enriched devices, to the detriment of photovoltaic performance. This leads to a biphasic recombination process and accelerates the charge carrier recombination dynamics.

  1. The Supraclavicular Artery Flap for Lateral Skull and Scalp Defects: Effective and Efficient Alternative to Free Tissue Transfer

    PubMed Central

    Hunt, Jason P.; Buchmann, Luke O.

    2014-01-01

    Objectives Describe the use of the supraclavicular artery flap for reconstruction of lateral skull and scalp defects. Discuss advantages and potential limitations of the supraclavicular artery flap. Design Case series. Setting Tertiary care academic medical center. Participants Patients undergoing lateral scalp and skull base resections. Main Outcome Measures Effectiveness in reconstructing lateral skull base defects and complications. Results All three patients reconstructed with the supraclavicular artery flap had excellent reconstructive outcomes. There were no flap losses, either complete or partial. There were no major complications, but one patient had a significant donor site dehiscence requiring local wound care. Referred sensation to the shoulder was alleviated by division of the sensory innervations into the flap. Conclusions The supraclavicular artery flap is an excellent option for lateral skull and scalp defects, and donor site morbidity is limited. It should be considered as an alternative to free tissue transfer. PMID:25083389

  2. Effects of lateral perturbations and changing stance conditions on anticipatory postural adjustment.

    PubMed

    Santos, Marcio J; Aruin, Alexander S

    2009-06-01

    The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB - in comparison to RB - stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.

  3. Effect of Pneumoperitoneum and Lateral Position on Oropharyngeal Seal Pressures of Proseal LMA in Laparoscopic Urological Procedures

    PubMed Central

    Patkar, Geeta A.; Ourasang, Anil Kumar; Tendolkar, Bharati A.

    2017-01-01

    Introduction A sustained and effective oropharyngeal sealing with supraglottic airway is required to maintain the ventilation during laparoscopic surgery. Previous studies have observed the Oropharyngeal Seal Pressure (OSP) for Proseal Laryngeal Mask Airway (PLMA) after pneumoperitoneum in supine and trendelenburg position, where PLMA was found to be an effective airway device. This study was conducted with ProSeal LMA, for laparoscopic Urologic procedures done in lateral position. Aim To measure OSP in supine and lateral position and to observe the effect of pneumoperitoneum in lateral position on OSP. Secondary objectives were to assess adequacy of ventilation and incidence of adverse events. Materials and Methods A total number of 25 patients of American Society of Anaesthesiologists (ASA) physical status II and I were enrolled. After induction of anaesthesia using a standardized protocol, PLMA was inserted. Ryle’s tube was inserted through drain tube. The position of PLMA was confirmed with ease of insertion of Ryle’s tube and fibreoptic grading of vocal cords. Patients were then put in lateral position. The OSP was measured in supine position. This value was baseline comparison for OSP in lateral position and that after pneumoperitoneum. We assessed the efficacy of PLMA for ventilation, after carboperitoneum in lateral position (peak airway pressure, End Tidal Carbon dioxide (EtCO2), SPO2). Incidence of adverse effects (displacement of device, gastric insufflation, regurgitation, coughing, sore throat, blood on device, trauma) was also noted. Results The OSP was above Peak Airway Pressure (PAP) in supine (22.1±5.4 and 15.4±4.49cm of H2O) and lateral position (22.6±5.3 and 16.1±4.6). After pneumoperitoneum, which was in lateral position, there was statistically significant (p-value <0.05) increase in both PAP (19.96±4.015) and OSP (24.32±4.98, p-value 0.03). There was no intraoperative displacement of PLMA. There was no event of suboptimal oxygenation

  4. Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Eleventh Space Photovoltaic Research and Technology conference was held at NASA Lewis Research Center from May 7 to 9, 1991. The papers and workshop summaries presented here report remarkable progress on a wide variety of approaches in space photovoltaics, both near and far term applications. Papers were presented in a variety of technical areas, including multijunction cell technology, GaAs and InP cells, system studies, cell and array development, and photovoltaics for conversion of laser radiation. Three workshops were held to discuss thin film cell development, III-V cell development, and space environmental effects.

  5. Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis.

    PubMed

    Jeon, Gye Sun; Im, Wooseok; Shim, Yu-Mi; Lee, Mijung; Kim, Myung-Jin; Hong, Yoon-Ho; Seong, Seung-Yong; Kim, Manho; Sung, Jung-Joon

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.

  6. Lateral cascade of indirect effects in food webs with different types of adaptive behavior.

    PubMed

    Kamran-Disfani, Ahmad R; Golubski, Antonio J

    2013-12-21

    It is widely recognized that indirect effects due to adaptive behaviors can have important effects on food webs. One consequence may be to change how readily perturbations propagate through the web, because species' behaviors as well as densities may respond to perturbations. It is not well understood which types of behavior are more likely to facilitate versus inhibit propagation of disturbances through a food web, or how this might be affected by the shape of a food web or the patterns of interaction strengths within it. We model two simple, laterally expanded food webs (one with three trophic levels and one with four), and compare how various adaptive behaviors affect the potential for a newly introduced predator to change the equilibrium densities of distant species. Patterns of changes in response to the introduction were qualitatively similar across most models, as were the ways in which patterns of direct interaction strengths affected those responses. Depending on both the web structure and the specific adaptive behavior, the potential for density changes to propagate through the web could be either increased or diminished relative to the no-behavior model. Two behaviors allowed density changes to propagate through a four-level web that precluded such propagation in the no-behavior model, and each of these two behaviors led to qualitatively different patterns of density changes. In the one model (diet choice) in which density changes were able to propagate in both web structures, patterns of density changes differed qualitatively between webs. Some of our results flowed from the fact that behaviors did not interact directly in the systems we considered, so that indirect effects on distant species had to be at least partly density-mediated. Our models highlight this as an inherent limitation of considering in isolation behaviors that are strictly foraging-related or strictly defense-related, making a case for the value of simultaneously considering multiple

  7. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration.

    PubMed

    Friedman, Alexander; Lax, Elad; Dikshtein, Yahav; Abraham, Lital; Flaumenhaft, Yakov; Sudai, Einav; Ben-Tzion, Moshe; Yadid, Gal

    2011-01-01

    The lateral habenula (LHb) plays a role in prediction of negative reinforcement, punishment and aversive responses. In the current study, we examined the role that the LHb plays in regulation of negative reward responses and aversion. First, we tested the effect of intervention in LHb activity on sucrose reinforcing behavior. An electrode was implanted into the LHb and rats were trained to self-administer sucrose (20%; 16 days) until at least three days of stable performance were achieved (as represented by the number of active lever presses in self-administration cages). Rats subsequently received deep brain stimulation (DBS) of the LHb, which significantly reduced sucrose self-administration levels. In contrast, lesion of the LHb increased sucrose-seeking behavior, as demonstrated by a delayed extinction response to substitution of sucrose with water. Furthermore, in a modified non-rewarding conditioned-place-preference paradigm, DBS of the LHb led to aversion to the context associated with stimulation of this brain region. We postulate that electrical stimulation of the LHb attenuates positive reward-associated reinforcement by natural substances.

  8. Effects of monocular deprivation on the lateral geniculate nucleus in a primate.

    PubMed Central

    Sesma, M A; Irvin, G E; Kuyk, T K; Norton, T T; Casagrande, V A

    1984-01-01

    In many mammalian species, rearing with one eyelid closed produces a loss of vision in the deprived eye and a change in cell size in the lateral geniculate nucleus (LGN). In cats, the reduction in the size of deprived LGN cells has been correlated with a loss of one functional class of cells, Y cells. In primates, such as galago, LGN cells also exhibit marked changes in size with deprivation. In the present study we recorded from single cells in the LGN of monocularly deprived galagos to determine if such changes in cell size would be accompanied by changes in physiological properties. The results revealed no alterations in the distribution or functional properties of any cell class. The differences in the effects of monocular deprivation on the function of LGN cells in cats and primates are most easily explained by a fundamental difference in visual system anatomy. In cats, different classes of retinal afferents (X vs. Y) are in a position to compete for postsynaptic LGN neurons: in primates, segregation of cell classes into different layers may preclude such developmental interactions. PMID:6585797

  9. Effects of spatial variation in membrane diffusibility and solubility on the lateral transport of membrane components.

    PubMed Central

    Eisinger, J; Halperin, B I

    1986-01-01

    There exist many examples of membrane components (e.g. receptors) accumulating in special domains of cell membranes. We analyze how certain variations in lateral diffusibility and solubility of the membrane would increase the efficiency of transport to these regions. A theorem is derived to show that the mean-time-of capture, tc, for particles diffusing to a trap from an annular region surrounding it, is intermediate to the tc values that correspond to the minimum and maximum diffusion coefficients that obtain in this region. An analytical solution for tc as a function of the gradient of diffusivity surrounding a trap is derived for circular geometry. Since local diffusion coefficients can be increased dramatically by reducing the concentration of intra-membrane particles and/or allowing them to form aggregates, such mechanisms could greatly enhance the diffusion-limited transport of particular membrane components to a trap (e.g. coated pit). If the trap is surrounded by an annular region in which the probe particles' partition function is increased, say, by the local segregation of certain phospholipids, tc is shown to vary inversely with the logarithm of the relative partition function. We provide some conjectural examples to illustrate the magnitude of the effects which heterogeneities in diffusibility and solubility may have in biological membranes. PMID:3756302

  10. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Tryggvason, Gretar

    2014-11-01

    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  11. Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Aponso, Bimal L.; Klyde, David H.

    1992-01-01

    This report presents the results of analysis of cockpit lateral control feel-system studies. Variations in feel-system natural frequency, damping, and command sensing reference (force and position) were investigated, in combination with variations in the aircraft response characteristics. The primary data for the report were obtained from a flight investigation conducted with a variable-stability airplane, with additional information taken from other flight experiments and ground-based simulations for both airplanes and helicopters . The study consisted of analysis of handling qualities ratings and extraction of open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited subset of these data, the development of pilot models. The study confirms the findings of other investigators that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable level of added time delay, and until a more comprehensive set of criteria are developed, it is recommended that feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correlation with time-delay requirements was found when the feel-system dynamics were included in the delay measurements, regardless of the command reference. This is a radical departure from past approaches.

  12. The effects of parental depressive symptoms, appraisals, and physical punishment on later child externalizing behavior.

    PubMed

    Callender, Kevin A; Olson, Sheryl L; Choe, Daniel E; Sameroff, Arnold J

    2012-04-01

    Examined a cognitive-behavioral pathway by which depressive symptoms in mothers and fathers increase risk for later child externalizing problem behavior via parents' appraisals of child behavior and physical discipline. Participants were 245 children (118 girls) at risk for school-age conduct problems, and their parents and teachers. Children were approximately 3 years old at Time 1 (T1) and 5 ½ years old at Time 2 (T2). At T1, mothers and fathers reported their depressive symptoms, perceptions of their child's reciprocal affection and responsiveness, frequency of physical punishment, and child externalizing problems. Mothers, fathers, and teachers provided ratings of externalizing behavior at T2. Structural equation modeling revealed that parents' negative attributions mediated positive relations between their depressive symptoms and frequency of physical punishment for both fathers and mothers. More frequent physical punishment, in turn, predicted increased child externalizing behavior at T2. In future research, transactional mechanisms underlying effects of clinical depression on child conduct problems should be explored at multiple stages of development. For parents showing depressive symptoms, restructuring distorted perceptions about their children's behavior may be an important component of intervention programs.

  13. Effect of lateral meniscectomy and osteochondral grafting of a lateral femoral condylar defect on contact mechanics: a cadaveric study in dogs

    PubMed Central

    2013-01-01

    Background Osteochondral autograft transfer (OAT) aims at restoring normal articular cartilage surface geometry and articular contact mechanics. To date, no studies have evaluated the contact mechanics of the canine stifle following OAT. Additionally, there are no studies that evaluated the role of the meniscus in contact mechanics following OAT in human or canine femorotibial joints. The objective of this study was to measure the changes in femorotibial contact areas (CA), mean contact pressure (MCP) and peak contact pressure (PCP) before and after osteochondral autograft transplantation (OAT) of a simulated lateral femoral condylar cartilage defect with an intact lateral meniscus and following lateral meniscectomy. Results With an intact lateral meniscus, creation of an osteochondral defect caused a decrease in MCP and PCP by 11% and 30%, respectively, compared to the intact stifle (p < 0.01). With an intact meniscus, implanting an osteochondral graft restored MCP and PCP to 96% (p = 0.56) and 92% (p = 0.41) of the control values. Lateral meniscectomy with grafting decreased CA by 54% and increased PCP by 79% compared to the intact stifle (p < 0.01). Conclusions OAT restored contact pressures in stifles with a simulated lateral condylar defect when the meniscus was intact. The lateral meniscus has a significant role in maintaining normal contact pressures in both stifles with a defect or following OAT. Meniscectomy should be avoided when a femoral condylar defect is present and when performing OAT. PMID:23522348

  14. Photovoltaics: The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presented. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  15. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  16. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.

  17. Photovoltaic development in Argentina

    SciTech Connect

    Godfrin, E.M.; Duran, J.C.; Frigerio, A.; Moragues, J.A.

    1994-12-31

    A critical assessment of the photovoltaic program in Argentina is presented. Research and development activities on photovoltaic cells as well as industrial and technological development are still in the initial stages. Activities accomplished by the Atomic Energy Commission (CNEA) and the Institute of Technology Development for the Chemical industry (INTEC) are briefly described. The evolution of photovoltaic installations in Argentina is analyzed and accumulative data up to 1993 are given. A summary of the potential market for photovoltaic systems in the short and medium term is presented.

  18. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat.

    PubMed

    Taghzouti, K; Le Moal, M; Simon, H

    1985-12-01

    The effect of local injections of 6-hydroxydopamine (6-OHDA) into the lateral septum was tested in a paradigm known to lead to an energizing behavior, through a possible frustrative effect, induced by partial or total omission of reward in hungry rats. Biochemical assays in the septum showed that 6-OHDA reduced endogenous dopamine and, to a lesser extent, noradrenaline concentrations and left intact noncatecholaminergic neurons such as serotoninergic terminals. The first behavioral experiment was conducted in a double straight alley. The animals were submitted to three phases of testing with differing degrees of reinforcement: (a) an acquisition phase, in which the reinforcement was continuously delivered in the goal box of the two alleys, (b) a partial reinforced phase, in which animals received 50% partial reinforcement in the first alley and continuous reinforcement in the second alley, and (c) an extinction phase performed in one alley without any reinforcement. Animals with lesions ran faster for food than controls in the partial reinforcement or extinction situation, although there was no difference between the two groups in the acquisition phase of the continuous schedule of reinforcement or in the 50% reinforced trials of the partial reinforcement phase. The two groups also behaved similarly after the first six trials of the extinction phase. In a second experiment, the animals were tested in a lever-press conditioning task. Animals with lesions and control animals learned this task equally well, both with respect to the number of lever presses and the time to obtain a fixed number of food pellets.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Laterality effects in motor learning by mental practice in right-handers.

    PubMed

    Gentili, R J; Papaxanthis, C

    2015-06-25

    Converging evidences suggest that mental movement simulation and actual movement production share similar neurocognitive and learning processes. Although a large body of data is available in the literature regarding mental states involving the dominant arm, examinations for the nondominant arm are sparse. Does mental training, through motor-imagery practice, with the dominant arm or the nondominant arm is equally efficient for motor learning? In the current study, we investigated laterality effects in motor learning by motor-imagery practice. Four groups of right-hander adults mentally and physically performed as fast and accurately as possible (speed/accuracy trade-off paradigm) successive reaching movements with their dominant or nondominant arm (physical-training-dominant-arm, mental-training-dominant-arm, physical-training-nondominant-arm, and mental-training-nondominant-arm groups). Movement time was recorded and analyzed before, during, and after the training sessions. We found that physical and mental practice had a positive effect on the motor performance (i.e., decrease in movement time) of both arms through similar learning process (i.e., similar exponential learning curves). However, movement time reduction in the posttest session was significantly higher after physical practice than motor-imagery practice for both arms. More importantly, motor-imagery practice with the dominant arm resulted in larger and more robust improvements in movement speed compared to motor-imagery practice with the nondominant arm. No such improvements were observed in the control group. Our results suggest a superiority of the dominant arm in motor learning by mental practice. We discussed these findings from the perspective of the internal models theory.

  20. The effectiveness of post-detoxication referrals: effects on later detoxication admissions, drunkenness and criminality.

    PubMed

    Smart, R G; Finley, J; Funston, R

    1977-05-01

    This study concerned the effectiveness of post-detoxication referrals to a variety of treatment facilities. The purpose was to discover (i) the proportion of men accepting referrals who actually arrived, (ii) the differences in outcome for patients attending an out-patient clinic, a halfway house, and a long-stay farm, (iii) the differences in outcomes for patients treated in one of the above facilities compared with those for similar patients not receiving treatment. In all, 114 male detoxication admissions were included. However, only 60% arrived, even when firm referrals were made. Those arriving and not arriving did not differ in social or demographic characteristics, nor did those who were referred to the various treatment facilities. However, the referral group had more detoxication admissions in the post-detoxication period. There were no post-treatment overall differences between all treated and untreated patients in detoxication admissions, arrests for drunkenness or criminal convictions. Refusals were more often successes than the treated or untreated groups but this was due to their better prognosis at intake. In general, the data provide little cause for optimism about the value of post-detoxication referrals.

  1. Immediate coronal plane kinetic effects of novel lateral-offset sole shoes and lateral-wedge insole shoes in healthy individuals.

    PubMed

    Kang, Jong Woo; Park, Hae Soo; Na, Choon Kyun; Park, Jong Woong; Hong, Jungwha; Lee, Soon Hyuck

    2013-02-01

    To investigate kinetic differences in the coronal plane between healthy individuals wearing shoes with lateral-offset soles and shoes with lateral-wedge insoles while walking, hip abduction, knee adduction, and ankle abduction moments were estimated using a 3-dimensional motion analysis system under 3 different conditions: wearing conventional shoes (control), wearing lateral-offset sole shoes (condition A), and wearing lateral-wedge insole shoes (condition B). Forty-eight healthy individuals (24 men and 24 women) were tested. Condition A resulted in a significantly reduced peak knee adduction moment compared with the control (condition A=0.316 Nm/kg; control=0.380 Nm/kg; P=.006). The peak knee adduction moment of condition B was also lower than that of the control (condition B=0.299 Nm/kg; P=.002); however, the peak knee adduction moment was not significantly different between conditions A and B (P=.386). Condition B resulted in an increased mean ankle abduction moment in the stance phase compared with the control and condition A (control=0.007 Nm/kg; condition A=0.013 Nm/kg; condition B=0.023 Nm/kg) (control vs condition A, P=.051; control vs condition B, P<.001; condition A vs condition B, P=.002). The hip abduction moments were not significantly different between the control and condition A, control and condition B, or conditions A and B. Wearing lateral-offset sole shoes reduces the peak knee adduction moment and exerts less influence on ankle moment than does wearing lateral-wedge insole shoes. Neither lateral-offset sole shoes nor lateral-wedge insole shoes induce kinetic changes in the coronal plane of the hip.

  2. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion.

    PubMed

    Yoo, Won-Gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring.

  3. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao; Wang, Zhikuan

    2016-09-01

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation.

  4. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion

    PubMed Central

    Yoo, Won-gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring. PMID:28210048

  5. Effect of the single-leg, lateral oblique, decline squat exercise on sacroiliac joint pain with knee pain

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] This study investigated the effect of the single-leg, lateral oblique, decline squat exercise on sacroiliac joint pain with knee pain. [Subjects and Methods] A 39-year-old female had severe pain in the right medial buttock and right anterior knee. This study assessed the anterior pelvic tilt angle and pain provocation tests before and after single-leg, lateral oblique, decline squat exercise for 4 weeks. [Results] Following the course of exercise, the anterior pelvic tilt angles were increased, and the visual analog scale pain scores for both the right buttock and right knee were 2/10. [Conclusion] Single-leg, lateral oblique, decline squat exercise may be effective for treating SI joint pain with knee pain in females. PMID:27799721

  6. Reliability Research for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald J., Jr.

    1986-01-01

    Report describes research approach used to improve reliability of photovoltaic modules. Aimed at raising useful module lifetime to 20 to 30 years. Development of cost-effective solutions to module-lifetime problem requires compromises between degradation rates, failure rates, and lifetimes, on one hand, and costs of initial manufacture, maintenance, and lost energy, on other hand. Life-cycle costing integrates disparate economic terms, allowing cost effectiveness to be quantified, allowing comparison of different design alternatives.

  7. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  8. Immediate Effects of Lumbopelvic Manipulation and Lateral Gluteal Kinesio Taping on Unilateral Patellofemoral Pain Syndrome

    PubMed Central

    Miller, Joseph; Westrick, Richard; Diebal, Angela; Marks, Christopher; Gerber, J. Parry

    2013-01-01

    Objectives: To determine the immediate effects of Kinesio taping directed to the hip and manipulation directed to the lumbopelvic region in individuals with unilateral patellofemoral pain syndrome (PFPS). Background: PFPS affects up to 25% of the general population. Despite the high prevalence, this condition is not clearly understood, as evidenced by the numerous proposed causes and recommended treatments. Notwithstanding, recent evidence suggests that treatments directed at the hip or spine may lead to beneficial results. Methods: A convenience sample of 18 participants (12 men and 6 women, 19.5 ± 1.15 years old) with unilateral PFPS was recruited. Participants were randomized by sex to 1 of 3 groups: Kinesio taping, manipulation, and control taping. The main outcome measures included the Y-balance test, squatting range of motion (ROM), and the Lower Extremity Functional Scale. Results: Compared with the lumbopelvic manipulation and control groups, those in the Kinesio taping group performed significantly better on the Y-balance test (F = 5.59, P = 0.02) and with squatting ROM (F = 3.93, P = 0.04). The Kinesio taping and lumbopelvic groups were also significantly better than the control (sham) group with double-leg squatting ROM performance 3 days later. Conclusion: Kinesio taping may facilitate gluteus medius activation and improve postural stability and a double-leg squat. Clinical Relevance: The improvement in affected limb reach and double-leg squatting ROM highlights the potential for Kinesio taping to improve gluteus medius activation. Lumbopelvic manipulation may also immediately improve rehabilitation programs for PFPS. PMID:24427391

  9. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior.

    PubMed

    Friedman, Alexander; Lax, Elad; Dikshtein, Yahav; Abraham, Lital; Flaumenhaft, Yakov; Sudai, Einav; Ben-Tzion, Moshe; Ami-Ad, Lavi; Yaka, Rami; Yadid, Gal

    2010-11-01

    The lateral habenula (LHb) is critical for modulation of negative reinforcement, punishment and aversive responses. In light of the success of deep-brain-stimulation (DBS) in the treatment of neurological disorders, we explored the use of LHb DBS as a method of intervention in cocaine self-administration, extinction, and reinstatement in rats. An electrode was implanted into the LHb and rats were trained to self-administer cocaine (21 days; 0.25-1 mg/kg) until they achieved at least three days of stable performance (as measured by daily recordings of active lever presses in self-administration cages). Thereafter, rats received DBS in the presence or absence of cocaine. DBS reduced cocaine seeking behavior during both self-administration and extinction training. DBS also attenuated the rats' lever presses following cocaine reinstatement (5-20 mg/kg) in comparison to sham-operated rats. These results were also controlled by the assessment of physical performance as measured by water self-administration and an open field test, and by evaluation of depressive-like manifestations as measured by the swim and two-bottles-choice tests. In contrast, LHb lesioned rats demonstrated increased cocaine seeking behavior as demonstrated by a delayed extinction response. In the ventral tegmental area, cocaine self-administration elevated glutamatergic receptor subunits NR1 and GluR1 and scaffolding protein PSD95, but not GABA(A)β, protein levels. Following DBS treatment, levels of these subunits returned to control values. We postulate that the effect of both LHb modulation and LHb DBS on cocaine reinforcement may be via attenuation of the cocaine-induced increase in glutaminergic input to the VTA.

  10. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex

    PubMed Central

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages. PMID:26901149

  11. Medial Rectus Recession Is as Effective as Lateral Rectus Resection in Divergence Paralysis Esotropia

    PubMed Central

    Chaudhuri, Zia; Demer, Joseph L.

    2013-01-01

    Objective To propose medial rectus (MR) recession to be equally as effective as lateral rectus (LR) resection, which has heretofore been the preferred treatment for divergence paralysis esotropia (DPE). Methods We examined a 17-year surgical experience comparing LR resection with MR recession in adults with DPE, defined as symptomatic distance esotropia (ET) at least double the asymptomatic ET of 10 or less prism diopters (Δ) at near. Results Twenty-four patients with DPE underwent surgery. Six patients underwent bilateral LR resection and 2 underwent unilateral LR resection (group L), while 13 underwent bilateral MR recession and 3 underwent unilateral MR recession, with the target angle double the distance ET (group M). One of 8 patients in group L and 15 of 16 patients in group M underwent intraoperative adjustable surgery under topical anesthesia. Mean (SD) preoperative central gaze ET measured 15.0 (7.7) Δ at distance and 4.1 (3.4) Δ at near in group L, but 10.4 (6.8) Δ at distance and 0.6 (1.7) Δ at near in group M (P=.15; distance, 0.003, near). Postoperatively, no patient in either group had symptomatic diplopia or convergence insufficiency in follow-up from 8.5 to 40 months. Twice the usual surgical dose of MR recession per prism diopter was required to achieve correction of the distance deviation in DPE as compared with that recommended for ET generally and also for LR resection in the same condition. Conclusions Recession of the MR provides binocular single vision in DPE without convergence insufficiency at near, and it is convenient for intraoperative adjustment under topical anesthesia. PMID:22688183

  12. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    PubMed

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  13. The effect of vesicle shape, line tension, and lateral tension on membrane-binding proteins

    NASA Astrophysics Data System (ADS)

    Hutchison, Jaime B.

    Model membranes allow for the exploration of complex biological phenomena with simple, controllable components. In this thesis we employ model membranes to determine the effect of vesicle properties such as line tension, lateral tension, and shape on membrane-binding proteins. We find that line tension at the boundary between domains in a phase separated vesicle can accumulate model membrane-binding proteins (green fluorescent protein with a histidine tag), and that those proteins can, in turn, alter vesicle shape. These results suggest that domains in biological membranes may enhance the local concentration of membrane-bound proteins and thus alter protein function. We also explore how membrane mechanical and chemical properties alter the function of the N-BAR domain of amphiphysin, a membrane-binding protein implicated in endocytosis. We find that negatively charged lipids are necessary for N-BAR binding to membranes at detectable levels, and that, at least for some lipid species, binding may be cooperative. Measurements of N-BAR binding as a function of vesicle tension reveal that modest membrane tension of around 2 mN/m, corresponding to a strain of around 1%, strongly increases N-BAR binding. We attribute this increase in binding with tension to the insertion of N-BAR's N-terminal amphipathic helix into the membrane which increases the membrane area. We propose that N-BAR, which was previously described as being able to sense membrane curvature, may be sensing strain instead. Measurements of membrane deformation by N-BAR as a function of membrane tension reveal that tension can hinder membrane deformation. Thus, tension may favor N-BAR binding yet suppress membrane deformation/tubulation, which requires work against tension. These results suggest that membrane tension, a parameter that is often not controlled in model membranes but is tightly controlled in biological cells, may be important in regulating protein binding and assembly and, hence, protein

  14. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    PubMed

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the

  15. Effects of nanoassembly on the optoelectronic properties of cadmium telluride - zinc oxide nanocomposite thin films for use in photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Beal, Russell Joseph

    Quantum-scale semiconductors embedded in an electrically-active matrix have the potential to improve photovoltaic (PV) device power conversion efficiencies by allowing the solar spectral absorption and photocarrier transport properties to be tuned through the control of short and long range structure. In the present work, the effects of phase assembly on quantum confinement effects and carrier transport were investigated in CdTe - ZnO nanocomposite thin films for use as a spectrally sensitized n-type heterojunction element. The nanocomposites were deposited via a dual-source, sequential radio-frequency (RF) sputter technique that offers the unique opportunity for in-situ control of the CdTe phase spatial distribution within the ZnO matrix. The manipulation of the spatial distribution of the CdTe nanophase allowed for variation in the electromagnetic coupling interactions between semiconductor domains and accompanying changes in the effective carrier confinement volume and associated spectral absorption properties. Deposition conditions favoring CdTe connectivity had a red shift in absorption energy onset in comparison to phase assemblies with a more isolated CdTe phase. While manipulating the absorption properties is of significant interest, the electronic behavior of the nanocomposite must also be considered. The continuity of both the matrix and the CdTe influenced the mobility pathways for carriers generated within their respective phases. Photoconductivity of the nanocomposite, dependent upon the combined influences of nanostructure-mediated optical absorption and carrier transport path, increased with an increased semiconductor nanoparticle number density along the applied field direction. Mobility of the carriers in the nanocomposite was further mediated by the interface between the ZnO and CdTe nanophases which acts as a source of carrier scattering centers. These effects were influenced by low temperature annealing of the nanocomposite which served to

  16. Effects of lateral boundary condition resolution and update frequency on regional climate model predictions

    NASA Astrophysics Data System (ADS)

    Pankatz, Klaus; Kerkweg, Astrid

    2015-04-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the German Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In MiKlip, one big question is if regional climate modeling shows "added value", i.e. to evaluate, if regional climate models (RCM) produce better results than the driving models. However, the scope of this study is to look more closely at the setup specific details of regional climate modeling. As regional models only simulate a small domain, they have to inherit information about the state of the atmosphere at their lateral boundaries from external data sets. There are many unresolved questions concerning the setup of lateral boundary conditions (LBC). External data sets come from global models or from global reanalysis data-sets. A temporal resolution of six hours is common for this kind of data. This is mainly due to the fact, that storage space is a limiting factor, especially for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBCs has a significant effect on the climate in the domain of the RCM. The first study examines how the RCM reacts to a higher update frequency. The study is based on a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in the regional domain shows only small deviations, some statistically significant though, of 2m temperature, sea level pressure and precipitation. The second part of the first study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations

  17. Battery compatibility with photovoltaic charge controllers

    NASA Astrophysics Data System (ADS)

    Harrington, S. R.; Bower, W. I.

    Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. Some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them are presented. Communications between the PV industry and the battery industry regarding appropriate specifications were uncoordinated and poor in the past. The effort under way involving the PV industry and battery manufacturers is discussed and a working draft of specifications to develop and outline the information sorely needed on batteries is provided. The development of this information is referred to as 'Application Notes for Batteries in Photovoltaic Systems.' The content of these 'notes' was compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed.

  18. Basic research challenges in crystalline silicon photovoltaics

    SciTech Connect

    Werner, J.H.

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  19. Photovoltaics for residential applications

    SciTech Connect

    Not Available

    1984-02-01

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  20. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  1. Photovoltaics industry profile

    SciTech Connect

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  2. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  3. Characterization of Photovoltaic Generators

    ERIC Educational Resources Information Center

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  4. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  5. The Effect of Modified Brostrom-Gould Repair for Lateral Ankle Instability on In Vivo Tibiotalar Kinematics

    PubMed Central

    Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2012-01-01

    Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support

  6. The Effect of Being Graded on Later Achievement: Evidence from 13-Year Olds in Swedish Compulsory School

    ERIC Educational Resources Information Center

    Klapp, Alli; Cliffordson, Christina; Gustafsson, Jan-Eric

    2016-01-01

    The purpose of the study was to investigate how grading of students in primary school affected achievement measured by grades one year later, and how the effect varied as a function of cognitive ability, gender and socio-economic status. The data derive from The Evaluation Through Follow Up longitudinal project. Through a national curriculum…

  7. Using the Hand Laterality Judgement Task to Assess Motor Imagery: A Study of Practice Effects in Repeated Measurements

    ERIC Educational Resources Information Center

    Boonstra, Anne M.; de Vries, Sjoerd J.; Veenstra, Evelien; Tepper, Marga; Feenstra, Wya; Otten, Egbert

    2012-01-01

    The aim of this study was to determine whether there is a practice effect on the Hand Laterality Judgement Task (HLJT). The HLJT task is a mental rotation task that can be used to assess motor imagery ability in stroke patients. Thirty-three healthy individuals performed the HLJT and two control tasks twice at a 3-week interval. Differences in the…

  8. Between- and within-Ear Congruency and Laterality Effects in an Auditory Semantic/Emotional Prosody Conflict Task

    ERIC Educational Resources Information Center

    Techentin, Cheryl; Voyer, Daniel; Klein, Raymond M.

    2009-01-01

    The present study investigated the influence of within- and between-ear congruency on interference and laterality effects in an auditory semantic/prosodic conflict task. Participants were presented dichotically with words (e.g., mad, sad, glad) pronounced in either congruent or incongruent emotional tones (e.g., angry, happy, or sad) and…

  9. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  10. Effect of sodium on photovoltaic properties of dye-sensitized solar cells assembled with anatase TiO2 nanosheets with exposed {001} facets.

    PubMed

    Wu, Xia; Lu, Gaoqing Max; Wang, Lianzhou

    2013-02-01

    Anatase TiO(2) nanosheets with exposed reactive {001} facets were prepared in the presence of HF. The photovoltaic properties of NaOH-washed anatase TiO(2) nanosheets with exposed {001} facets were investigated by assembling the TiO(2) as photoanodes in dye-sensitized solar cells (DSSCs). A decreased overall efficiency and increased recombination rate was observed in comparison with the H(2)O-washed counterpart by both dark current scan and open-circuit voltage decay scan, and XPS confirmed that the deleterious effect of sodium ions is responsible for this reduced efficiency in DSSCs.

  11. The Effects of Developmental Placement and Early Retention on Children's Later Scores on Standardized Tests.

    ERIC Educational Resources Information Center

    May, Deborah C.; Welch, Edward L.

    1984-01-01

    Examined the relationship between early school retention as a result of preschool and kindergarten developmental testing and children's later academic achievement (N=223). Results showed children who scored as immature on the Gesell Screening Test and who were retained a year had the lowest scores on all measures. (JAC)

  12. Testing and Feedback Effects on Front-End Control over Later Retrieval

    ERIC Educational Resources Information Center

    Thomas, Ruthann C.; McDaniel, Mark A.

    2013-01-01

    In 2 experiments, we explored differences in cognitive control at retrieval on a final test to better understand the mechanisms underlying the powerful boost in recall of previously tested information. Memory retrieval can be enhanced by front-end control processes that regulate the scope of retrieval or by later processes that monitor retrieval…

  13. The Effects of Parental Depressive Symptoms, Appraisals, and Physical Punishment on Later Child Externalizing Behavior

    ERIC Educational Resources Information Center

    Callender, Kevin A.; Olson, Sheryl L.; Choe, Daniel E.; Sameroff, Arnold J.

    2012-01-01

    Examined a cognitive-behavioral pathway by which depressive symptoms in mothers and fathers increase risk for later child externalizing problem behavior via parents' appraisals of child behavior and physical discipline. Participants were 245 children (118 girls) at risk for school-age conduct problems, and their parents and teachers. Children were…

  14. Effects of regular Tai Chi practice and jogging on neuromuscular reaction during lateral postural control in older people.

    PubMed

    Wang, Shao-Jun; Xu, Dong-Qing; Li, Jing-Xian

    2017-01-01

    This study examined the effects of regular Tai Chi practice and jogging on the neuromuscular activity of the trunk, hip, and ankle joint muscles of older people during lateral postural perturbation. A total of 42 older people participated in the study and formed the Tai Chi, jogging, and sedentary control groups. Electromyography signals were collected from the peroneus longus, anterior tibialis, gluteus medius, and erector spinae during unpredictable mediolateral perturbation. The Tai Chi group exhibited significantly faster latencies of the tibialis anterior and erector spinae than the control group. The jogging group showed a significantly shorter neuromuscular reaction time of the erector spinae than the control group. No significant difference was observed between the Tai Chi and jogging groups. Long-term regular Tai Chi practice enhanced the neuromuscular reaction of the erector spinae and tibialis anterior to lateral perturbation and will help timely posture correction when lateral postural distributions occur.

  15. The Effects on Dynamic Lateral Stability and Control of Large Artificial Variations in the Rotary Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Schade, Robert O; Hassell, James L , Jr

    1953-01-01

    This report presents the results of an investigation conducted in the Langley free-flight tunnel to determine the effects of large artificial variations of several rotary lateral-stability derivatives on the dynamic lateral stability and control characteristics of a 45 degree sweptback-wing airplane model. Calculations of the period and damping of the lateral motions and of the response to roll and yaw disturbances were made for correlation with the experimental results. The calculated results were in qualitative agreement with the experimental results in predicting the general trends in flight characteristics produced by large changes in the stability derivatives, but in some cases the theory with the assumption of zero lag was not in good quantitative agreement with the experimental results.

  16. Resolution in Photovoltaic Potential Computation

    NASA Astrophysics Data System (ADS)

    Alam, N.; Coors, V.; Zlatanova, S.; Oosterom, P. J. M.

    2016-09-01

    In this paper, an analysis of the effect of the various types of resolution involved in photovoltaic potential computation is presented. To calculate solar energy incident on a surface, shadow from surrounding buildings has been considered. The incident energy on a surface has been calculated taking the orientation, tilt and position into consideration. Different sky visibility map has been created for direct and diffuse radiation and only the effect of resolution of the factors has been explored here. The following four resolutions are considered: 1. temporal resolution (1, 10, 60 minutes time interval for calculating visibility of sun), 2. object surface resolution (0.01, 0.1, 0.375, 0.75, 1.25, 2.5 and 5 m2 as maximum triangle size of a surface to be considered), 3. blocking obstacle resolution (number of triangles from LoD1, LoD2, or LoD3 CityGML building models), and 4. sky resolution (ranging from 150 to 600 sky-patches used to divide the sky-dome). Higher resolutions result in general in more precise estimation of the photovoltaic potential, but also the computation time is increasing, especially as realizes that this computation has to be done for every building with its object surface (both roofs and façades). This paper is the first in depth analysis ever of the effect of resolution and will help to configure the proper settings for effective photovoltaic potential computations.

  17. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi

    2016-06-22

    To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance.

  18. Analysis of the electronic crosstalk effect in Terra MODIS long-wave infrared photovoltaic bands using lunar images

    NASA Astrophysics Data System (ADS)

    Wilson, Truman; Wu, Aisheng; Geng, Xu; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-10-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space- view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the "in-band" and "out-of-band" contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27-30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and

  19. Effects of floor eggs on hatchability and later life performance in broiler chickens.

    PubMed

    van den Brand, H; Sosef, M P; Lourens, A; van Harn, J

    2016-05-01

    Two experiments were conducted in which effects of floor eggs, washed floor eggs, and clean nest eggs were investigated on incubation characteristics and performance in later life of broiler chickens. In both experiments, a young and an older breeder flock were used in a 3×2 factorial design during incubation. In the second experiment, male and female chickens were reared separately until d 35 of age in floor pens. During this grow out trial, an extra group was created in which chickens obtained from clean nest eggs were mixed with chickens obtained from floor eggs, meaning that grow out period was set up as a 4×2×2 factorial design with 4 egg types, 2 breeder ages, and 2 sexes. In both experiments, fertility and hatchability of fertile eggs were lower in floor and washed eggs than in clean nest eggs (hatchability: experiment 1: 74.4 vs. 70.6 vs. 92.6% for floor eggs, washed floor eggs and clean nest eggs, respectively, P<0.001; experiment 2: 78.3 vs. 81.7 vs. 90.2%, respectively, P<0.001). In experiment 2, BW at d 0 of chickens obtained from clean nest eggs was higher than that of chickens from floor eggs and washed floor eggs (41.5 vs. 40.4 and 40.3 g, respectively; P<0.001). This difference disappeared during the grow out period and was absent at slaughter age at d 35 of age. Feed intake (FI), feed conversion ratio (FCR), and mortality during the grow out period were not affected by egg type. Incidence and severity of hock burns and footpad dermatitis were not affected by egg type or breeder age. Litter friability at d 35 of age tended to be lower in pens with chickens obtained from washed floor eggs compared to clean nest eggs. We conclude that incubation of floor eggs or washed floor eggs resulted in lower fertility and hatchability compared to clean nest eggs, but that performance during the grow out period was not affected.

  20. Clinical effects of lateral wedge arch support insoles in knee osteoarthritis

    PubMed Central

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2016-01-01

    Abstract We compared the short-term efficacy of rigid versus soft lateral wedge arch support (LWAS) insoles for patients with knee osteoarthritis (OA), as assessed using the International Classification of Functioning, Disability and Health (ICF) system, through a prospective, double-blind, randomized controlled trial. Participants who fulfilled the combined radiographic and clinical criteria for knee OA, as defined by the American College of Rheumatology, were randomly prescribed 1 pair of rigid or soft LWAS insoles. Body functions and structures were evaluated according to Kellgren–Lawrence scores, the Foot Posture Index, Hospital Anxiety and Depression Scale scores, the pain–pressure threshold, postural stability, dynamic balance, and fall risk; activities and participation were assessed according to 10-m fast speed walking, stair climbing and chair rising times, and Chronic Pain Grade questionnaire responses; and knee OA-related health status was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Hospital Anxiety and Depression Scale scores, the pain–pressure threshold, physical activity, balance, Chronic Pain Grade questionnaire responses, and the KOOS were recorded before treatment and at 1-, 2-, and 3-month follow-ups. We enrolled 90 participants, 70 women and 20 men, with mean ages of 60.6 ± 10.8 and 63.1 ± 10.8 years in the rigid and soft LWAS insole groups, respectively. Repeated-measures analysis of covariance revealed significant time × group effect improvements in pain (P = 0.008 for the KOOS), stair ascent time (P = 0.003), daily living function (P = 0.003 for the KOOS), sports and recreation function (P = 0.012 for the KOOS), and quality of life (P = 0.021 for the KOOS) in the soft LWAS insole group. Patients with knee OA who used soft LWAS insoles for a short term showed more significant improvement than did those who used rigid LWAS insoles in pain, physical activity, daily living function, sports and

  1. Assessment of the cost-effectiveness of photovoltaic systems for telecommunications in Nigeria

    NASA Astrophysics Data System (ADS)

    Oparaku, O. U.

    2002-03-01

    Developing countries seeking relevance in the international community have to adopt programmes in order to achieve cost-effective economic growth. Telecommunications is one area where emphasis must be laid because of its impact on development. Since the power supply forms an essential part of any communication system it is important to chose the power supply option that has the lowest life-cycle cost. The life-cycle costs of several power supply alternatives to some telecommunication systems in Nigeria have been evaluated. A hybrid (Solar/Gen. Set) power supply option is shown to be cost-effective when compared with diesel generating systems powering telecommunication equipment and airconditioning loads. The cost of PV power supply option used for a celluphone system is about 10% of the cost of the alternative of daily battery replacement and haulage. The low teledensity in the country creates a need for bold initiatives to incorporate solar power in telecommunications network, particularly in the remote rural communities where conventional electricity is not only unavailable, but is unreliable and very costly to maintain.

  2. Biological Applications of Extraordinary Electroconductance and Photovoltaic Effects in Inverse Extraordinary Optoconductance

    NASA Astrophysics Data System (ADS)

    Tran, Lauren Christine

    The Extraordinary Electroconductance (EEC) sensor has been previously demonstrated to have an electric field sensitivity of 3.05V/cm in a mesoscopic-scale structure fabricated at the center of a parallel plate capacitor. In this thesis, we demonstrate the first successful application of EEC sensors as electrochemical detectors of protein binding and biological molecule concentration. Using the avidin derivative, captavidin, in complex with the vitamin biotin, the change in four-point measured resistance with fluid protein concentration of bare EEC sensors was shown to increase by a factor of four in the presence of biomolecular binding as compared to baseline. Calculations for approximate field strengths introduced by a bound captavidin molecule are also presented. The development of Inverse-Extraordinary Optoconductance (I-EOC), an effect which occurs in nanoscale sensors, is also discussed. In the I-EOC effect, electron transport transitions from ballistic to diffusive with increasing light intensity. In these novel, room temperature optical detectors, the resistance is low at low light intensity and resistance increases by 9462% in a 250nm device mesa upon full illumination with a 5 mW HeNe laser. This is the inverse of bulk and mesoscopic device behavior, in which resistance decreases with increasing photon density.

  3. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  4. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  5. The Solar Spectrum on the Martian Surface and Its Effect on Photovoltaic Performance

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hyatt, Dan

    2006-01-01

    Solar cells operating on the surface of Mars receive a spectrum of illumination different from the AM0 spectrum, since the sunlight is filtered by dust suspended in the atmosphere. This spectrum changes with the amount of dust in the atmosphere, as well as with air mass change due to time of day and season. This spectral variation affects the performance of solar cells. We used data from Mars Exploration Rovers to measure this spectrum. By comparing the measured intensity with the known reflectance of the pancam calibration target on the rovers Spirit and Opportunity, we measure the solar spectrum reaching the surface. The effect of this spectrum on the performance of solar cells is then calculated based on the spectral response of several different solar cell types.

  6. The Solar Spectrum on the Martian Surface and its Effect on Photovoltaic Performance

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hyatt, Daniel

    2007-01-01

    Solar cells operating on the surface of Mars receive a spectrum of illumination different from the AM0 spectrum, since the sunlight is filtered by dust suspended in the atmosphere. This spectrum changes with the amount of dust in the atmosphere, as well as with air mass change due to time of day and season. This spectral variation affects the performance of solar cells. We used data from Mars Exploration Rovers to measure this spectrum. By comparing the measured intensity with the known reflectance of the pancam calibration target on the rovers Spirit and Opportunity, we measure the solar spectrum reaching the surface. The effect of this spectrum on the performance of solar cells is then calculated based on the spectral response of several different solar cell types.

  7. Effects of Thermochemical Treatment on CuSbS 2 Photovoltaic Absorber Quality and Solar Cell Reproducibility

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Hempel, Hannes; Unold, Thomas; Eichberger, Rainer; Blank, Beatrix; Rau, Uwe; Mascaro, Lucia H.; Zakutayev, Andriy

    2016-08-25

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Overall, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.

  8. Effect of Distributed Photovoltaic Generation on the Voltage Magnitude in a Self-Contained Power Supply System

    NASA Astrophysics Data System (ADS)

    Lukutin, B. V.; Shandarova, E. B.; Makarova, A. F.; Shvartsman, I. B.

    2016-04-01

    A promising way to increase the technical and economic characteristics of standalone power supply systems is to incorporate renewable energy installations in their structure. This saves fuel and extends the operational life of diesel power stations. The most common option is a hybrid system with photovoltaic power stations incorporated into the local network of the diesel power station. This paper deals with the dependence of the deflection voltage and power losses in the electric power transmission line on the graphs of electrical loads, the parameters of elements of the power supply system, connection points and the capacity of distributed photovoltaic power stations. Research has been carried out on the common low-voltage power supply systems of the radial type (0.4 kV) with an installed capacity of up to 100 kW. The studies have been conducted by simulating the operating modes of hybrid power systems of various configurations. As a result of these studies recommendations to reduce losses and voltage variations in the network by selecting the power and photovoltaic power connection points have been put forward.

  9. The lateralized processing of affect in emotionally labile extraverts and introverts: central and autonomic effects.

    PubMed

    Smith, B D; Kline, R; Lindgren, K; Ferro, M; Smith, D A; Nespor, A

    1995-02-01

    The purpose of the present study was to better understand both the lateralized hemispheric processing of emotion and the differential neural processing of arousal in extraverts and introverts. We preselected right-handed male and female extraverts and introverts who were high in emotional lability. Each subject was exposed to two positive and two negative emotional stimuli under each of three counterbalanced conditions, including affective, cognitive, and neutral, while EEG and electrodermal activity (EDA) were recorded. Results showed that introverts are more aroused and that extraversion interacts with gender to produce differentiated patterns of lateralized neural activity. In addition, affective conditions produced higher levels of arousal than did cognitive or neutral conditions, particularly in the left hemisphere and under negative as opposed to positive stimuli. Finally, the hemispherically differentiated processing of positive and negative stimuli was affected by the contextual conditions under which they were experienced.

  10. Biomechanics of the intra-operative lateral decubitus position for the scoliotic spine: effect of the pelvic obliquity.

    PubMed

    Lalonde, Nadine M; Aubin, Carl-Eric; Parent, Stefan; Pannetier, Romain; Villemure, Isabelle

    2010-01-01

    The intra-operative prone position used for the posterior instrumentation of scoliotic patients has been shown to reduce the spinal deformities prior to instrumentation by 37% on average. However, the effects of the lateral decubitus position used for anterior approaches and minimally invasive techniques have not been investigated. The objectives were to characterize, model and study the biomechanics of this intra-operative posture. Several clinical indices were measured on the pre- and intra-operative radiographs of six scoliotic patients. A personalized finite element mode (FEM) was developed using the pre-op 3D reconstruction, and a three-step method was developed to simulate the lateral decubitus positioning. Two additional intra-op postures, simulating different pelvic obliquities, were also tested by varying the inclination of L5. The radiographic evaluation of the lateral decubitus position showed a significant reduction of 44% of the major curve with 18 mm of apical vertebra translation. The FEM was able to reproduce the intra-op spine geometry with no significant difference with the measured values. Simulations also showed that the pelvic obliquity had different effects on the lumbar and major Cobb angles depending on the scoliotic curve type. The lateral decubitus posture reduces significantly the scoliotic curvatures prior to instrumentation, which was dependent on the pelvic obliquity.

  11. Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties.

    PubMed

    Bodedla, Govardhana Babu; Justin Thomas, K R; Fan, Miao-Syuan; Ho, Kuo-Chuan

    2016-01-15

    Three benzimidazole-based isomeric organic dyes possessing two triphenylamine donors and a cyanoacrylic acid acceptor are prepared by stoichiometrically controlled Stille or Suzuki-Miyaura coupling reaction which predominantly occurs on the N-butyl side of benzimidazole due to electronic preferences. Combined with the steric effect of the N-butyl substituent, placement of the acceptor segment at various nuclear positions of benzimidazole such as C2, C4, and C7 led to remarkable variations in intramolecular charge transfer absorption, electron injection efficiency, and charge recombination kinetics. The substitution of acceptor on the C4 led to red-shifted absorption, while that on C7 retarded the charge transfer due to twisting in the structure caused by the butyl group. Because of the cross-conjugation nature and poor electronic interaction between the donor and acceptor, the dye containing triphenylamine units on C4 and C7 and the acceptor unit on C2 showed the low oxidation potential. Thus, this dye possesses favorable HOMO and LUMO energy levels to render efficient sensitizing action in solar cells. Consequently, it results in high power conversion efficiency (5.01%) in the series with high photocurrent density and open circuit voltage. The high photocurrent generation by this dye is reasoned to it exceptional charge collection efficiency as determined from the electron impedance spectroscopy.

  12. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  13. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  14. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines.

    PubMed

    Parkkila, Petteri; Stefl, Martin; Olżyńska, Agnieszka; Hof, Martin; Kinnunen, Paavo K J

    2015-01-01

    Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.

  15. Visual laterality effects in readers of a deep and a shallow orthography.

    PubMed

    Beaton, Alan A; Suller, Sharon; Workman, Lance

    2007-05-01

    Using a tachistoscopic split-field paradigm, hemifield asymmetry for single word recognition was examined in monolingual English speakers and in fluent bilingual English-Welsh speakers. A robust right hemifield advantage was found for both groups and both languages. Among bilinguals, the laterality index was significantly greater for Welsh than for English, supporting previous findings. The magnitude of the laterality index was unaffected by which language was learned first (Welsh or English) and by the age of acquisition (before or after 5-6years old) of the second language. However, among bilinguals there was a significant difference in the laterality index for Welsh words compared with English words for those participants brought up in a predominantly Welsh-speaking environment, but not for those brought up in a predominantly English-speaking or dual-language environment. We attribute our results to the difference in orthographic depth between Welsh and English. and argue that the transparency of Welsh favours adoption of a left-hemisphere based phonological decoding strategy in reading. Such a strategy is not necessarily used exclusively by readers of Welsh, but is encouraged by regular exposure to the Welsh language on a day-to-day basis.

  16. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    PubMed

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  17. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Bouguila, N.; Kraini, M.; Halidou, I.; Lacaze, E.; Bouchriha, H.; Bouzouita, H.

    2016-01-01

    Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75-2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple-Didomenico model was used to determine the values of single oscillator energy ( E 0), dispersion energy ( E d), optical band gap ( E g) and high frequency dielectric constant ( \\varepsilon_{∞} ). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

  18. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    SciTech Connect

    Fincannon, J.

    1995-05-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the MIR will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers.

  19. Nanostructured multilayer TiO2-Ge films with quantum confinement effects for photovoltaic applications.

    PubMed

    Khan, Abdul Faheem; Mehmood, Mazhar; Aslam, Muhammad; Shah, Syed Ismat

    2010-03-01

    Multilayer TiO(2)-Ge thin films have been deposited using electron beam evaporation and resistive heating. The thickness of the TiO(2) layers is 20 nm, while the thickness of the Ge layers varies from 2 to 20 nm with a step of 2 nm away from the substrate. These films were characterized by studying their optical, electrical, and structural properties. The films were annealed at various temperatures up to 500 degrees C for 2 h. The films are amorphous up to an annealing temperature of 400 degrees C, although Raman spectra suggest short-range ordering (and adjustments). The films annealed at 450 and 500 degrees C exhibit X-ray reflections of Ge and anatase TiO(2). Illumination in sunlight increases the conductivity of the as-deposited and annealed films. The band gap of the amorphous films changes from 1.27 to 1.41 eV up to 400 degrees C; the major contribution is possibly through direct transition. Two band gap regimes are clearly seen after 450 and 500 degrees C, which have been assigned to an indirect band gap at about 1.2 eV and a direct band gap at about 1.8 eV. Conductivity of the multilayer films has been higher than that of pure Ge film. The conductivity increases with annealing temperature with abrupt increase at about 380 degrees C. The results imply that the TiO(2)-Ge multilayer films may be employed as heterojunctions with tunable band gap energy as related to quantum confinement effects.

  20. Effect of boron doping on the rectification effect and photovoltaic performance of CdS/Si heterostructure based on Si nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Yan, Ling Ling; Wang, Xiao Bo; Liu, Wei Kang; Li, Xin Jian

    2015-07-01

    A series of CdS/Si heterostructures were prepared through growing B-doped CdS thin films on silicon nanoporous pillar array (Si-NPA) by a chemical bath deposition (CBD) method. The experimental data show that B-doping concentration of CdS thin films could be tuned effectively through controlling the mole ratio of [B]/[Cd] of the initial CBD solution without causing obvious variation of the crystal phase and surface morphology of CdS/Si-NPA. Both the electrical rectification and photovoltaic parameters of CdS/Si-NPA show strong dependence upon B-doping concentration, and the optimal characteristics are achieved for the samples prepared with [B]/[Cd] = 0.01. Compared with CdS/Si-NPA solar cells without B-doping, an increment over 300 times for energy conversion efficiency is realized. The mechanism for the efficiency increment is analyzed based on the effect of B-doping on the band structure of CdS/Si-NPA. These results indicate that B-doping might be an effective path for promoting the device performance of solar cells based on CdS/Si-NPA.

  1. Characteristics of plasma plume and effect mechanism of lateral restraint during high power CO2 laser welding process

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Cai, Yan; Sun, Dawei; Zhu, Junjie; Wu, Yixiong

    2014-12-01

    A novel lateral restraint method was proposed to suppress plasma plume of high power CO2 laser welding using a pair of copper blocks with cooling water. The plasma plume was observed with a high-speed camera, and its core zone and periphery zone were investigated based on the specific processing algorithm. With the specially designed shifting unit, the spectrum of plasma plume was scanned both in 1-D and 2-D mode. Based on the selected spectral lines, electron temperature and electron number density of plasma plume were calculated. The characteristics of plasma plume, as well as the restraint mechanism, were discussed both in 1-D and 2-D mode. Results showed that the cooling effect, blowing effect and the static pressure were enhanced by the lateral restraint, and the restraint effect of the near-wall low-temperature area limited the expansion of plasma plume greatly.

  2. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Fincannon, James

    1995-05-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  3. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  4. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during stretching.

    PubMed

    Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ichihashi, Noriaki

    2015-02-01

    Regarding hamstring stretching methods, many studies have investigated the effect of stretching duration or frequency on muscle stiffness. However, the most effective stretching positions for hamstrings are unclear because it is impossible to quantify muscle elongation directly and noninvasively in vivo. Recently, a new ultrasound technology, ultrasonic shear wave elastography, has permitted noninvasive and reliable measurement of muscle shear elastic modulus, which has a strong linear relationship to the amount of muscle elongation. This study aimed to investigate the effect of hip internal and external rotation on shear elastic modulus of the lateral and medial hamstrings, respectively, during stretching in vivo using ultrasonic shear wave elastography. Twenty-three healthy men (age, 23.0 ± 2.1 years) were recruited for this study. To investigate the effect of hip rotation on the elongation of the medial and lateral hamstrings, shear elastic modulus of the biceps femoris (BF) and semitendinosus (ST) was measured at rest (a supine position with 90° knee flexion, 90° hip flexion, and hip neutral rotation) and in seven stretching positions (with 45° knee flexion and hip internal, external, and neutral rotation) using ultrasonic shear wave elastography. In both BF and ST, the shear elastic modulus in the rest position was significantly lower than that in all stretching positions. However, no significant differences were seen among stretching positions. Our results suggest that adding hip rotation at a stretching position for the hamstrings may not have a significant effect on muscle elongation of the medial and lateral hamstrings.

  5. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Brandl, D. E.; Brown, A. D.; Denis, K. L.; Fionkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; Timble, P. T.; U-Yen, K.

    2012-01-01

    Recent measurements of micron-sized Mo/Au bilayer Transition Edge Sensors (TESs) have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the Tc is a function of bias current, and the effective Tc shifts from the bilayer Tc towards the lead Tc. We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES Tc. This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer Te. We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

  6. Space Station Photovoltaic power modules

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1988-01-01

    Silicon cell Photovoltaic (PV) power modules are key components of the Space Station Electrical Power System (EPS) scheduled to begin deployment in 1994. Four PV power modules, providing 75 KWe of user ac power, form the cornerstone of the EPS; which is comprised of Photovoltaic (PV) power modules, Solar Dynamic (SD) power modules, and the Power Management and Distribution (PMAD) system. The PV modules are located on rotating outboard sections of the Space Station (SS) structure and each module incorporates its own nickel-hydrogen energy storage batteries, its own thermal control system, and some autonomous control features. The PV modules are a cost-effective and technologically mature approach for providing reliable SS electrical power and are a solid base for EPS growth, which is expected to reach 300 KWe by the end of the Space Station's 30-year design lifetime.

  7. Photovoltaic/thermal hybrid projects

    NASA Astrophysics Data System (ADS)

    Kush, E. A.

    1980-03-01

    Systems which utilize a combination of photovoltaic and thermal collection in the same solar collectors (PV/T Systems) can have advantages over PV or thermal only systems in that the cost effectiveness of the collectors and their support structure may be improved, active cooling may allow the cells to run at lower temperatures-hence higher conversion efficiency, and space limitations on side by side collectors can be avoided. Evaluation of such systems requires formulation and assessment of collector concepts, power conditioning, storage, and control strategies, and their interactions when combined into a total system. Systems with flat plate PV/T collectors and vapor compression heat pump driven by the photovoltaic electric output are considered along with PV/T concentrating collectors and their potential applications, particularly to solar driven absorption chillers.

  8. Photovoltaic systems perspective

    NASA Technical Reports Server (NTRS)

    Sutton, P. D.; Jones, G. J.

    1979-01-01

    This paper summarizes the elements of photovoltaic power system and clarifies the terminology currently used. The relationship of system efficiency and cost is described particularly for the Balance of Photovoltaic System (BOPS) area. The current status of the BOPS development activity is described. The photovoltaic systems terminology is found to be on the road to standardization. Power conditioning, energy storage, and support structure are found to be BOPS cost and/or efficiency drivers. Although the current BOPS activity has identified low-cost/high-efficiency components, further development work is necessary.

  9. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc.

    PubMed

    Domenici, Paolo; Torres, Rodrigo; Manríquez, Patricio H

    2017-02-15

    Recent work has shown that the behaviour of marine organisms can be affected by elevated PCO2 , although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated PCO2  and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas, a predator characteristic of the southeastern Pacific coast. Movement duration, decision time, route finding and lateralization were measured using a T-maze tank with a prey positioned behind a barrier. Four treatments, representing present day and near-future scenarios of ocean acidification and warming were used in rearing the individuals for 6 months. Regardless of the treatment, no significant differences were found in relative and absolute lateralization before and after exposure for 6 months. However, relative lateralization was not repeatable for animals tested after 6 months at elevated PCO2  at both experimental temperatures, whereas it was repeatable in individuals kept at the present day level of PCO2 We suggest that these effects may be related to a behavioural malfunction caused by elevated PCO2 Movement duration, decision time and route finding were not repeatable. However, movement duration and decision time increased and route finding decreased in elevated PCO2  (at 15°C), suggesting that elevated PCO2  has negative effects on the locomotor and sensory performance of C. concholepas in the presence of a prey odour, thereby decreasing their ability to forage efficiently.

  10. Effect of Spinal Manipulation Thrust Duration on Trunk Mechanical Activation Thresholds of Nociceptive-Specific Lateral Thalamic Neurons

    PubMed Central

    Reed, William R.; Sozio, Randall; Pickar, Joel G.; Onifer, Stephen M.

    2015-01-01

    Objective The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons. Methods Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance. Results High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons’ mechanical trunk responses to any of the 3 directions tested with the anesthesiometer. Conclusions This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds. PMID:25220757

  11. Effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans

    NASA Astrophysics Data System (ADS)

    Okamoto-Mizuno, Kazue; Tsuzuki, Kazuyo; Mizuno, Koh

    2005-03-01

    This study sought to investigate the effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans. The subjects were eight healthy males, from whom informed consent had been obtained. The experiments were carried out under three different sets of conditions: a control climate [air temperature (Ta)=26°C, relative humidity (RH)=50%] (C); a humid heat climate (Ta=32°C, RH=80%) (H); and a humid heat exposure in later sleep segments (C for the first 3 h 45 min, followed by a 30-min transition to H, which was then maintained for the last 3 h 45 min) (C H). Electroencephalogram, EOG, and mental electromyogram, rectal temperature (Tre), and skin temperature (Tsk) were continuously measured. The total amount of wakefulness was significantly increased in H compared to C H or C. Compared to C, wakefulness in C H and H was significantly increased during later sleep segments. Tre and mean Tsk were significantly higher in H than in C H or C. In C H, Tsk and Tre increased to levels equal to those observed in H after Ta and RH increase. Whole body sweat loss was significantly lower in C H and C than in H. These results suggest that humid heat exposure in the later sleep segment reduces thermal load as compared to full-night humid heat exposure. In daily life, the use of air conditioning in the initial sleep hours can protect sleep and thermoregulation.

  12. Lateralization of expression of neural sympathetic activity to the vessels and effects of carotid baroreceptor stimulation

    PubMed Central

    Diedrich, André; Porta, Alberto; Barbic, Franca; Brychta, Robert J.; Bonizzi, Pietro; Diedrich, Laura; Cerutti, Sergio; Robertson, David; Furlan, Raffaello

    2009-01-01

    Human studies suggest that cardiovascular neural sympathetic control is predominantly modulated by the right cerebral hemisphere. It is unknown whether post-ganglionic sympathetic activity [muscle sympathetic nerve activity (MSNA)] shows any functional asymmetry. Eight right-handed volunteers (3 women and 5 men, 32 ± 2 yr of age) underwent ECG, beat-by-beat blood pressure, respiratory activity, and simultaneous right and left MSNA recordings during spontaneous and controlled breathing (CB, 15 breaths/min, 0.25 Hz). Dynamic carotid baroreceptor stimulation was obtained by 0.1-Hz sinusoidal suction, from 0 to −50 mmHg, randomly applied to the right, left, and combined right and left sides of the neck during CB. Laterality was assessed by changes in the MSNA burst rate (in bursts/min, and bursts/100 beats), strength [amplitude (A) and area (AA)], and the oscillatory component at 0.1 Hz during baroreceptor stimulation. Amplitude parameters were normalized by CB burst mean amplitude and area of the same side. At rest, the right and left MSNA burst rate and total MSNA activity were similar. Conversely, the right MSNA normalized burst AN (1.36 ± 0.18) and AAN (1.31 ± 0.16) were larger than the left MSNA AN (1.04 ± 0.09) and AAN (1.02 ± 0.08). Unilateral and bilateral carotid baroreflex stimulation abolished the right prevalence of AN and AAN. In conclusion, the right lateralization of sympathetic activity to the vessels is indicated by normalized burst strength parameters of bilateral MSNA recordings at rest during spontaneous breathing. Carotid baroreceptor stimulation disrupted such expression of MSNA lateralization possibly by disturbing the synchronizing action of right cerebral hemisphere. PMID:19363133

  13. Characterization of spin pumping effect in Permalloy/Cu/Pt microfabricated lateral devices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsuya; Seki, Takeshi; Ono, Shimpei; Takanashi, Koki

    2014-05-01

    We studied ferromagnetic resonance (FMR) for microfabricated lateral devices consisting of a Permalloy (Py) rectangular element and a Pt nano-element bridged by a Cu wire, which were located on a coplanar waveguide. A change in the resonance linewidth (Δf) was observed in the FMR spectra when the distance between Py and Pt (d) was varied. For devices with d < 400 nm, Δf definitely increased, suggesting the enhancement of the Gilbert damping constant (α). We discussed a possible reason for the this enhancement taking into account the increase in the efficiency of spin pumping into Cu due to the spin absorption of the attached Pt.

  14. Photovoltaics for municipal planners

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  15. Between- and within-ear congruency and laterality effects in an auditory semantic/emotional prosody conflict task.

    PubMed

    Techentin, Cheryl; Voyer, Daniel; Klein, Raymond M

    2009-07-01

    The present study investigated the influence of within- and between-ear congruency on interference and laterality effects in an auditory semantic/prosodic conflict task. Participants were presented dichotically with words (e.g., mad, sad, glad) pronounced in either congruent or incongruent emotional tones (e.g., angry, happy, or sad) and identified a target word or emotion under one of two conditions. In the within-ear condition, the congruent or incongruent dimensions were bound within a single stimulus and therefore, presented to the same ear. In the between-ear condition, the two dimensions were split between two stimuli and, therefore, presented in separate ears. Findings indicated interference in both conditions. However, the expected right ear advantage (EA) for words and left EA for emotions were obtained only in the between-ear condition. Factors involved in producing interference and laterality effects in dichotic listening tasks are discussed.

  16. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  17. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  18. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  19. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  20. Effects of Lateral Mass Screw Rod Fixation to the Stability of Cervical Spine after Laminectomy

    NASA Astrophysics Data System (ADS)

    Rosli, Ruwaida; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul

    There are many cases of injury in the cervical spine due to degenerative disorder, trauma or instability. This condition may produce pressure on the spinal cord or on the nerve coming from the spine. The aim of this study was, to analyze the stabilization of the cervical spine after undergoing laminectomy via computational simulation. For that purpose, a three-dimensional finite element (FE) model for the multilevel cervical spine segment (C1-C7) was developed using computed tomography (CT) data. There are various decompression techniques that can be applied to overcome the injury. Usually, decompression procedures will create an unstable spine. Therefore, in these situations, the spine is often surgically restabilized by using fusion and instrumentation. In this study, a lateral mass screw-rod fixation was created to stabilize the cervical spine after laminectomy. Material properties of the titanium alloy were assigned on the implants. The requirements moments and boundary conditions were applied on simulated implanted bone. Result showed that the bone without implant has a higher flexion and extension angle in comparison to the bone with implant under applied 1Nm moment. The bone without implant has maximum stress distribution at the vertebrae and ligaments. However, the bone with implant has maximum stress distribution at the screws and rods. Overall, the lateral mass screw-rod fixation provides stability to the cervical spine after undergoing laminectomy.

  1. Giant photovoltaic effects driven by residual polar field within unit-cell-scale LaAlO3 films on SrTiO3

    PubMed Central

    Liang, Haixing; Cheng, Long; Zhai, Xiaofang; Pan, Nan; Guo, Hongli; Zhao, Jin; Zhang, Hui; Li, Lin; Zhang, Xiaoqiang; Wang, Xiaoping; Zeng, Changgan; Zhang, Zhenyu; Hou, J. G.

    2013-01-01

    For polar/nonpolar heterostructures, Maxwell's theory dictates that the electric potential in the polar components will increase divergently with the film thickness. For LaAlO3/SrTiO3, a conceptually intriguing route, termed charge reconstruction, has been proposed to avert such “polar catastrophe”. The existence of a polar potential in LaAlO3 is a prerequisite for the validity of the charge reconstruction picture, yet to date, its direct measurement remains a major challenge. Here we establish unambiguously the existence of the residual polar potential in ultrathin LaAlO3 films on SrTiO3, using a novel photovoltaic device design as an effective probe. The measured lower bound of the residual polar potential is 1.0 V. Such a direct observation of the giant residual polar potential within the unit-cell-scale LaAlO3 films amounts to a definitive experimental evidence for the charge reconstruction picture, and also points to new technological significance of oxide heterostructures in photovoltaic and sensing devices with atomic-scale control. PMID:23756918

  2. Effects of Nd-doping on optical and photovoltaic properties of barium titanate thin films prepared by sol–gel method

    SciTech Connect

    Jiang, Weihai; Cai, Wei; Lin, Zebin; Fu, Chunlin

    2013-09-01

    Graphical abstract: - Highlights: • We prepared Nd-doped BTO thin films by sol–gel method. • Addition of Nd to some extent can inhibit the grain growth. • Addition of Nd{sup 3+} ions can decrease band gap. • The remnant polarization of Nd-doped BTO thin films begins to increase and then decreases. • Photovoltaic properties of Nd-doped BTO thin films begin to increase then decrease. - Abstract: Nd-doped barium titanate thin films were prepared via sol–gel spin-coating method and effects of Nd content on microstructure, optical and photovoltaic properties have been investigated. The results show that Nd-doped barium titanate thin films are single tetragonal perovskite phase. Addition of neodymium to some extent can inhibit the grain growth. Substitution of Nd{sup 3+} ions for Ba{sup 2+} on A sites leads to the decrease of band gap. The remnant polarization begins to increase and reach the maximum and then decreases as Nd content increases. The short circuit photocurrent density, open circuit photovoltage and power conversion efficiency of Nd-doped barium titanate thin films begin to increase and reach the maximum and then decrease as Nd content increases.

  3. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  4. Nanochemistry and nanomaterials for photovoltaics.

    PubMed

    Chen, Guanying; Seo, Jangwon; Yang, Chunhui; Prasad, Paras N

    2013-11-07

    Nanochemistry and nanomaterials provide numerous opportunities for a new generation of photovoltaics with high solar energy conversion efficiencies at low fabrication cost. Quantum-confined nanomaterials and polymer-inorganic nanocomposites can be tailored to harvest sun light over a broad range of the spectrum, while plasmonic structures offer effective ways to reduce the thickness of light-absorbing layers. Multiple exciton generation, singlet exciton fission, photon down-conversion, and photon up-conversion realized in nanostructures, create significant interest for harvesting underutilized ultraviolet and currently unutilized infrared photons. Nanochemical interface engineering of nanoparticle surfaces and junction-interfaces enable enhanced charge separation and collection. In this review, we survey these recent advances employed to introduce new concepts for improving the solar energy conversion efficiency, and reduce the device fabrication cost in photovoltaic technologies. The review concludes with a summary of contributions already made by nanochemistry. It then describes the challenges and opportunities in photovoltaics where the chemical community can play a vital role.

  5. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.

    PubMed

    Courtright, Brett A E; Jenekhe, Samson A

    2015-12-02

    We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.

  6. Photovoltaic systems and applications

    SciTech Connect

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  7. Solar photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1978-01-01

    The Department of Energy's photovoltaic program is outlined. The main objective of the program is the development of low cost reliable terrestrial photovoltaic systems. A second objective is to foster widespread use of the system in residential, industrial and commercial application. The system is reviewed by examining each component; silicon solar cell, silicon solar cell modules, advanced development modules and power systems. Cost and applications of the system are discussed.

  8. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  9. Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    apl.uw.edu/dasaro LONG-TERM GOALS I seek to understand the processes controlling lateral mixing in the ocean, particularly at the submesoscale ...APPROACH During AESOP, Lee and D’Asaro pioneered an innovative approach to measuring submesoscale structure in strong fronts. An adaptive measurement...injection of potential vorticity and scalars is predicted to create an intense ‘ submesoscale soup’ of high small-scale variance. The combination of small

  10. Lateral Mixing

    DTIC Science & Technology

    2012-11-08

    to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . 1 DISTRIBUTION STATEMENT A. Approved for...integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to...2011 I also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the

  11. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  12. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... is materially injured by reason of imports from China of crystalline silicon photovoltaic cells and... crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October 19, 2011,...

  13. Customized color patterning of photovoltaic cells

    SciTech Connect

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  14. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  15. The effect of blockage on power production for laterally aligned wind turbines

    NASA Astrophysics Data System (ADS)

    Meyer Forsting, A. R.; Troldborg, N.

    2015-06-01

    This paper studies the change in the individual power coefficients for a laterally aligned row of wind turbines over a single, free turbine in the context of varying inflow directions via numerical simulations. All turbines were rotating in-line with the main flow direction. The problem definition is similar to that of many wind turbine testing sites and wind farms. Hence any changes in the individual turbine power production could have implications regarding power curve validation procedures.These changes are relatively small and therefore the size of the computational domain was identified to be detrimental in avoiding any domain-inflicted blockage. Increasing the misalignment of the main flow direction with the row of turbines led to significant variations in the power production across turbines. At the largest inflow angle of 45° it varied from -1.1% to 2%. As a whole, the power production increased by about 0.5%, almost independent of the inflow direction.

  16. Measuring the effects of visual demand on lateral deviation: a comparison among driver's performance indicators.

    PubMed

    Minin, Luca; Benedetto, Simone; Pedrotti, Marco; Re, Alessandra; Tesauri, Francesco

    2012-05-01

    In this study we compare the efficacy of three driver's performance indicators based on lateral deviation in detecting significant on-road performance degradations while interacting with a secondary task: the High Frequency Component of steering wheel (HFC), and two indicators described in ISO/DIS 26022 (2007): the Normative and the Adapted Lane Change Test (LCT). Sixteen participants were asked to perform a simulated lane-change task while interacting, when required, with a visual search task with two levels of difficulty. According to predictions, results showed that the Adapted LCT indicator, taking into consideration individual practices in performing the LCT, succeeded in discriminating between single and dual task conditions. Furthermore, this indicator was also able to detect whether the driver was interacting with an easy or a difficult secondary task. Despite predictions, results did not confirm Normative LCT and HFC to be reliable indicators of performance degradation within the simulated LCT.

  17. Dominance and stress signalling of carotenoid pigmentation in Arctic charr (Salvelinus alpinus): lateralization effects?

    PubMed

    Backström, Tobias; Heynen, Martina; Brännäs, Eva; Nilsson, Jan; Magnhagen, Carin

    2015-01-01

    Social conflicts are usually solved by agonistic interactions where animals use cues to signal dominance or subordinance. Pigmentation change is a common cue used for signalling. In our study, the involvement of carotenoid-based pigmentation in signalling was investigated in juvenile Arctic charr (Salvelinus alpinus). Size-matched pairs were analysed for pigmentation both before and after being tested for competitive ability. We found that dominant individuals had fewer carotenoid-based spots on the right and left sides as well as lower plasma cortisol levels compared to subordinate individuals. Further, the number of spots on both sides was positively associated with plasma cortisol levels. These results indicate that carotenoid-based pigmentation in Arctic charr signals dominance and stress coping style. Further, it also appears as if carotenoid-based pigmentation is lateralized in Arctic charr, and that the right side signals aggression and dominance whereas the left side signals stress responsiveness.

  18. Priming Effect of a Morning Meal on Hepatic Glucose Disposition Later in the Day.

    PubMed

    Moore, Mary Courtney; Smith, Marta S; Farmer, Ben; Kraft, Guillaume; Shiota, Masakazu; Williams, Phillip E; Cherrington, Alan D

    2017-02-07

    We used hepatic balance and tracer ((3)H-glucose) techniques to examine the impact of "breakfast" on hepatic glucose metabolism later in the same day. From 0-240 min, 2 groups (n=9 each) of conscious dogs received a duodenal infusion of glucose (GLC) or saline (SAL), then fasted from 240-360 min. Three dogs from each group were euthanized for tissue collection at 360 min. From 360-600 min, the remaining dogs underwent a hyperinsulinemic (4x basal) hyperglycemic clamp (arterial blood glucose 146±2 mg/dL) with portal glucose infusion. The total glucose infusion rate was 14% greater in GLC vs SAL (AUC360-600min 2979±296 vs 2597±277 mg/kg, respectively). The rates (mg(.)kg(-1.)min(-1)) of hepatic glucose uptake (5.8±0.8 vs 3.2±0.3) and glycogen storage (4.7±0.6 vs 2.9±0.3) during the clamp were markedly greater in GLC vs SAL. Hepatic glycogen content was ≈50% greater, glycogen synthase activity was ≈50% greater, glycogen phosphorylase activity was ≈50% lower, and the amount of p-glycogen synthase was 34% lower, indicating activation of the enzyme, in GLC vs. SAL. Thus, morning GLC primed the liver to extract and store more glucose in the presence of hyperinsulinemic hyperglycemia later in the same day, indicating that breakfast enhances the liver's role in glucose disposal in subsequent same-day meals.

  19. Comparison of the effectiveness of local corticosteroid injection and extracorporeal shock wave therapy in patients with lateral epicondylitis

    PubMed Central

    Beyazal, Münevver Serdaroğlu; Devrimsel, Gül

    2015-01-01

    [Purpose] This study aimed to determine and compare the effectiveness of extracorporeal shock wave therapy and local corticosteroid injection in patients with lateral epicondylitis. [Subjects and Methods] Sixty-four patients with lateral epicondylitis were randomly divided into extracorporeal shock wave therapy and steroid injection groups. Patients were evaluated using hand grip strength, visual analog scale, and short-form McGill pain questionnaire at baseline and at 4 and 12 weeks post-treatment. [Results] Both groups showed statistically significant increase in hand grip strength and decreases on the visual analog scale and short form McGill pain questionnaire overtime. There was no statistically significant difference in the percentage of improvement in hand grip strength and on the short-form McGill pain questionnaire between groups at 4 weeks post-treatment, whereas the extracorporeal shock wave therapy group showed better results on the visual analog scale. The percentages of improvements in all 3 parameters were higher in the extracorporeal shock wave therapy group than in the injection group at 12 weeks post-treatment. [Conclusion] Both the extracorporeal shock wave therapy and steroid injection were safe and effective in the treatment of lateral epicondylitis. However, extracorporeal shock wave therapy demonstrated better outcomes than steroid injection at the long-term follow-up. PMID:26834345

  20. Lateral movement out of the sieve tubes and its effect on the (14)C translocation profile in Helianthus seedlings.

    PubMed

    Whittle, C M

    1970-09-01

    The profile of (14)C, that is the plot of log (radioactivity) against distance, down the stem of Helianthus seedlings was studied over the course of the first hour after feeding (14)C to a leaf. These seedlings are shown to accumulate a large proportion of the total (14)C present in the stem in an ethanol insoluble form. The effect of this accumulation on the shape of the profile is considered. The steep advancing front is similar in shape and behaviour in Helianthus and in plants which show little accumulation of insoluble (14)C but the later part of the profile is different in the two groups. This difference would be expected if lateral movement of (14)C out of the translocation stream were mainly irreversible in these Helianthus plants but mainly reversible in plants of the other group.