Science.gov

Sample records for lateral root development1cwoa

  1. Transcript profiling of early lateral root initiation.

    PubMed

    Himanen, Kristiina; Vuylsteke, Marnik; Vanneste, Steffen; Vercruysse, Steven; Boucheron, Elodie; Alard, Philippe; Chriqui, Dominique; Van Montagu, Marc; Inzé, Dirk; Beeckman, Tom

    2004-04-06

    At the onset of lateral root initiation in Arabidopsis thaliana, the phytohormone auxin activates xylem pole pericycle cells for asymmetric cell division. However, the molecular events leading from auxin to lateral root initiation are poorly understood, in part because the few responsive cells in the process are embedded in the root and are thus difficult to access. A lateral root induction system, in which most xylem pole pericycle cells were synchronously activated by auxin transport inhibition followed by auxin application, was used for microarray transcript profiling. Of 4,600 genes analyzed, 906 significantly differentially regulated genes were identified that could be grouped into six major clusters. Basically, three major patterns were discerned representing induced, repressed, and transiently expressed genes. Analysis of the coregulated genes, which were specific for each time point, provided new insight into the molecular regulation and signal transduction preceding lateral root initiation in Arabidopsis. The reproducible expression profiles during a time course allowed us to define four stages that precede the cell division in the pericycle. These early stages were characterized by G1 cell cycle block, auxin perception, and signal transduction, followed by progression over G1/S transition and G2/M transition. All these processes took place within 6 h after transfer from N-1-naphthylphthalamic acid to 1-naphthalene acetic acid. These results indicate that this lateral root induction system represents a unique synchronized system that allows the systematic study of the developmental program upstream of the cell cycle activation during lateral root initiation.

  2. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  3. Hormone interactions during lateral root formation.

    PubMed

    Fukaki, Hidehiro; Tasaka, Masao

    2009-03-01

    Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.

  4. Genetic Control of Lateral Root Formation in Cereals.

    PubMed

    Yu, Peng; Gutjahr, Caroline; Li, Chunjian; Hochholdinger, Frank

    2016-11-01

    Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.

  5. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  6. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  7. Diageotropica and lateral rooting, the rest of the story

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nature of the control of lateral root initiation has been controversial for 80+ years. A mutant tomato (diageotropica), incapable of producing lateral roots, was first classified as ethylene requiring since exceptionally low concentrations of ethylene, applied to the shoot, stimulated lateral r...

  8. Cytokinins act directly on lateral root founder cells to inhibit root initiation.

    PubMed

    Laplaze, Laurent; Benkova, Eva; Casimiro, Ilda; Maes, Lies; Vanneste, Steffen; Swarup, Ranjan; Weijers, Dolf; Calvo, Vanessa; Parizot, Boris; Herrera-Rodriguez, Maria Begoña; Offringa, Remko; Graham, Neil; Doumas, Patrick; Friml, Jiri; Bogusz, Didier; Beeckman, Tom; Bennett, Malcolm

    2007-12-01

    In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.

  9. Phaseolus vulgaris RbohB functions in lateral root development.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Quinto, Carmen

    2013-01-01

    Respiratory burst oxidase homologs (RBOHs) catalyze the reduction of oxygen to generate superoxide anion, a kind of reactive oxygen species (ROS). The ROS produced by RBOHs play essential roles in diverse processes, such as root hair development, stomata closure and signaling mechanisms in response to abiotic stimuli and during plant-pathogen interactions. Recently, we found that PvRbohB silencing in transgenic Phaseolus vulgaris roots had a negative impact on lateral root density. In this work, we show that the downregulation of PvRbohB affects both the growth and ROS levels in recently emerged lateral roots. In addition, we found that the PvRbohB promoter was activated during lateral root primordium initiation in the pericycle, and remained active throughout lateral root development. This study identifies RBOHs as potentially important players in lateral root development in P. vulgaris.

  10. Deciduous canine and permanent lateral incisor differential root resorption.

    PubMed

    Davies, K R; Schneider, G B; Southard, T E; Hillis, S L; Wertz, P W; Finkelstein, M; Hogan, M M

    2001-10-01

    When a permanent maxillary canine erupts apical to the permanent lateral incisor and the deciduous canine, resorption typically takes place only on the deciduous canine root. An understanding of this differential resorption could provide insight into the reasons for excessive iatrogenic root resorption during orthodontic tooth movement. The purpose of the present study was to examine the response of roots of permanent lateral incisors and deciduous canines to simulated resorption, and to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine. Groups of maxillary permanent lateral incisor and deciduous canine roots were exposed to 5 combinations of Ten Cate demineralizing solution, Ten Cate demineralizing solution with EDTA, and a Type I collagenase solution. Sections of the roots were examined under a polarized light microscope. Analysis of variation of the resulting root lesions demonstrated that the lesion depths for deciduous canines were greater than those for permanent lateral incisors when averaged across 4 of the conditions (F(1,24) = 7.49, P =.0115). On average, deciduous canine roots demonstrated lesions 10% deeper than did permanent lateral incisor roots. We concluded that when deciduous canine and permanent lateral incisor roots are subjected to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine, significantly deeper demineralized lesions are seen in the deciduous roots compared with the permanent roots. This finding may partially explain the differential root resorption during permanent tooth eruption.

  11. Lateral root development in Arabidopsis: fifty shades of auxin.

    PubMed

    Lavenus, Julien; Goh, Tatsuaki; Roberts, Ianto; Guyomarc'h, Soazig; Lucas, Mikaël; De Smet, Ive; Fukaki, Hidehiro; Beeckman, Tom; Bennett, Malcolm; Laplaze, Laurent

    2013-08-01

    The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.

  12. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.

    PubMed

    Zhan, Ai; Schneider, Hannah; Lynch, Jonathan P

    2015-08-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops.

  13. Patterns of variability in the diameter of lateral roots in the banana root system.

    PubMed

    Lecompte, François; Pagès, Loïc; Ozier-Lafontaine, Harry

    2005-09-01

    The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.

  14. Periodic lateral root priming, what makes it tick.

    PubMed

    Ten Tusscher, Kirsten Hendrika; Laskowski, Marta

    2017-02-21

    Conditioning small groups of root pericycle cells for future lateral root formation has a major impact on overall plant root architecture. This priming of lateral roots occurs rhythmically, involving temporal oscillations in auxin response in the root tip. During growth, this process generates a spatial pattern of prebranch sites, an early stage in lateral root formation characterized by a stably maintained high auxin response. Thusfar, the molecular mechanism behind this rhythmicity has remained elusive. Some data implicate a cell-autonomous oscillation in gene expression, while others strongly support the importance of tissue-level modulations in auxin fluxes. Here, we summarize the experimental data on periodic lateral root priming. We present a theoretical framework that distinguishes between a priming signal and its subsequent memorization, and show how major roles for auxin fluxes and gene expression naturally emerge from this framework. We then discuss three mechanisms that could potentially induce oscillations of auxin response: cell-autonomous oscillations, Turing-type patterning, and tissue-level oscillations in auxin fluxes, along with specific properties of lateral root priming that may be used to discern which type of mechanism is most likely to drive lateral root patterning. We conclude with suggestions for future experiments and modeling studies.

  15. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  16. Pericycle cell proliferation and lateral root initiation in Arabidopsis.

    PubMed

    Dubrovsky, J G; Doerner, P W; Colón-Carmona, A; Rost, T L

    2000-12-01

    In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.

  17. Real-time Analysis of Lateral Root Organogenesis in Arabidopsis

    PubMed Central

    Marhavý, Peter; Benková, Eva

    2016-01-01

    Plants maintain capacity to form new organs such as leaves, flowers, lateral shoots and roots throughout their postembryonic lifetime. Lateral roots (LRs) originate from a few pericycle cells that acquire attributes of founder cells (FCs), undergo series of anticlinal divisions, and give rise to a few short initial cells. After initiation, coordinated cell division and differentiation occur, giving rise to lateral root primordia (LRP). Primordia continue to grow, emerge through the cortex and epidermal layers of the primary root, and finally a new apical meristem is established taking over the responsibility for growth of mature lateral roots [for detailed description of the individual stages of lateral root organogenesis see Malamy and Benfey (1997)]. To examine this highly dynamic developmental process and to investigate a role of various hormonal, genetic and environmental factors in the regulation of lateral root organogenesis, the real time imaging based analyses represent extremely powerful tools (Laskowski et al., 2008; De Smet et al., 2012; Marhavý et al., 2013 and 2014). Herein, we describe a protocol for real time lateral root primordia (LRP) analysis, which enables the monitoring of an onset of the specific gene expression and subcellular protein localization during primordia organogenesis, as well as the evaluation of the impact of genetic and environmental perturbations on LRP organogenesis. PMID:27331080

  18. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  19. Lateral root initiation: one step at a time.

    PubMed

    De Smet, Ive

    2012-03-01

    Plant growth relies heavily on a root system that is hidden belowground, which develops post-embryonically through the formation of lateral roots. The de novo formation of lateral root organs requires tightly coordinated asymmetric cell division of a limited number of pericycle cells located at the xylem pole. This typically involves the formation of founder cells, followed by a number of cellular changes until the cells divide and give rise to two unequally sized daughter cells. Over the past few years, our knowledge of the regulatory mechanisms behind lateral root initiation has increased dramatically. Here, I will summarize these recent advances, focusing on the prominent role of auxin and cell cycle activity, and elaborating on the three key steps of pericycle cell priming, founder cell establishment and asymmetric cell division. Taken together, recent findings suggest a tentative model in which successive auxin response modules are crucial for lateral root initiation, and additional factors provide more layers of control.

  20. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  1. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana.

    PubMed

    Ivanchenko, Maria G; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2010-12-01

    The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.

  2. Lateral root initiation or the birth of a new meristem.

    PubMed

    De Smet, Ive; Vanneste, Steffen; Inzé, Dirk; Beeckman, Tom

    2006-04-01

    Root branching happens through the formation of new meristems out of a limited number of pericycle cells inside the parent root. As opposed to shoot branching, the study of lateral root formation has been complicated due to its internal nature, and a lot of questions remain unanswered. However, due to the availability of new molecular tools and more complete genomic data in the model species Arabidopsis, the probability to find new and crucial elements in the lateral root formation pathway has increased. Increasingly more data are supporting the idea that lateral root founder cells become specified in young root parts before differentiation is accomplished. Next, pericycle founder cells undergo anticlinal asymmetric, divisions followed by an organized cell division pattern resulting in the formation of a new organ. The whole process of cell cycle progression and stimulation of the molecular pathway towards lateral root initiation is triggered by the plant hormone auxin. In this review, we aim to give an overview on the developmental events taking place from the very early specification of founder cells in the pericycle until the first anticlinal divisions by combining the knowledge originating from classical physiology studies with new insights from genetic-molecular analyses. Based on the current knowledge derived from recent genetic and developmental studies, we propose here a hypothetical model for LRI.

  3. Hormonal Control of Lateral Root and Nodule Development in Legumes

    PubMed Central

    Bensmihen, Sandra

    2015-01-01

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana. PMID:27135340

  4. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  5. Plant roots use a patterning mechanism to position lateral root branches toward available water

    PubMed Central

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E.; Sturrock, Craig J.; Thompson, Mark C.; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L.; Vernoux, Teva; Mooney, Sacha J.; Bennett, Malcolm J.; Dinneny, José R.

    2014-01-01

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and PIN-FORMED 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root. PMID:24927545

  6. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  7. Control of Arabidopsis lateral root primordium boundaries by MYB36.

    PubMed

    Fernández-Marcos, María; Desvoyes, Bénédicte; Manzano, Concepción; Liberman, Louisa M; Benfey, Philip N; Del Pozo, Juan C; Gutierrez, Crisanto

    2017-01-01

    Root branching in plants relies on the de novo formation of lateral roots. These are initiated from founder cells, triggering new formative divisions that generate lateral root primordia (LRP). The LRP size and shape depends on the balance between positive and negative signals that control cell proliferation. The mechanisms controlling proliferation potential of LRP cells remains poorly understood. We found that Arabidopsis thaliana MYB36, which have been previously shown to regulate genes required for Casparian strip formation and the transition from proliferation to differentiation in the primary root, plays a new role in controlling LRP development at later stages. We found that MYB36 is a novel component of LR development at later stages. MYB36 was expressed in the cells surrounding LRP where it controls a set of peroxidase genes, which maintain reactive oxygen species (ROS) balance. This was required to define the transition between proliferating and arrested cells inside the LRP, coinciding with the change from flat to dome-shaped primordia. Reducing the levels of hydrogen peroxide (H2 O2 ) in myb36-5 significantly rescues the mutant phenotype. Our results uncover a role for MYB36 outside the endodermis during LRP development through a mechanism analogous to regulating the proliferation/differentiation transition in the root meristem.

  8. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  9. Geminated Maxillary Lateral Incisor with Two Root Canals

    PubMed Central

    Romano, Nayara; Souza-Flamini, Luis Eduardo; Mendonça, Isabela Lima; Silva, Ricardo Gariba

    2016-01-01

    This paper reports a case of gemination in a maxillary lateral incisor with two root canals and crown-root dilaceration. A 16-year-old male patient was referred for endodontic treatment of the maxillary left lateral incisor and evaluation of esthetic and functional complaints in the anterior region. The patient reported trauma to the anterior primary teeth. There was no spontaneous pain, but the tooth responded positively to the vertical percussion test and negatively to the pulp vitality test. Clinical examination showed esthetic and functional alterations and normal periodontal tissues. CBCT imaging confirmed the suspicion of gemination and crown-root dilaceration and also revealed the presence of two root canals and periapical bone rarefaction. The root canals were instrumented with Reciproc R40 and 1% NaOCl irrigation and were filled by lateral condensation of gutta-percha and AH Plus sealer. The tooth was definitely restored with composite resin to recover esthetics. Continued follow-up over 6 months has shown absence of pain or clinical alterations as well as radiographic image suggestive of apical repair. PMID:28119787

  10. Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana.

    PubMed

    Dubrovsky, J G; Rost, T L; Colón-Carmona, A; Doerner, P

    2001-11-01

    The first morphogenetic events of lateral root primordium (LRP) formation in the Arabidopsis thaliana (L.) Heynh. pericycle occur soon after cells of the primary root complete elongation. Pericycle cells in direct contact with underlying protoxylem cells participate in LRP formation. Two types of LRP initiation were found, longitudinal uni- and bi-cellular. These occur when a single or two pericycle cells within a file, respectively, become founder cells for the entire longitudinal extent of the LRP. Histochemical and cytological analysis suggests that three is the minimum number of cells required to initiate an LRP. In young primordia comprising less than 32 cells, the average cell-doubling time was 3.7 h, indicating a drastic acceleration of cell cycle progression after lateral root initiation. Early in LRP development, cell growth is limited and therefore cytokinesis leads to a reduction of cell volume, similar to cleavage division cycles during animal and plant embryogenesis. The striking coordination of proliferation between pericycle cells in adjacent files in direct contact with the underlying protoxylem implies that intercellular signaling mechanisms act in the root apical meristem or later in development.

  11. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  12. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  13. Tonoplast Aquaporins Facilitate Lateral Root Emergence1[OPEN

    PubMed Central

    Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence. PMID:26802038

  14. Comparison of Medial and Lateral Meniscus Root Tears.

    PubMed

    Koo, Ji Hyun; Choi, Sang-Hee; Lee, Seung Ah; Wang, Joon Ho

    2015-01-01

    The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI) results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients' ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs) and twenty patients had lateral meniscus root tears (LMRTs). Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8) in the MMRT group and 0.9mm (range, -1.9 to 3.4) in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL) tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29-71 years) and 30 years (range: 14-62 years) in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001), and between an ACL tear and LMRT (p<0.0001). A history of trauma was significantly common in LMRT (p<0.0001). LMRT patients were significantly younger than MMRT patients (p<0.0001). Kellgren-Lawrence (K-L) grade differed significantly between MMRT and LMRT group (p<0.0001). Meniscal extrusion is common in

  15. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  16. Electric Current Precedes Emergence of a Lateral Root in Higher Plants

    PubMed Central

    Hamada, Shingo; Ezaki, Shu; Hayashi, Kenshi; Toko, Kiyoshi; Yamafuji, Kaoru

    1992-01-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 μA·cm−2 at the surface. Images Figure 7 PMID:16653036

  17. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis

    PubMed Central

    Roberts, Ianto; Smith, Stephanie; Stes, Elisabeth; De Rybel, Bert; Staes, An; van de Cotte, Brigitte; Njo, Maria Fransiska; Dedeyne, Lise; Demol, Hans; Lavenus, Julien; Audenaert, Dominique; Gevaert, Kris; Beeckman, Tom; De Smet, Ive

    2016-01-01

    Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand−receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation. PMID:27296247

  18. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation.

    PubMed

    Bergonci, Tábata; Ribeiro, Bianca; Ceciliato, Paulo H O; Guerrero-Abad, Juan Carlos; Silva-Filho, Marcio C; Moura, Daniel S

    2014-05-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.

  19. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  20. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

    PubMed

    Goh, Tatsuaki; Toyokura, Koichi; Wells, Darren M; Swarup, Kamal; Yamamoto, Mayuko; Mimura, Tetsuro; Weijers, Dolf; Fukaki, Hidehiro; Laplaze, Laurent; Bennett, Malcolm J; Guyomarc'h, Soazig

    2016-09-15

    Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition.

  1. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns.

    PubMed

    Yu, Peng; Baldauf, Jutta A; Lithio, Andrew; Marcon, Caroline; Nettleton, Dan; Li, Chunjian; Hochholdinger, Frank

    2016-03-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments.

  2. The lateral root initiation index: an integrative measure of primordium formation

    PubMed Central

    Dubrovsky, J. G.; Soukup, A.; Napsucialy-Mendivil, S.; Jeknić, Z.; Ivanchenko, M. G.

    2009-01-01

    Background and Aims Lateral root initiation is an essential and continuous process in the formation of root systems; therefore, its quantitative analysis is indispensable. In this study a new measure of lateral root initiation is proposed and analysed, namely the lateral root initiation index (ILRI), which defines how many lateral roots and/or primordia are formed along a parent-root portion corresponding to 100 cortical cells in a file. Methods For data collection, a commonly used root clearing procedure was employed, and a new simple root clearing procedure is also proposed. The ILRI was determined as 100dl, where d is the density of lateral root initiation events (number mm−1) and l is the average fully elongated cortical cell length (mm). Key Results Analyses of different Arabidopsis thaliana genotypes and of a crop plant, tomato (Solanum lycopersicum), showed that ILRI is a more precise parameter than others commonly used as it normalizes root growth for variations in cell length. Lateral root primordium density varied in the A. thaliana accessions Col, Ler, Ws, and C24; however, in all accessions except Ws, ILRI was similar under the same growth conditions. The nitrogen/carbon ratio in the growth medium did not change the lateral root primordium density but did affect ILRI. The ILRI was also modified in a number of auxin-related mutants, revealing new root branching phenotypes in some of these mutants. The rate of lateral root initiation increased with Arabidopsis seedling age; however, ILRI was not changed in plants between 8 and 14 d post-germination. Conclusions The ILRI allows for a more precise comparison of lateral root initiation under different growth conditions, treatments, genotypes and plant species than other comparable methods. PMID:19151042

  3. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    PubMed

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  4. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  5. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  6. Three-dimensional distribution of vessels, passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum)

    PubMed Central

    Wu, Haiwen; Jaeger, Marc; Wang, Mao; Li, Baoguo; Zhang, Bao Gui

    2011-01-01

    Background and Aims The capacity of a plant to absorb and transport water and nutrients depends on anatomical structures within the roots and their co-ordination. However, most descriptions of root anatomical structure are limited to 2-D cross-sections, providing little information on 3-D spatial relationships and hardly anything on their temporal evolution. Three-dimensional reconstruction and visualization of root anatomical structures can illustrate spatial co-ordination among cells and tissues and provide new insights and understanding of the interrelation between structure and function. Methods Classical paraffin serial-section methods, image processing, computer-aided 3-D reconstruction and 3-D visualization techniques were combined to analyse spatial relationships among metaxylem vessels, passage cells and lateral roots in nodal roots of winter wheat (Triticum aestivum). Key Results 3-D reconstruction demonstrated that metaxylem vessels were neither parallel, nor did they run directly along the root axis from the root base to the root tip; rather they underwent substitution and transition. Most vessels were connected to pre-existent or newly formed vessels by pits on their lateral walls. The spatial distributions of both passage cells and lateral roots exhibited similar position-dependent patterns. In the transverse plane, the passage cells occurred opposite the poles of the protoxylem and the lateral roots opposite those of the protophloem. Along the axis of a young root segment, the passage cells were arranged in short and discontinuous longitudinal files, thus as the tissues mature, the sequence in which the passage cells lose their transport function is not basipetal. In older segments, passage cells decreased drastically in number and coexisted with lateral roots. The spatial distribution of lateral roots was similar to that of the passage cells, mirroring their similar functions as lateral pathways for water and nutrient transport to the stele

  7. Nucleic acid and protein synthesis during lateral root initiation in Marsilea quadrifolia (Marsileaceae)

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    The pattern of DNA, RNA, and protein synthesis during lateral root initiation in Marsilea quadrifolia L. was monitored by autoradiography of incorporated of 3H-thymidine, 3H-uridine, and 3H-leucine, respectively. DNA synthesis was associated with the enlargement of the lateral root initial prior to its division. Consistent with histological studies, derivatives of the lateral root initial as well as the cells of the adjacent inner cortex and pericycle of the parent root also continued to synthesize DNA. RNA and protein synthetic activities were found to be higher in the lateral root initials than in the endodermal initials of the same longitudinal layer. The data suggest a role for nucleic acid and protein synthesis during cytodifferentiation of a potential endodermal cell into a lateral root initial.

  8. Comparative assessment of the polypeptide profiles from lateral and primary roots of Phaseolus vulgaris L

    NASA Technical Reports Server (NTRS)

    Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.

  9. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    PubMed

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  10. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  11. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    PubMed

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  12. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development1[C][W

    PubMed Central

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; del Pozo, Juan C.

    2014-01-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself. PMID:24879433

  13. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development.

    PubMed

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; Del Pozo, Juan C

    2014-07-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.

  14. The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.

    PubMed

    Raya-González, Javier; Pelagio-Flores, Ramón; López-Bucio, José

    2012-09-15

    Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms.

  15. An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation

    ERIC Educational Resources Information Center

    Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.

    2014-01-01

    We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…

  16. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  17. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana

    PubMed Central

    Zhu, Lu; Zheng, Chen; Liu, Ruixia; Song, Aiping; Zhang, Zhaohe; Xin, Jingjing; Jiang, Jiafu; Chen, Sumei; Zhang, Fei; Fang, Weimin; Chen, Fadi

    2016-01-01

    The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation. PMID:26819087

  18. Maxillary lateral incisors with two canals and two separate curved roots

    PubMed Central

    Mohan, Ajit George; Rajesh, Ebenezar A. V.; George, Liza; Sujathan; Josy, Susan Ann

    2012-01-01

    Variation in the roots and root canal anatomy seems to be the norm rather than an exception. For a successful endodontic treatment, a clinician should have a thorough knowledge of the internal and external dental anatomy and its variations. Maxillary lateral incisors usually exhibit single canal with a single root. In this case, clinical examination and radiographs clearly demonstrates the presence of two root canals with two separate curved roots. This case report emphasizes the need for attention during endodontic management of maxillary lateral incisors. PMID:23633825

  19. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation.

    PubMed

    Murphy, Evan; Vu, Lam Dai; Van den Broeck, Lisa; Lin, Zhefeng; Ramakrishna, Priya; van de Cotte, Brigitte; Gaudinier, Allison; Goh, Tatsuaki; Slane, Daniel; Beeckman, Tom; Inzé, Dirk; Brady, Siobhan M; Fukaki, Hidehiro; De Smet, Ive

    2016-08-01

    In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.

  20. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation

    PubMed Central

    Murphy, Evan; Vu, Lam Dai; Van den Broeck, Lisa; Lin, Zhefeng; Ramakrishna, Priya; van de Cotte, Brigitte; Gaudinier, Allison; Goh, Tatsuaki; Slane, Daniel; Beeckman, Tom; Inzé, Dirk; Brady, Siobhan M.; Fukaki, Hidehiro; De Smet, Ive

    2016-01-01

    In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation. PMID:27521602

  1. Reduced frequency of lateral root branching improves N capture from low-N soils in maize.

    PubMed

    Zhan, Ai; Lynch, Jonathan P

    2015-04-01

    Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deeper rooting, and greater N acquisition than lines with many but short (MS) lateral roots. Maize recombinant inbred lines contrasting in lateral root number and length were grown with adequate and suboptimal N in greenhouse mesocosms and in the field in the USA and South Africa (SA). In low-N mesocosms, the FL phenotype had substantially reduced root respiration and greater rooting depth than the MS phenotype. In low-N fields in the USA and SA, the FL phenotype had greater rooting depth, shoot N content, leaf photosynthesis, and shoot biomass than the MS phenotype. The FL phenotype yielded 31.5% more than the MS phenotype under low N in the USA. Our results are consistent with the hypothesis that sparse but long lateral roots improve N capture from low-N soils. These results with maize probably pertain to other species. The FL lateral root phenotype merits consideration as a selection target for greater crop N efficiency.

  2. Reduced frequency of lateral root branching improves N capture from low-N soils in maize

    PubMed Central

    Zhan, Ai; Lynch, Jonathan P.

    2015-01-01

    Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deeper rooting, and greater N acquisition than lines with many but short (MS) lateral roots. Maize recombinant inbred lines contrasting in lateral root number and length were grown with adequate and suboptimal N in greenhouse mesocosms and in the field in the USA and South Africa (SA). In low-N mesocosms, the FL phenotype had substantially reduced root respiration and greater rooting depth than the MS phenotype. In low-N fields in the USA and SA, the FL phenotype had greater rooting depth, shoot N content, leaf photosynthesis, and shoot biomass than the MS phenotype. The FL phenotype yielded 31.5% more than the MS phenotype under low N in the USA. Our results are consistent with the hypothesis that sparse but long lateral roots improve N capture from low-N soils. These results with maize probably pertain to other species. The FL lateral root phenotype merits consideration as a selection target for greater crop N efficiency. PMID:25680794

  3. Priming and positioning of lateral roots in Arabidopsis. An approach for an integrating concept

    PubMed Central

    Kircher, Stefan; Schopfer, Peter

    2016-01-01

    Branching by de novo formation of lateral roots along the primary root of Arabidopsis seedlings follows a complex longitudinal and transverse pattern. How this pattern is generated is presently under debate. The ‘bending hypothesis’ proposes that lateral root primordia are initiated by a local accumulation of auxin at the convex side of bends resulting from deflections through obstacles, gravitropic bending, or other means. In contrast, the ‘oscillation hypothesis’ proposes the existence of an endogenous clock-type oscillator mechanism producing periodic pulses of gene expression in the root tip that determine the future sites of primordium initiation. Here we report physiological experiments dissecting periodic priming signals, pre-disposing the root to rhythmic lateral root formation, from bending-mediated signals responsible for the subsequent positioning of their initiation along the growing root. While the frequency of lateral roots can be promoted by auxin in the mature root, their positioning follows a pre-formed pattern determined by previous bending. Both types of signals turn out to be necessary, complementary components in an integrating concept of lateral root patterning. PMID:26712828

  4. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis.

    PubMed

    Li, Baohai; Li, Qing; Su, Yanhua; Chen, Hao; Xiong, Liming; Mi, Guohua; Kronzucker, Herbert J; Shi, Weiming

    2011-06-01

    Deposition of ammonium (NH₄+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH₄+ is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root.

  5. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana

    PubMed Central

    Negi, Sangeeta; Ivanchenko, Maria G; Muday, Gloria K

    2008-01-01

    Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5, enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation. PMID:18363780

  6. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth.

  7. Graviresponsiveness and the development of columella tissue in primary and lateral roots of Ricinus communis.

    PubMed

    Moore, R; Pasieniuk, J

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much as the effector as caps of graviresponsive roots.

  8. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).

    PubMed

    Zhao, Heming; Ma, Tengfei; Wang, Xin; Deng, Yingtian; Ma, Haoli; Zhang, Rongsheng; Zhao, Jie

    2015-11-01

    Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice.

  9. Lateral Transport of Ions into the Xylem of Corn Roots

    PubMed Central

    Läuchli, André; Spurr, Arthur R.; Epstein, Emanuel

    1971-01-01

    When an excised corn (Zea mays) root pretreated with chloride was exposed for 10 minutes to pulse labeling with 30Cl and then transferred to unlabeled chloride, the activity in the xylem exudate reached a maximum about 4 minutes after pulse labeling was discontinued and then declined sharply. The rate at which labeled chloride was transported across the root into the xylem and basipetally therein was on the order of 75 to 250 centimeters per hour. Consequently, symplasmic movement of chloride in corn roots is fast and may not be rate-limiting in transfer from the root surface to the xylem. Experiments on pulse labeling with 22Na gave similar results. A large fraction of the absorbed 22Na was not translocated into the exudate but was tightly sequestered in a cell compartment, probably the vacuole. Electron probe analysis was used to reveal the pattern of potassium distribution in cross sections taken 10 to 11 millimeters from the tip. The cytoplasm and vacuoles of the xylem parenchyma cells accumulated potassium to a much greater extent than cortical and other stelar cells. Ultrastructural studies showed that the cytoplasm of the xylem parenchyma cells contains numerous membrane systems. It was concluded that the xylem parenchyma cells secrete ions from the symplasm into the conducting vessels, and it was suggested that this secretion is driven across the plasmalemma by a carrier-mediated transport. Images PMID:16657747

  10. Respiration rate in maize roots is related to concentration of reduced nitrogen and proliferation of lateral roots

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize (Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO3- was supplied to both axes at 1.0 mol m-3, to one axis at 1.0 mol m-3 and the other axis at 0.0 mol m-3, or to both axes at 0.0 mol m-3. Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO3- and the concentration of reduced nitrogen in the axes was less than 9 mg g-1. The greatest rates occurred in axes that were actively absorbing NO3- and contained more than 35 mg g-1 of reduced nitrogen. At 23 mg g-1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30-50%, specific rate of respiration was 17% greater for roots actively absorbing NO3- than for roots not absorbing NO3-. Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g-1 were concluded to be attributable primarily to proliferation of lateral branches.

  11. Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize

    PubMed Central

    Jansen, Leentje; Roberts, Ianto; De Rycke, Riet; Beeckman, Tom

    2012-01-01

    In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue. PMID:22527395

  12. Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize.

    PubMed

    Jansen, Leentje; Roberts, Ianto; De Rycke, Riet; Beeckman, Tom

    2012-06-05

    In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.

  13. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus.

    PubMed

    Sugiyama, Kou-ichi; Tezuka, Takafumi

    2011-10-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint.

  14. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.

  15. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation.

    PubMed

    Parizot, Boris; Laplaze, Laurent; Ricaud, Lilian; Boucheron-Dubuisson, Elodie; Bayle, Vincent; Bonke, Martin; De Smet, Ive; Poethig, Scott R; Helariutta, Yka; Haseloff, Jim; Chriqui, Dominique; Beeckman, Tom; Nussaume, Laurent

    2008-01-01

    The outer tissues of dicotyledonous plant roots (i.e. epidermis, cortex, and endodermis) are clearly organized in distinct concentric layers in contrast to the diarch to polyarch vascular tissues of the central stele. Up to now, the outermost layer of the stele, the pericycle, has always been regarded, in accordance with the outer tissue layers, as one uniform concentric layer. However, considering its lateral root-forming competence, the pericycle is composed of two different cell types, with one subset of cells being associated with the xylem, showing strong competence to initiate cell division, whereas another group of cells, associated with the phloem, appears to remain quiescent. Here, we established, using detailed microscopy and specific Arabidopsis thaliana reporter lines, the existence of two distinct pericycle cell types. Analysis of two enhancer trap reporter lines further suggests that the specification between these two subsets takes place early during development, in relation with the determination of the vascular tissues. A genetic screen resulted in the isolation of mutants perturbed in pericycle differentiation. Detailed phenotypical analyses of two of these mutants, combined with observations made in known vascular mutants, revealed an intimate correlation between vascular organization, pericycle fate, and lateral root initiation potency, and illustrated the independence of pericycle differentiation and lateral root initiation from protoxylem differentiation. Taken together, our data show that the pericycle is a heterogeneous cell layer with two groups of cells set up in the root meristem by the same genetic pathway controlling the diarch organization of the vasculature.

  16. Auxin-mediated cell cycle activation during early lateral root initiation.

    PubMed

    Himanen, Kristiina; Boucheron, Elodie; Vanneste, Steffen; de Almeida Engler, Janice; Inzé, Dirk; Beeckman, Tom

    2002-10-01

    Lateral root formation can be divided into two major phases: pericycle activation and meristem establishment. In Arabidopsis, the first lateral root initiation event is spatially and temporally asynchronous and involves a limited number of cells in the xylem pericycle. To study the molecular regulation during pericycle activation, we developed a lateral root-inducible system. Successive treatments with an auxin transport inhibitor and exogenous auxin were used to prevent the first formative divisions and then to activate the entire pericycle. Our morphological and molecular data show that, in this inducible system, xylem pericycle activation was synchronized and enhanced to cover the entire length of the root. The results also indicate that the inducible system can be considered a novel in planta system for the study of synchronized cell cycle reactivation. In addition, the expression patterns of Kip-Related Protein2 (KRP2) in the pericycle and its ectopic expression data revealed that the cyclin-dependent kinase inhibitor plays a significant role in the regulation of lateral root initiation. KRP2 appears to regulate early lateral root initiation by blocking the G1-to-S transition and to be regulated transcriptionally by auxin.

  17. Mandibular lateral incisor with Vertucci Type IV root canal morphological system: A rare case report

    PubMed Central

    Aggarwal, Kanika

    2016-01-01

    Abnormalities in the root canal anatomy are commonly occurring phenomenon. A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of endodontic treatment. Mandibular anteriors are known for having extra canals. The role of genetics and racial variations may result in difference of incidence of root number and canal number. This paper attempts at explaining a rare case of successful endodontic management of two-rooted lateral incisor with awareness of data pertaining to number of canals, knowledge of canal morphology, correct radiographic interpretation, and tactile examination of canal wall which are important in detecting the presence of multiple canals. PMID:27003981

  18. Endodontic Treatment of a Maxillary Lateral Incisor with Two Roots; A Case Report with 6 Months Follow-Up

    PubMed Central

    Hoseini, Atefeh; Abbaszadegan, Abbas

    2014-01-01

    Maxillary lateral incisors are widely known to be single rooted with one root canal. Although rare cases with root canal variations are being reported in many populations, the reports regarding Iranian population is extremely limited. In this report, we are presenting the endodontic treatment of a double rooted maxillary lateral incisor. These rare root-canal variations should be considered in pretreatment evaluations by clinicians who perform endodontic treatments. PMID:25469361

  19. [Microleakage of root canal fillings with GuttaFlow and Resilon compared with lateral condensation].

    PubMed

    Kqiku, Lumnije; Miletic, Ivana; Gruber, Hans Jürgen; Anic, Ivica; Städtler, Peter

    2010-05-01

    Epiphany/Resilon and GuttaFlow are newly developed methods for obturation of the root canal system. Epiphany/Resilon is a thermoplastic, synthetic polymer-based root canal filling material which enables the bonding to the dentin root canal wall during root canal obturation. GuttaFlow is a cold flowable filling system for the obturation of root canals, combining sealer and gutta-percha in one product. The purpose of this study was to assess the leakage of the Epiphany/Resilon or GuttaFlow root canal filling compared with lateral condensation of gutta-percha. For this study were used 45 human extracted teeth, chemo mechanically prepared, divided into three groups and obturated with gutta-percha/AH Plus, Epiphany/Resilon and GuttaFlow. For dye penetration all teeth were centrifuged for three minutes at 30 g in 2% methylene blue and dissolved in 65% nitric acid for 3 days. The extracted methylene blue was determined with Photometer. Root Canal fillings with Epiphany/Resilon showed less dye penetration than lateral condensation of gutta-percha and GuttaFlow. Epiphany/Resilon is ideally suited as a root canal filling material.

  20. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1.

    PubMed

    Woll, Katrin; Borsuk, Lisa A; Stransky, Harald; Nettleton, Dan; Schnable, Patrick S; Hochholdinger, Frank

    2005-11-01

    The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in the primary root and a delayed gravitropic response. Exogenously applied auxin does not induce lateral roots in the primary root of rum1. Lateral roots are initiated in a specific cell type, the pericycle. Cell-type-specific transcriptome profiling of the primary root pericycle 64 h after germination, thus before lateral root initiation, via a combination of laser capture microdissection and subsequent microarray analyses of 12k maize microarray chips revealed 90 genes preferentially expressed in the wild-type pericycle and 73 genes preferentially expressed in the rum1 pericycle (fold change >2; P-value <0.01; estimated false discovery rate of 13.8%). Among the 51 annotated genes predominately expressed in the wild-type pericycle, 19 genes are involved in signal transduction, transcription, and the cell cycle. This analysis defines an array of genes that is active before lateral root initiation and will contribute to the identification of checkpoints involved in lateral root formation downstream of rum1.

  1. Comparison of laterally condensed and low-temperature thermoplasticized gutta-percha root fillings.

    PubMed

    Al-Dewani, N; Hayes, S J; Dummer, P M

    2000-12-01

    The aim of this study was to evaluate and compare the radiographic quality and sealability of root fillings in extracted human teeth using lateral condensation of gutta-percha or low-temperature thermoplasticized gutta-percha (Ultrafil). One hundred freshly extracted human, mature single-rooted teeth were divided into four identical groups of 25 teeth on the basis of root canal shape. The root canals of two groups were prepared in such a way to produce a relatively parallel shape with little or no flare toward the coronal orifice. The root canals of the other two groups were prepared in such a way as to produce a canal shape that was deliberately more flared to ensure that they were wider at the orifice than at the end point of the preparation. All root canals were flushed with 17% EDTA solution and 2.5% NaOCl to remove the dentinal smear layer. The canals of one flared group and one parallel group were obturated using cold lateral condensation, and the canals of the other two groups were obturated using low-temperature thermoplasticized gutta-percha. The sealability of each technique was assessed by a dye penetration method. The radiographic quality of obturation was determined for each canal using a 4-point scale. Canals filled with thermoplasticized gutta-percha had significantly less apical dye penetration than those obturated by lateral condensation (p < 0.001). Lateral condensation achieved significantly better scores for radiographic quality than thermoplasticized gutta-percha from both the buccolingual (p < 0.005) and mesiodistal views (p < 0.001). Low-temperature thermoplasticized gutta-percha root fillings were associated with significantly more apical extrusion of sealer (p < 0.001) and gutta-percha (p < 0.005). Under laboratory conditions the low-temperature thermoplasticized gutta-percha had better sealability but poorer radiographic quality than lateral condensation.

  2. Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1

    PubMed Central

    Roy, Rahul; Bassham, Diane C.

    2015-01-01

    The trans-Golgi network (TGN) is a dynamic organelle that functions as a relay station for receiving endocytosed cargo, directing secretory cargo, and trafficking to the vacuole. TGN-localized SYP41-interacting protein (TNO1) is a large, TGN-localized, coiled-coil protein that associates with the membrane fusion protein SYP41, a target SNARE, and is required for efficient protein trafficking to the vacuole. Here, we show that a tno1 mutant has auxin transport-related defects. Mutant roots have delayed lateral root emergence, decreased gravitropic bending of plant organs and increased sensitivity to the auxin analog 2,4-dichlorophenoxyacetic acid and the natural auxin 3-indoleacetic acid. Auxin asymmetry at the tips of elongating stage II lateral roots was reduced in the tno1 mutant, suggesting a role for TNO1 in cellular auxin transport during lateral root emergence. During gravistimulation, tno1 roots exhibited delayed auxin transport from the columella to the basal epidermal cells. Endocytosis to the TGN was unaffected in the mutant, indicating that bulk endocytic defects are not responsible for the observed phenotypes. Together these studies demonstrate a role for TNO1 in mediating auxin responses during root development and gravistimulation, potentially through trafficking of auxin transport proteins. PMID:26617617

  3. A Case of Successful Retreatment of a Maxillary Lateral Incisor with a Supernumerary Root

    PubMed Central

    Aminsobhani, Mohsen

    2015-01-01

    Knowledge about the morphology of the root canal system is a pre-requisite for achieving a successful outcome in root canal treatment. In this report, a patient with a maxillary lateral incisor which had previously undergone orthograde endodontic retreatment for two times is discussed. The tooth had been misdiagnosed with a palatal groove or a root fracture, its prognosis had been determined to be poor and extraction was advised by a practitioner. During our evaluation, an unrecognized supernumerary root and root canal were detected and the tooth was maintained successfully with orthograde endodontic retreatment. The use of cone beam computed tomography (CBCT) and magnification were of significance in the treatment process of this case. PMID:27252762

  4. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots1

    PubMed Central

    Canellas, Luciano Pasqualoto; Olivares, Fabio Lopes; Okorokova-Façanha, Anna L.; Façanha, Arnoldo Rocha

    2002-01-01

    Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H+-ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H+-ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances. PMID:12481077

  5. Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato.

    PubMed

    Xu, Sheng; Zhang, Bo; Cao, Ze-Yu; Ling, Teng-Fang; Shen, Wen-Biao

    2011-04-01

    In animals, heme oxygenase (HO), a rate-limiting enzyme responsible for carbon monoxide (CO) production, was regarded as a protective system maintaining cellular homeostasis. It was also established that metal ions are powerful HO-inducing agents and cobalt chloride (CoCl(2)) was the first metal ion identified with an inducing property. Previous study suggests that CoCl(2) stimulates adventitious root formation in tomato and cucumber cuttings. In this test, we discover that both CoCl(2) and an inducer of HO-1, hemin, could lead to the promotion of lateral root development, as well as the induction of HO-1 protein expression, HO activity, or LeHO-1/2 transcripts, in lateral root initiation zone of tomato seedlings. The effect is specific for HO since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) blocked the above actions of CoCl(2), and the inhibitory effect was reversed partially when 50% CO aqueous solution was added. However, the addition of ascorbic acid (AsA), a well-known antioxidant, exhibited no obvious effect on lateral root formation. Molecular evidence further showed that CoCl(2)-induced the up-regulation of target genes responsible for lateral root formation, including LeCDKA1, LeCYCA2;1, and LeCYCA3;1, was suppressed differentially by ZnPPIX. And these decreases were reversed further by the addition of CO. All together, these results suggest a novel role for HO in the CoCl(2)-induced tomato lateral root formation.

  6. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii.

    PubMed

    Tao, Qi; Jupa, Radek; Luo, Jipeng; Lux, Alexander; Kováč, Ján; Wen, Yue; Zhou, Yimei; Jan, Japenga; Liang, Yongchao; Li, Tingqiang

    2016-12-16

    Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10(-8) m s(-1)MPa(-1)), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii.

  7. GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for arabidopsis lateral root initiation.

    PubMed

    Okumura, Ken-ichi; Goh, Tatsuaki; Toyokura, Koichi; Kasahara, Hiroyuki; Takebayashi, Yumiko; Mimura, Tetsuro; Kamiya, Yuji; Fukaki, Hidehiro

    2013-03-01

    Lateral root (LR) formation in vascular plants is regulated by auxin. The mechanisms of LR formation are not fully understood. Here, we have identified a novel recessive mutation in Arabidopsis thaliana, named fewer roots (fwr), that drastically reduces the number of LRs. Expression analyses of DR5::GUS, an auxin response reporter, and pLBD16::GUS, an LR initiation marker, suggested that FWR is necessary for the establishment of an auxin response maximum in LR initiation sites. We further identified that the fwr phenotypes are caused by a missense mutation in the GNOM gene, encoding an Arf-GEF (ADP ribosylation factor-GDP/GTP exchange factor), which regulates the recycling of PINs, the auxin efflux carriers. The fwr roots showed enhanced sensitivity to brefeldin A in a root growth inhibition assay, indicating that the fwr mutation reduces the Arf-GEF activity of GNOM. However, the other developmental processes except for LR formation appeared to be unaffected in the fwr mutant, indicating that fwr is a weaker allele of gnom compared with the other gnom alleles with pleiotropic phenotypes. The localization of PIN1-green fluorescent protein (GFP) appeared to be unaffected in the fwr roots but the levels of endogenous IAA were actually higher in the fwr roots than in the wild type. These results indicate that LR initiation is one of the most sensitive processes among GNOM-dependent developmental processes, strongly suggesting that GNOM is required for the establishment of the auxin response maximum for LR initiation, probably through the regulation of local and global auxin distribution in the root.

  8. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    PubMed

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  9. The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation.

    PubMed

    Fernandez, Ana; Drozdzecki, Andrzej; Hoogewijs, Kurt; Vassileva, Valya; Madder, Annemieke; Beeckman, Tom; Hilson, Pierre

    2015-08-01

    Small peptides of the Arabidopsis GLV/RGF/CLEL family are involved in different developmental programmes, including meristem maintenance and gravitropic responses. In addition, our previous report suggested that they also participate in the formation of lateral roots. Specifically, GLV6 is transcribed during the first stages of primordium development and GLV6 overexpression results in a strong reduction of emerged lateral roots. To investigate the cause of this phenotype we analysed primordium development in gain-of-function (gof) mutants and found that GLV6 induces supernumerary pericycle divisions, hindering the formation of a dome-shaped primordium, a prerequisite for successful emergence. The GLV6 phenotype could be reproduced by ectopic expression of the gene only in xylem-pole pericycle cells. Furthermore, GLV6 seems to function at the very beginning of lateral root initiation because GLV6 excess-either gene overexpression or peptide treatment-disrupts the first asymmetric cell divisions required for proper primordium formation. Our results suggest that GLV6 acts during lateral root initiation controlling the patterning of the first pericycle divisions.

  10. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence

    PubMed Central

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-01-01

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes. PMID:24150423

  11. Repression of early lateral root initiation events by transient water deficit in barley and maize

    PubMed Central

    Babé, Aurélie; Lavigne, Tristan; Séverin, Jean-Philippe; Nagel, Kerstin A.; Walter, Achim; Chaumont, François; Batoko, Henri; Beeckman, Tom; Draye, Xavier

    2012-01-01

    The formation of lateral roots (LRs) is a key driver of root system architecture and developmental plasticity. The first stage of LR formation, which leads to the acquisition of founder cell identity in the pericycle, is the primary determinant of root branching patterns. The fact that initiation events occur asynchronously in a very small number of cells inside the parent root has been a major difficulty in the study of the molecular regulation of branching patterns. Inducible systems that trigger synchronous lateral formation at predictable sites have proven extremely valuable in Arabidopsis to decipher the first steps of LR formation. Here, we present a LR repression system for cereals that relies on a transient water-deficit treatment, which blocks LR initiation before the first formative divisions. Using a time-lapse approach, we analysed the dynamics of this repression along growing roots and were able to show that it targets a very narrow developmental window of the initiation process. Interestingly, the repression can be exploited to obtain negative control root samples where LR initiation is absent. This system could be instrumental in the analysis of the molecular basis of drought-responsive as well as intrinsic pathways of LR formation in cereals. PMID:22527396

  12. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  13. AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in arabidopsis.

    PubMed

    Gibbs, Daniel J; Coates, Juliet C

    2014-01-01

    Plant root systems are critical for survival, acting as the primary interface for nutrient and water acquisition, as well as anchoring the plant to the ground. As plants grow, their root systems become more elaborate, which is largely mediated by the formation of root branches, or lateral roots. Lateral roots initiate deep within the root in the pericycle cell layer, and their development is controlled by a wide range of internal signaling factors and environmental cues, as well as mechanical feedback from the surrounding cells. The endodermal cell layer, which overlies the pericycle, has emerged as an important tissue regulating LR initiation and formation. We recently identified the AtMYB93 transcription factor as a negative regulator of lateral root development in Arabidopsis. Interestingly, AtMYB93 expression is highly restricted to the few endodermal cells overlying developing lateral root primordia, suggesting that this transcriptional regulator might play a key role in mediating the effect of the endodermis on lateral root development. Here we discuss our recent findings in the wider context of root system development - with a particular focus on the role of the endodermis - and propose several potential models to explain AtMYB93 function during lateral root organogenesis.

  14. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    NASA Technical Reports Server (NTRS)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  15. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress.

    PubMed

    Dash, Madhumita; Yordanov, Yordan S; Georgieva, Tatyana; Tschaplinski, Timothy J; Yordanova, Elena; Busov, Victor

    2017-02-01

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.

  16. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    PubMed Central

    Ottenschläger, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Göran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism. PMID:12594336

  17. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  18. Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis.

    PubMed

    Chang, Ling; Ramireddy, Eswarayya; Schmülling, Thomas

    2015-08-01

    The root systems of plants have developed adaptive architectures to exploit soil resources. The formation of lateral roots (LRs) contributes to root system architecture. Roots of plants with a lower cytokinin status form LR primordia (LRP) in unusually close proximity, indicating a role for the hormone in regulating the positioning of LRs along the main root axis. Data obtained from cytokinin-synthesis mutants of Arabidopsis thaliana combined with gene expression analysis indicate that cytokinin synthesis by IPT5 and LOG4 occurring early during LRP initiation generates a local cytokinin signal abbreviating LRP formation in neighbouring pericycle cells. In addition, IPT3, IPT5, and IPT7 contribute to cytokinin synthesis in the vicinity of existing LRP, thus suppressing initiation of new LRs. Interestingly, mutation of CYP735A genes required for trans-zeatin biosynthesis caused strong defects in LR positioning, indicating an important role for this cytokinin metabolite in regulating LR spacing. Further it is shown that cytokinin and a known regulator of LR spacing, the receptor-like kinase ARABIDOPSIS CRINKLY4 (ACR4), operate in a non-hierarchical manner but might exert reciprocal control at the transcript level. Taken together, the results suggest that cytokinin acts as a paracrine hormonal signal in regulating root system architecture.

  19. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

    PubMed Central

    Voß, Ute; Wilson, Michael H.; Kenobi, Kim; Gould, Peter D.; Robertson, Fiona C.; Peer, Wendy A.; Lucas, Mikaël; Swarup, Kamal; Casimiro, Ilda; Holman, Tara J.; Wells, Darren M.; Péret, Benjamin; Goh, Tatsuaki; Fukaki, Hidehiro; Hodgman, T. Charlie; Laplaze, Laurent; Halliday, Karen J.; Ljung, Karin; Murphy, Angus S.; Hall, Anthony J.; Webb, Alex A. R.; Bennett, Malcolm J.

    2015-01-01

    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence. PMID:26144255

  20. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis. (1) Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence.

  1. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis

    PubMed Central

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence. PMID:26236960

  2. Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective

    PubMed Central

    Verboom, William H.; Pate, John S.; Aspandiar, Mehrooz

    2010-01-01

    Background and Aims A previous paper (Annals of Botany 103: 673–685) described formation of clayey pavements in lateral root catchments of eucalypts colonizing a recently formed sand dune in south-west Western Australia. Here chemical and morphological aspects of their formation at the site are studied. Methods Chemical and physical examinations of soil cores through pavements and sand under adjacent heath assessed build-up of salts, clay and pH changes in or below pavements. Relationships of root morphology to clay deposition were examined and deposits subjected to scanning electron microscopy and energy-dispersive X-ray analysis. Xylem transport of mineral elements in eucalypt and non-eucalypt species was studied by analysis of xylem (tracheal) sap from lateral roots. Key Results The columns of which pavements are composed develop exclusively on lower-tier lateral roots. Such sites show intimate associations of fine roots, fungal filaments, microbiota and clay deposits rich in Si, Al and Fe. Time scales for construction of pavements by eucalypts were assessed. Cores through columns of pavemented profiles showed gross elevations of bulk density, Al, Fe and Si in columns and related increases in pH, Mg and Ca status in lower profiles. A cutting through the dune exhibited pronounced alkalinity (pH 7–10) under mallee woodland versus acidity (pH 5–6·5) under proteaceous heath. Xylem sap analyses showed unusually high concentrations of Al, Fe, Mg and Si in dry-season samples from column-bearing roots. Conclusions Deposition of Al–Fe–Si-rich clay is pivotal to pavement construction by eucalypts and leads to profound chemical and physical changes in relevant soil profiles. Microbial associates of roots are likely to be involved in clay genesis, with parent eucalypts supplying the required key mineral elements and carbon sources. Acquisition of the Al and Fe incorporated into clay derives principally from hydraulic uplift from ground water via deeply

  3. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.

    PubMed

    Hao, Yu-Jun; Wei, Wei; Song, Qing-Xin; Chen, Hao-Wei; Zhang, Yu-Qin; Wang, Fang; Zou, Hong-Feng; Lei, Gang; Tian, Ai-Guo; Zhang, Wan-Ke; Ma, Biao; Zhang, Jin-Song; Chen, Shou-Yi

    2011-10-01

    NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.

  4. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation.

    PubMed

    Marhavý, Peter; Montesinos, Juan Carlos; Abuzeineh, Anas; Van Damme, Daniel; Vermeer, Joop E M; Duclercq, Jerôme; Rakusová, Hana; Nováková, Petra; Friml, Jiři; Geldner, Niko; Benková, Eva

    2016-02-15

    To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.

  5. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation

    PubMed Central

    Marhavý, Peter; Montesinos, Juan Carlos; Abuzeineh, Anas; Van Damme, Daniel; Vermeer, Joop E.M.; Duclercq, Jerôme; Rakusová, Hana; Nováková, Petra; Friml, Jiři; Geldner, Niko; Benková, Eva

    2016-01-01

    To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots. PMID:26883363

  6. Auxin-induced degradation dynamics set the pace for lateral root development.

    PubMed

    Guseman, Jessica M; Hellmuth, Antje; Lanctot, Amy; Feldman, Tamar P; Moss, Britney L; Klavins, Eric; Calderón Villalobos, Luz Irina A; Nemhauser, Jennifer L

    2015-03-01

    Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnover rates played a significant role in plant responses to auxin. Here, we use the well-established model of lateral root development to directly test the hypothesis that the rate of auxin-induced Aux/IAA turnover sets the pace for auxin-regulated developmental events. We did this by generating transgenic plants expressing degradation rate variants of IAA14, a crucial determinant of lateral root initiation. Progression through the well-established stages of lateral root development was strongly correlated with the engineered rates of IAA14 turnover, leading to the conclusion that Aux/IAAs are auxin-initiated timers that synchronize developmental transitions.

  7. Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants

    PubMed Central

    Li, Yan-Jun; Shi, Zhi-Qi; Gan, Li-Jun; Chen, Jian

    2014-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is a critical neuromodulator in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure. The crosstalk between NO and H2S has been well established in mammalian physiology. In planta, NO is demonstrated to regulate lateral root formation by acting downstream of auxin. The recent reports revealed that H2S is a novel inducer of lateral root (LR) formation by stimulating the expression of cell cycle regulatory genes (CCRGs), acting similarly with NO, CO, and IAA. Interestingly, during the initiation of lateral root primordia, IAA is a potent inducer of endogenous H2S and CO, which is produced by L-cysteine desulfhydrase (LCD) and heme oxygenase-1 (HO-1), respectively. The increasing evidences suggest that H2S-promoted LR growth is dependent on the endogenous production of CO. In addition, our results indicate that the H2S signaling in the regulation of LR formation can be associated to NO and Ca2+. In this addendum, we advanced a proposed schematic model for H2S-mediated signaling pathway of plant LR development. PMID:24832131

  8. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.

    PubMed

    Vanneste, Steffen; De Rybel, Bert; Beemster, Gerrit T S; Ljung, Karin; De Smet, Ive; Van Isterdael, Gert; Naudts, Mirande; Iida, Ryusuke; Gruissem, Wilhelm; Tasaka, Masao; Inzé, Dirk; Fukaki, Hidehiro; Beeckman, Tom

    2005-11-01

    To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the auxin/indole-3-acetic acid (AUX/IAA) signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.

  9. In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation.

    PubMed

    Li, Yan-Jun; Chen, Jian; Xian, Ming; Zhou, Li-Gang; Han, Fengxiang X; Gan, Li-Jun; Shi, Zhi-Qi

    2014-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in tomato (Solanum lycopersicum) roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO), and Ca(2+) in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+) accumulation and CaM1 (calmodulin 1) expression could be abolished by inhibiting H2S synthesis. Ca(2+) chelator or Ca(2+) channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+) in regulating lateral root formation.

  10. Strigolactones spatially influence lateral root development through the cytokinin signaling network.

    PubMed

    Jiang, Lingxiang; Matthys, Cedrick; Marquez-Garcia, Belen; De Cuyper, Carolien; Smet, Lien; De Keyser, Annick; Boyer, François-Didier; Beeckman, Tom; Depuydt, Stephen; Goormachtig, Sofie

    2016-01-01

    Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root-shoot junction. The cytokinin module ARABIDOPSIS HISTIDINE KINASE3 (AHK3)/ARABIDOPSIS RESPONSE REGULATOR1 (ARR1)/ARR12 was found to interact with the GR24-dependent reduction in LR development, because mutants in this pathway rendered LR development insensitive to GR24. Additionally, pharmacological analyses, mutant analyses, and gene expression analyses indicated that the affected polar auxin transport stream in mutants of the AHK3/ARR1/ARR12 module could be the underlying cause. Altogether, the data reveal that the GR24 effect on LR development depends on the hormonal landscape that results from the intimate connection with auxins and cytokinins, two main players in LR development.

  11. Five root canals in peg lateral incisor with dens invaginatus: A case report with new nomenclature for the five canals

    PubMed Central

    Jaikailash, Shanmugam; Kavitha, Mahendran; Ranjani, Muthukrishnan Sudharshana; Saravanan, Balasubramaniam

    2014-01-01

    This case report describes endodontic treatment completed in a peg-shaped maxillary lateral incisor, with single root and five root canals of which, one is due to dens invaginatus. Cone beam computed tomogram scanning confirmed the unique morphology of the tooth. New nomenclature for the five canals is proposed. PMID:25125854

  12. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio

    2016-03-15

    The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells.

  13. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.

    PubMed

    Li, Xiang; Mo, Xiaorong; Shou, Huixia; Wu, Ping

    2006-08-01

    In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.

  14. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis

    PubMed Central

    de Rycke, Riet; Fernandez, Ana; Himschoot, Ellie; Van Breusegem, Frank; Périlleux, Claire

    2016-01-01

    Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. PMID:27402709

  15. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana.

    PubMed

    Feng, Zhenhua; Zhu, Jian; Du, Xiling; Cui, Xianghuan

    2012-10-01

    In Arabidopsis, two Auxin Response Factors (ARF7 and ARF19) and several Aux/IAAs regulate auxin-induced lateral root (LR) formation. As direct targets of ARF7 and ARF19, Lateral Organ Boundaries Domain 16 (LBD16), LBD29, and LBD18 have a biological function in the formation of lateral roots (LRs). However, the details of the functions of these three LBDs have remained unclear. Each single T-DNA insert mutant has been shown to have slightly fewer LRs than the wild type. We then created a triple mutant, which exhibited a dramatic defect in the LR formation. Our results show that the lbd mutations can lead to impairment in auxin-induced pericycle cell division and in the expression levels of some D-type cyclins (CYCDs). Simultaneously, Plethora (PLT) and PIN-formed (PIN), which have been well documented to promote cell mitotic activity and are required for auxin response effects, were down-regulated by these lbd mutations. Our results so far indicate that CYCDs, PLT, and PINs are the main targets of the LBDs. We believe that these three LBDs are involved in cell cycle progression of the pericycle in response to auxin. Overexpression of any of these three LBD genes in the triple mutant was found incapable of completely replacing the other two LBDs. The phenotypes of lbd29 mutants were not completely consistent with lbd16 or lbd18 mutants. This indicates that LBD29 may play a distinctive role compared with LBD16 or LBD18 and LBDs might play partially independent roles during the formation of LRs.

  16. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation.

    PubMed

    Manzano, Concepción; Ramirez-Parra, Elena; Casimiro, Ilda; Otero, Sofía; Desvoyes, Bénédicte; De Rybel, Bert; Beeckman, Tom; Casero, Pedro; Gutierrez, Crisanto; C Del Pozo, Juan

    2012-10-01

    In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5' end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.

  17. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  18. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  19. The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability1[C][W][OPEN

    PubMed Central

    Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul

    2014-01-01

    Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860

  20. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation.

    PubMed

    Liu, Yan; von Behrens, Inga; Muthreich, Nils; Schütz, Wolfgang; Nordheim, Alfred; Hochholdinger, Frank

    2010-01-01

    Lateral roots are all roots that are initiated in the pericycle cell layer of other roots during postembryonic development. The maize (Zea mays L.) mutant rum1 (rootless with undetectable meristems 1) does not initiate lateral roots in the primary root. In the present study, two-dimensional electrophoresis proteome profiles of three biological replicates of pericycle cells isolated from the differentiation zone of 2.5-day-old wild-type and rum1 primary roots were generated. This early developmental stage was selected in order to analyze histologically similar cells before the initiation of lateral roots in wild-type primary roots. In total, 418 proteins were reproducibly detected on all six gels after fluorescent staining with Flamingo dye. Among those, twelve proteins were differentially accumulated between wild-type and rum1 pericycle cells (Fc > 2; p < 0.05). Electrospray ionization tandem mass spectrometry (ESI-MS/MS) identified eight of the twelve proteins. Six proteins were related to metabolism, one protein belonged to the class of disease and defense, and one protein was related to development. Six of the eight proteins have not been previously localized to the pericycle. Moreover, the slight overlap between proteins and transcripts that are differentially accumulated in the maize pericycle between wild-type and rum1 underscores the importance of posttranscriptional protein modifications that cannot be detected on the RNA level. The differential accumulation of proteins in rum1 and wild-type pericycle cells of the primary root suggests that the abundance of these proteins could be regulated by RUM1.

  1. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth.

    PubMed

    Zhang, Hongtao; Zhou, Houjiang; Berke, Lidija; Heck, Albert J R; Mohammed, Shabaz; Scheres, Ben; Menke, Frank L H

    2013-05-01

    Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.

  2. Auxin reflux between the endodermis and pericycle promotes lateral root initiation.

    PubMed

    Marhavý, Peter; Vanstraelen, Marleen; De Rybel, Bert; Zhaojun, Ding; Bennett, Malcolm J; Beeckman, Tom; Benková, Eva

    2013-01-09

    Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN-formed) auxin efflux carrier-dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine-tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified.

  3. Heuristic aspect of the lateral root initiation index: A case study of the role of nitric oxide in root branching1

    PubMed Central

    Lira-Ruan, Verónica; Mendivil, Selene Napsucialy; Dubrovsky, Joseph G.

    2013-01-01

    • Premise of the study: Lateral root (LR) initiation (LRI) is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO) promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length), we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. • Methods and Results: Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP]) and/or an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide [cPTIO]). LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. • Conclusions: Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment. PMID:25202488

  4. Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis.

    PubMed

    Ohtani, Misato; Demura, Taku; Sugiyama, Munetaka

    2010-12-01

    Lateral root primordia are initiated by anticlinal division of cells in the pericycle and are constructed through an ordered set of cell divisions. At the completion of the development of the primordium, cell division ceases, after which the lateral root meristem is activated. In Arabidopsis, this course of lateral root morphogenesis was found to be significantly susceptible to srd2-1, a temperature-sensitive mutation of the SRD2 gene encoding an activator of small nuclear RNA (snRNA) transcription. The srd2-1 mutation altered the organization of cells of the root primordium and, importantly, maintained primordial cell division for a long period, resulting in the formation of abnormal hemispherical laterals. Expression patterns of various reporter genes suggested that both the apical-basal and radial axes were not well established in the lateral root primordia of the srd2-1 mutant. In the early stages of development of the primordium, the srd2-1 mutation reduced the amount of the auxin efflux facilitator PIN-FORMED (PIN) and, probably by this means, interfered with the generation of an auxin gradient. Spliceosomal snRNAs accumulated at high levels throughout young root primordia and then decreased in association with the arrest of cell division, and finally increased again when the apical meristem became activated. The accumulation of snRNAs was severely suppressed by the srd2-1 mutation, and this was detectable before any morphological defect became evident. These findings suggest that high-level accumulation of snRNA involving the SRD2 function is particularly important for expression of PINs in polarized pattern generation during the development of lateral root primordia.

  5. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development1[OPEN

    PubMed Central

    Mohd-Radzman, Nadiatul A.; Ivanovici, Ariel; Frugier, Florian; Djordjevic, Michael A.

    2016-01-01

    C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways. PMID:27342310

  6. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium.

    PubMed

    Hsu, Yun Yen; Chao, Yun-Yang; Kao, Ching Huei

    2013-01-01

    Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca(2+) chelators and Ca(2+) channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca(2+) may regulate MJ action mainly through CaM-dependent mechanism.

  7. Isolation, Characterization, and Pericycle-Specific Transcriptome Analyses of the Novel Maize Lateral and Seminal Root Initiation Mutant rum11[w

    PubMed Central

    Woll, Katrin; Borsuk, Lisa A.; Stransky, Harald; Nettleton, Dan; Schnable, Patrick S.; Hochholdinger, Frank

    2005-01-01

    The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in the primary root and a delayed gravitropic response. Exogenously applied auxin does not induce lateral roots in the primary root of rum1. Lateral roots are initiated in a specific cell type, the pericycle. Cell-type-specific transcriptome profiling of the primary root pericycle 64 h after germination, thus before lateral root initiation, via a combination of laser capture microdissection and subsequent microarray analyses of 12k maize microarray chips revealed 90 genes preferentially expressed in the wild-type pericycle and 73 genes preferentially expressed in the rum1 pericycle (fold change >2; P-value <0.01; estimated false discovery rate of 13.8%). Among the 51 annotated genes predominately expressed in the wild-type pericycle, 19 genes are involved in signal transduction, transcription, and the cell cycle. This analysis defines an array of genes that is active before lateral root initiation and will contribute to the identification of checkpoints involved in lateral root formation downstream of rum1. PMID:16215225

  8. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development

    PubMed Central

    Chen, Qian; Liu, Yang; Maere, Steven; Lee, Eunkyoung; Van Isterdael, Gert; Xie, Zidian; Xuan, Wei; Lucas, Jessica; Vassileva, Valya; Kitakura, Saeko; Marhavý, Peter; Wabnik, Krzysztof; Geldner, Niko; Benková, Eva; Le, Jie; Fukaki, Hidehiro; Grotewold, Erich; Li, Chuanyou; Friml, Jiří; Sack, Fred; Beeckman, Tom; Vanneste, Steffen

    2015-01-01

    Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal ‘memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. PMID:26578065

  9. Perineural Injection for Treatment of Root-Signature Signs Associated with Lateralized Disk Material in Five Dogs (2009–2013)

    PubMed Central

    Giambuzzi, Sarah; Pancotto, Theresa; Ruth, Jeffrey

    2016-01-01

    Intervertebral disk disease (IVDD) is common in dogs; cervical IVDD accounts for 13–25% of all cases. Ventral slot decompression provides access to ventral and centrally extruded or protruded disk material. However, procedures to remove dorsally or laterally displaced material are more difficult. This case series describes the use of perineural injection as a potential treatment option for dogs experiencing root-signature signs associated with lateralized disk material in the cervical spine. Five dogs underwent fluoroscopically guided perineural injection of methylprednisolone ± bupivacaine. Most patients experienced improvement in root-signature signs and remained pain free without the assistance of oral pain medication. These findings suggest the perineural injection of methylprednisolone ± bupivacaine represents a viable option for dogs with cervical lateralized disk material causing root-signature signs. PMID:26858952

  10. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti.

    PubMed

    Gonzalez-Rizzo, Silvina; Crespi, Martin; Frugier, Florian

    2006-10-01

    Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.

  11. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    PubMed Central

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  12. Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice.

    PubMed

    Chen, Yi Hsuan; Kao, Ching Huei

    2012-01-01

    In the present study, the role of nitric oxide (NO) in the regulation of lateral root (LR) formation in rice was examined. Application of sodium nitroprusside (SNP; a NO donor) and indole-3-butyric acid (IBA; a naturally occurring auxin) to rice seedlings induced LR formation. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide (cPTIO) blocked the action of SNP and IBA. Endogenous NO was detected by the specific fluorescence probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. SNP- and IBA-induced NO fluorescence was specifically suppressed by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR formation and NO fluorescence. However, nitric oxide synthase inhibitor N (G)-nitro-L: -arginine methyl ester hydrochloride slightly reduced IBA-induced LR formation and NO generation. It appears that NO generation that occurs in response to IBA might primarily involve NR activity. Moreover, NO production caused by SNP and IBA was localized in root area corresponding to LR emergence. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin antagonists on LR formation induced by SNP and IBA were also examined. All these inhibitors were effective in reducing the action of SNP and IBA. However, Ca(2+) chelators and Ca(2+)-channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that cytosolic levels of Ca(2+) may regulate SNP and IBA action through calmodulin-dependent mechanism.

  13. The effect of laterally positioned flap-revised technique and 24% ethylenediaminetetraacetic acid root conditioning on root coverage: A case report

    PubMed Central

    Singh, Jagmohan; Bharti, Vipin

    2014-01-01

    Complete root coverage is considered the true goal of treatment of gingival recession defects because only complete coverage assures recovery from the hypersensitivity and esthetic defects associated with recession areas. Previous studies have shown that the laterally positioned flap (LPF) technique or root surface biomodification yields a higher percentage of complete root coverage upon gingival recession treatment. This article highlights the use of the laterally positioned pedicle flap-revised technique (LPFRT) as a modification of the LPF technique, along with 24% EDTA gel as a root surface biomodification agent, in the management of localized gingival recession defects. Clinical examination revealed a Miller class II recession defect on the buccal aspect of the lower right central incisor, as well as the presence of aberrant frenum pull adjacent to the recession defect. The LPFRT, together with 24% EDTA gel, was speculated to cover the gingival recession defect. The frenectomy, along with periosteal fenestration, was planned simultaneously with LPFRT. After 6 months of therapy, the clinical condition was stable with complete root coverage and satisfactory healing of the gingival tissues at both the donor and recipient sites with no signs of inflammation. PMID:25057234

  14. The effect of laterally positioned flap-revised technique and 24% ethylenediaminetetraacetic acid root conditioning on root coverage: A case report.

    PubMed

    Singh, Jagmohan; Bharti, Vipin

    2014-07-01

    Complete root coverage is considered the true goal of treatment of gingival recession defects because only complete coverage assures recovery from the hypersensitivity and esthetic defects associated with recession areas. Previous studies have shown that the laterally positioned flap (LPF) technique or root surface biomodification yields a higher percentage of complete root coverage upon gingival recession treatment. This article highlights the use of the laterally positioned pedicle flap-revised technique (LPFRT) as a modification of the LPF technique, along with 24% EDTA gel as a root surface biomodification agent, in the management of localized gingival recession defects. Clinical examination revealed a Miller class II recession defect on the buccal aspect of the lower right central incisor, as well as the presence of aberrant frenum pull adjacent to the recession defect. The LPFRT, together with 24% EDTA gel, was speculated to cover the gingival recession defect. The frenectomy, along with periosteal fenestration, was planned simultaneously with LPFRT. After 6 months of therapy, the clinical condition was stable with complete root coverage and satisfactory healing of the gingival tissues at both the donor and recipient sites with no signs of inflammation.

  15. Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase.

    PubMed

    Hsu, Yun Yen; Chao, Yun-Yang; Kao, Ching Huei

    2013-08-15

    Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.

  16. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  17. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis1[C][W

    PubMed Central

    Raya-González, Javier; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Kazan, Kemal; López-Bucio, José

    2014-01-01

    Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis. PMID:24784134

  18. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  19. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

    PubMed

    Porco, Silvana; Larrieu, Antoine; Du, Yujuan; Gaudinier, Allison; Goh, Tatsuaki; Swarup, Kamal; Swarup, Ranjan; Kuempers, Britta; Bishopp, Anthony; Lavenus, Julien; Casimiro, Ilda; Hill, Kristine; Benkova, Eva; Fukaki, Hidehiro; Brady, Siobhan M; Scheres, Ben; Péret, Benjamin; Bennett, Malcolm J

    2016-09-15

    Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.

  20. A role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the interaction Arabidopsis-Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development.

    PubMed

    Cabrera, Javier; Díaz-Manzano, Fernando E; Sanchez, María; Rosso, Marie-Noëlle; Melillo, Teresa; Goh, Tatsuaki; Fukaki, Hidehiro; Cabello, Susana; Hofmann, Julia; Fenoll, Carmen; Escobar, Carolina

    2014-07-01

    Plant endoparasitic nematodes induce the formation of their feeding cells by injecting effectors from the esophageal glands into root cells. Although vascular cylinder cells seem to be involved in the formation of root-knot nematode (RKN) feeding structures, molecular evidence is scarce. We address the role during gall development of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), a key component of the auxin pathway leading to the divisions in the xylem pole pericycle (XPP) for lateral root (LR) formation. Arabidopsis T-DNA tagged J0192 and J0121 XPP marker lines, LBD16 and DR5::GUS promoter lines, and isolated J0192 protoplasts were assayed for nematode-dependent gene expression. Infection tests in LBD16 knock-out lines were used for functional analysis. J0192 and J0121 lines were activated in early developing galls and giant cells (GCs), resembling the pattern of the G2/M-transition specific ProC yc B 1;1 :CycB1;1(NT)-GUS line. LBD16 was regulated by auxins in galls as in LRs, and induced by RKN secretions. LBD16 loss of function mutants and a transgenic line with defective XPP cells showed a significantly reduced infection rate. The results show that genes expressed in the dividing XPP, particularly LBD16, are important for gall formation, as they are for LR development.

  1. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation

    PubMed Central

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-01-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34–22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. PMID:27342224

  2. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.

  3. Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle.

    PubMed

    Ivanchenko, Maria G; Coffeen, Warren C; Lomax, Terri L; Dubrovsky, Joseph G

    2006-05-01

    In angiosperms, root branching requires a continuous re-initiation of new root meristems. Through some unknown mechanism, in most eudicots pericycle cells positioned against the protoxylem change identity and initiate patterned division, leading to formation of lateral root primordia that further develop into lateral roots. This process is auxin-regulated. We have observed that three mutations in the Diageotropica (Dgt) gene in tomato prevent primordium formation. Detailed analysis of one of these mutants, dgt1-1, demonstrated that the mutation does not abolish the proliferative capacity of the xylem-adjacent pericycle in the differentiated root portion. Files of shortened pericycle cells found in dgt1-1 roots were unrelated to primordium formation. Auxin application stimulated this unusual proliferation, leading to formation of a multi-layered xylem-adjacent pericycle, but did not rescue the primordium formation. In contrast to wild type, auxin could not induce any cell divisions in the pericycle of the most distal dgt1-1 root-tip portion. In wild-type roots, the Dgt gene promoter was expressed strongly in lateral root primordia starting from their initiation, and on auxin treatment was induced in the primary root meristem. Auxin level and distribution were altered in dgt1-1 root tissues, as judged by direct auxin measurements, and the tissue-specific expression of an auxin-response reporter was altered in transgenic plants. Together, our data demonstrate that the Dgt gene product, a type-A cyclophilin, is essential for morphogenesis of lateral root primordia, and that the dgt mutations uncouple patterned cell division in lateral root initiation from proliferative cell division in the pericycle.

  4. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress.

    PubMed

    Li, Guangjie; Song, Haiyan; Li, Baohai; Kronzucker, Herbert J; Shi, Weiming

    2015-12-01

    A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.

  5. miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth[W

    PubMed Central

    Marin, Elena; Jouannet, Virginie; Herz, Aurélie; Lokerse, Annemarie S.; Weijers, Dolf; Vaucheret, Herve; Nussaume, Laurent; Crespi, Martin D.; Maizel, Alexis

    2010-01-01

    Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development. PMID:20363771

  6. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels.

    PubMed

    Jones, James M C; Clairmont, Lindsey; Macdonald, Emily S; Weiner, Catherine A; Emery, R J Neil; Guinel, Frédérique C

    2015-07-01

    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses.

  7. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development.

  8. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels

    PubMed Central

    Jones, James M. C.; Clairmont, Lindsey; Macdonald, Emily S.; Weiner, Catherine A.; Emery, R. J. Neil; Guinel, Frédérique C.

    2015-01-01

    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses. PMID:25948707

  9. Involvement of glutathione in β-cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings.

    PubMed

    Zhu, Dan; Mei, Yudong; Shi, Yujian; Hu, Dekun; Ren, Yong; Gu, Quan; Shen, Wenbiao; Chen, Xin; Xu, Lingxi; Huang, Liqin

    2016-10-01

    β-cyclodextrin-hemin complex (β-CDH) was shown to induce lateral root (LR) formation in tomato. However, the molecular mechanism is still elusive. In this report, the role of reduced glutathione (GSH) in the induction of lateral root triggered by β-CDH was investigated. Similar to the responses of β-CDH, exogenously applied with 0.1 mΜ GSH not only increased endogenous GSH content determined by spectrophotography and the monochlorobimane (MCB)-dependent fluorescent analysis, but also induced, thereafter, LR formation. Meanwhile, both β-CDH- and GSH-induced lateral root primordia (LRP) exhibited a similar accelerated anatomic structure. Above inducible responses were blocked significantly when the L-buthionine-(S,R)-sulfoximine (BSO), a potent and specific inhibitor of the enzyme catalyzing the first step of GSH biosynthesis, was separately applied. Upon β-CDH treatment, the changes of endogenous GSH content determined by spectrophotography and fluorescent analysis were consistent with the transcripts of two GSH synthetic genes, GSH1 and GSH2 encoding γ-glutamyl cysteine synthetase and glutathione synthetase, respectively. Exogenously applied with β-CDH could rescue N-1-naphthylphthalamic acid (NPA; IAA depletion)-triggered inhibition of LR formation. Further molecular evidence revealed that both β-CDH and GSH modulated gene expression of cell cycle regulatory genes (CYCA2;1, CYCA3;1, CYCD3;1, and CDKA1) and auxin signaling genes (ARF7 and RSI-1), six marker genes responsible for LR formation. By contrast, above changes were sensitive to the co-treatment with BSO. All together, these results suggest a role for GSH in the regulation of tomato LR development triggered by β-CDH.

  10. Knockdown of CELL DIVISION CYCLE16 Reveals an Inverse Relationship between Lateral Root and Nodule Numbers and a Link to Auxin in Medicago truncatula1[W][OA

    PubMed Central

    Kuppusamy, Kavitha T.; Ivashuta, Sergey; Bucciarelli, Bruna; Vance, Carroll P.; Gantt, J. Stephen; VandenBosch, Kathryn A.

    2009-01-01

    The postembryonic development of lateral roots and nodules is a highly regulated process. Recent studies suggest the existence of cross talk and interdependency in the growth of these two organs. Although plant hormones, including auxin and cytokinin, appear to be key players in coordinating this cross talk, very few genes that cross-regulate root and nodule development have been uncovered so far. This study reports that a homolog of CELL DIVISION CYCLE16 (CDC16), a core component of the Anaphase Promoting Complex, is one of the key mediators in controlling the overall number of lateral roots and nodules. A partial suppression of this gene in Medicago truncatula leads to a decrease in number of lateral roots and a 4-fold increase in number of nodules. The roots showing lowered expression of MtCDC16 also show reduced sensitivity to phytohormone auxin, thus providing a potential function of CDC16 in auxin signaling. PMID:19789288

  11. Cross-talk between nitric oxide and Ca (2+) in elevated CO 2-induced lateral root formation.

    PubMed

    Wang, Huan; Niu, Yaofang; Chai, Rushan; Liu, Miao; Zhang, Yongsong

    2013-02-01

    This study demonstrates a potential signaling pathway of CO 2-dependent stimulation in lateral root (LR) formation. Elevated CO 2 increases production of nitric oxide (NO), which subsequently stimulates the generation of cytosolic Ca (2+) concentration by activating plasma membrane and/or intracellular Ca (2+)-permeable channels. Meanwhile, nitric oxide synthase (NOS), as one of the main NO source, requires Ca (2+) and CaM as cofactors. This complex interaction involves transduction cascades of multiple signals that lead to the LR formation and development. Finally, this review highlights the the role of Ca (2+) in the process that elevated CO 2 enhances the development of LRs through increased NO level.

  12. [Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis].

    PubMed

    Li, Yan-An; Qi, Lin-Lin; Sun, Jia-Qiang; Liu, Hong-Yu; Li, Chuan-You

    2011-09-01

    It has been shown that jasmonate modulates the lateral root development through crosstalk with auxin in Arabidopsis thaliana. Exogenous application of jasmonate stimulates lateral root formation in wild type but inhibits lateral root formation in asa1-1. Our previous work has demonstrated that the lateral root formation defect of asa1-1 is co-related with jasmonte effect on PIN2 protein levels. To further elucidate the molecular mechanisms underlying jasmonate-mediated reduction of plasma membrane (PM)-resident PIN2 abundance, we have conducted a genetic screen to identify suppressors of asa1-1 (soa), which showed lateral root formation in the presence of jasmonate. Here, we described the basic characterization of soa563 and soa856. We showed that both soa563 and soa856 displayed restored lateral root formation in response to exogenous jasmonate. In addition, jasmonate-induced PIN2:GFP reduction was blocked in these two mutants. Our on-going effort to identify genes defined by these mutants promise to shed new light on the understanding of the molecular mechanisms controlling jasmonate-mediated regulation of PIN2 protein trafficking and turnover.

  13. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Araújo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; Novák, Ondřej; Zažímalová, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  14. Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation1[C][W][OA

    PubMed Central

    Manzano, Concepción; Ramirez-Parra, Elena; Casimiro, Ilda; Otero, Sofía; Desvoyes, Bénédicte; De Rybel, Bert; Beeckman, Tom; Casero, Pedro; Gutierrez, Crisanto; C. del Pozo, Juan

    2012-01-01

    In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5′ end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation. PMID:22837358

  15. The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation.

    PubMed

    Sanz, Luis; Dewitte, Walter; Forzani, Celine; Patell, Farah; Nieuwland, Jeroen; Wen, Bo; Quelhas, Pedro; De Jager, Sarah; Titmus, Craig; Campilho, Aurélio; Ren, Hong; Estelle, Mark; Wang, Hong; Murray, James A H

    2011-02-01

    The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G₁-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.

  16. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development

    PubMed Central

    Guevara-García, A. A.

    2014-01-01

    Mitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle. In the larger class, the MPK6 loss of function did not cause any evident alteration in seed morphology, but the embryo and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell production and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and acts as a repressor of primary and lateral root development. PMID:24218326

  17. Periosteum as a lateral pedicle graft for the treatment of single tooth root recession: A novel approach.

    PubMed

    Kumar, Avadhesh; Kaushal, Shalini; Verma, Neelu; Chandra, Deepti

    2016-01-01

    The treatment of gingival recession defects is indicated for esthetic and functional reasons to reduce root sensitivity, to remove muscle pull, to create or augment keratinized tissue, and to prevent disease progression. The presence of sufficient amount of periosteum adjacent to gingival recession defects makes it a suitable graft. The adult human periosteum is a highly vascular connective tissue with immense regenerative potential. It contains fibroblasts, osteogenic progenitor cells, and stem cells as a result of which it has the ability to differentiate into fibroblast, osteoblast, chondrocytes, adipocytes, and skeletal myocytes. The tissue provided by these cells includes cementum with periodontal ligament fibers and bone. Therefore, in the present case, periosteum has been used as a lateral pedicle graft for the coverage of the single tooth gingival recession (mandibular central incisor). The procedure is justified by the evidence that periosteum is capable of proliferation and osteogenesis after injury.

  18. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation.

    PubMed

    Fukaki, Hidehiro; Taniguchi, Naohide; Tasaka, Masao

    2006-11-01

    Lateral root (LR) formation in Arabidopsis is regulated by auxin signaling through AUXIN RESPONSE FACTOR transcriptional activators, ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) repressors, including SOLITARY-ROOT (SLR)/IAA14. Previous studies have strongly suggested that, in the gain-of-function slr-1 mutant, stabilized mutant IAA14 (mIAA14) protein inactivates ARF7/19 functions, thereby completely blocking LR initiation. However, the mechanism of inactivation is still unknown. We have now identified an extragenic suppressor mutation of slr-1, suppressor of slr2 (ssl2), which specifically restores LR formation in the slr-1 mutant, and have found that SSL2 negatively regulates the auxin-induced pericycle cell divisions required for LR initiation. The SSL2 gene encodes PICKLE (PKL), a homologue of the animal chromatin-remodeling factor CHD3/Mi-2, and LR formation restored in pkl/ssl2 slr-1 mutants depends on ARF7/19 functions, suggesting that ARF7/19-dependent transcription takes place if there is a pkl/ssl2 mutation in slr-1. In animals, Mi-2 represses transcription as a subunit of the NuRD/Mi-2 complex containing histone deacetylases (HDACs). Inhibition of HDAC activity by trichostatin A also results in LR formation in the slr-1 mutant, but not in the slr-1 arf7 arf19 triple mutant, suggesting that normal HDAC activity is required for the mIAA14-mediated inactivation of ARF7/19 functions in LR initiation. Taken together, our data suggest that PKL/SSL2-mediated chromatin remodeling negatively regulates auxin-mediated LR formation in Arabidopsis.

  19. AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation.

    PubMed

    Moreira, Sofia; Bishopp, Anthony; Carvalho, Helena; Campilho, Ana

    2013-01-01

    In Arabidopsis thaliana, lateral roots (LRs) initiate from anticlinal cell divisions of pericycle founder cells. The formation of LR primordia is regulated antagonistically by the phytohormones cytokinin and auxin. It has previously been shown that cytokinin has an inhibitory effect on the patterning events occurring during LR formation. However, the molecular players involved in cytokinin repression are still unknown. In a similar manner to protoxylem formation in Arabidopsis roots, in which AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6) acts as a cytokinin inhibitor, we reveal that AHP6 also functions as a cytokinin repressor during early stages of LR development. We show that AHP6 is expressed at different developmental stages during LR formation and is required for the correct orientation of cell divisions at the onset of LR development. Moreover, we demonstrate that AHP6 influences the localization of the auxin efflux carrier PIN1, which is necessary for patterning the LR primordia. In summary, we show that the inhibition of cytokinin signaling through AHP6 is required to establish the correct pattern during LR initiation.

  20. Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future.

    PubMed

    Harikrishnareddy, Dibbanti; Misra, Shubham; Upadhyay, Sujata; Modi, Manish; Medhi, Bikash

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease that rapidly progresses from mild motor symptoms to severe motor paralysis and premature death. There is currently no cure for this devastating disease; most ALS patients die of respiratory failure generally within 3-5 years from the onset of signs and symptoms. Approximately 90% of ALS cases are sporadic in nature, with no clear associated risk factors. It is reported that ALS is a complex and multifaceted neurodegenerative disease. Less is known about the key factors involved in the sporadic form of the disease. The intricate pathogenic mechanisms that target motor neurons in ALS includes oxidative stress, glutamate excitotoxicity, mitochondrial damage, protein aggregation, glia and neuroinflammation pathology, defective axonal transport, and aberrant RNA metabolism. Despite aggressive research, no therapy has been yet proven to completely reverse the core symptoms of the disease. Riluzole is the only drug approved by the Food and Drug Administration and recommended by the National Institute for Clinical Excellence so far proven to be successful against ALS and may prevent progression and extend life for a few months or so. This article provides a novel understanding in key findings of pathogenesis and interventions currently under investigation to slow disease progression in ALS.

  1. Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation1[W][OA

    PubMed Central

    Fernandez, Ana; Drozdzecki, Andrzej; Hoogewijs, Kurt; Nguyen, Anh; Beeckman, Tom; Madder, Annemieke; Hilson, Pierre

    2013-01-01

    The GOLVEN (GLV)/ROOT GROWTH FACTORS/CLE-Like small signaling peptide family is encoded by 11 genes in Arabidopsis (Arabidopsis thaliana). Some of them have already been shown to control root meristem maintenance, auxin fluxes, and gravitropic responses. As a basis for the detailed analysis of their function, we determined the expression domains for each of the 11 GLV genes with promoter-reporter lines. Although they are collectively active in all examined plant parts, GLV genes have highly specific transcription patterns, generally restricted to very few cells or cell types in the root and shoot and in vegetative and reproductive tissues. GLV functions were further investigated with the comparative analysis of root phenotypes induced by gain- and loss-of-function mutants or in treatments with GLV-derived synthetic peptides. We identified functional classes that relate to the gene expression domains in the primary root and suggest that different GLV signals trigger distinct downstream pathways. Interestingly, GLV genes transcribed at the early stages of lateral root development strongly inhibited root branching when overexpressed. Furthermore, transcription patterns together with mutant phenotypes pointed to the involvement of GLV4 and GLV8 in root hair formation. Overall, our data suggest that nine GLV genes form three subgroups according to their expression and function within the root and offer a comprehensive framework to study the role of the GLV signaling peptides in plant development. PMID:23370719

  2. Knock Down of Cell Division Cycle 16 Reveals an Inverse Relationship Between Lateral Root and Nodule Numbers and a Link to Auxin in Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The post-embryonic development of lateral roots and nodules is a highly regulated process. Recent studies suggest the existence of cross talk and interdependency in the growth of these two organs. Although plant hormones including auxin and cytokinin appear to be key players in coordinating this cro...

  3. LATERAL ROOT DISTRIBUTION OF TREES IN AN OLD-GROWTH DOUGLAS-FIR FOREST INFERRED FROM UPTAKE OF TRACER 15N

    EPA Science Inventory

    Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are almost no data describing the lateral extent and overlap of competing root systems. We quantified th...

  4. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner.

    PubMed

    Huang, Shuangjie; Chen, Si; Liang, Zhihao; Zhang, Chenming; Yan, Ming; Chen, Jingguang; Xu, Guohua; Fan, Xiaorong; Zhang, Yali

    2015-12-08

    The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3(-) transport protein OsNAR2.1 in NO3(-)-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3(-) concentrations, but not under low NH4(+) concentrations. (15)N-labelling NO3(-) supplies (provided at concentrations of 0-10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3(-) concentrations resulted from impaired NO3(-) uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3(-) supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3(-)-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3(-) uptake and NO3(-)-signalling.

  5. Contribution of Lateral Gene Transfers to the Genome Composition and Parasitic Ability of Root-Knot Nematodes

    PubMed Central

    Da Rocha, Martine; Gouret, Philippe; Pontarotti, Pierre; Wajnberg, Eric; Abad, Pierre; Danchin, Etienne G. J.

    2012-01-01

    Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of

  6. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes.

    PubMed

    Paganini, Julien; Campan-Fournier, Amandine; Da Rocha, Martine; Gouret, Philippe; Pontarotti, Pierre; Wajnberg, Eric; Abad, Pierre; Danchin, Etienne G J

    2012-01-01

    Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of

  7. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation1[OPEN

    PubMed Central

    Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank

    2015-01-01

    Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256

  8. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation.

    PubMed

    Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank

    2015-09-01

    Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box protein(S-Phase Kinase-Associated Protein 2B)-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses.

  9. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that

  10. NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in Arabidopsis[W

    PubMed Central

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-01-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729

  11. Characterization of Thoracic Motor and Sensory Neurons and Spinal Nerve Roots in Canine Degenerative Myelopathy, a Potential Disease Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Morgan, Brandie R.; Coates, Joan R.; Johnson, Gayle C.; Shelton, G. Diane; Katz, Martin L.

    2014-01-01

    Canine Degenerative Myelopathy (DM) is a progressive adult-onset multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced stage DM. To determine if other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MN) and dorsal root ganglia (DRG), and in motor and sensory nerve root axons from DM-affected Boxers and Pembroke Welsh Corgis (PWCs). No alterations in MNs, or motor root axons were observed in either breed. However, advanced stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, or of their axons. Axonal loss in thoracic sensory roots and sensory nerve death suggest sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  12. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Brandie R; Coates, Joan R; Johnson, Gayle C; Shelton, G Diane; Katz, Martin L

    2014-04-01

    Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS.

  13. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner

    PubMed Central

    Huang, Shuangjie; Chen, Si; Liang, Zhihao; Zhang, Chenming; Yan, Ming; Chen, Jingguang; Xu, Guohua; Fan, Xiaorong; Zhang, Yali

    2015-01-01

    The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3− transport protein OsNAR2.1 in NO3−-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3− concentrations, but not under low NH4+ concentrations. 15N-labelling NO3− supplies (provided at concentrations of 0–10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3− concentrations resulted from impaired NO3− uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3− supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3−-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3− uptake and NO3−-signalling. PMID:26644084

  14. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.

    PubMed

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-07-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway.

  15. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis1[C][W][OA

    PubMed Central

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Cortés-Penagos, Carlos; López-Bucio, José

    2009-01-01

    Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens. PMID:19176721

  16. The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region.

    PubMed

    Nieuwland, Jeroen; Maughan, Spencer; Dewitte, Walter; Scofield, Simon; Sanz, Luis; Murray, James A H

    2009-12-29

    Root cell division occurs primarily in the apical meristem, from which cells are displaced into the basal meristem, where division decreases and cell length increases before the final differentiation zone. The organization of the root in concentric files implies coordinated division and differentiation of cell types, including the xylem pole pericycle cells, which uniquely can resume division to initiate lateral roots (LR). Here, we show that D-type cyclin CYCD4;1 is expressed in meristematic pericycle protoxylem poles and is required for normal LR density. Cycd4;1 mutants also show a displacement of the apical/basal meristem boundary in the pericycle and longer pericycle basal meristem cells, whereas other cell layers and overall meristem size and root growth are unaffected. Auxin is proposed to separately prepattern and stimulate LR initiation. Stimulation is unimpaired in cycd4;1, suggesting CYCD4;1 requirement for normal spacing but not initiation. Both pericycle cell length and LR density phenotypes of cycd4;1 are rescued by low concentrations of applied auxin, suggesting that the basal meristem has a role in determining LR density. We further show CYCD4;1 is rate-limiting for sucrose-dependent LR formation, since CYCD4;1 expression is sucrose-dependent and wild-type roots fully phenocopy cycd4;1 in sucrose absence. We conclude that CYCD4;1 links meristem pericycle cell behavior to LR density consistent with a basal meristem prepatterning model and that D-type cyclins can confer division potential of defined cell types through cell-specific expression patterns.

  17. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out.

    PubMed

    el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F M; Mähönen, Ari Pekka; Grieneisen, Verônica A

    2015-10-01

    An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones' respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other.

  18. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out

    PubMed Central

    el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F. M.; Mähönen, Ari Pekka; Grieneisen, Verônica A.

    2015-01-01

    An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. PMID:26505899

  19. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice.

    PubMed

    Sun, Huwei; Li, Jiao; Song, Wenjing; Tao, Jinyuan; Huang, Shuangjie; Chen, Si; Hou, Mengmeng; Xu, Guohua; Zhang, Yali

    2015-05-01

    Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and (15)N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, (15)NH₄(+)/(15)NO₃(-) influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and (15)NH₄(+)/(15)NO₃(-) influx into the roots of plants supplied with NH₄(+)+sodium nitroprusside (SNP) relative to those supplied with NH₄(+) alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE.

  20. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice

    PubMed Central

    Sun, Huwei; Li, Jiao; Song, Wenjing; Tao, Jinyuan; Huang, Shuangjie; Chen, Si; Hou, Mengmeng; Xu, Guohua; Zhang, Yali

    2015-01-01

    Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and 15N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, 15NH4 +/15NO3 – influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and 15NH4 +/15NO3 – influx into the roots of plants supplied with NH4 ++sodium nitroprusside (SNP) relative to those supplied with NH4 + alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE. PMID:25784715

  1. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation.

    PubMed

    Cao, Zeyu; Geng, Beibei; Xu, Sheng; Xuan, Wei; Nie, Li; Shen, Wenbiao; Liang, Yongchao; Guan, Rongzhan

    2011-08-01

    In this report, a rapeseed (Brassica napus) haem oxygenase-1 gene BnHO1 was cloned and sequenced. It shared high homology with Arabidopsis HY1 proteins, and encodes a 32.6 kDa protein with a 54-amino-acid transit peptide, predicting the mature protein of 25.1 kDa. The mature BnHO1 expressed in Escherichia coli exhibits haem oxygenase (HO) activity. Furthermore, the application of lower doses of NaCl (10 mM) and polyethylene glycol (PEG) (2%) mimicked the inducible effects of naphthylacetic acid and the HO-1 inducer haemin on the up-regulation of BnHO1 and subsequent lateral root (LR) formation. Contrasting effects were observed when a higher dose of NaCl or PEG was applied. The above inducible and inhibitory responses were blocked significantly when the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) or haemin was applied, both of which were reversed by the application of carbon monoxide or ZnPPIX, respectively. Moreover, the addition of ZnPPIX at different time points during LR formation indicated that BnHO1 might be involved in the early stages of LR formation. The auxin response factor transcripts and the auxin content in seedling roots were clearly induced by lower doses of salinity or osmotic stress. However, treatment with the inhibitor of polar auxin transport N-1-naphthylphthalamic acid prevented the above inducible responses conferred by lower doses of NaCl and PEG, which were further rescued when the treatments were combined with haemin. Taken together, these results suggested a novel role of the rapeseed HO-1 gene in salinity and osmotic stress-induced LR formation, with a possible interaction with auxin signalling.

  2. Simultaneous determination of thirteen aminoalcohol-diterpenoid alkaloids in the lateral roots of Aconitum carmichaeli by solid-phase extraction-liquid chromatography-tandem mass spectrometry.

    PubMed

    Ding, Jia-Yu; Liu, Xiu-Xiu; Xiong, Dong-Mei; Ye, Li-Ming; Chao, Ruo-Bing

    2014-06-01

    Aminoalcohol-diterpenoid alkaloids have been reported as the cardioactive components in the lateral roots of Aconitum carmichaeli (Fuzi) according to recent studies. Determination of these effective components is of great significance for quality control purposes for Fuzi. Here we report, for the first, the development and validation of a new method to determine the 13 aminoalcohol-diterpenoid alkaloids in Fuzi by using a simple and accurate solid-phase extraction-liquid chromatography-tandem mass spectrometry. The chromatographic analysis was performed on an ODS column with methanol-0.1 % formic acid (80 : 20, v/v) as the mobile phase. The quantification was performed using MS/MS detection in the positive ion mode with multiple reaction monitoring. Linearity was observed within a range of concentrations of 20-2,000 ng/mL. For all the analytes, the r value was greater than 0.9990. The limit of detection and the limit of quantitation were less than 0.5 ng/mL and 2.0 ng/mL, respectively. The intraday and interday precisions were less than 5% and 10%, respectively. The accuracy was within the range of 90 to 105%. This method was successfully applied to determine the 13 aminoalcohol-diterpenoid alkaloids in Fuzi from different origins and with different processing methods.

  3. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.

  4. Comparison of Push-out Bond Strength of Gutta-percha to Root Canal Dentin in Single-cone and Cold Lateral Compaction Techniques with AH Plus Sealer in Mandibular Premolars

    PubMed Central

    Mokhtari, Hadi; Rahimi, Saeed; Forough Reyhani, Mohammad; Galledar, Saeedeh; Mokhtari Zonouzi, Hamid Reza

    2015-01-01

    Background and aims. The single-cone technique has gained some popularity in some European countries. The aim of the present study was to compare the push-out bond strength of gutta-percha to root canal dentin with the single-cone and cold lateral compaction canal obturation techniques. Materials and methods. The root canals of 58 human mandibular premolars were prepared using modified crown-down technique with ProTaper rotary files up to #F3as a master apical file (MAF) and divided randomly into groups A and B based on canal obturation technique. In group A (n = 29) the root canals were obturated with single-cone technique with #F3(30/.09) ProTaper gutta-percha, which was matched with MAF in relation to diameter, taper and manufacturer; in group B (n = 29) the canals were obturated with gutta-percha using cold lateral compaction technique. In both groups AH plus sealer were used. After two weeks of incubation, three 2-mm slices were prepared at a distance of 2 mm from the coronal surface and push-out test was carried out. Data were analyzed with descriptive statistics using independent samples t-test. Results. There were statistically significant differences between two groups. The mean push-out bond strength was higher in group B (lateral compaction technique) compared to group A (single-cone technique; P < 0.05). Conclusion. Use of single-cone technique for obturation of root canals resulted in a lower bond strength compared to cold lateral compaction technique. PMID:26889358

  5. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  6. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  7. The S-Domain Receptor Kinase Arabidopsis Receptor Kinase2 and the U Box/Armadillo Repeat-Containing E3 Ubiquitin Ligase9 Module Mediates Lateral Root Development under Phosphate Starvation in Arabidopsis.

    PubMed

    Deb, Srijani; Sankaranarayanan, Subramanian; Wewala, Gayathri; Widdup, Ellen; Samuel, Marcus A

    2014-08-01

    When plants encounter nutrient-limiting conditions in the soil, the root architecture is redesigned to generate numerous lateral roots (LRs) that increase the surface area of roots, promoting efficient uptake of these deficient nutrients. Of the many essential nutrients, reduced availability of inorganic phosphate has a major impact on plant growth because of the requirement of inorganic phosphate for synthesis of organic molecules, such as nucleic acids, ATP, and phospholipids, that function in various crucial metabolic activities. In our screens to identify a potential role for the S-domain receptor kinase1-6 and its interacting downstream signaling partner, the Arabidopsis (Arabidopsis thaliana) plant U box/armadillo repeat-containing E3 ligase9 (AtPUB9), we identified a role for this module in regulating LR development under phosphate-starved conditions. Our results show that Arabidopsis double mutant plants lacking AtPUB9 and Arabidopsis Receptor Kinase2 (AtARK2; ark2-1/pub9-1) display severely reduced LRs when grown under phosphate-starved conditions. Under these starvation conditions, these plants accumulated very low to no auxin in their primary root and LR tips as observed through expression of the auxin reporter DR5::uidA transgene. Exogenous auxin was sufficient to rescue the LR developmental defects in the ark2-1/pub9-1 lines, indicating a requirement of auxin accumulation for this process. Our subcellular localization studies with tobacco (Nicotiana tabacum) suspension-cultured cells indicate that interaction between ARK2 and AtPUB9 results in accumulation of AtPUB9 in the autophagosomes. Inhibition of autophagy in wild-type plants resulted in reduction of LR development and auxin accumulation under phosphate-starved conditions, suggesting a role for autophagy in regulating LR development. Thus, our study has uncovered a previously unknown signaling module (ARK2-PUB9) that is required for auxin-mediated LR development under phosphate-starved conditions.

  8. Advances in root reinforcement experiments

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  9. [Upper lateral incisor with 2 canals].

    PubMed

    Fabra Campos, H

    1991-01-01

    Clinical case summary of the patient with an upper lateral incisor with two root canals. The suspicion that there might be an anatomic anomaly in the root that includes a complex root canal system was made when an advanced radicular groove was detected in the lingual surface or an excessively enlarged cingulum.

  10. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  11. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  12. Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    apl.uw.edu/dasaro LONG-TERM GOALS I seek to understand the processes controlling lateral mixing in the ocean, particularly at the submesoscale ...APPROACH During AESOP, Lee and D’Asaro pioneered an innovative approach to measuring submesoscale structure in strong fronts. An adaptive measurement...injection of potential vorticity and scalars is predicted to create an intense ‘ submesoscale soup’ of high small-scale variance. The combination of small

  13. Lateral Mixing

    DTIC Science & Technology

    2012-11-08

    to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . 1 DISTRIBUTION STATEMENT A. Approved for...integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to...2011 I also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the

  14. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  15. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  16. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  17. Modulation of root branching by a coumarin derivative.

    PubMed

    Li, Xiang; Gao, Ming-Jun

    2011-11-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integral role in the biochemical mechanism of 4-MU detoxification in plant roots.1 However, 4-MU treatment also dramatically led to increased lateral root initiation, elongation and density. Moreover, marked root bending at the root-hypocotyl junction and auxin redistribution appeared to contribute to the 4-MU-mediated lateral root formation. We propose that 4-MU would serve as a useful chemical tool to study auxin-mediated root branching.

  18. Modulation of root branching by a coumarin derivative

    PubMed Central

    Li, Xiang; Gao, Ming-Jun

    2011-01-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integral role in the biochemical mechanism of 4-MU detoxification in plant roots.1 However, 4-MU treatment also dramatically led to increased lateral root initiation, elongation and density. Moreover, marked root bending at the root-hypocotyl junction and auxin redistribution appeared to contribute to the 4-MU-mediated lateral root formation. We propose that 4-MU would serve as a useful chemical tool to study auxin-mediated root branching. PMID:22057336

  19. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  20. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  1. Strigolactones are regulators of root development.

    PubMed

    Koltai, Hinanit

    2011-05-01

    Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

  2. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed.

  3. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis.

    PubMed

    Xuan, Wei; Band, Leah R; Kumpf, Robert P; Van Damme, Daniël; Parizot, Boris; De Rop, Gieljan; Opdenacker, Davy; Möller, Barbara K; Skorzinski, Noemi; Njo, Maria F; De Rybel, Bert; Audenaert, Dominique; Nowack, Moritz K; Vanneste, Steffen; Beeckman, Tom

    2016-01-22

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.

  4. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    PubMed

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  5. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  6. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  7. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  8. The role of strigolactones in root development.

    PubMed

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.

  9. Effect of Root System Morphology on Root-sprouting and Shoot-rooting Abilities in 123 Plant Species from Eroded Lands in North-east Spain

    PubMed Central

    GUERRERO-CAMPO, JOAQUÍN; PALACIO, SARA; PÉREZ-RONTOMÉ, CARMEN; MONTSERRAT-MARTÍ, GABRIEL

    2006-01-01

    • Background and Aims The objective of this study was to test whether the mean values of several root morphological variables were related to the ability to develop root-borne shoots and/or shoot-borne roots in a wide range of vascular plants. • Methods A comparative study was carried out on the 123 most common plant species from eroded lands in north-east Spain. After careful excavations in the field, measurements were taken of the maximum root depth, absolute and relative basal root diameter, specific root length (SRL), and the root depth/root lateral spread ratio on at least three individuals per species. Shoot-rooting and root-sprouting were observed in a large number of individuals in many eroded and sedimentary environments. The effect of life history and phylogeny on shoot-rooting and root-sprouting abilities was also analysed. • Key Results The species with coarse and deep tap-roots tended to be root-sprouting and those with fine, fasciculate and long main roots (which generally spread laterally), tended to be shoot-rooting. Phylogeny had an important influence on root system morphology and shoot-rooting and root-sprouting capacities. However, the above relations stood after applying analyses based on phylogenetically independent contrasts (PICs). • Conclusions The main morphological features of the root system of the study species are related to their ability to sprout from their roots and form roots from their shoots. According to the results, such abilities might only be functionally viable in restricted root system morphologies and ecological strategies. PMID:16790468

  10. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana.

    PubMed

    Wang, Youning; Li, Kexue; Li, Xia

    2009-10-15

    Auxin plays an important role in the modulation of root system architecture. The effect of salinity on primary root growth has been extensively studied. However, how salinity affects lateral root development and its underlying molecular mechanisms is still unclear. Here, we report that high salt exposure suppresses lateral root initiation and organogenesis, resulting in the abortion of lateral root development. In contrast, salt stress markedly promotes lateral root elongation. Histochemical staining showed that the quantity of auxin and its patterning in roots were both greatly altered by exposure to high concentrations of salt, as compared with those found in the untreated control. Physiological experiments using transport inhibitors and genetic analysis revealed that the auxin transport pathway is important for salt-induced root development. These results demonstrate that auxin transport activities are required for remodeling lateral root formation and elongation and for adaptive root system development under salt stress.

  11. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  12. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays)

    PubMed Central

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-01-01

    Background and Aims Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Methods Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. Key Results In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Conclusions Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target

  13. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  14. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White lupin (Lupinus albus L.) is a phosphate (Pi) deficiency tolerant legume which develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and...

  15. Surgical endodontic management of infected lateral canals of maxillary incisors

    PubMed Central

    2015-01-01

    This case report presents surgical endodontic management outcomes of maxillary incisors that were infected via the lateral canals. Two cases are presented in which endodontically-treated maxillary central incisors had sustained lateral canal infections. A surgical endodontic treatment was performed on both teeth. Flap elevation revealed vertical bone destruction along the root surface and infected lateral canals, and microscopy revealed that the lateral canals were the origin of the lesions. After the infected lateral canals were surgically managed, both teeth were asymptomatic and labial fistulas were resolved. There were no clinical or radiographic signs of surgical endodontic management failure at follow-up visits. This case report highlights the clinical significance and surgical endodontic management of infected lateral canal of maxillary incisor. It is important to be aware of root canal anatomy variability in maxillary incisors. Maxillary central incisors infected via the lateral canal can be successfully managed by surgical endodontic treatment. PMID:25671217

  16. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  17. [Lateral retinacular release].

    PubMed

    Verdonk, P; Bonte, F; Verdonk, R

    2008-09-01

    This overview of numerous studies discusses, based on short-term and long-term results, which diagnoses are indications for lateral retinacular release. No significant differences in outcome between arthroscopic and open lateral release could be documented. Isolated lateral release offers a good success rate for treating a stable patella with excessive lateral pressure. In patellar instability, the results are less favorable in long-term follow-up evaluation. Hyperlaxity with hypermobility of the patella is an absolute contraindication. Lateral release provides only temporary benefit for patellofemoral osteoarthritis. Proximal and/or distal realignment of the extensor mechanism gives better results than isolated lateral release.

  18. Genetics of the gravitropic set-point angle in lateral organs of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their typically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. Two of these mutants also have altered orientation of their rosette leaves, indicating some common mechanisms in the positioning of root and shoot lateral organs. Rosette leaves and lateral roots also have in common a regulation of orientation by red light that may be due to red-light-dependent changes in the GSA. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.

  19. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  20. Tennis Elbow (Lateral Epicondylitis)

    MedlinePlus

    .org Tennis Elbow (Lateral Epicondylitis) Page ( 1 ) Tennis elbow, or lateral epicondyliti s, is a painful condition of the elbow caused by overuse. Not surprisingly, playing tennis or other racquet sports can cause ...

  1. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis Overview By Mayo Clinic Staff Amyotrophic lateral sclerosis (a-my-o-TROE-fik LAT-ur-ul skluh-ROE-sis), or ALS, is a progressive nervous system (neurological) disease that ...

  2. Developmental anatomy and branching of roots of four Zeylanidium species (podostemaceae), with implications for evolution of foliose roots.

    PubMed

    Hiyama, Y; Tsukamoto, I; Imaichi, R; Kato, M

    2002-12-01

    Podostemaceae have markedly specialized and diverse roots that are adapted to extreme habitats, such as seasonally submerged or exposed rocks in waterfalls and rapids. This paper describes the developmental anatomy of roots of four species of Zeylanidium, with emphasis on the unusual association between root branching and root-borne adventitious shoots. In Z. subulatum and Z. lichenoides with subcylindrical or ribbon-like roots, the apical meristem distal (exterior) to a shoot that is initiated within the meristem area reduces and loses meristematic activity. This results in a splitting into two meristems that separate the parental root and lateral root (anisotomous dichotomy). In Z. olivaceum with lobed foliose roots, shoots are initiated in the innermost zone of the marginal meristem, and similar, but delayed, meristem reduction usually occurs, producing a parenchyma exterior to shoots located between root lobes. In some extreme cases, due to meristem recovery, root lobing does not occur, so the margin is entire. In Z. maheshwarii with foliose roots, shoots are initiated proximal to the marginal meristem and there is no shoot-root lobe association. Results suggest that during evolution from subcylindrical or ribbon-like roots to foliose roots, reduction of meristem exterior to a shoot was delayed and then arrested as a result of inward shifting of the sites of shoot initiation. The evolutionary reappearance of a protective tissue or root cap in Z. olivaceum and Z. maheshwarii in the Zeylanidium clade is implied, taking into account the reported molecular phylogeny and root-cap development in Hydrobryum.

  3. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.

    PubMed

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M

    2014-04-08

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions.

  4. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola

    PubMed Central

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M.

    2014-01-01

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions. PMID:24876299

  5. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  6. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  7. Mechanical or cold lateral compaction: The incidence of dentinal defects

    PubMed Central

    Hasheminia, Seyed Mohsen; Farhad, Ali Reza; Saatchi, Masoud; Nejad, Hamidreza Sadegh; Sanei, Maryam

    2015-01-01

    Background: The incidence of dentinal defects may influence the outcome of root canal treatment. The aims of this study were to evaluate and compare the incidence of dentinal defects following root canal obturation with two different techniques. Materials and Methods: A total of 110 mesial roots of human mandibular first molars were selected. Twenty-seven roots were left unprepared as negative controls (NCs). The mesiobuccal canals of 83 roots were prepared using rotary instruments. Twenty-seven roots were left unobturated as positive controls (PCs). Twenty-eight roots were obturated with cold lateral compaction (CLC) technique and the others were obturated with mechanical lateral compaction (MLC) technique. In the CLC and MLC groups, spreader penetration depth was measured by an electromechanical testing machine in canals containing master Gutta-percha cones. After root canal obturation, all the roots were sectioned horizontally at four levels from the apex and evaluated under a stereomicroscope at a magnification of ×40. The presence of dentinal defects was noted. Data were analyzed using the Chi-square and t-tests. Results: The number of defects was not significantly different between the CLC, MLC, and PC groups. The CLC, MLC, and PC groups had significantly more defects compared to the NC group. Conclusion: According to the results of this study, the MLC and CLC techniques were the same in producing dentinal defects. PMID:26759586

  8. In vitro root induction of faba bean (Vicia faba L.).

    PubMed

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  9. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.

    PubMed

    Yan, Huifeng; Li, Ke; Ding, Hong; Liao, Chengsong; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2011-07-01

    The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, (15)NO(3)(-) influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in (15)NO(3)(-) influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.

  10. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  11. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops.

    PubMed

    Khan, M A; Gemenet, Dorcus C; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive 'green revolution.' In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses.

  12. Reading Disability and Laterality.

    ERIC Educational Resources Information Center

    Sparrow, Sara S.

    The purpose of this study was to determine how retarded readers differed from normal readers in the various ways laterality is manifested. An additional purpose was to investigate the development of laterality as seen across several age levels. Subjects were 80 white male 9-, 10-, 11-, and 12-year-olds from regular classrooms in suburban…

  13. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments.

  14. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  15. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis (ALS) is a nervous system disease that attacks nerve cells called neurons in your brain and spinal cord. These neurons ... breathing machine can help, but most people with ALS die from respiratory failure. The disease usually strikes ...

  16. [Amyotrophic lateral sclerosis].

    PubMed

    Veldink, J H; Weikamp, J; Schelhaas, H J; van den Berg, L H

    2010-01-01

    Amyotrophic lateral sclerosis is one of the most severe and disabling diseases of the nervous system. Amyotrophic lateral sclerosis leads to the progressive weakening of the muscles in the arms, legs, face, mouth and trunk. The onset of the disease is insidious, starting with weakness in the hands or feet or with slurred speech. The weakness worsens and patients pass away as a result of weakness of the respiratory muscles on average within 3 years of the onset of the disease. In the Netherlands, approximately 400 patients are diagnosed with amyotrophic lateral sclerosis every year. There is no diagnostic test for this neuro-muscular disease; the diagnosis is established by excluding other disorders that resemble amyotrophic lateral sclerosis. Only one drug is able to inhibit the progression of the disease to any extent: riluzole. Treatment, therefore, is mainly focused on supportive measures and those which enhance the quality of life optimally.

  17. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  18. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  19. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  20. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    PubMed Central

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  1. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  2. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  3. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  4. An integrated method for quantifying root architecture of field-grown maize

    PubMed Central

    Wu, Jie; Guo, Yan

    2014-01-01

    Background and Aims A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate. Methods An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture. Key Results Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone. Conclusions The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models. PMID:24532646

  5. Rooting for the root of elongation factor-like protein phylogeny.

    PubMed

    Kamikawa, Ryoma; Sakaguchi, Miako; Matsumoto, Takuya; Hashimoto, Tetsuo; Inagaki, Yuji

    2010-09-01

    Lateral gene transfer (LGT) may play a pivotal role in the evolution of elongation factor-like (EFL) genes in eukaryotes. To date, numbers of putative cases for lateral transfer of EFL genes have been postulated based on unrooted EFL phylogenies. Nevertheless, the root position in EFL phylogeny is important to validate lateral EFL gene transfer: for instance, a clade of two EFL homologs from distantly related organisms in an unrooted EFL tree does not necessarily confirm the LGT, since the possibility that the root may locate in this clade cannot be excluded. Cocquyt et al. (2009, p. 39) recently demonstrated that a putative case of lateral EFL gene transfer, which was originally proposed based on an unrooted phylogeny, could not be endorsed by the corresponding rooted analysis. Although rooting EFL phylogeny is indispensable to elucidate various aspects in EFL gene evolution, we suspected that the outgroup clade comprised of EF-1alpha and eukaryote-specific EF-1alpha paralogs erroneously attached to long EFL branches in Cocquyt et al. (2009) - a typical long branch attraction (LBA) artifact. Here, we systematically assessed the putative LBA artifact between the branch leading to the outgroup clade and long ingroup branches by analyzing the original dataset used in Cocquyt et al. (2009) with and without modifying ingroup-sequence sampling. A series of the rooted EFL analyses indicated that the root inference was highly susceptible to presence and absence of long-branched ingroup-sequences, suggesting that the rooted EFL phylogenies cannot be free from severe LBA artifact. We also discussed a new aspect in EFL gene evolution in stramenopiles identified in the course of the EFL analyses described above. Finally, the relative timing of the first emergence of EFL gene in eukaryotes was contemplated based on the current EF-1alpha/EFL distribution.

  6. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  7. Lateral perforation in parallel post space preparations.

    PubMed

    Tinaz, A Cemal; Alaçam, Tayfun; Topuz, Ozgur; Er, Ozgur; Maden, Murat

    2004-08-15

    This study evaluates the amount of remaining tooth structure and possibility of producing lateral perforation following the use of different diameters of parallel-sided Parapost drills in groups of different canal curvatures (0 degrees-15 degrees, 16 degrees-25 degrees, 26 degrees <) in distal canals of first and second mandibular molar teeth. After enlargement of root canals using the crown-down pressureless technique, Parapost drills #1, #2, and #3 were used in the different canal groups for the preparation of a post space. Standardized digital radiographs were taken before the post space preparation and after each Parapost drill application. Four horizontal lines (a, b, c, and d) were drawn at equal distances on these images, starting from the pulp chamber floor moving apically at 2 mm increments. There were no significant differences between the different curvature groups at the a, b, c, and d levels for the critical level of the remaining tooth structure (multiple comparison test; p>0.05). However, in considering root perforation, both at the inner and outer side of the roots, there were statistically significant differences at "c" and "d" levels in group 3 (#3 drill) without taking into account the root curvature (ANOVA; p< 0.5). None of the specimens showed strip perforation.

  8. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  9. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers.

  10. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.

    PubMed

    Zou, Na; Li, Baohai; Dong, Gangqiang; Kronzucker, Herbert J; Shi, Weiming

    2012-06-01

    Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.

  11. Bilateral lateral periodontal cyst.

    PubMed

    Govil, Somya; Gupta, Vishesh; Misra, Neeta; Misra, Pradyumna

    2013-05-10

    The bilateral lateral periodontal cyst is a rare nasological entity, which despite clinical and radiological presentation is being diagnosed by histological characteristics. It is asymptomatic in nature and is observed in routine radiography. The aim and objective of this article is to present a rare case of bilateral lateral periodontal cyst in a 14-year-old child. The clinical and radiographical findings, along with its management have been discussed. Enucleation of bilateral cyst without extraction of the adjacent tooth was performed. Lesion samples were sent for histopathological analysis. The histopathological analysis revealed a thin, non keratinised stratified squamous epithelium resembling reduced enamel epithelium. Epithelial plaques were also seen. A clinicopathological correlation incorporating the surgical, radiographical and gold standard histopathological findings was obtained to suggest the final diagnosis of the bilateral lateral periodontal cyst.

  12. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana.

    PubMed

    López-Bucio, José; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Juárez, Consuelo Vargas; Hernández-Madrigal, Fátima; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2015-04-01

    Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.

  13. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching

    PubMed Central

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Moreno, Antonio; Zhang, Jingyuan; Ahnert, Sebastian E.; Benfey, Philip N.

    2010-01-01

    Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock–driven activities in animal species. PMID:20829477

  14. Lateral Thinking of Prospective Teachers

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Xavier, S. Amaladoss

    2013-01-01

    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  15. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root.

    PubMed

    De Smet, Ive; Vassileva, Valya; De Rybel, Bert; Levesque, Mitchell P; Grunewald, Wim; Van Damme, Daniël; Van Noorden, Giel; Naudts, Mirande; Van Isterdael, Gert; De Clercq, Rebecca; Wang, Jean Y; Meuli, Nicholas; Vanneste, Steffen; Friml, Jirí; Hilson, Pierre; Jürgens, Gerd; Ingram, Gwyneth C; Inzé, Dirk; Benfey, Philip N; Beeckman, Tom

    2008-10-24

    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.

  16. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses

    PubMed Central

    Singh, Alka; Kumar, Pramod; Gautam, Vibhav; Rengasamy, Balakrishnan; Adhikari, Bijan; Udayakumar, Makarla; Sarkar, Ananda K.

    2016-01-01

    The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice. PMID:28000793

  17. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris.

    PubMed

    Miya, R K; Firestone, M K

    2001-01-01

    To investigate the mechanisms by which slender oat (Avena barbata Pott ex Link) enhances phenanthrene biodegradation, we analyzed the impacts of root exudates and root debris on phenanthrene biodegradation and degrader community dynamics. Accelerated phenanthrene biodegradation rates occurred in soils amended with slender oat root exudates as well as combined root debris + root exudate as compared with unamended controls. Root exudates significantly enhanced phenanthrene biodegradation in rhizosphere soils, either by increasing contaminant bioavailability and/or increasing microbial population size and activity. A modified most probable number (MPN) method was used to determine quantitative shifts in heterotrophic and phenanthrene degrader communities. During the first 4 to 6 d of treatment, heterotrophic populations increased in all amended soils. Both root debris-amended and exudate-amended soil then maintained larger phenanthrene degrader populations than in control soils later in the experiment after much of the phenanthrene had been utilized. Thus, root amendments had a greater impact over time on phenanthrene degraders than heterotrophs resulting in selective maintenance of degrader populations in amended soils compared with controls.

  18. Effect of root canal preparation, type of endodontic post and mechanical cycling on root fracture strength

    PubMed Central

    RIPPE, Marília Pivetta; SANTINI, Manuela Favarin; BIER, Carlos Alexandre Souza; BALDISSARA, Paolo; VALANDRO, Luiz Felipe

    2014-01-01

    Objective To evaluate the impact of the type of root canal preparation, intraradicular post and mechanical cycling on the fracture strength of roots. Material and Methods eighty human single rooted teeth were divided into 8 groups according to the instruments used for root canal preparation (manual or rotary instruments), the type of intraradicular post (fiber posts- FRC and cast post and core- CPC) and the use of mechanical cycling (MC) as follows: Manual and FRC; Manual, FRC and MC; Manual and CPC; Manual, CPC and MC; Rotary and FRC; Rotary, FRC and MC; Rotary and CPC; Rotary, CPC and MC. The filling was performed by lateral compactation. All root canals were prepared for a post with a 10 mm length, using the custom #2 bur of the glass fiber post system. For mechanical cycling, the protocol was applied as follows: an angle of incidence of 45°, 37°C, 88 N, 4 Hz, 2 million pulses. All groups were submitted to fracture strength test in a 45° device with 1 mm/ min cross-head speed until failure occurred. Results The 3-way ANOVA showed that the root canal preparation strategy (p<0.03) and post type (p<0.0001) affected the fracture strength results, while mechanical cycling (p=0.29) did not. Conclusion The root canal preparation strategy only influenced the root fracture strength when restoring with a fiber post and mechanical cycling, so it does not seem to be an important factor in this scenario. PMID:25025556

  19. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.

    PubMed

    Macgregor, Dana R; Deak, Karen I; Ingram, Paul A; Malamy, Jocelyn E

    2008-10-01

    This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.

  20. Onset dominance in lateralization.

    PubMed

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  1. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  2. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    PubMed Central

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies. PMID:26791578

  3. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem.

    PubMed

    Sun, Kai; McCormack, M Luke; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-21

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1-2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5-2 years and represented 62-87% of total root biomass, thus dominating annual root turnover (60%-81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  4. Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase

    PubMed Central

    Huault, Emeline; Laffont, Carole; Wen, Jiangqi; Mysore, Kirankumar S.; Ratet, Pascal; Duc, Gérard; Frugier, Florian

    2014-01-01

    In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. PMID:25521478

  5. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  6. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  7. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem

  8. Graviresponsiveness and columella cell structure in primary and secondary roots of Ricinus communis.

    PubMed

    Moore, R; Pasieniuk, J

    1984-01-01

    In order to determine what structural changes are associated with the onset of graviresponsiveness by plant roots, we have monitored the quantitative ultrastructures of columella (i.e., graviperceptive) cells in primary and secondary roots of Ricinus communis. The relative volumes of cellular components in lateral (i.e., minimally graviresponsive) roots were not significantly different from those of primary roots. The relative volumes of cellular components in secondary roots growing laterally were not significantly different from those of graviresponsive secondary roots. Therefore, the onset of graviresponsiveness by secondary roots of R. communis is not correlated with changes in organellar concentrations in columella cells. These results are discussed relative to a model for the differential graviresponsiveness of plant roots.

  9. Platform for a swing root turbomachinery blade

    NASA Technical Reports Server (NTRS)

    Ravenhall, R. (Inventor)

    1977-01-01

    A rotor apparatus, comprising a blade having a root adapted to swing laterally within a supporting spindle under impact loading, is provided with a flow path defining platform. The platform comprises an inner shroud extending generally laterally of the blade airfoil portion and adapted to swing laterally. In one embodiment, wherein the blade primarily comprises a laminate of composite filament plies, the inner shroud is bonded to the laminate. An outer shroud, fixed with respect to the supporting spindle, forms a lateral extension of the inner shroud with the blade in its normal operating position. The inner and outer shrouds are provided with a pair of complementary adjacent surfaces contoured to pass in relatively close-fitting relationships to each other when the blade swings under impact loadings.

  10. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  11. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  12. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    PubMed Central

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  13. Lateral Attitude Change.

    PubMed

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented.

  14. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  15. Amyotrophic lateral sclerosis.

    PubMed

    Malik, Rabia; Lui, Andrew; Lomen-Hoerth, Catherine

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting 20,000 to 30,000 people in the United States. The mainstay of care of patients affected by this disease is supportive and given the multifaceted nature of their needs is provided most efficiently through multidisciplinary clinics that have shown to prolong survival and improve quality of life. The authors discuss in detail evidence-based management of individuals affected by this condition.

  16. Conjugal amyotrophic lateral sclerosis

    PubMed Central

    Dewitt, John D.; Kwon, Julia; Burton, Rebecca

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The incidence of sporadic ALS is 1.5 to 2.7 in 100,000, and the prevalence is 5.2 to 6.0 in 100,000. Conjugal ALS is even rarer than sporadic ALS. We report a case of conjugal ALS encountered in our outpatient neurology clinic. PMID:22275781

  17. Lateral Elbow Tendinopathy

    PubMed Central

    Bhabra, Gev; Wang, Allan; Ebert, Jay R.; Edwards, Peter; Zheng, Monica; Zheng, Ming H.

    2016-01-01

    Lateral elbow tendinopathy, commonly known as tennis elbow, is a condition that can cause significant functional impairment in working-age patients. The term tendinopathy is used to describe chronic overuse tendon disorders encompassing a group of pathologies, a spectrum of disease. This review details the pathophysiology of tendinopathy and tendon healing as an introduction for a system grading the severity of tendinopathy, with each of the 4 grades displaying distinct histopathological features. Currently, there are a large number of nonoperative treatments available for lateral elbow tendinopathy, with little guidance as to when and how to use them. In fact, an appraisal of the clinical trials, systematic reviews, and meta-analyses studying these treatment modalities reveals that no single treatment reliably achieves outstanding results. This may be due in part to the majority of clinical studies to date including all patients with chronic tendinopathy rather than attempting to categorize patients according to the severity of disease. We relate the pathophysiology of the different grades of tendinopathy to the basic science principles that underpin the mechanisms of action of the nonoperative treatments available to propose a treatment algorithm guiding the management of lateral elbow tendinopathy depending on severity. We believe that this system will be useful both in clinical practice and for the future investigation of the efficacy of treatments. PMID:27833925

  18. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals.

  19. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  20. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  1. Two stage surgical procedure for root coverage.

    PubMed

    George, Anjana Mary; Rajesh, K S; Hegde, Shashikanth; Kumar, Arun

    2012-07-01

    Gingival recession may present problems that include root sensitivity, esthetic concern, and predilection to root caries, cervical abrasion and compromising of a restorative effort. When marginal tissue health cannot be maintained and recession is deep, the need for treatment arises. This literature has documented that recession can be successfully treated by means of a two stage surgical approach, the first stage consisting of creation of attached gingiva by means of free gingival graft, and in the second stage, a lateral sliding flap of grafted tissue to cover the recession. This indirect technique ensures development of an adequate width of attached gingiva. The outcome of this technique suggests that two stage surgical procedures are highly predictable for root coverage in case of isolated deep recession and lack of attached gingiva.

  2. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  3. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family…

  4. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  5. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  6. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  7. Diamond heteroepitaxial lateral overgrowth

    SciTech Connect

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  8. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.

  9. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  10. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  11. Creativity in later life.

    PubMed

    Price, K A; Tinker, A M

    2014-08-01

    The ageing population presents significant challenges for the provision of social and health services. Strategies are needed to enable older people to cope within a society ill prepared for the impacts of these demographic changes. The ability to be creative may be one such strategy. This review outlines the relevant literature and examines current public health policy related to creativity in old age with the aim of highlighting some important issues. As well as looking at the benefits and negative aspects of creative activity in later life they are considered in the context of the theory of "successful ageing". Creative activity plays an important role in the lives of older people promoting social interaction, providing cognitive stimulation and giving a sense of self-worth. Furthermore, it is shown to be useful as a tool in the multi-disciplinary treatment of health problems common in later life such as depression and dementia. There are a number of initiatives to encourage older people to participate in creative activities such as arts-based projects which may range from visual arts to dance to music to intergenerational initiatives. However, participation shows geographical variation and often the responsibility of provision falls to voluntary organisations. Overall, the literature presented suggests that creative activity could be a useful tool for individuals and society. However, further research is needed to establish the key factors which contribute to patterns of improved health and well-being, as well as to explore ways to improve access to services.

  12. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility

    PubMed Central

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2016-01-01

    A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development. PMID:27379145

  13. Lower lateral crural reverse plasty.

    PubMed

    Kubilay, Utku; Azizli, Elad; Erdoğdu, Suleyman

    2013-11-01

    The lateral crus plays a significant role in the aesthetic appearance of the nose. Excessive concavities of the lower lateral crura can lead to heavy aesthetic disfigurement of the nasal tip and to insufficiencies of the external nasal valve. The lateral crus of the alar cartilage may also cause a concavity of the alar rim and even collapse of the alar rim in severe cases. Surgical techniques performed on the lateral crus help to treat both functional and aesthetic deformities of the lateral nasal tip. We present a reverse plasty technique for the lateral crus, and we evaluated the advantages and disadvantages of the technique.

  14. Root hydrotropism: an update.

    PubMed

    Cassab, Gladys I; Eapen, Delfeena; Campos, María Eugenia

    2013-01-01

    While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.

  15. Roots: evolutionary origins and biogeochemical significance.

    PubMed

    Raven, J A; Edwards, D

    2001-03-01

    Roots, as organs distinguishable developmentally and anatomically from shoots (other than by occurrence of stomata and sporangia on above-ground organs), evolved in the sporophytes of at least two distinct lineages of early vascular plants during their initial major radiation on land in Early Devonian times (c. 410-395 million years ago). This was some 15 million years after the appearance of tracheophytes and c. 50 million years after the earliest embryophytes of presumed bryophyte affinity. Both groups are known initially only from spores, but from comparative anatomy of extant bryophytes and later Lower Devonian fossils it is assumed that, during these times, below-ground structures (if any) other than true roots fulfilled the functions of anchorage and of water and nutrient acquisition, despite lacking an endodermis (as do the roots of extant Lycopodium spp.). By 375 million years ago root-like structures penetrated almost a metre into the substratum, greatly increasing the volume of mineral matter subject to weathering by the higher than atmospheric CO(2) levels generated by plant and microbial respiration in material with restricted diffusive contact with the atmosphere. Chemical weathering consumes CO(2) in converting silicates into bicarbonate and Si(OH)(4). The CO(2) consumed in weathering ultimately came from atmospheric CO(2) via photosynthesis and respiration; this use of CO(2) probably accounts for most of the postulated 10-fold decrease in atmospheric CO(2) from 400-350 million years ago, with significant effects on shoot evolution. Subsequent evolution of roots has yielded much-branched axes down to 40 microm diameter, a lower limit set by long-distance transport constraints. Finer structures involved in the uptake of nutrients of low diffusivity in soil evolved at least 400 million years ago as arbuscular mycorrhizas or as evaginations of "roots" ("root hairs").

  16. The evolution of root hairs and rhizoids

    PubMed Central

    Jones, Victor A.S.; Dolan, Liam

    2012-01-01

    Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024

  17. The divining root: moisture-driven responses of roots at the micro- and macro-scale

    PubMed Central

    Robbins, Neil E.; Dinneny, José R.

    2015-01-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. PMID:25617469

  18. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought.

  19. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  20. Primary Lateral Sclerosis

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; Dimachkie, Mazen M.; Floeter, Mary Kay; Mitsumoto, Hiroshi

    2015-01-01

    Synopsis Primary lateral sclerosis (PLS) is characterized by insidious onset of progressive upper motor neuron dysfunction in the absence of clinical signs of lower motor neuron involvement. Patients experience stiffness, decreased balance and coordination, and mild weakness, and if the bulbar region is affected, difficulty speaking and swallowing, and emotional lability. The diagnosis is made based on clinical history, typical exam findings, and diagnostic testing negative for other causes of upper motor neuron dysfunction. EMG is normal, or only shows mild neurogenic findings in a few muscles, not meeting El Escorial criteria. Although no test is specific for PLS, some neurodiagnostic tests are supportive: including absent or delayed central motor conduction times; and changes in the precentral gyrus or corticospinal tracts on MRI, DTI or MR Spectroscopy. Treatment is largely supportive, and includes medications for spasticity, baclofen pump, and treatment for pseudobulbar affect. The prognosis in PLS is more benign than ALS, making this a useful diagnostic category. PMID:26515619

  1. Fracture Resistance of Roots after Application of Different Sealers

    PubMed Central

    Dibaji, Fatemeh; Afkhami, Farzaneh; Bidkhori, Babak; Kharazifard, Mohammad Javad

    2017-01-01

    Introduction: Vertical root fracture inevitably leads to tooth extraction. Thus, root filling with obturating materials and sealers that can reinforce the tooth would be an ideal way to reduce fracture in root treated teeth. This study aimed to assess the fracture resistance of roots following the application of different sealers including Epiphany, iRoot sealer and AH-plus. Methods and Materials: Fifty extracted human single-canal premolars without caries, curvature or cracks were used in this study. Tooth crowns were cut to yield 13-mm-long roots. Five roots were put in the negative control group and were left unprepared. Forty-five canals were prepared using ProTaper rotary files up to F3 and were then randomly divided into three groups based on the sealer type (n=15). The root canals were filled using cold lateral condensation technique with gutta-percha and AH-Plus sealer, gutta-percha and iRoot sealer and Resilon and Epiphany sealer, in groups one to three, respectively. The roots were then mounted in acrylic molds for fracture resistance testing and subjected to compressive load at a crosshead speed of 1mm/min until fracture. Data were analyzed using the one-way ANOVA. Results: The mean fracture resistance was 673.38±170.42 N in AH-Plus, 562.00±184.68 N in iRoot, 708.03±228.05 N in Resilon and 592.59±117.29 N in the control group. No statistically significant difference was found between the experimental groups and the negative control group (P=0.26). Conclusion: Application of AH-Plus, bioceramic and Resilon sealers did not change the fracture resistance of roots compared to that of unprepared root canals. PMID:28179924

  2. Differential growth and hormone redistribution in gravireacting maize roots.

    PubMed

    Pilet, P E

    1989-01-01

    When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several

  3. Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni).

    PubMed

    Byrnes, Evan E; Vila Pouca, Catarina; Brown, Culum

    2016-05-15

    Cerebral lateralization is an evolutionarily deep-rooted trait, ubiquitous among the vertebrates and present even in some invertebrates. Despite the advantages of cerebral lateralization in enhancing cognition and facilitating greater social cohesion, large within population laterality variation exists in many animal species. It is proposed that this variation is maintained due links with inter-individual personality trait differences. Here we explored for lateralization in Port Jackson sharks (Heterodontus portusjacksoni) using T-maze turn and rotational swimming tasks. Additionally, we explored for a link between personality traits, boldness and stress reactivity, and cerebral lateralization. Sharks demonstrated large individual and sex biased laterality variation, with females demonstrating greater lateralization than males overall. Stress reactivity, but not boldness, was found to significantly correlate with lateralization strength. Stronger lateralized individuals were more reactive to stress. Demonstrating laterality in elasmobranchs for the first time indicates ancient evolutionary roots of vertebrate lateralization approximately 240 million years old. Greater lateralization in female elasmobranchs may be related enhancing females' ability to process multiple stimuli during mating, which could increase survivability and facilitate insemination. Despite contrasting evidence in teleost fishes, the results of this study suggest that stress reactivity, and other personality traits, may be linked to variation in lateralization.

  4. Lateral Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Lateral abdominal wall (LAW) defects can manifest as a flank hernias, myofascial laxity/bulges, or full-thickness defects. These defects are quite different from those in the anterior abdominal wall defects and the complexity and limited surgical options make repairing the LAW a challenge for the reconstructive surgeon. LAW reconstruction requires an understanding of the anatomy, physiologic forces, and the impact of deinnervation injury to design and perform successful reconstructions of hernia, bulge, and full-thickness defects. Reconstructive strategies must be tailored to address the inguinal ligament, retroperitoneum, chest wall, and diaphragm. Operative technique must focus on stabilization of the LAW to nonyielding points of fixation at the anatomic borders of the LAW far beyond the musculofascial borders of the defect itself. Thus, hernias, bulges, and full-thickness defects are approached in a similar fashion. Mesh reinforcement is uniformly required in lateral abdominal wall reconstruction. Inlay mesh placement with overlying myofascial coverage is preferred as a first-line option as is the case in anterior abdominal wall reconstruction. However, interposition bridging repairs are often performed as the surrounding myofascial tissue precludes a dual layered closure. The decision to place bioprosthetic or prosthetic mesh depends on surgeon preference, patient comorbidities, and clinical factors of the repair. Regardless of mesh type, the overlying soft tissue must provide stable cutaneous coverage and obliteration of dead space. In cases where the fasciocutaneous flaps surrounding the defect are inadequate for closure, regional pedicled flaps or free flaps are recruited to achieve stable soft tissue coverage. PMID:23372458

  5. Root canal filling: fracture strength of fiber-reinforced composite-restored roots and finite element analysis.

    PubMed

    Rippe, Marília Pivetta; Santini, Manuela Favarin; Bier, Carlos Alexandre Souza; Borges, Alexandre Luiz Souto; Valandro, Luiz Felipe

    2013-01-01

    The aims of this study were to evaluate the effect of root canal filling techniques on root fracture resistance and to analyze, by finite element analysis (FEA), the expansion of the endodontic sealer in two different root canal techniques. Thirty single-rooted human teeth were instrumented with rotary files to a standardized working length of 14 mm. The specimens were embedded in acrylic resin using plastic cylinders as molds, and allocated into 3 groups (n=10): G(lateral) - lateral condensation; G(single-cone) - single cone; G(tagger) - Tagger's hybrid technique. The root canals were prepared to a length of 11 mm with the #3 preparation bur of a tapered glass fiber-reinforced composite post system. All roots received glass fiber posts, which were adhesively cemented and a composite resin core was built. All groups were subjected to a fracture strength test (1 mm/min, 45°). Data were analyzed statistically by one-way ANOVA with a significance level of 5%. FEA was performed using two models: one simulated lateral condensation and Tagger's hybrid technique, and the other one simulated the single-cone technique. The second model was designed with an amount of gutta-percha two times smaller and a sealer layer two times thicker than the first model. The results were analyzed using von Mises stress criteria. One-way ANOVA indicated that the root canal filling technique affected the fracture strength (p=0.004). The G(lateral) and G(tagger) produced similar fracture strength values, while G(single-cone) showed the lowest values. The FEA showed that the single-cone model generated higher stress in the root canal walls. Sealer thickness seems to influence the fracture strength of restored endodontically treated teeth.

  6. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  7. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1996-01-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  8. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.

    PubMed

    Levine, H G; Krikorian, A D

    1996-04-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  9. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  10. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  11. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  12. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  13. In vitro leakage associated with three root-filling techniques in large and extremely large root canals.

    PubMed

    Mente, Johannes; Werner, Sabine; Koch, Martin Jean; Henschel, Volkmar; Legner, Milos; Staehle, Hans Joerg; Friedman, Shimon

    2007-03-01

    This study assessed the apical leakage of ultrasonically condensed root fillings in extremely large canals, compared to cold lateral condensation and thermoplastic compaction. Ninety single-rooted teeth were used. In 45 teeth canals were enlarged to size 70 (large). The remaining 45 canals were enlarged to size 140 (extremely large). Each set of teeth was subdivided into three root-filling groups (n = 15): (1) cold lateral condensation (LC); (2) thermoplastic compaction (TC); and (3) ultrasonic lateral condensation (UC). Teeth in all six subgroups were subjected to drawing ink penetration, cleared, and evaluated for linear apical dye leakage. Significantly deeper dye penetration (p < 0.04, Wilcoxon rank-sum test) was observed for LC than for UC. TC did not differ significantly from LC and UC. Dye penetration was significantly deeper (p < 0.0001) in canals enlarged to size 140 than to size 70, independent of root-filling method. Apical leakage associated with ultrasonically condensed root fillings was less than that with cold lateral condensation. It was consistently greater in extremely large canals than that in large ones.

  14. Reflexive Planning for Later Life

    ERIC Educational Resources Information Center

    Denton, Margaret A.; Kemp, Candace L.; French, Susan; Gafni, Amiram; Joshi, Anju; Rosenthal, Carolyn J.; Davies, Sharon

    2004-01-01

    Informed by Giddens' (1991) concept of "reflexive life" planning and the notion of later life as a time of increasing social and financial risk, this research explores the idea of "reflexive planning for later life". We utilize a conceptual model that incorporates three types of planning for later life: public protection, self-insurance, and…

  15. Lateral Thinking and Technology Education.

    ERIC Educational Resources Information Center

    Waks, Shlomo

    1997-01-01

    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  16. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    PubMed

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition.

  17. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition

    PubMed Central

    York, Larry M.; Lynch, Jonathan P.

    2015-01-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. PMID:26041317

  18. Performance optimization of lateral displacement estimation with spatial angular compounding.

    PubMed

    He, Qiong; Tong, Ling; Huang, Lingyun; Liu, Jing; Chen, Yinran; Luo, Jianwen

    2017-01-01

    Elastography provides tissue mechanical information to differentiate normal and disease states. Nowadays, axial displacement and strain are usually estimated in clinical practice whereas lateral estimation is rarely used given that its accuracy is typically one order of magnitude worse than that of axial estimation. To improve the performance of lateral estimation, spatial angular compounding of multiple axial displacements along ultrasound beams transmitting in different steering angles was previously proposed. However, few studies have been conducted to evaluate the influence of key factors such as grating lobe noise (GLN), the number of steering angles (NSA) and maximum steering angle (MSA) in terms of performance optimization. The aim of this study was thus to investigate the effects of these factors through both computer simulations and phantom experiments. Only lateral rigid motion was considered in this study to separate its effects from those of axial and lateral strains on lateral displacement estimation. The performance as indicated by the root mean square error (RMSE) and standard deviation (SD) of the estimated lateral displacements validates the capability of spatial angular compounding in improving the performance of lateral estimation. It is necessary to filter the GLN for better estimation, and better performance is associated with a larger NSA and bigger MSA in both simulations and experiments, which is in agreement with the theoretical analysis. As indicated by the RMSE and SD, two steering angles with a larger steering angle are recommended. These results could provide insights into the performance optimization of lateral displacement estimation with spatial angular compounding.

  19. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.

  20. Autoregulation of root nodule formation: signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp. nigra.

    PubMed

    van Brussel, Anton A N; Tak, Teun; Boot, Kees J M; Kijne, Jan W

    2002-04-01

    Inhibition of root nodule formation on leguminous plants by already induced or existing root nodules is called autoregulation of root nodule formation (AUT). Optimal conditions for AUT were determined using a split-root technique newly developed for Vicia sativa subsp. nigra. Infection of a root A with nodulating Rhizobium leguminosarum bv. viciae bacteria systemically inhibited nodulation of a spatially separated root B inoculated 2 days later with the same bacteria. This treatment gives complete AUT (total absence of nodules on root B). Only partial AUT of root B was obtained by incubation of root A with mitogenic nodulation (Nod) factors or with a noninfective strain producing normal mitogenic Nod factors. Nonmitogenic Nod factors did not evoke AUT. We identified two systemic plant signals induced by Rhizobium bacteria. Signal 1 (at weak buffering) was correlated with sink formation in root A and induced acidification of B-root medium. This signal is induced by treatment of root A with (i) nodulating rhizobia, (ii) mitogenic Nod factors, (iii) nonmitogenic Nod factors, or (iv) the cytokinin zeatin. Signal 2 (at strong buffering) could only be evoked by treatment with nodulating rhizobia or with mitogenic Nod factors. Most probably, this signal represents the specific AUT signal. Induction of complete AUT appears to require actively dividing nodule cells in nodule primordia, nodule meristems, or both of root A.

  1. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity1[W][OPEN

    PubMed Central

    Julkowska, Magdalena M.; Hoefsloot, Huub C.J.; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A.; Testerink, Christa

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na+/K+ ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  2. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    PubMed

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe(3+) in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe(3+) accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.

  3. Far lateral microdiscectomy: a minimally-invasive surgical technique for the treatment of far lateral lumbar disc herniation

    PubMed Central

    Phan, Kevin; Dunn, Alexander E.; Rao, Prashanth J.

    2016-01-01

    Lumbar disc herniation arises when the annulus fibrosus of the vertebral disc fails, thus allowing displacement of the nucleus pulposus and other tissue. The term far lateral is used variably in the literature and usually refers to an extraforaminal displacement in the peridiscal zone peripheral to the sagittal plane of the most lateral part of the pedicle at the same level. Non-surgical treatments of far lateral disc herniation include physical therapy, anti-inflammatory medication, and corticosteroid injections. Where these conservative measures fail, surgical intervention may be required. Several surgical techniques for the treatment of far lateral herniations have been investigated, including total or medial facetectomy, laminectomy, hemilaminectomy, approaches through the pars interarticularis, and lateral approaches between the transverse processes via the intertransverse muscle and ligament. We present our far lateral microdiscectomy technique which involves accessing the nerve root lateral to the foramen through a small paramedian incision and use of an operating microscope. Far lateral microdiscectomy offers the prospect of better long-term results than other surgical techniques because of less extensive muscle dissection and preservation of the integrity of the facet joint. PMID:27683697

  4. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  5. Root interaction between Bromud tectorum and Poa pratensis: a three-dimensional analysis

    SciTech Connect

    Bookman, P.A.; Mack, R.N.

    1982-06-01

    The spatial distribution of roots of two alien grasses, Bromus tectorum and Poa pratensis, grown singly and in a mixture, was examined using a double-labelling radioisotope technique. Interactions between the root systems of these plants led to a restricted B. tectorum rooting volume in P. pratensis neighborhoods greater than or equal to30-d-old. The roots of B. tectorum failed to develop laterally. The altered B. tectorum root systems may contribute to its inability to persist in established P. pratensis swards.

  6. The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation.

    PubMed

    Lombardi, Fabio; Scippa, G S; Lasserre, B; Montagnoli, A; Tognetti, R; Marchetti, M; Chiatante, D

    2017-03-15

    Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.

  7. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  8. How roots respond to gravity.

    PubMed

    Evans, M L; Moore, R; Hasenstein, K H

    1986-12-01

    Current knowledge about the mechanisms of plant root response to gravity is reviewed. The roles of the columella region and amyloplasts in the root cap are examined. Results of experiments related to gravistimulation in corn roots with and without root caps are explained. The role of auxin, abscisic acid, and calcium also are examined.

  9. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009.

    PubMed

    Wu, QiuPing; Chen, FanJun; Chen, YanLing; Yuan, LiXing; Zhang, FuSuo; Mi, GuoHua

    2011-07-01

    Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modern breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L(-1), HN) and low N (0.04 mmol L(-1), LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGR(root)), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.

  10. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.

  11. A Comparative Study of Apical Microleakage Using the Conventional Lateral Condensation and Mechanical Lateral Condensation Techniques

    PubMed Central

    Shahriari, Shahriar; Jalalzadeh, Seyed Mohsen; Moradkhany, Reza; Abedi, Hasan

    2008-01-01

    INTRODUCTION: This study compared apical dye penetration using lateral condensation technique (LC) and LC technique with a reciprocal handpiece (mechanical lateral condensation or MLC) as a new method. MATERIALS AND METHODS: Forty-eight human extracted straight canine teeth were used. After crown amputation, the teeth were randomly divided into four experimental groups of 10 teeth each and two negative and positive control groups of 4 teeth each. The groups were as follows: IA, 10 obturations completed by operator A using the LC technique; Group IB, 10 obturations completed by operator B using the LC technique; Group IIA, 10 obturations completed by operator A using the MLC technique; and Group IIB, 10 obturations completed by operator B using the MLC technique. All roots were placed in 2% methylene blue dye and centrifuged at 3000 rpm for 3 minutes. Following centrifugation, the roots were cut along their long axis and evaluated under a stereomicroscope to measure the depth of dye penetration. RESULTS: A t-test showed that the teeth which were filled by the MLC technique had less dye penetration in comparison with LC technique (P<0.05). CONCLUSION: This in vitro study illustrates that canals obturated with the MLC technique had superior apical seal than canals filled with the LC technique. PMID:24146675

  12. Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle

    PubMed Central

    Lee, Kyu Ho; Choi, Hong Lim; Jeong, Eui Cheol

    2016-01-01

    Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty. PMID:27462563

  13. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen.

    PubMed

    in 't Zandt, Dina; Le Marié, Chantal; Kirchgessner, Norbert; Visser, Eric J W; Hund, Andreas

    2015-09-01

    The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d(-1); 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d(-1) within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes.

  14. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen

    PubMed Central

    in ‘t Zandt, Dina; Le Marié, Chantal; Kirchgessner, Norbert; Visser, Eric J.W.; Hund, Andreas

    2015-01-01

    The plant’s root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3 - leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d-1; 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d-1 within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes. PMID:26105997

  15. Amyotrophic lateral sclerosis

    PubMed Central

    Wijesekera, Lokesh C; Leigh, P Nigel

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in

  16. Restoration of congenitally missing maxillary lateral incisors using mini implants.

    PubMed

    Collins, Ron

    2013-07-01

    In this author's opinion, the advent of mini implants, or small diameter implants (SDIs) as they are more frequently being called, are becoming in many situations a viable alternative to the more traditional root form implants. They offer advantages of less cost, a more simplified placement technique, usually faster healing times, and generally less post-operative complications. A case presentation is given to demonstrate their usage for a narrow ridge application to restore congenitally missing maxillary lateral incisors.

  17. Restoration of congenitally missing maxillary lateral incisors using mini implants.

    PubMed

    Collins, Ron

    2013-11-01

    In this author's opinion, the advent of mini implants, or small diameter implants (SDIs) as they are more frequently being called, is becoming in many situations a viable alternative to the more traditional root form implants. They offer advantages of less cost, a more simplified placement technique, usually faster healing times, and generally less post-operative complications. A case presentation is given to demonstrate their usage for a narrow ridge application to restore congenitally missing maxillary lateral incisors.

  18. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins.

  19. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  20. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  1. Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice

    PubMed Central

    Liang, Chengzhen; Li, Aifu; Yu, Hua; Li, Wenzhen; Liang, Chengzhi; Guo, Sandui; Zhang, Rui; Chu, Chengcai

    2017-01-01

    It has been suggested that melatonin acts as an important regulator in controlling root growth and development, but the underlying molecular mechanism driving this relationship remains undetermined. In this study, we demonstrated that melatonin acts as a potent molecule to govern root architecture in rice. Treatments with melatonin significantly inhibited embryonic root growth, and promoted lateral root formation and development. Genome-wide expression profiling by RNA-sequencing revealed auxin-related genes were significantly activated under melatonin treatment. Moreover, several transcription factors and candidate cis-regulatory elements involved in root growth and developments, as well as auxin-related processes, were over-represented in both co-up and -down differentially expressed genes, suggesting that melatonin-mediated root growth occurs in an auxin signal pathway-dependent manner. Further, gravitropic response analysis determined that melatonin affects auxin-regulated processes in rice root. These data show that melatonin shapes root architecture by directly or indirectly activating the auxin signaling pathway. PMID:28223997

  2. Amyotrophic Lateral Sclerosis Research Program

    DTIC Science & Technology

    2010-08-01

    U.S. Army Medical Research and Materiel Command Amyotrophic Lateral Sclerosis Research Program Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2010 4. TITLE AND SUBTITLE Amyotrophic Lateral Sclerosis Research Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...research programs such as the Amyotrophic Lateral Sclerosis Research Program (ALSRP) is allo- cated via specific guidance from Congress. Proposal

  3. [Lateral mandibular deviations].

    PubMed

    Gotte, P

    1980-01-01

    The mandibular laterodeviation is one of the most evident malformations of the face, because it alters the lower third of the face. Etiologically it can be classified into: Static laterodeviations caused by teeth; Static laterodeviations caused by skeleton change: by monolateral hypertrophy (condyle, condyle and neck of the condyle, half mandible hypertrophy); by monolateral hypertrophy (congenital pathological); Dinamic laterodeviations functional. The midline displacement with posterior monolateral cross bite is caused by width discrepancy between the upper and lower dental arch resulting in a lateral shifting of the mandible. This laterodeviation is also called "laterale forced bite" or "articular cross bite". Articular cross bite is generally corrected by orthodontics during the interceptive period when the growth of the jaws is still present. In the author's opinion the orthognathic surgery is absolutely necessary for adult dental laterodeviation already stabilized. The skeletal laterodeviation must always be treated by orthognathic surgery. It is the author's practice to use the sagittal bilateral osteotomy at the angle and ramus level whose lines of osteotomy at the angle are different from one another depending on the displacement and rotation which one must do to the mandible to get contact surfaces which are larger enough to ensure proper union because the two mandibular halves have different lengths and different angles. This kind of operation normalizes the occlusion and is sometime sufficient to harmonize the oval of the lower third of the face. In the anterior part of the chin is still laterodeviated one continues with a wedge shaped osteotomy at the tip of the chin in order to reposition the tip to the midline and with an additional osteotomy at the hypertrophied angle level. If laterodeviation is joined by other bone malformations in can be considered a symptom which is more or less marked. In this case, therefore, laterodeviation is a part of a

  4. Gene profiling of the red light signalling pathways in roots.

    PubMed

    Molas, Maria Lia; Kiss, John Z; Correll, Melanie J

    2006-01-01

    Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.

  5. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  6. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-03-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We clearly demonstrate the importance of root system architecture for the control of soil erosion. We also demonstrate that some plant species respond to nutrient enriched patches by increasing lateral root proliferation. The soil response to root proliferation will depend upon its location: at the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff and thus erosion; whereas at depth local increases in shear strength may reinforce soils against structural failure at the shear plane. Additionally, in nutrient deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilising nutrient placement at depth may represent a potentially new, easily implemented, management strategy on nutrient poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  7. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    PubMed

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  8. Avulsion of both posterior meniscal roots associated with acute rupture of the anterior cruciate ligament.

    PubMed

    Mariani, Pier Paolo; Iannella, Germano; Cerullo, Guglielmo; Giacobbe, Marco

    2015-09-01

    A rare case of acute avulsion of both posterior meniscal roots concomitant with an acute anterior cruciate ligament (ACL) tear in a professional soccer player is described. While avulsion of the lateral meniscal root has been extensively reported in association with ACL injuries, medial root avulsion has never been reported in association with acute ACL. A review of the video documentation of the match accident revealed the exact mechanism of injury was a forceful external rotation of the standing limb.

  9. DRO1 influences root system architecture in Arabidopsis and Prunus species.

    PubMed

    Guseman, Jessica M; Webb, Kevin; Srinivasan, Chinnathambi; Dardick, Chris

    2017-03-01

    Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use.

  10. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  11. Root development under metal stress in Arabidopsis thaliana requires the H(+)/cation antiporter CAX4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis vacuolar CAtion eXchangers (CAXs) play a key role in mediating cation influx into the vacuole. In Arabidopsis, there are six CAX genes. However, some members are yet to be characterized fully. In this study, we show that CAX4 is expressed in the root apex and lateral root primordia, ...

  12. Photomorphogenesis and pigment induction in lentil seedling roots exposed to low light conditions.

    PubMed

    Vollsnes, A V; Melø, T B; Futsaether, C M

    2012-05-01

    Although roots are normally hidden in soil, they may inadvertently be exposed to low light levels in experiments or in natural conditions through cracks or light transmittance through the soil. Light has been implicated in root morphogenesis. Thus, effects of low light conditions on lentil (Lens culinaris L. cv. Verte du Puy) root morphology and root pigmentation were studied. Lentil seedlings were grown in peat or transparent, nutrient-fortified agar at a 12-h light (PAR 240 μmol · m(-2) · s(-1)), 12-h dark cycle. Roots were exposed to low levels (≈ 1-10 μmol · m(-2) · s(-1)) of broadband white light, either directly or indirectly by aboveground light penetrating the growth medium. Control roots were grown in darkness. In situ spectroscopy was used to measure transmittance and reflectance spectra of intact root tissue by mounting the upper part of the primary root directly in a spectrophotometer equipped with an integrating sphere attachment. The transmittance and reflectance spectra were used to calculate the in situ root absorbance spectrum. Absorbance bands were found in the regions 480-500 nm and 650-680 nm, possibly due to low levels of root-localised carotenoids and chlorophylls, respectively. Low light levels (≈ 1-10 μmol · m(-2) · s(-1) ) transmitted through the growth medium significantly increased root pigment concentration and root biomass, and altered root morphology by enhancing lateral root formation and inhibiting root elongation relative to roots grown in complete darkness. The light-induced changes in root morphogenesis and pigmentation appear to be primarily due to upper root light perception.

  13. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  14. Grass Roots Project Evaluation.

    ERIC Educational Resources Information Center

    Wick, John W.

    Some aspects of a grass roots evaluation training program are presented. The program consists of two elements: (1) a series of 11 slide/tape individualized self-paced units, and (2) a six-week summer program. Three points of view on this program are: (1) University graduate programs in quantitative areas are usually consumed by specialists; (2)…

  15. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3)…

  16. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  17. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  18. The Roots Of Alienation

    ERIC Educational Resources Information Center

    Bronfenbrenner, Urie

    1973-01-01

    Alienation in our society takes several forms--withdrawal, hostility, or efforts to reform. The author traces the roots of alienation to our neglect of many of the needs of children, particularly their need for interaction with adults. Among his many recommendations are: modified work schedules to permit more time with children and systems for…

  19. Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species

    PubMed Central

    Pagès, Loïc

    2014-01-01

    Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886

  20. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    NASA Astrophysics Data System (ADS)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  1. A Pascalian lateral drift sensor

    NASA Astrophysics Data System (ADS)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  2. The roles of peptide hormones during plant root development.

    PubMed

    Yamada, Masashi; Sawa, Shinichiro

    2013-02-01

    Peptide hormones are a key mechanism that plants use for cell-cell interactions; these interactions function to coordinate development, growth, and environmental responses among different cells. Peptide signals are produced by one cell and received by receptors in neighboring cells. It has previously been reported that peptide hormones regulate various aspects of plant development. The mechanism of action of peptides in the shoot is well known. However, the function of peptides in the root has been relatively uncharacterized. Recent studies have discovered important roles for peptide hormones in the development of the root meristem, lateral roots, and nodules. In this review, we focus on current findings regarding the function of peptide hormones in root development.

  3. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture

    PubMed Central

    Ditengou, Franck A.; Müller, Anna; Rosenkranz, Maaria; Felten, Judith; Lasok, Hanna; van Doorn, Maja Miloradovic; Legué, Valerie; Palme, Klaus; Schnitzler, Jörg-Peter; Polle, Andrea

    2015-01-01

    The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (–)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates. PMID:25703994

  4. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  5. Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN

    PubMed Central

    Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.

    2016-01-01

    Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277

  6. The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae).

    PubMed

    Shane, Michael W; Dixon, Kingsley W; Lambers, Hans

    2005-03-01

    * The incidence of species that develop specialised 'dauciform' lateral roots, which are hypothesised to be important for phosphorus (P) acquisition, is uncertain. We investigated their occurrence in Australian reed, rush and sedge species, grown at low P concentration in nutrient solution, and studied the response of Schoenus unispiculatus (Cyperaceae) to a range of P concentrations. * We assessed the fraction of root biomass invested in dauciform roots, their respiration and net P-uptake rate, and the P status of roots and leaves. * Dauciform-root development occurred only in particular genera of Cyperaceae when grown at low P supply. Increased P supply was associated with increased growth of S. unispiculatus and increased leaf [P]. Dauciform-root growth was reduced by increased P supply, and reduced P uptake co-occurred with the complete suppression of dauciform roots. * The P-induced suppression of dauciform roots in Cyperaceae is similar to that observed for proteoid roots in members of Proteaceae and Lupinus albus. The response of dauciform roots to altered P supply and their absence from root systems of some sedge species are discussed in terms of managed and natural systems.

  7. Abnormal band of lateral meniscus.

    PubMed

    Giordano, Brian; Goldblatt, John

    2009-01-01

    This article describes a case of an "abnormal band" of the lateral meniscus, extending from the posterior horn of the true lateral meniscus to its antero-mid portion, observed during arthroscopy in a 45-year-old white man of Bosnian descent. The periphery of the aberrant lateral meniscus was freely mobile, and not connected to the underlying true lateral meniscus. Preoperative physical examination findings were consistent with medial-sided meniscal pathology only; however, evidence of an anomalous lateral meniscus was seen with magnetic resonance imaging. This anatomical pattern is rare and has been reported in the literature only once, in a report of 2 Asian patients. This article illustrates an anatomical variant of the lateral meniscus in a non-Asian patient with a clinical presentation that has not been previously described. In addition to the case report, the article presents a comprehensive review of the existing body of literature on anomalous lateral meniscus patterns. We believe that the definitions of the types of aberrant meniscus can be clarified to establish improved accuracy in reporting.

  8. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  9. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  10. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation

    PubMed Central

    Rodrigues, Clarissa Teles; de Oliveira-Santos, Christiano; Bernardineli, Norberti; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Minotti-Bonfante, Paloma Gagliardi; Ordinola-Zapata, Ronald

    2016-01-01

    ABSTRACT The knowledge of the internal anatomy of three-rooted mandibular molars may help clinicians to diagnose and plan the root canal treatment in order to provide adequate therapy when this variation is present. Objectives: To determine the prevalence of three-rooted mandibular molars in a Brazilian population using cone beam computed tomography (CBCT) and to analyze the anatomy of mandibular first molars with three roots through micro-CT. Material and Methods: CBCT images of 116 patients were reviewed to determine the prevalence of three-rooted first mandibular molars in a Brazilian subpopulation. Furthermore, with the use of micro-CT, 55 extracted three-rooted mandibular first molars were scanned and reconstructed to assess root length, distance between canal orifices, apical diameter, Vertucci's classification, presence of apical delta, number of foramina and furcations, lateral and accessory canals. The distance between the orifice on the pulp chamber floor and the beginning of the curvature and the angle of canal curvature were analyzed in the distolingual root. Data were compared using the Kruskal-Wallis test (α=0.05). Results: The prevalence of three-rooted mandibular first molars was of 2.58%. Mesial roots showed complex distribution of the root canal system in comparison to the distal roots. The median of major diameters of mesiobuccal, mesiolingual and single mesial canals were: 0.34, 0.41 and 0.60 mm, respectively. The higher values of major diameters were found in the distobuccal canals (0.56 mm) and the lower diameters in the distolingual canals (0.29 mm). The lowest orifice distance was found between the mesial canals (MB-ML) and the highest distance between the distal root canals (DB-DL). Almost all distal roots had one root canal and one apical foramen with few accessory canals. Conclusions: Distolingual root generally has short length, severe curvature and a single root canal with low apical diameter. PMID:27812625

  11. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; Marcum, H.

    1987-01-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.

  12. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    SciTech Connect

    Moore, R.; Fondren, W.M.; Marcum, H. )

    1987-03-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of {sup 45}Ca{sup 2+} across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of {sup 45}Ca{sup 2+}. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increase with (1) currents between 8-35 mA, and (2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that (1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, (2) exogenously induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, (3) the gravity-induced downward movement of exogenously-applied {sup 45}Ca{sup 2+} across tips of graviresponsive roots does not occur in nongraviresponsive roots, (4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca{sup 2+}) induces root curvature and (5) electrically-induced curvature is apparently dependent on auxin transport. These result are discussed relative to a model to account for the lack of graviresponsiveness by these roots.

  13. Angles of multivariable root loci

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1982-01-01

    A generalized eigenvalue problem is demonstrated to be useful for computing the multivariable root locus, particularly when obtaining the arrival angles to finite transmission zeros. The multivariable root loci are found for a linear, time-invariant output feedback problem. The problem is then employed to compute a closed-loop eigenstructure. The method of computing angles on the root locus is demonstrated, and the method is extended to a multivariable optimal root locus.

  14. Alteration of root growth by lettuce, wheat, and soybean in response to wear debris from automotive brake pads.

    PubMed

    Dodd, Misty D; Ebbs, Stephen D; Gibson, David J; Filip, Peter

    2014-11-01

    Brakes from motor vehicles release brake pad wear debris (BPWD) with increased concentrations of heavy metals. Germination and root-elongation assays with lettuce, wheat, and soybean were used to provide an initial evaluation of the phytotoxicity of either a water extract of BPWD or BPWD particulates. In terms of germination, the only effect observed was that lettuce germination decreased significantly in the BPWD particulate treatment. Lettuce and wheat showed decreased root length and root-elongation rate in the presence of the BPWD particulates, whereas lettuce produced a significantly greater number of lateral roots in response to BPWD extract. There was no significant effect of either BPWD treatment on soybean root elongation or lateral roots. Treatment with BPWD extracts or particulates caused significant alterations in the bending pattern of the plant roots. These initial results suggest that BPWD may have effects on the early growth and development of plants.

  15. What causes amyotrophic lateral sclerosis?

    PubMed Central

    Martin, Sarah; Al Khleifat, Ahmad; Al-Chalabi, Ammar

    2017-01-01

    Amyotrophic lateral sclerosis is a neurodegenerative disease predominantly affecting upper and lower motor neurons, resulting in progressive paralysis and death from respiratory failure within 2 to 3 years. The peak age of onset is 55 to 70 years, with a male predominance. The causes of amyotrophic lateral sclerosis are only partly known, but they include some environmental risk factors as well as several genes that have been identified as harbouring disease-associated variation. Here we review the nature, epidemiology, genetic associations, and environmental exposures associated with amyotrophic lateral sclerosis.

  16. Gravisensing in flax roots - results from STS-107

    NASA Astrophysics Data System (ADS)

    Hasenstein, K.; Scherp, P.; Ma, Z.

    The objective of this Space Shuttle experiment was to evaluate the relationship between a laterally applied magnetophoretic force and the resulting curvature in the absence of gravity. Assessing the cytoskeletal organization of microgravity-grown roots and the distribution of amyloplasts in the root columella were additional goals. A High Gradient Magnetic Field (HGMF) was generated by steel wedges between NdFeB magnets and created a force on the amyloplasts. Based on downlinked images from orbit we were able to confirm that the experiments worked as expected. The seeds germinated at the expected time and grew at in both directions from the seed cassettes. However, the growth rate was less than in ground control experiments and further declined as the root tips approached the HGMF. Perpendicular curvature away from the wedges could not be detected, but not show a single root grew past the highest point in magnetic force field. The reduction in growth rate in micro gravity, and the higher sensitivity of space grown roots suggests that clinorotated roots exhibit reduced gravisensitivity compared to non-stimulated roots, in accordance with data from other space experiments. The higher effectiveness of the magnetic force in micro gravity than in ground tests that the gravisensing mechanism is sensitive to mechanical perturbation. Supported by NASA: NAG10-0190.

  17. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  18. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  19. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  20. Nurturing the Roots of Literacy.

    ERIC Educational Resources Information Center

    Blass, Rosanne J.

    Reflecting the work of Yetta Goodman on child language development, this paper examines Goodman's five "roots of literacy" and offers suggestions on classroom techniques for nurturing these roots. The first half of the paper explains how Goodman identified the roots of literacy and describes each of them, including (1) print awareness in…

  1. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.

    PubMed

    Gan, Yinbo; Bernreiter, Andreas; Filleur, Sophie; Abram, Beverley; Forde, Brian G

    2012-06-01

    The expression of the ANR1 MADS-box gene was manipulated in transgenic plants to investigate its role in the NO(3)(-)-dependent regulation of root development in Arabidopsis thaliana. Constitutive overexpression of ANR1 in roots, achieved using GAL4 enhancer trap lines, resulted in more rapid early seedling development, increased lengths and numbers of lateral roots and increased shoot fresh weight. Based on results obtained with five different enhancer trap lines, the overexpression of ANR1 in the lateral root tips appears to be more important for this phenotype than its level of expression in the developing lateral root primordia. Dexamethasone-mediated induction of ANR1 in lines expressing an ANR1-GR (glucocorticoid receptor) fusion protein stimulated lateral root growth but not primary root growth. Short-term (24 h) dexamethasone treatments led to prolonged stimulation of lateral root growth, whether the lateral roots were already mature or still unemerged at the time of treatment. In split-root experiments, localized application of dexamethasone to half of the root system of an ANR1-GR line elicited a localized increase in both the length and numbers of lateral roots, mimicking the effect of a localized NO(3)(-) treatment. In both types of transgenic line, the root phenotype was strongly dependent on the presence of NO(3)(-), indicating that there are additional components involved in ANR1 function that are NO(3)(-) regulated. The implications of these results for our understanding of ANR1's mode of action in the root response to localized NO(3)(-) are discussed.

  2. X-ray computed tomography uncovers root–root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    PubMed Central

    Paya, Alexander M.; Silverberg, Jesse L.; Padgett, Jennifer; Bauerle, Taryn L.

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies. PMID:25972880

  3. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.

    PubMed

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M

    2013-01-01

    Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions.

  4. Identification of Novel QTL Governing Root Architectural Traits in an Interspecific Soybean Population

    PubMed Central

    Musket, Theresa A.; Chaky, Julian; Deshmukh, Rupesh; Vuong, Tri D.; Song, Li; Cregan, Perry B.; Nelson, James C.; Shannon, J. Grover; Specht, James E.; Nguyen, Henry T.

    2015-01-01

    Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean. PMID:25756528

  5. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions.

    PubMed

    Sandhu, Nitika; Raman, K Anitha; Torres, Rolando O; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-08-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity.

  6. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress

    PubMed Central

    Zou, Ying-Ning; Wang, Peng; Liu, Chun-Yan; Ni, Qiu-Dan; Zhang, De-Jian; Wu, Qiang-Sheng

    2017-01-01

    Plant roots are the first parts of plants to face drought stress (DS), and thus root modification is important for plants to adapt to drought. We hypothesized that the roots of arbuscular mycorrhizal (AM) plants exhibit better adaptation in terms of morphology and phytohormones under DS. Trifoliate orange seedlings inoculated with Diversispora versiformis were subjected to well-watered (WW) and DS conditions for 6 weeks. AM seedlings exhibited better growth performance and significantly greater number of 1st, 2nd, and 3rd order lateral roots, root length, area, average diameter, volume, tips, forks, and crossings than non-AM seedlings under both WW and DS conditions. AM fungal inoculation considerably increased root hair density under both WW and DS and root hair length under DS, while dramatically decreased root hair length under WW but there was no change in root hair diameter. AM plants had greater concentrations of indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin in roots, which were significantly correlated with changes in root morphology. These results support the hypothesis that AM plants show superior adaptation in root morphology under DS that is potentially associated with indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin levels. PMID:28106141

  7. Lateral Dominance and Reading Disability.

    ERIC Educational Resources Information Center

    Harris, Albert J.

    1979-01-01

    Theory and research on the relation of lateral dominance to the causation of reading disability are reviewed. Both direct and indirect measures of cerebral hemisphere functioning are considered. (SBH)

  8. Hyperaldosteronism: diagnosis, lateralization, and treatment.

    PubMed

    Harvey, Adrian M

    2014-06-01

    Primary hyperaldosteronism is an important and commonly unrecognized secondary cause of hypertension. This article provides an overview of the current literature with respect to screening, diagnosis, and lateralization. Selection and outcomes of medical and surgical treatment are discussed.

  9. A Developmentally Based Categorization of Branching in Trifolium repens L.: Influence of Nodal Roots

    PubMed Central

    THOMAS, R. G.; HAY, M. J. M.; NEWTON, P. C. D.

    2002-01-01

    This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (–R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In –R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of –R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on –R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10 % of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to –R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it. PMID:12234150

  10. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  11. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle

  12. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White lupin (Lupinus albus L.) is considered a model system for understanding plant acclimation to nutrient deficiency. It acclimates to phosphorus (P) and iron (Fe) deficiency by the development of short, densely clustered lateral roots called proteoid (or cluster) roots; proteoid-root development ...

  13. Tensile forces and failure characteristics of individual and bundles of roots embedded in soil - experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Cohen, Dedis; Or, Dani

    2010-05-01

    The quantification of soil root reinforcement is relevant for many aspects of hillslope stability and forest management. The abundance and distribution of roots in upper soil layers determines slope stability and is considered a mitigating factor reducing shallow landslide hazard. Motivated by advances in modeling approaches that account for soil-root mechanical interactions at single root and bundle of roots of different geometries (the root bundle model - RBM), we set up a series of root pull out experiments in the laboratory and in the field to study the mechanical behavior of pulled roots. We focused on the role of displacement and root failure mechanisms in determining global tensile strength and failure dynamics in a root bundle. Strain controlled pull out tests of up to 13 roots in parallel each with its own force measurements provided insights into the detailed soil-root and bundle interactions . The results enabled systematic evaluation of factors such as root tortuosity and branching patterns for the prediction of single root pull out behavior, and demonstrated the importance of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Analyses of root-soil interface friction shows that force-displacement behavior varies for different combinations of soil types and water content. The maximal pull out interfacial friction ranges between 1 for wet sand (under 2 kPa confining pressure) and 17 kPa for dry sand (under 4.5 kPa confining pressure). These experiments were instrumental for calibration of the RBM which was later validated with six field experiments on natural root bundles of spruce (Picea abies L.). The tests demonstrated the progressive nature of failure of a bundle of roots under strain controlled conditions (such as formation of tension crack on a vegetated hillslope), and provide important insights regarding stress-strain behavior of natural root reinforcement.

  14. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    PubMed Central

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  15. Root development-two meristems for the price of one?

    PubMed

    Bennett, Tom; Scheres, Ben

    2010-01-01

    In this review, we analyze progress in understanding the mechanisms of root meristem development and function. The formation of embryonic and lateral roots, together with the remarkable regenerative ability of roots, seems to be linked to an auxin-dependent patterning mechanism, the "reflux loop," that can act at least partly independently of cellular context. A major feature of root formation is the production of the "structural initials," the center of the developing root. These cells form an organizing center (OC), the quiescent center (QC), which is needed for meristem activity. The exact role of the QC remains somewhat unclear, though it maintains a stem cell (SC) state in adjacent cells and acts as a long-term SC pool itself. SCs in the root can be defined on an operational basis, but a molecular definition for SC identity remains elusive. Instead, the behavior of cells in the proximal root might better be understood as the result of a "potential" gradient in the meristem, which confers cellular characteristics with respect to proximity to the QC. This potential gradient also seems to be auxin-dependent, possibly as a result of the effect of auxin on the expression of PLETHORA genes, key regulators of meristem function. Only in the root cap (RC) has distinct SC identity been proposed; but increasingly, evidence suggests that regulation of RC development is rather different from that in the proximal meristem; interestingly, a similar dichotomy can also be observed in the shoot meristem. Cell cycle progression must lie at the core of meristematic activity, and recent work has begun to uncover how hormonal regulation feeds forward into various aspects of the cell cycle. The emergent picture is one of coordinate regulation of cell division and elongation by a hormonal signaling network that is integrated by the auxin reflux loop to control root growth.

  16. Tempo, mode, the progenote, and the universal root.

    PubMed Central

    Doolittle, W F; Brown, J R

    1994-01-01

    Early cellular evolution differed in both mode and tempo from the contemporary process. If modern lineages first began to diverge when the phenotype-genotype coupling was still poorly articulated, then we might be able to learn something about the evolution of that coupling through comparing the molecular biologies of living organisms. The issue is whether the last common ancestor of all life, the cenancestor, was a primitive entity, a progenote, with a more rudimentary genetic information-transfer system. Thinking on this issue is still unsettled. Much depends on the placement of the root of the universal tree and on whether or not lateral transfer renders such rooting meaningless. PMID:8041689

  17. In vitro comparison of passive and continuous ultrasonic irrigation in curved root canals

    PubMed Central

    Castelo-Baz, Pablo; Varela-Patiño, Purificación; Cantatore, Giuseppe; Domínguez-Perez, Ana; Ruíz-Piñón, Manuel; Martín-Biedma, Benjamín

    2016-01-01

    Background The efficacy of endodontic irrigation procedures can be compromised by the complexity of the root canal system. Delivering irrigants to the apical third of curved canals presents a particular challenge to endodontists. This study compared the effects of two ultrasonic irrigation techniques on the penetration of sodium hypochlorite into the main canal and simulated lateral canals of curved roots in extracted teeth. Material and Methods Two sets of simulated lateral canals were created at 2, 4, and 6 mm from the working length in 60 single-rooted teeth (6 canals/tooth, n = 360 canals). The teeth were randomly divided into three experimental irrigation groups: group 1 (n = 20), positive pressure irrigation (PPI); group 2 (n = 20), passive ultrasonic irrigation (PUI); and group 3 (n = 20), continuous ultrasonic irrigation (CUI). To assess the irrigation solution penetration, 20% Chinese ink (Sanford Rotring GmbH, Hamburg, Germany) was added to a 5% sodium hypochlorite solution and delivered into the curved root canals. The penetration of contrast solution into the simulated lateral canals was scored by counting the number of lateral canals (0-2) penetrated to at least 50% of the total length. Results The CUI group showed significantly higher (P < 0.05) irrigant penetration into the lateral canals and into the apical third of the main canals. The PPI group showed significantly lower sodium hypochlorite penetration (P < 0.001) into the main and lateral canals compared with that in the CUI and PUI groups. Significantly higher irrigant penetration was observed in the PUI group than the PPI group. Conclusions Using CUI as the final rinse significantly increased the penetration of irrigant solution into the simulated lateral canals and apical third of curved roots. Key words:Continuous ultrasonic irrigation, curved root canals, passive ultrasonic irrigation, positive pressure irrigation, root canal irrigation. PMID:27703613

  18. Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum.

    PubMed

    Wendt, M; Kuo-Huang, L L; Sievers, A

    1987-11-01

    The polar arrangement of cell organelles in Lepidium root statocytes is persistently converted to a physical stratification during lateral centrifugation (the centrifugal force acts perpendicular to the root long axis) or by apically directed centrifugation combined with cytochalasin-treatment. Lateral centrifugation (10 min, 60 min at 10g or 50g) causes displacement of amyloplasts to the centrifugal anticlinal cell wall and shifting of the endoplasmic reticulum (ER) complex to the centripetal distal cell edge. After 60 min of lateral centrifugation at 10g or 50g all roots show a clear gravitropic curvature. The average angle of curvature is about 40 degrees and corresponds to that of roots stimulated gravitropically in the horizontal position at 1 g in spite of the fact that the gravistimulus is 10- or 50-fold higher. Apically directed centrifugation combined with cytochalasin B (25 micrograms ml-1) or cytochalasin D (2.5 micrograms ml-1) incubation yields statocytes with the amyloplasts sedimented close to the centrifugal periclinal cell wall and ER cisternae accumulated at the proximal cell pole. Gravitropic stimulation for 30 min in the horizontal position at 1 g and additional 3 h rotation on a clinostat result in gravicurvature of cytochalasin B-treated centrifuged (1 h at 50 g) roots, but because of retarded root growth the angle of curvature is lower than in control roots. Cytochalasin D-treatment during centrifugation (20 min at 50 g) does not affect either root growth or gravicurvature during 3 h horizontal exposure to 1-g relative to untreated roots. As lateral centrifugation enables only short-term contact between the amyloplasts and the distal ER complex at the onset of centrifugation and apically directed centrifugation combined with cytochalasin-treatment even exclude any contact the integrity of the distal cell pole need not necessarily be a prerequisite for graviperception in Lepidium root statocytes.

  19. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

    PubMed Central

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227

  20. Deep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model.

    PubMed

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.

  1. Transport of Water and Solutes across Maize Roots Modified by Puncturing the Endodermis (Further Evidence for the Composite Transport Model of the Root).

    PubMed Central

    Steudle, E.; Murrmann, M.; Peterson, C. A.

    1993-01-01

    stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots. PMID:12231941

  2. Lateral sinus thrombosis associated with zoster sine herpete.

    PubMed

    Chan, James; Bergstrom, Richard T; Lanza, Donald C; Oas, John G

    2004-01-01

    Herpes zoster results from reactivation of the varicella zoster virus (VZV). Zoster sine herpete (ZSH) is an uncommon manifestation of VZV infection and presents with similar symptoms but without the vesicular rash. We describe an unusual case of lateral sinus thrombosis (LST) that developed during the clinical course of ZSH in the C2 distribution. A 55-year-old woman presented with a 3-day history of left temporal and postauricular pain, nausea, vomiting, and mild photophobia. She denied otalgia, otorrhea, and hearing loss. Examination revealed hyperesthesia in the left C2 nerve root distribution without evidence of herpetic rash. A computed tomography scan showed minimal fluid in the left mastoid cavity (not mastoiditis) and thrombus within the left lateral and sigmoid dural sinus. Magnetic resonance imaging and magnetic resonance angiogram confirmed these findings. Laboratory studies revealed elevated neurotrophic immunoglobulin G levels to VZV. Hypercoagulable studies were normal. She was subsequently treated with Neurontin, acyclovir, and anticoagulation. Her symptoms improved, and she was discharged 3 days later. LST is generally a complication of middle ear infection. Nonseptic LST, however, may result from dehydration, oral contraceptive use, coagulopathy, or thyroid disease. This unusual case raises the suspicion that thrombosis resulted from VZV associated thrombophlebitis in the ipsilateral cerebral venous sinuses along the second cervical nerve root distribution. A high index of suspicion is necessary in such cases so that a different treatment course can be identified and antiviral medication initiated promptly.

  3. Organic fertilization leads to increased peach root production and lifespan.

    PubMed

    Baldi, E; Toselli, M; Eissenstat, D M; Marangoni, B

    2010-11-01

    We evaluated the effects of mineral and organic fertilizers on peach root dynamics in the growing season from 2003 to 2006 in a nectarine (Prunus persica L.) orchard, planted in 2001 and located in the Po valley, northeastern Italy. Very few studies have conducted long-term investigations of root dynamics of fruit crops. Our main objective was to determine whether organic fertilizers affect root dynamics differently than mineral fertilizers. The experiment was a completely randomized block design with four replicates of three treatments: unfertilized, mineral fertilized and composted with municipal waste. Mineral fertilizers included P (100 kg ha(-1) year(-1)) and K (200 kg ha(-1) year(-1)) applied only at planting and N (70-130 kg ha(-1) year(-1)) split into two applications, one at 40 days after full bloom (60%) and the other in September (40%) each year. The compost fertilization represented a yearly rate of 10 metric tons (t) dry weight ha(-1), which approximates (in kg ha(-1) year(-1)) 240 N, 100 P and 200 K, split similarly to that described for the mineral fertilization of N. Both root growth and survival were evaluated at 20-day intervals during the growing season by the minirhizotron technique. Compost increased the production of new roots compared with the other treatments (P < 0.01). Roots were mainly produced at a depth of 41-80 cm and from March to May and in late summer. An analysis of covariance indicated no significant effect of soil nitrate on root production (P = 0.47). The root lifespan was longer in compost-treated trees than in mineral-fertilized or unfertilized trees (P < 0.01) and it was strongly affected by time of birth; roots born later in the summer lived longer than those born in the spring. Across years and treatments, the average root lifespan was positively correlated with soil nitrate (r = 0.60; P < 0.001). Variation in root lifespan with method of fertilization could be accounted for by variation in soil

  4. Optineurin and amyotrophic lateral sclerosis.

    PubMed

    Maruyama, Hirofumi; Kawakami, Hideshi

    2013-07-01

    Amyotrophic lateral sclerosis is a devastating disease, and thus it is important to identify the causative gene and resolve the mechanism of the disease. We identified optineurin as a causative gene for amyotrophic lateral sclerosis. We found three types of mutations: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Optineurin negatively regulates the tumor necrosis factor-α-induced activation of nuclear factor kappa B. Nonsense and missense mutations abolished this function. Mutations related to amyotrophic lateral sclerosis also negated the inhibition of interferon regulatory factor-3. The missense mutation showed a cyotoplasmic distribution different from that of the wild type. There are no specific clinical symptoms related to optineurin. However, severe brain atrophy was detected in patients with homozygous deletion. Neuropathologically, an E478G patient showed transactive response DNA-binding protein of 43 kDa-positive neuronal intracytoplasmic inclusions in the spinal and medullary motor neurons. Furthermore, Golgi fragmentation was identified in 73% of this patient's anterior horn cells. In addition, optineurin is colocalized with fused in sarcoma in the basophilic inclusions of amyotrophic lateral sclerosis with fused in sarcoma mutations, and in basophilic inclusion body disease. These findings strongly suggest that optineurin is involved in the pathogenesis of amyotrophic lateral sclerosis.

  5. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  6. Rooting an Android Device

    DTIC Science & Technology

    2015-09-01

    this feature on an Android device, go to “Settings” and then “About Phone ” or “About tablet”. Find “Build Number”, then tab on the “Build Number” 7...flag, which should not affect phone operation. Ensure that the phone or tablet is on and active while the rooting process is underway, and monitor...the Android device and host computer for progress of the script to determine whether the installation succeeded or failed. Do not unplug the phone

  7. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  8. Effects of lateral osteotomy on surgically assisted rapid maxillary expansion.

    PubMed

    Oliveira, T F M; Pereira-Filho, V A; Gabrielli, M A C; Gonçales, E S; Santos-Pinto, A

    2016-04-01

    This study aimed to assess the potential effects of two different osteotomy designs of the maxillary lateral wall on dental and skeletal changes after surgically assisted rapid maxillary expansion (SARME). Thirty adult patients were divided into two groups according to the lateral osteotomy design: group 1 (n=16) underwent lateral osteotomy performed in a horizontal straight fashion, and group 2 (n=14) underwent lateral osteotomy performed in parallel to the occlusal plane with a step at the zygomatic buttress. Cone beam computed tomography scans were obtained preoperatively (T1), immediately after expansion (T2), and 6 months after expansion (T3). Mixed analysis of variance (ANOVA) was used for the statistical analysis. The results showed no significant interaction effect between groups and time points. Therefore, maxillary expansion was effective in both groups. Statistically significant increases in all dental and skeletal measurements were observed immediately after expansion (P<0.001). Relapse of the nasal floor width, tipping of the supporting teeth, and an increase in root distance in molars occurred at T3 (P<0.05). In summary, the maxillary lateral osteotomy design did not influence the results of SARME, which occurred mainly through the inclination of maxillary segments.

  9. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  10. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  11. Morphometric analysis of root shape.

    PubMed

    Grabov, A; Ashley, M K; Rigas, S; Hatzopoulos, P; Dolan, L; Vicente-Agullo, F

    2005-02-01

    Alterations in the root shape in plant mutants indicate defects in hormonal signalling, transport and cytoskeleton function. To quantify the root shape, we introduced novel parameters designated vertical growth index (VGI) and horizontal growth index (HGI). VGI was defined as a ratio between the root tip ordinate and the root length. HGI was the ratio between the root tip abscissa and the root length. To assess the applicability of VGI and HGI for quantification of root shape, we analysed root development in agravitropic Arabidopsis mutants. Statistical analysis indicated that VGI is a sensitive morphometric parameter enabling detection of weak gravitropic defects. VGI dynamics were qualitatively similar in auxin-transport mutants aux1, pin2 and trh1, but different in the auxin-signalling mutant axr2. Analysis of VGI and HGI of roots grown on tilted plates showed that the trh1 mutation affected downstream cellular responses rather than perception of the gravitropic stimulus. All these tests indicate that the VGI and HGI analysis is a versatile and sensitive method for the study of root morphology.

  12. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range

    USGS Publications Warehouse

    Schmidt, K.M.; Roering, J.J.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.; Schaub, T.

    2001-01-01

    Decades of quantitative measurement indicate that roots can mechanically reinforce shallow soils in forested landscapes. Forests, however, have variations in vegetation species and age which can dominate the local stability of landslide-initiation sites. To assess the influence of this variability on root cohesion we examined scarps of landslides triggered during large storms in February and November of 1996 in the Oregon Coast Range and hand-dug soil pits on stable ground. At 41 sites we estimated the cohesive reinforcement to soil due to roots by determining the tensile strength, species, depth, orientation, relative health, and the density of roots ???1 mm in diameter within a measured soil area. We found that median lateral root cohesion ranges from 6.8-23.2 kPa in industrial forests with significant understory and deciduous vegetation to 25.6-94.3 kPa in natural forests dominated by coniferous vegetation. Lateral root cohesion in clearcuts is uniformly ???10 kPa. Some 100-year-old industrial forests have species compositions, lateral root cohesion, and root diameters that more closely resemble 10-year-old clearcuts than natural forests. As such, the influence of root cohesion variability on landslide susceptibility cannot be determined solely from broad age classifications or extrapolated from the presence of one species of vegetation. Furthermore, the anthropogenic disturbance legacy modifies root cohesion for at least a century and should be considered when comparing contemporary landslide rates from industrial forests with geologic background rates.

  13. Lateral epicondylitis of the elbow.

    PubMed

    Tosti, Rick; Jennings, John; Sewards, J Milo

    2013-04-01

    Lateral epicondylitis, or "tennis elbow," is a common musculotendinous degenerative disorder of the extensor origin at the lateral humeral epicondyle. Repetitive occupational or athletic activities involving wrist extension and supination are thought to be causative. The typical symptoms include lateral elbow pain, pain with wrist extension, and weakened grip strength. The diagnosis is made clinically through history and physical examination; however, a thorough understanding of the differential diagnosis is imperative to prevent unnecessary testing and therapies. Most patients improve with nonoperative measures, such as activity modification, physical therapy, and injections. A small percentage of patients will require surgical release of the extensor carpi radialis brevis tendon. Common methods of release may be performed via percutaneous, arthroscopic, or open approaches.

  14. Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand.

    PubMed

    Balasubramaniyam, Anuluxshy; Harvey, Patricia J

    2014-11-01

    The choice of plant for phytoremediation success requires knowledge of how plants respond to contaminant exposure, especially their roots which are instrumental in supporting rhizosphere activity. In this study, we investigated the responses of plants with different architectures represented by beetroot (Beta vulgaris), a eudicot with a central taproot and many narrower lateral roots, and tall fescue (Festuca arundinacea), a monocot possessing a mass of threadlike fibrous roots to grow in crude oil-treated sand. In this paper, scanning electron microscopy was used to investigate modifications to plant root structure caused by growth in crude oil-contaminated sand. Root structural disorders were evident and included enhanced thickening in the endodermis, increased width of the root cortical zone and smaller diameter of xylem vessels. Inhibition in the rate of root elongation correlated with the increase in cell wall thickening and was dramatically pronounced in beetroot compared to the roots of treated fescue. The latter possessed significantly fewer (p < 0.001) and significantly shorter (p < 0.001) root hairs compared to control plants. Possibly, root hairs that absorb the hydrophobic contaminants may prevent contaminant absorption into the main root and concomitant axile root thickening by being sloughed off from roots. Tall fescue exhibited greater root morphological adaptability to growth in crude oil-treated sand than beetroot and, thus, a potential for long-term phytoremediation.

  15. Distribution, biomass, and dynamics of roots in a revegetated stand of Caragana korshinskii in the Tengger Desert, northwestern China.

    PubMed

    Zhang, Zhi-Shan; Li, Xin-Rong; Liu, Li-Chao; Jia, Rong-Liang; Zhang, Jing-Guang; Wang, Tao

    2009-01-01

    A field experiment was conducted to investigate root distribution, biomass, and seasonal dynamics in a revegetated stand of Caragana korshinskii Kom. in the Tengger Desert. We used soil profile trenches, soil core sampling, and minirhizotron measurements to measure root dynamics. Results showed that the roots of C. korshinskii were distributed vertically in the uppermost portion of the soil profile, especially the coarse roots, which were concentrated in the upper 0.4 m. The horizontal distribution of the root length and weight of C. korshinskii coarse roots was concentrated within 0.6 and 0.4 m of the trunk, respectively. The lateral distribution of fine roots was more uniform than coarse roots. Total-root and fine-root biomasses were 662.4 +/- 45.8 and 361.1 +/- 10.3 g m(-2), accounting for about two-thirds and one-third of the total plant biomass, respectively. Fine-root turnover is closely affected by soil water, and both of these parameters showed synchronously seasonal trends during the growing season in 2004 and 2005. The interaction between fine-root turnover and soil water resulted in the fine-root length densities and soil water content in the 0- to 1.0-m soil layer having similar trends, but the soil water peaks occurred before those of the fine-root length densities.

  16. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques

    PubMed Central

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M.

    2013-01-01

    Plant–soil interactions can strongly influence root growth in plants. There is now increasing evidence that root–root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant–plant and plant–soil interactions. PMID:24137168

  17. Graviresponsiveness and cap dimensions of primary and secondary roots of Ricinus communis (Euphorbiaceae).

    PubMed

    Moore, R; Pasieniuk, J

    1984-01-01

    After branching from the primary root, secondary roots of castor bean (Ricinus communis) grow laterally for 15-20 mm, after which they bend downward (i.e., become positively gravitropic). During the first 10 mm of growth, the lengths of caps of secondary roots increase from 120 +/- 26 to 220 +/- 28 micrometers. Although this increase is statistically significant (P < 0.1%), the resulting secondary roots are only minimally graviresponsive. A subsequent doubling of the lengths and widths of the root caps (i.e., to 420 +/- 34 and 450 +/- 41 micrometers, respectively) is positively correlated with the onset of gravicurvature. The graviresponsiveness and dimensions of caps of positively gravitropic secondary roots are not significantly different from those of positively gravitropic primary roots. These results indicate that (i) a statistically significant increase in the length and length : width ratio of a root cap does not necessarily result in the root becoming positively gravitropic, (ii) there may be a minimum cap length and (or) width necessary for graviresponsiveness, and (iii) the degree of graviresponsiveness exhibited by a particular root may be related to the size of its root cap.

  18. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana.

    PubMed

    Wada, Yukika; Kusano, Hiroaki; Tsuge, Tomohiko; Aoyama, Takashi

    2015-02-01

    Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.

  19. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  20. Lateral Diffusion in an Archipelago

    PubMed Central

    Saxton, Michael J.

    1982-01-01

    Lateral diffusion of molecules in lipid bilayer membranes can be hindered by the presence of impermeable domains of gel-phase lipid or of proteins. Effective-medium theory and percolation theory are used to evaluate the effective lateral diffusion constant as a function of the area fraction of fluid-phase lipid and the permeability of the obstructions to the diffusing species. Applications include the estimation of the minimum fraction of fluid lipid needed for bacterial growth, and the enhancement of diffusion-controlled reactions by the channeling effect of solid patches of lipid. PMID:7052153

  1. Perennial roots to immortality.

    PubMed

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.

  2. Fracture Resistance of Retreated Roots Using Different Retreatment Systems

    PubMed Central

    Er, Kursat; Tasdemir, Tamer; Siso, Seyda Herguner; Celik, Davut; Cora, Sabri

    2011-01-01

    Objectives: This study was designed to evaluate the fracture resistance of retreated roots using different rotary retreatment systems. Methods: Forty eight freshly extracted human canine teeth with single straight root canals were instrumented sequentially increasing from size 30 to a size 55 using K-files whit a stepback technique. The teeth were randomly divided into three experimental and one control groups of 12 specimens each. The root canals were filled using cold lateral compaction of gutta-percha and AH Plus (Dentsply Detrey, Konstanz, Germany) sealer in experimental groups. Removal of gutta-percha was performed with the following devices and techniques: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), R-Endo (Micro-Mega, Besançon, France), and Mtwo (Sweden & Martina, Padova, Italy) rotary retreatment systems. Control group specimens were only instrumented, not filled or retreated. The specimens were then mounted in copper rings, were filled with a self-curing polymethylmethacrylate resin, and the force required to cause vertical root fracture was measured using a universal testing device. The force of fracture of the roots was recorded and the results in the various groups were compared. Statistical analysis was accomplished by one-way ANOVA and a post hoc Tukey tests. Results: There were statistically significant differences between the control and experimental groups (P<.05). However, there were no significant differences among the experimental groups. Conclusions: Based on the results, all rotary retreatment techniques used in this in vitro study produced similar root weakness. PMID:21912497

  3. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  4. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  5. Functional classification of riparian roots for bank stability

    NASA Astrophysics Data System (ADS)

    Polvi, L. E.; Merritt, D. M.; Wohl, E. E.

    2010-12-01

    It is well established that the roots of riparian vegetation add tensile strength to stream banks, thus reducing bank erosion and undercutting. Bank stability models that add the mechanical strength of riparian roots, based on root tensile strength and density, contribute to the understanding of vegetation-enhanced bank strength. However, for land managers who require a simple method for determining which riparian vegetation species are most suited for bank stabilization (i.e., river restoration), these methods can require time-consuming efforts. The system the United States Forest Service (USFS) currently uses employs a qualitatively-based ranking scheme of riparian vegetation, which also implies that bank stability is an inherent characteristic of a riparian plant species, regardless of bank characteristics. We present a functional classification of riparian species for bank stability that meet the needs of land managers but still acknowledges that bank stability is not an inherent characteristic of vegetation, and that takes into account bank materials (sediment grain size and stratigraphy). The objectives of this research are to (1) develop a functional classification of riparian vegetation based on root morphology and role in stabilizing banks, using a bank stability model (BSTEM) to determine the added bank strength from diverse species for varying bank textures and geometries, and developing a ternary diagram of riparian vegetation based on bank stabilization characteristics (tensile strength, root depth and lateral extent, and root density or branching); and (2) understand the role of riparian indicator species in channel processes and streambank and valley formation. Tensile strength, root morphology and density, and stem density were obtained for 14 riparian species common to the Colorado Front Range (4 trees, 3 shrubs, 3 graminoids, and 4 forbs). We use BSTEM to determine the addition to bank stability for these species for a range of bank textures and

  6. Artefacts in Cone Beam CT Mimicking an Extrapalatal Canal of Root-Filled Maxillary Molar.

    PubMed

    Camilo, Carla Cristina; Brito-Júnior, Manoel; Faria-E-Silva, André Luis; Quintino, Alex Carvalho; de Paula, Adrianne Freire; Cruz-Filho, Antônio Miranda; Sousa-Neto, Manoel Damião

    2013-01-01

    Despite the advantages of cone-beam computed tomography (CBCT), the images provided by this diagnostic tool can produce artifacts and compromise accurate diagnostic assessment. This paper describes an endodontic treatment of a maxillary molar where CBCT images suggested the presence of a nonexistent third root canal in the palatal root. An endodontic treatment was performed in a first maxillary molar with palatal canals, and the tooth was restored with a cast metal crown. The patient returned four years later presenting with a discomfort in chewing, which was reduced after occlusal adjustment. CBCT was prescribed to verify additional diagnostic information. Axial scans on coronal, middle, and apical palatal root sections showed images similar to a third root canal. However, sagittal scans demonstrated that these images were artifacts caused by root canal fillings. A careful interpretation of CBCT images in root-filled teeth must be done to avoid mistakes in treatment.

  7. Artefacts in Cone Beam CT Mimicking an Extrapalatal Canal of Root-Filled Maxillary Molar

    PubMed Central

    Camilo, Carla Cristina; Brito-Júnior, Manoel; Faria-e-Silva, André Luis; Quintino, Alex Carvalho; de Paula, Adrianne Freire; Cruz-Filho, Antônio Miranda; Sousa-Neto, Manoel Damião

    2013-01-01

    Despite the advantages of cone-beam computed tomography (CBCT), the images provided by this diagnostic tool can produce artifacts and compromise accurate diagnostic assessment. This paper describes an endodontic treatment of a maxillary molar where CBCT images suggested the presence of a nonexistent third root canal in the palatal root. An endodontic treatment was performed in a first maxillary molar with palatal canals, and the tooth was restored with a cast metal crown. The patient returned four years later presenting with a discomfort in chewing, which was reduced after occlusal adjustment. CBCT was prescribed to verify additional diagnostic information. Axial scans on coronal, middle, and apical palatal root sections showed images similar to a third root canal. However, sagittal scans demonstrated that these images were artifacts caused by root canal fillings. A careful interpretation of CBCT images in root-filled teeth must be done to avoid mistakes in treatment. PMID:23606995

  8. Lateral Entry of Military Personnel

    DTIC Science & Technology

    1992-03-01

    completion is accounted for in the training costs used here.) There is evidence that people with post -secondary education, the most likely lateral entrants...between worker and ocupation . Untrained entrants typically sign on for a specialty with little or no experience. -, 18 x, .. The military bears the risk

  9. Laterality of basic auditory perception.

    PubMed

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  10. Anxiety and Lateral Cerebral Function

    ERIC Educational Resources Information Center

    Tucker, Don M.; And Others

    1978-01-01

    Examines the effect of stressful and nonstressful experimental situations upon the processing capacity of each cerebral hemisphere, through observing the differential performance tasks presented to right and left visual half-fields (VHFs). Also examines attentional bias and lateral eye movements. (Author/RK)

  11. Amyotrophic lateral sclerosis mimic syndromes

    PubMed Central

    Ghasemi, Majid

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) misdiagnosis has many broad implications for the patient and the neurologist. Potentially curative treatments exist for certain ALS mimic syndromes, but delay in starting these therapies may have an unfavorable effect on outcome. Hence, it is important to exclude similar conditions. In this review, we discuss some of the important mimics of ALS. PMID:27326363

  12. Lateral Inhibition during Nociceptive Processing.

    PubMed

    Quevedo, Alexandre S; Mørch, Carsten Dahl; Andersen, Ole K; Coghill, Robert C

    2017-02-11

    Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer-controlled CO2-laser. Lines (5mm wide) of variable lengths (4cm, 8cm) were compared to two-point stimuli delivered at the same position/separation as the length of lines. When compared to one-point control stimuli, two-point stimulus patterns produced statistically significant spatial summation of pain, while no such summation was detected during line stimulus patterns. Direct comparison of pain intensity evoked by two-point pattern stimuli with line pattern stimuli revealed that two-point patterns were perceived as significantly more painful, despite the fact that the two-point pattern stimulated far smaller areas of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.

  13. Genetics Home Reference: juvenile primary lateral sclerosis

    MedlinePlus

    ... primary lateral sclerosis, juvenile Merck Manual Consumer Version: Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases Patient Support and ... domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001 Oct;29(2):160-5. ...

  14. Hormonal Regulation of Lateral Bud (Tiller) Release in Oats (Avena sativa L.) 1

    PubMed Central

    Harrison, Marcia A.; Kaufman, Peter B.

    1980-01-01

    Stem segments containing a single node and quiescent lateral bud (tiller) were excised from the bases of oat shoots (cv. `Victory') and used to study the effects of plant hormones on release of lateral buds and development of adventitious root primordia. Kinetin (10−5 and 10−6 molar) stimulates development of tillers and inhibits development of root primordia, whereas indoleacetic acid (IAA) (10−5 and 10−6 molar) causes the reverse effects. Abscisic acid strongly inhibits kinetin-induced tiller bud release and elon-gation and IAA-induced adventitious root development. IAA, in combination with kinetin, also inhibits kinetin-induced bud prophyll (outermost leaf of the axillary bud) elongation. The IAA oxidase cofactor p-coumaric acid stimulates lateral bud release; the auxin transport inhibitor 2,3,5-triiodo-benzoic acid and the antiauxin α (p-chlorophenoxy)-isobutyric acid inhibit IAA-induced adventitious root formation. Gibberellic acid is synergistic with kinetin in the elongation of the bud prophyll. In intact oat plants, tiller release is induced by shoot decapitation, geostimulation, or the emergence of the inflorescence. Results shown support the apical dominance theory, namely, that the cytokinin to auxin ratio plays a decisive role in determining whether tillers are released or adventitious roots develop. They also indicate that abscisic acid and possibly gibberellin may act as modulator hormones in this system. PMID:16661589

  15. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

    PubMed

    Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H

    2006-10-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.

  16. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    NASA Astrophysics Data System (ADS)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  17. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  18. Maximum-rank root subsystems of hyperbolic root systems

    SciTech Connect

    Tumarkin, P V

    2004-02-28

    A Kac-Moody algebra is said to be hyperbolic if it corresponds to a generalized Cartan matrix of hyperbolic type. Root subsystems of root systems of algebras of this kind are studied. The main result of the paper is the classification of the maximum-rank regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras.

  19. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements.

  20. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  1. Root Architecture Responses: In Search of Phosphate1

    PubMed Central

    Kanno, Satomi; Nussaume, Laurent

    2014-01-01

    Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate tends to be more abundant, a strategy described as topsoil foraging. We will review the diverse developmental strategies that can be observed among plants by detailing the effect of phosphate deficiency on primary and lateral roots. We also discuss the formation of cluster roots: an advanced adaptive strategy to cope with low phosphate availability observed in a limited number of species. Finally, we will put this work into perspective for future research directions. PMID:25341534

  2. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.

    PubMed

    Yu, Chunyan; Liu, Yihua; Zhang, Aidong; Su, Sha; Yan, An; Huang, Linli; Ali, Imran; Liu, Yu; Forde, Brian G; Gan, Yinbo

    2015-01-01

    MADS-box transcription factors are vital regulators participating in plant growth and development process and the functions of most of them are still unknown. ANR1 was reported to play a key role in controlling lateral root development through nitrate signal in Arabidopsis. OsMADS25 is one of five ANR1-like genes in Oryza Sativa and belongs to the ANR1 clade. Here we have investigated the role of OsMADS25 in the plant's responses to external nitrate in Oryza Sativa. Our results showed that OsMADS25 protein was found in the nucleus as well as in the cytoplasm. Over-expression of OsMADS25 significantly promoted lateral and primary root growth as well as shoot growth in a nitrate-dependent manner in Arabidopsis. OsMADS25 overexpression in transgenic rice resulted in significantly increased primary root length, lateral root number, lateral root length and shoot fresh weight in the presence of nitrate. Down-regulation of OsMADS25 in transgenic rice exhibited significantly reduced shoot and root growth in the presence of nitrate. Furthermore, over-expression of OsMADS25 in transgenic rice promoted nitrate accumulation and significantly increased the expressions of nitrate transporter genes at high rates of nitrate supply while down-regulation of OsMADS25 produced the opposite effect. Taken together, our findings suggest that OsMADS25 is a positive regulator control lateral and primary root development in rice.

  3. New roots for agriculture: exploiting the root phenome.

    PubMed

    Lynch, Jonathan P; Brown, Kathleen M

    2012-06-05

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.

  4. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  5. Osmolarity and root canal antiseptics.

    PubMed

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  6. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  7. A Novel approach of Esthetic Management and preserving Vitality of Dilacerated Permanent Maxillary Lateral Incisor

    PubMed Central

    Ravi, GR

    2016-01-01

    ABSTRACT Dilaceration of the permanent tooth usually is a consequence of traumatic injuries to the primary teeth. Although it may appear anywhere in the long axis of the tooth, i.e., crown, cementoenamel junction, or root, most often the root is involved. However, crown dilaceration is a rare condition representing 3% of the total injuries. Maxillary incisors are more susceptible to such injury and affected tooth may either erupt buccally or lingually or remain impacted. Hitherto, the treatment options also differ as per the clinical scenario. This article proposes a novel technique of restoring esthetic function of the affected permanent maxillary lateral incisor with crown-root dilaceration while preserving the vitality of tooth. How to cite this article: Achary RC, Ravi GR. A Novel approach of Esthetic Management and preserving Vitality of Dilacerated Permanent Maxillary Lateral Incisor. Int J Clin Pediatr Dent 2016;9(2):152-155. PMID:27365939

  8. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes.

    PubMed

    Nair, Prakash M Gopalakrishnan; Chung, Ill Min

    2014-11-01

    The effect of copper oxide nanoparticles (CuONPs) on physiological and molecular level responses were studied in Arabidopsis thaliana. The seedlings were exposed to different concentrations of CuONPs (0, 0.5, 1, 2, 5, 10, 20, 50, and 100 mg/L) for 21 days in half strength Murashige and Skoog medium. The plant biomass significantly reduced under different concentrations (2, 5, 10, 20, 50, and 100 mg/L) of CuONPs stress. Exposure to 2, 5, 10, 20, 50, and 100 mg/L of CuONPs has resulted in significant reduction of total chlorophyll content. The anthocyanin content significantly increased upon exposure to 10, 20, 50, and 100 mg/L of CuONPs. Increased lipid peroxidation was observed upon exposure to 5, 10, and 20 mg/L of CuONPs and amino acid proline content was significantly high in plants exposed to 10 and 20 mg/L of CuONPs. Significant reduction in root elongation was observed upon exposure to 0.5-100 mg/L of CuONPs for 21 days. Exposure to CuONPs has resulted in retardation of primary root growth, enhanced lateral root formation, and also resulted in loss of root gravitropism. Staining with phloroglucionol detected the deposition of lignin in CuONPs-treated roots. Histochemical staining of leaves and roots of CuONPs-exposed plants with nitroblue tetrazolium and 3'3'-diaminobenzidine showed a concentration-dependant increase in superoxide and hydrogen peroxide formation in leaves and roots of CuONPs-exposed plants. Cytotoxicity was observed in root tips of CuONPs-exposed plants as evidenced by increased propidium iodide staining. Real-time PCR analysis showed significant induction of genes related to oxidative stress responses, sulfur assimilation, glutathione, and proline biosynthesis under CuONPs stress.

  9. Preserving Dignity in Later Life.

    PubMed

    São José, José Manuel

    2016-09-01

    This article examines how elders who receive social care in the community experience loss of dignity and how they preserve their dignity. Qualitative research revealed that loss of dignity is a major concern for these elders and that they preserve their dignity differently, ranging from actively engaging with life to detaching themselves from life. We conclude that, in later life, preserving dignity while receiving social care differs from preserving dignity in the context of health care, especially health care provided in institutional settings. Furthermore, preserving dignity in later life, while receiving social care, is a complex process, depending not only on performing activities and individual action and responsibility, but also on other actions, some of them involving a certain inactivity/passivity, and interactions with others, especially caregivers. This article offers some insights to developing better policies and care practices for promoting dignity in the context of community-based social care.

  10. [Species-associated differences in foliage-root coupling soil-reinforcement and anti-erosion].

    PubMed

    Liu, Fu-quan; Liu, Jing; Nao, Min; Yao, Xi-jun; Zheng, Yong-gang; Li, You-fang; Su, Yu; Wang, Chen-jia

    2015-02-01

    This paper took four kinds of common soil and water conservation plants of the study area, Caragana microphylla, Salix psammophila, Artemisia sphaerocephala and Hippophae rhamnides at ages of 4 as the research object. Thirteen indicators, i.e., single shrub to reduce wind velocity ration, shelterbelt reducing wind velocity ration, community reducing wind velocity ration, taproot tensile strength, representative root constitutive properties, representative root elasticity modulus, lateral root branch tensile strength, accumulative surface area, root-soil interface sheer strength, interface friction coefficient, accumulative root length, root-soil composite cohesive, root-soil composite equivalent friction angle, reflecting the characteristics of windbreak and roots, were chose to evaluate the differences of foliage-root coupling soil-reinforcement and anti-erosion among four kinds of plants by analytic hierarchy process (AHP) under the condition of spring gale and summer rainstorm, respectively. The results showed the anti-erosion index of foliage-root coupling was in the sequence of S. psammophila (0.841) > C. microphylla (0.454) > A. sphaerocephala (-0.466) > H. rhamnides (-0.829) in spring gale, and C. microphylla (0.841) > S. psammophila (0. 474) > A. sphaerocephala (-0.470) > H. rhamnides (-0.844) in summer rainstorm. S. psammophila could be regarded as one of the most important windbreak and anti-erosion species, while C. microphylla could be the most valuable soil and water conservation plant for the study area.

  11. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  12. Gut and Root Microbiota Commonalities

    PubMed Central

    Ramírez-Puebla, Shamayim T.; Servín-Garcidueñas, Luis E.; Jiménez-Marín, Berenice; Bolaños, Luis M.; Rosenblueth, Mónica; Martínez, Julio; Rogel, Marco Antonio; Ormeño-Orrillo, Ernesto

    2013-01-01

    Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends. PMID:23104406

  13. The root as a drill

    PubMed Central

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-01-01

    Plant roots forage the soil for water and nutrients and overcome the soil’s physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1–2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants. PMID:22415043

  14. Light-Sensing in Roots

    PubMed Central

    Rabenold, Jessica J; Liscum, Emmanuel

    2007-01-01

    Light gradients in the soil have largely been overlooked in understanding plant responses to the environment. However, roots contain photoreceptors that may receive ambient light through the soil or piped light through the vascular cylinder. In recent experiments we demonstrated linkages between phototropin-1 photoreceptor production, root growth efficiency, and drought tolerance, suggesting that root plasticity in response to light signals contributes to the ecological niche of A. thaliana. However, the availability of light cues in natural soil environments is poorly understood, raising questions about the relevance of light-mediated root growth for fitness in nature. Additionally, photoreceptor expression is characterized by pleiotropy so unique functions cannot be clearly ascribed to root vs. shoot sensory mechanisms. These considerations show that challenges exist for resolving the contribution of light-sensing by roots to plant adaptation. We suggest that blue-light sensing in roots of A. thaliana provides a model system for addressing these challenges. By calibrating blue light gradients in soils of diverse A. thaliana habitats and comparing fitness of phot1 mutant and wild-type controls when grown in presence or absence of soil light cues, it should be possible to elucidate the ecological significance of light-mediated plasticity in roots. PMID:19704750

  15. Theon's Ladder for Any Root

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Wright, Marcus; Orchard, Michael

    2005-01-01

    Theon's ladder is an ancient algorithm for calculating rational approximations for the square root of 2. It features two columns of integers (called a ladder), in which the ratio of the two numbers in each row is an approximation to the square root of 2. It is remarkable for its simplicity. This algorithm can easily be generalized to find rational…

  16. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  17. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response1

    PubMed Central

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-01-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  18. Severe root resorption resulting from orthodontic treatment: Prevalence and risk factors

    PubMed Central

    Maués, Caroline Pelagio Raick; do Nascimento, Rizomar Ramos; Vilella, Oswaldo de Vasconcellos

    2015-01-01

    OBJECTIVE: To assess the prevalence of severe external root resorption and its potential risk factors resulting from orthodontic treatment. METHODS: A randomly selected sample was used. It comprised conventional periapical radiographs taken in the same radiology center for maxillary and mandibular incisors before and after active orthodontic treatment of 129 patients, males and females, treated by means of the Standard Edgewise technique. Two examiners measured and defined root resorption according to the index proposed by Levander et al. The degree of external apical root resorption was registered defining resorption in four degrees of severity. To assess intra and inter-rater reproducibility, kappa coefficient was used. Chi-square test was used to assess the relationship between the amount of root resorption and patient's sex, dental arch (maxillary or mandibular), treatment with or without extractions, treatment duration, root apex stage (open or closed), root shape, as well as overjet and overbite at treatment onset. RESULTS: Maxillary central incisors had the highest percentage of severe root resorption, followed by maxillary lateral incisors and mandibular lateral incisors. Out of 959 teeth, 28 (2.9%) presented severe root resorption. The following risk factors were observed: anterior maxillary teeth, overjet greater than or equal to 5 mm at treatment onset, treatment with extractions, prolonged therapy, and degree of apex formation at treatment onset. CONCLUSION: This study showed that care must be taken in orthodontic treatment involving extractions, great retraction of maxillary incisors, prolonged therapy, and/or completely formed apex at orthodontic treatment onset. PMID:25741825

  19. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    PubMed

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  20. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  1. Space for missing maxillary lateral incisors--orthodontic perceptions.

    PubMed

    Dickinson, G R

    2000-10-01

    Historically there has been a long-standing debate regarding the orthodontic management of dentitions with missing maxillary lateral incisors. Whether to provide space for prosthetic replacements or to close space utilizing the canines as substitute lateral incisors are the options of treatment planning for an individual. This presentation is directed at the orthodontic management of those patients who were orthodontically treated in the past by providing space for replacement lateral incisors and now at dental maturity or even later, seek a prosthetic replacement in the form of an osseointegrated fixture. In many instances there will be inadequate interradicular bone space and yet at the time of debanding adequate space often was present and now some years hence the patient is faced with orthodontic re-treatment to provide that space again. Whilst that is a challenge in itself, there is a further apparent problem to be met for those younger patients requiring space opening mechanics in deciding upon and implementing at the debanding phase, the form of retention that will hold the teeth and the roots firmly in position until the time is right for an osseointegrated fixture to be placed and treatment finalized.

  2. Morphological and Physiological Responses to Sediment Type and Light Availability in Roots of the Submerged Plant Myriophyllum spicatum

    PubMed Central

    Xie, Yonghong; Luo, Wenbo; Ren, Bo; Li, Feng

    2007-01-01

    Background and Aims Both sediment and light are essential factors regulating the growth of submerged macrophytes, but the role of these two factors in regulating root morphology and physiology is far from clear. The responses of root morphology and physiology to sediment type and light availability in the submerged plant Myriophyllum spicatum were studied and the hypothesis was tested that a trade-off exists in root growth strategy between internal aeration and nutrient acquisition. Method Plants were grown on two types of sediment (fertile mud and an infertile mixture of mud and sandy loam) and under three levels of light availability (600, 80 and 20 µ mol m−2 s−1) in a greenhouse. Key Results The significantly higher alcohol dehydrogenase (ADH) activity in root tissues indicated that oxygen deficiency existed in the plants growing in fertile mud and low (or high) light environments. Significantly, low plant N and P concentrations indicated that nutrient deficiency existed in the mixed sediment and high light environment. As a response to anoxia, plants did not change the porosity of the main roots. The effect of sediment type on root morphology was insignificant under higher light environments, whereas root diameter generally decreased but specific root length (SRL) increased with decreasing light availability. Both low light and fertile mud jointly led to lack of second-order laterals. More biomass was allocated to lateral roots in infertile environments, whereas mass fractions of laterals were lower in low light and mud environments. Conclusions These data indicate that this plant can achieve the trade-off between internal aeration and nutrient acquisition by adjusting the structure of the root system and the pattern of biomass allocation to different root orders rather than root morphology and root porosity. PMID:17959731

  3. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Koteen, L. E.; Baldocchi, D. D.

    2012-12-01

    North California enjoys wet and mild winters, but experiences extreme hot, dry summer conditions, with occasional drought years. Despite the severity of summer conditions, blue oaks are winter-deciduous. We hypothesized that the binary nature of water availability would be reflected in blue oak root architecture. Our objective was to understand how the form of the root system facilitates ecosystem functioning. To do this, we sought to characterize the structure of the root system, and survey coarse root distribution with ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. Because GPR remains a relatively new technology for examining root distribution, an ancillary objective was to test this methodology, and help facilitate its application more broadly. A third objective was to test the potential for upscaling coarse root biomass by developing allometric relations based on LIDAR measurements of above ground canopy structure. We surveyed six 8x8 m locations with trees varying in size, age and clumping (i.e. isolated trees vs. tree clusters). GPR signals were transformed to root biomass by calibrating them against excavated roots. Toward this goal, we positioned two rectangles of size 60x100 cm in each of the grids, excavated and sieved soil to harvest roots. Our results indicate that coarse roots occupy the full soil profile, and that root biomass of old large trees peaks just above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow coarse lateral roots, in order to exploit the entire wet-soil medium, we found that coarse root density decreased with distance from the bole, and dropped sharply at a distance of 2 m. We upscaled root biomass to stand-scale (2.8±0.4 kg m-2) based on LiDAR analysis of the relative abundance of each tree configuration. We argue that the deep and narrow root structure we observed reflects the ecohydrology of oaks in this ecosystem, because

  4. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  5. Does the rhizosphere hydrophobicity limit root water uptake?

    NASA Astrophysics Data System (ADS)

    Zare, Mohsen; Ahmed, Mutez; Kroener, Eva; Carminati, Andrea

    2015-04-01

    The ability of plants to extract water from the soil is influenced by the hydraulic conductivity of roots and their rhizosphere. Recent experiments showed that the rhizosphere turned hydrophobic after drying and it remained dry after rewetting [1]. Our objective was to investigate whether rhizosphere hydrophobicity is a limit to root water uptake after drying. To quantify the effect of rhizosphere hydrophobicity on root water uptake, we used neutron radiography to trace the transport of deuterated water (D2O) in the roots of lupines experiencing a severe, local soil drying. The plants were grown in aluminum containers (30×30×1 cm) filled with sandy soil. The soil was partitioned into nine compartments using three horizontal and three vertical layers of coarse sand (thickness of 1cm) as capillary barrier. When the plants were 28 days old, we let one of the upper lateral compartments dry to a water content of 2-4%, while keeping the other compartments to a water content of 20%. Then we injected 10 ml of D2O in the dry compartment and 10 ml in the symmetric location. The radiographs showed that root water uptake in the soil region that was let dry and then irrigated was 4-8 times smaller than in the wet soil region[2]. In a parallel e