Science.gov

Sample records for lateral surface coated

  1. FUNCTIONALIZED LATERAL SURFACE COATED LASERS FOR CHEM-BIO DETECTION

    SciTech Connect

    Goddard, L L; Bond, T C; Cole, G D; Behymer, E M

    2007-07-05

    We present a class of compact, monolithic, photonic sensors consisting of multiple section edge emitting lasers with functionalized lateral surface coatings for low level detection of chemical or biological agents. Specifically, we discuss 8 {micro}m x 250 {micro}m Pd-coated H{sub 2} sensors and configurations to reduce the minimum detection limit from 138ppm for passive sensors to 1ppm for active sensors. Compared with conventional optical H{sub 2} sensors that use fiber gratings, surface plasmon resonances, or surface reflectance, our sensors offer the advantages of smaller size, wider dynamic range, monolithic integration of laser source and detector, and 2-D scalability to arrays of sensors that are functionalized to detect different agents.

  2. Advances in Surface Plasmon Resonance Imaging enable quantitative measurement of laterally heterogeneous coatings of nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2013-03-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to the optical properties of nanoscale coatings on thin metallic surfaces, for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases - uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. We first demonstrate the directionally heterogeneous nature of the SPR phenomenon using a directionally ordered sample, then show how this allows for the calculation of the average coverage of a heterogeneous sample. Finally, the degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  3. Kinetic characterization of on-chip DNA ligation on dendron-coated surfaces with nanoscaled lateral spacings.

    PubMed

    Kim, Eung-Sam; Lee, Namgyu; Park, Joon Won; Choi, Kwan Yong

    2013-10-11

    We analyzed the enzymatic profiles of on-chip DNA ligation as we controlled the lateral spacing of surface-immobilized DNA substrates using dendron molecules with different sizes at the nanoscale. Enzymatic on-chip DNA ligation was performed on the dendron-coated surface within 20 min with no need for post-ligation gel electrophoresis. The enzymatic DNA repair was assessed by the fluorescence intensity at the repaired DNA duplex after thermally dissociating the unligated Cy3-labeled DNA from the DNA duplex, in which the Cy3-labeled DNA was hybridized prior to the on-chip DNA ligation. The rate of the nick-sealing reaction on the 27-acid dendron surface was 3-fold higher than that on the 9-acid dendron surface, suggesting that the wider lateral spacing determined by the larger dendron molecule could facilitate the access of DNA ligase to the nick site. The performance of on-chip DNA ligation was dropped to 10% and 3% when the nick was replaced by one- and two-nucleotide-long gaps, respectively. The 5' terminal phosphorylation of DNA strands by polynucleotide kinase and the on-chip DNA cleavage by endonucleases were also quantitatively monitored throughout the on-chip DNA ligation on the dendron-coated surface. A better understanding of the enzymatic kinetics of on-chip DNA ligation will contribute to a more reliable performance of various on-chip DNA ligation-based assays.

  4. Kinetic characterization of on-chip DNA ligation on dendron-coated surfaces with nanoscaled lateral spacings

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Sam; Lee, Namgyu; Park, Joon Won; Choi, Kwan Yong

    2013-10-01

    We analyzed the enzymatic profiles of on-chip DNA ligation as we controlled the lateral spacing of surface-immobilized DNA substrates using dendron molecules with different sizes at the nanoscale. Enzymatic on-chip DNA ligation was performed on the dendron-coated surface within 20 min with no need for post-ligation gel electrophoresis. The enzymatic DNA repair was assessed by the fluorescence intensity at the repaired DNA duplex after thermally dissociating the unligated Cy3-labeled DNA from the DNA duplex, in which the Cy3-labeled DNA was hybridized prior to the on-chip DNA ligation. The rate of the nick-sealing reaction on the 27-acid dendron surface was 3-fold higher than that on the 9-acid dendron surface, suggesting that the wider lateral spacing determined by the larger dendron molecule could facilitate the access of DNA ligase to the nick site. The performance of on-chip DNA ligation was dropped to 10% and 3% when the nick was replaced by one- and two-nucleotide-long gaps, respectively. The 5‧ terminal phosphorylation of DNA strands by polynucleotide kinase and the on-chip DNA cleavage by endonucleases were also quantitatively monitored throughout the on-chip DNA ligation on the dendron-coated surface. A better understanding of the enzymatic kinetics of on-chip DNA ligation will contribute to a more reliable performance of various on-chip DNA ligation-based assays.

  5. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  6. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A series of studies in which films and liquid spray-on materials were evaluated in the laboratory for transport aircraft external surface coatings are summarized. Elastomeric polyurethanes were found to best meet requirements. Two commercially available products, CAAPCO B-274 and Chemglaze M313, were subjected to further laboratory testing, airline service evaluations, and drag-measurement flight tests. It was found that these coatings were compatible with the severe operating environment of airlines and that coatings reduced airplane drag. An economic analysis indicated significant dollar benefits to airlines from application of the coatings.

  7. Friction surfaced Stellite6 coatings

    SciTech Connect

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  8. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  9. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    PubMed

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  10. Nature Inspired Surface Coatings

    NASA Astrophysics Data System (ADS)

    Rubner, Michael

    2011-04-01

    Materials Scientists more and more are looking to nature for clues on how to create highly functional surface coatings with exceptional properties. The fog harvesting capabilities of the Namib Desert beetle, the beautiful iridescent colors of the hummingbird, and the super water repellant abilities of the Lotus leaf are but a few examples of the amazing properties developed over many years in the natural world. Nature also makes extensive use of the pH-dependent behavior of weak functional groups such as carboxylic acid and amine functional groups. This presentation will explore synthetic mimics to the nano- and microstructures responsible for these fascinating properties. For example, we have demonstrated a pH-induced porosity transition that can be used to create porous films with pore sizes that are tunable from the nanometer scale to the multiple micron scale. The pores of these films, either nano- or micropores, can be reversibly opened and closed by changes in solution pH. The ability to engineer pH-gated porosity transitions in heterostructured thin films has led to the demonstration of broadband anti-reflection coatings that mimic the anti-reflection properties of the moth eye and pH-tunable Bragg reflectors with a structure and function similar to that found in hummingbird wings and the Longhorn beetle. In addition, the highly textured honeycomb-like surfaces created by the formation of micron-scale pores are ideally suited for the creation of superhydrophobic surfaces that mimic the behavior of the self-cleaning lotus leaf. The development of synthetic "backbacks" on immune system cells that may one day ferry drugs to disease sites will also be discussed.

  11. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  12. Assessment of Runoff Toxicity from Coated Surfaces

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  13. Assessment of Runoff Toxicity from Coated Surfaces

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  14. Protective, Sacrificial Coats On Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.; Hasegawa, Mark M.; Jones, Cherie A.

    1994-01-01

    Clear, easily cleaned sacrificial coats of polytetrafluoroethylene, polyurethane, silicone, or other low-outgassing organic films help maintain optical properties of surfaces of radiators, solar panels, and other components. Contamination removed by erosion of coats. Applied by conventional spraying or other techniques. Originally coats intended to protect surfaces of radiators on spacecraft in low orbit around the Earth. On Earth, used to protect optical surfaces against damage during manufacture or protect and facilitate cleaning of optical surfaces particularly delicate or otherwise not cleaned easily.

  15. Protective, Sacrificial Coats On Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.; Hasegawa, Mark M.; Jones, Cherie A.

    1994-01-01

    Clear, easily cleaned sacrificial coats of polytetrafluoroethylene, polyurethane, silicone, or other low-outgassing organic films help maintain optical properties of surfaces of radiators, solar panels, and other components. Contamination removed by erosion of coats. Applied by conventional spraying or other techniques. Originally coats intended to protect surfaces of radiators on spacecraft in low orbit around the Earth. On Earth, used to protect optical surfaces against damage during manufacture or protect and facilitate cleaning of optical surfaces particularly delicate or otherwise not cleaned easily.

  16. Nanoparticle-textured surfaces from spin coating.

    PubMed

    Weiss, R A; Zhai, X; Dobrynin, A V

    2008-05-20

    Rough surfaces composed of discrete but relatively uniform nanoparticles were prepared from a lightly sulfonated polystyrene ionomer by spin coating from tetrahydrofuran (THF) or a THF/methanol mixture onto a silica surface. The particle morphology is consistent with the spinodal decomposition of the film surface occurring during spin coating. The particles are well wetted to the silica, and if heated for a long time above the ionomer's glass-transition temperature, the particles flow and coalesce into a smooth, homogeneous film.

  17. Laser Window Surface Finishing and Coating Science

    DTIC Science & Technology

    1975-07-01

    IKlf il fie. r . *ttt\\ mil nlrol’ly h\\ lllm k Itumhvr ■ LasLr windows. Surface finishing, Thin films , Antireflection coatings , 10.6...Zuccaro) During the course of our program it is our objective to prepare antireflection (AR) film coatings for candidate infrared laser window...antireflection coatings under UHV conditions and to compare; these films with (.host- prepared under ordinary vacuum conditions. a. Experimental Results

  18. Surface levelling of thermosetting powder coatings: theory and experiment

    NASA Astrophysics Data System (ADS)

    Andrei, D. C.; Hay, J. N.; Keddie, J. L.; Sear, R. P.; Yeates, S. G.

    2000-08-01

    The deposition of protective coatings from thermosetting polymer powders is an ecological, economic and energy-efficient technology. A frequent problem encountered with powder coatings is a rough surface (with undulations on a length scale much greater than the powder particle size) that detracts from the visual appearance. The levelling (i.e. flattening) of the surface of a polymer melt is driven by the minimization of the surface energy but opposed by the (possibly time-dependent) viscosity of the melt. We address the problem by developing a model of surface levelling to consider flow in two directions, building upon a one-dimensional model already in the literature. We have performed simulations to predict the final coating profiles starting with a Gaussian profile and using experimentally determined values of polymer viscosity. To compare to the simulations, we have measured experimentally the dimensions of surface undulations on coatings formed from thermosetting acrylic powder layers having purposely created features of known dimensions. There is good agreement between simulation and experiment. Both find that the levelling proceeds to a greater extent with increasing coating thickness and with decreasing lateral dimension of the surface undulation. Our results open up the possibility of predicting final surface topography given the rheological properties of a polymer.

  19. Aircraft Rotor Surface Coating Qualification Testing Aircraft Rotor Surface Coating

    DTIC Science & Technology

    2006-10-25

    Project Call for Government Fiscal Year 2005. Saint-Gobain Advanced Ceramics located in Latrobe, PA and Conforma Clad  Incorporated located in New...Results Saint-Gobain Advanced Ceramics, Latrobe, PA supplied two different types of coatings for testing. They were as follows: Rokide-C Chrome Oxide o...0.0023” 7.1 Particle Erosion Test – Saint-Gobain Rokide-C Chrome Oxide Coating The Rokide-C Chrome Oxide test specimens from Saint-Gobain were first

  20. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  1. Bondable Stainless Surface Coats Protect Against Rust

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Shaffer, D. K.; Clearfield, H. M.; Nagle, D.; Groff, G.

    1995-01-01

    Report describes tests conducted to assess use of bondable stainless surface (BOSS) coating materials to protect steel cases of solid-fuel rocket motors against corrosion and to provide surface microstructure and chemistry suitable for bonding to insulating material. Eliminates need to cover cases with grease to prevent corrosion and degreasing immediately prior to use.

  2. Bondable Stainless Surface Coats Protect Against Rust

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Shaffer, D. K.; Clearfield, H. M.; Nagle, D.; Groff, G.

    1995-01-01

    Report describes tests conducted to assess use of bondable stainless surface (BOSS) coating materials to protect steel cases of solid-fuel rocket motors against corrosion and to provide surface microstructure and chemistry suitable for bonding to insulating material. Eliminates need to cover cases with grease to prevent corrosion and degreasing immediately prior to use.

  3. Properties of coated and modified surfaces

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.; Greene, J. E.; Buckley, D. H.; Somorjai, G. A.

    1985-01-01

    The ability to create surface and near-surface properties distinct from the bulk properties of a material by means of coating or surface modification techniques is an important new field of development for engineering materials, encompassing ion implantation, plasma processing, reactive deposition methods, ion beam deposition and modification, molecular beam epitaxy, and fast quench thermal processing. Attention is given to specific areas of process control which illustrate (1) the use of process development to control material properties, (2) the importance of surface modification and coating to the tribology and ion-surface interactions of semiconductor film growth, and (3) recent findings in surface science which exemplify potential applications of ion-surface interactions that generate novel material qualities.

  4. Properties of coated and modified surfaces

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.; Greene, J. E.; Buckley, D. H.; Somorjai, G. A.

    1985-01-01

    The ability to create surface and near-surface properties distinct from the bulk properties of a material by means of coating or surface modification techniques is an important new field of development for engineering materials, encompassing ion implantation, plasma processing, reactive deposition methods, ion beam deposition and modification, molecular beam epitaxy, and fast quench thermal processing. Attention is given to specific areas of process control which illustrate (1) the use of process development to control material properties, (2) the importance of surface modification and coating to the tribology and ion-surface interactions of semiconductor film growth, and (3) recent findings in surface science which exemplify potential applications of ion-surface interactions that generate novel material qualities.

  5. Surface coatings and catalyst production by electrodeposition

    NASA Technical Reports Server (NTRS)

    May, Chester B.; Riley, Clyde; Coble, H. Dwain; Loo, Boon H.

    1987-01-01

    Electrodeposition and electrocodeposition in low gravity are discussed. The goal is to provide a better understanding of the role of convection and buoyancy in the mechanisms of formation of some electrodeposited surfaces, fluid flow in the vicinity of electrodepositing surfaces, the influence of a moving medium upon codeposition, the effect of gravity upon the dispersion (coagulation) of neutral particles that are desired for codeposition and preparation of improved surface coatings and metal catalysts.

  6. Coatings and Surface Treatments for Reusable Entry Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2016-01-01

    This talk outlines work in coatings for TPS done at NASA Ames. coatings and surface treatments on reusable TPS are critical for controlling the behavior of the materials. coatings discussed include RCG, TUFI and HETC. TUFROc is also discussed.

  7. Nanocomposite tribological coatings with "chameleon" surface adaptation

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept

  8. Surface coating for prevention of crust formation

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  9. Electrowetting of Weak Polyelectrolyte-Coated Surfaces.

    PubMed

    Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2017-05-23

    Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.

  10. Method for smoothing the surface of a protective coating

    DOEpatents

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  11. High temperature low friction surface coating

    DOEpatents

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  12. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  13. Surface chemical characterization of nanoparticle coated paperboard

    NASA Astrophysics Data System (ADS)

    Stepien, Milena; Saarinen, Jarkko J.; Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Kuusipalo, Jurkka; Mäkelä, Jyrki M.; Toivakka, Martti

    2012-01-01

    The chemical composition of nanoparticle coated paperboard surfaces was characterized. The deposition of SiO2 and TiO2 nanoparticles induced changes in wetting properties of the paperboard surface: a superhydrophilic surface was created by SiO2 nanoparticles and a superhydrophobic surface by TiO2 nanoparticles. Both X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements were used to study the surface properties of the samples. The low and high resolution XPS spectra were collected to evaluate the chemical composition before and after nanoparticle deposition. The SiO2 nanocoated sample has the highest values of both O to C and C2 to C1 ratios, which indicates a high relative amount of hydroxyl groups. On the other hand, carbon C1 peak which represents the hydrocarbon type of bonds, is on higher level for TiO2 when compared to the SiO2 nanocoated sample. This may be related to the replacement of hydroxyl groups by aliphatic chains on the superhydrophobic surface of TiO2 nanoparticle coated sample.

  14. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  15. Coating and Printing on Chemically Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Kalpathy, Sreeram Krishnamoorthy

    A number of emerging applications like flexible electronic devices and displays and patterned microfluidic devices require selective deposition of material on micro- and nanoscale patterns. At these length scales, mathematical models with appropriate simplifying assumptions would prove handy to understand liquid dewetting mechanisms in coating and printing processes. For example, the liquid films in many coating and printing processes may be assumed to be thin enough so that intermolecular forces are important and the lubrication approximation can be invoked. Using a combination of nonlinear simulations and linear stability analysis, three important problems pertaining to coating and printing on chemically patterned surfaces are examined. The first problem is concerned with the liquid displacement phenomenon that occurs in lithographic printing processes. The model allows us to obtain physical insights into and numerical estimates of the smallest and largest feature sizes that can be printed, as well as the minimum spacing between feature sizes that can be tolerated. In addition, the model provides insights into experimental observations on a closely related process, wire-wound rod coating on chemically patterned surfaces. Next, the model is used to examine the effect of shear on the liquid displacement process. Linear theory reveals that the growth rate of interfacial perturbations has an imaginary component, indicating the existence of traveling waves. Nonlinear simulations show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Finally, the dewetting of a solitary liquid film resting on a chemically patterned surface, under the combined action of thermally induced Marangoni effects and the intermolecular forces is explored. The model results suggest that

  16. Whey protein coating efficiency on surfactant-modified hydrophobic surfaces.

    PubMed

    Lin, Shih-Yu D; Krochta, John M

    2005-06-15

    Whey protein oxygen-barrier coatings on peanuts are not effective, due to incomplete peanut-surface coverage, as well as some cracking and flaking of the coating. Addition of sorbitan laurate (Span 20) in the whey protein coating solution up to the critical micelle concentration (cmc) of 0.05% (w/w) significantly improved coating coverage to 88% of the peanut surface. Increasing the Span 20 concentration in the coating solution to 3 times the cmc (0.15% w/w) produced a substantial increase in peanut surface energy (>70 dyn/cm), indicating adsorption of the surfactant to the peanut surface. With this level of Span 20, the whey protein coating coverage on peanuts increased to 95%. These results suggest that a concentration of surfactant above the cmc in the coating solution is required for formation of self-assembled structures of surfactant molecules on peanut surfaces, which significantly increases the hydrophilicity, and thus coatability, of peanut surfaces.

  17. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  18. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  19. Surface Coatings for Low Emittance in the Thermal Surveillance Band

    DTIC Science & Technology

    1984-08-01

    transparent but conducting coatings on glass [4] and (3) the solar energy industry , where surface coatings are required for solar collectors which...increase in coating emittance [10]. 0 Research into low emittance paint is mainly carried out in the solar energy industry [11, 12] and can be

  20. Lateral engineering of surface states - towards surface-state nanoelectronics.

    PubMed

    García de Abajo, F J; Cordón, J; Corso, M; Schiller, F; Ortega, J E

    2010-05-01

    Patterned metal surfaces can host electron quantum waves that display interference phenomena over distances of a few nanometres, thus providing excellent information carriers for future atomic-scale devices. Here we demonstrate that collimation and waveguiding of surface electrons can be realized in silver-induced strain dislocation networks on Cu(111) surfaces, as a conceptual proof-of-principle of surface-state nanoelectronics (SSNE). The Ag/Cu(111) system exhibits featured surface bands with gaps at the Fermi energy, which are basic requirements for a potential SSNE material. We establish a solid analogy between the behavior of surface-state electrons and surface plasmons in patterned metal surfaces, thus facilitating the transfer of existing knowledge on plasmonic structures to the new scenario presented by engineered electronic surface-state nanostructures, with the advantage of a 1000-fold reduction in wavelength and geometrical parameters.

  1. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  2. Electro-responsive polyelectrolyte-coated surfaces.

    PubMed

    Sénéchal, V; Saadaoui, H; Rodriguez-Hernandez, J; Drummond, C

    2017-07-01

    The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.

  3. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOEpatents

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  4. Method and coating composition for protecting and decontaminating surfaces

    DOEpatents

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  5. SURFACE-COATING-FREE MATERIALS WORKSHOP SUMMARY REPORT

    EPA Science Inventory

    The report documents a pollution prevention workshop that explored the concenpt of surface-coating-free materials (SCFMs) and the potential impact of this type of amterial on volatile organic compound (VOC) and air toxic emissions from surface coating operations. he report summar...

  6. EVALUATION OF TOXICS IN RUNOFF FROM COATED SURFACES

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  7. EVALUATION OF TOXICS IN RUNOFF FROM COATED SURFACES

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  8. SURFACE-COATING-FREE MATERIALS WORKSHOP SUMMARY REPORT

    EPA Science Inventory

    The report documents a pollution prevention workshop that explored the concenpt of surface-coating-free materials (SCFMs) and the potential impact of this type of amterial on volatile organic compound (VOC) and air toxic emissions from surface coating operations. he report summar...

  9. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect

    Branson, Eric D.; Singh, Seema; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  10. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  11. Surface coating effects in remote sensing measurements

    USGS Publications Warehouse

    Watson, Robert D.

    1970-01-01

    Measurements of the infrared spectra of a liquid-(water) coated quartz substrate and a solid-(pyrophyllite) coated quartzite are compared to theoretical values. Results demonstrate that in the case of the water-coated quartz, a loss in spectral contrast of the quartz emission occurs at the principal restrahlen wavelengths of 8.5, 9.0, and 12.5 µ but is most pronounced at 12.5 µ. In the case of pyrophyllite-coated quartzite, additional spectral features appear between 8.0 and 10.0 µ as the exposure of quartzite through the pyrophyllite coating is increased. Addition of the pure quartzite and pyrophyllite spectra, weighted by exposed area, is shown to satisfactorily describe the composite spectra.

  12. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    NASA Astrophysics Data System (ADS)

    Zha, Zhengbao; Ma, Yan; Yue, Xiuli; Liu, Meng; Dai, Zhifei

    2009-11-01

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe 3+/Hep and DS/Fe 3+/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe 3+/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe 3+/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  13. ELECTRON MICROSCOPE STUDIES ON THE SURFACE COAT OF THE NEPHRON

    PubMed Central

    Groniowski, J.; Biczyskowa, W.; Walski, M.

    1969-01-01

    Attempts to make visible the carbohydrate coat at the free cell surface of glomeruli as well as the tubules of rabbit kidney were undertaken. The ruthenium red procedure was performed, according to Luft, at various pH values. Moreover, the colloidal iron and the colloidal thorium methods were used. Neuraminidase digestion was also performed. In the ruthenium red procedure the luminal face of the epithelial cells of the nephron was coated distinctly with reaction product. The results obtained revealed that some of the differences at various levels of the nephron depended on the pH values. In glomeruli and proximal convoluted tubules the optimum pH value was 7.4; in the ascending limb of Henle loops and distal convoluted tubules the optimum pH value was 6.8. The ruthenium red-positive surface coat was either closely connected with, or appeared as a part of, the outer leaflet of the unit membrane. The slit pores of glomeruli were also covered by a coat continuous with the surface coat of the adjacent foot processes. The coat lining the microvilli of proximal convoluted tubules completely filled the intervillous spaces. Also, both the colloidal iron method and the colloidal thorium method evidenced the presence of surface coat. Pre-treatment with neuraminidase abolished the effect of the Hale reaction. These results may indicate that the surface coat of the epithelia of the nephron shows the presence of glycoproteins containing siliac acid residues. PMID:5765757

  14. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces.

    PubMed

    Geißler, Sebastian; Barrantes, Alejandro; Tengvall, Pentti; Messersmith, Phillip B; Tiainen, Hanna

    2016-08-16

    Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions.

  15. The Potential for Check Reduction Using Surface Coatings

    Treesearch

    Raymond M. Rice; Eugene M. Wengert; J.G. Schroeder

    1988-01-01

    Surface checking in red oak causes considerable loss in lumber that is used in the furniture and flooring industry. In this series of experiments, a surface coating was applied to unseasoned, presurfaced red oak lumber in order to restrict the moisture loss from the surface to test the hypothesis that a reduction in the rate of surface moisture loss would reduce...

  16. Deactivation of ice nuclei due to atmospherically relevant surface coatings

    SciTech Connect

    Cziczo, Daniel J.; Froyd, Karl D.; Gallavardin, S. J.; Moehler, Ottmar; Benz, Stefan; Saathoff, Harald; Murphy, Daniel M.

    2009-11-23

    The ice nucleation characteristics of Arizona Test Dust (ATD) and illite clay, surrogates for atmospheric ice nuclei, have been determined at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located at the Research Center Karlsruhe in Germany. The objective of this research was to determine the effect of sulphuric acid and ammonium sulphate coatings on the ability of these mineral dust surrogates to nucleate ice in an environment where particles realistically compete for water vapor. Coated ATD particles required higher saturations at all investigated temperatures, from -20 to -45º C, than did identical uncoated particles. Freezing of coated particles often required saturations approaching those for the homogeneous freezing of aqueous solutions of the coating material alone. Less pronounced effects were found for illite although the presence of a coating consistently increased the saturation or decreased the temperature required for ice formation. Analysis of ice residue at the single particle level suggests that the first coated particles to freeze had thinner or incomplete coatings when compared to particles that froze later in the expansion. This observation highlights a need to verify coating properties since an assumption of homogeneity of a group of coated aerosol may be incorrect. The increase in saturation ratio for freezing suggests that gas-phase uptake of sulphates, a large fraction of which are due to anthropogenic emissions, will reduce the ice and mixed-phase cloud formation potential of atmospheric ice nuclei.

  17. Antibacterial effect of doxycycline-coated dental abutment surfaces.

    PubMed

    Xing, Rui; Witsø, Ingun L; Jugowiec, Dawid; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Lönn-Stensrud, Jessica; Haugen, Håvard J

    2015-09-11

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA-3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm(-2) resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA-3 h coated with a higher amount of Doxy compared to that of 1 mA-1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis.

  18. On the wettability transparency of graphene-coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-01-01

    In order to better understand the behavior and governing characteristics of the wetting transparency phenomenon observed in graphene-coated surfaces, molecular dynamics simulations were coupled with a theoretical model. Graphene-coated silicon was selected for this analysis, due to potential applications of hybrid silicon-graphene materials as detectors in aqueous environments. The results indicate good agreement between the theory and simulations at the macroscopic conditions required to observe wetting transparency. A microscopic analysis was also conducted in order to identify the parameters, such as the interaction potential energy landscape and the interfacial liquid structure that govern the wetting behavior of graphene-coated surfaces. The interfacial liquid structure was found to be different between uncoated Si(100) and the graphene-coated version and very similar between uncoated Si(111) and the graphene-coated version. However, the concentration of liquid particles for both silicon surfaces was found to be very similar under transparent wetting conditions.

  19. Surface modification and characterization of aramid fibers with hybrid coating

    NASA Astrophysics Data System (ADS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-12-01

    Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.

  20. Adaptive multicomponent nanocomposite coatings in surface engineering

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bagdasaryan, A. A.; Pshyk, A.; Dyadyura, K.

    2017-06-01

    This paper reviews experimental research on nanocomposite coatings of different chemical composition. For adaptive multi-element and multi-layer systems with specific phase composition, structure, substructure, stress state and high functional properties, formation conditions are reviewed; the behavior under extreme conditions and in tribological applications is examined; the structural, phase, and chemical composition, and the hardness, friction and wear at elevated temperatures are discussed; and the adhesive strength of hierarchical protective coatings is analyzed. Finally, the adaptive behavior at different tribological test conditions of multifunctional, multi-layer coatings as a function of their properties and structure is examined.

  1. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.

  2. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  3. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    NASA Technical Reports Server (NTRS)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  4. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  5. Electromagnetic properties of ice coated surfaces

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Walton, E.; Wang, N.; Beard, L.

    1989-01-01

    The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.

  6. Shipboard Coatings Developments, and Emerging Surface Technologies

    DTIC Science & Technology

    2009-09-01

    COATINGS. • NAVSEA SPECIFICATION REVISION IN PROGRESS. • TEST INSTALLATIONS ON MCM-1 & MCM-14. OPTION 1: NON-COPPER • DEVELOPMENTAL COATINGS...NOT EPA REGISTERED. • SHORT HALF-LIFE (e.g., 10-hour) BIOCIDES. MIL-PRF-24647D category Two products failed ship test , Sherwin Williams HMF...currently meet Navy needs. No product of interest under testing MIL-PRF-24647D INCLUDES CATEGORY. International Intersleek 425 included on MIL-PRF-24647D

  7. Surface coating for prevention of metallic seed migration in tissues.

    PubMed

    Lee, Hyunseok; Lee, Won Seok; Park, Jong In; Son, Kwang-Jae; Park, Min; Bang, Young-bong; Choy, Young Bin; Ye, Sung-Joon

    2015-06-01

    In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  8. Surface coating for prevention of metallic seed migration in tissues

    SciTech Connect

    Lee, Hyunseok; Park, Jong In; Lee, Won Seok; Park, Min; Son, Kwang-Jae; Bang, Young-bong; Choy, Young Bin E-mail: sye@snu.ac.kr; Ye, Sung-Joon E-mail: sye@snu.ac.kr

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  9. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  10. Assembly of responsive-shape coated nanoparticles at water surfaces

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Grest, Gary S.

    2014-04-01

    Nanoparticle (NP) assembly and aggregation can be controlled using a variety of organic coatings that bind to the nanoparticle surface and alter its affinity for solvent and other particles. We show that surprisingly simple short chain polymer coatings can be effectively used to selectively control the aggregation of very small nanoparticles by taking advantage of the environment-responsive shape produced by the coating's spontaneous asymmetry on high-curvature nanoparticles. Using extremely long molecular dynamics simulations of alkanethiol coated Au nanoparticles, we show that varying the terminal groups of a nanoparticle coating dramatically alters the coating shape at the water liquid-vapor interface, producing very different assembly morphologies. NPs with CH3-terminated coatings assemble into short linear groupings with a highly aligned structure at early time and then form more disordered clusters as these linear groupings further assemble. NPs with COOH-terminated coatings assemble into dimers and disordered clumps with no preferred alignment at short time and longer disordered chains of particles at longer times. We also find that the responsive shape of the coating continues to adapt to local environment during assembly. The orientations of chains within NP coatings are significantly different when the NPs are arranged in aggregates than when they are isolated.

  11. Preparation of metal surfaces for application of functional coatings

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Israphilov, I. H.; Galiakbarov, A. T.; Gabdrakhmanov, Al T.

    2017-01-01

    This paper proposes an efficient method of plasma purification of metal surfaces before applying coatings or the product finishing treatment. The plasma purification is performed in a steam-gas discharge with an aluminum anode and a liquid cathode.

  12. Surface characterization of hot-dip Galfan coatings

    SciTech Connect

    Bluni, S.T.; Marder, A.R.; Goldstein, J.I. . Materials Science Engineering Dept.)

    1994-09-01

    The surface of a hot dipped Galfan (Zn-5wt.%Al-mischmetal) coating on sheet steel was characterized with the use of various microscopy techniques. Surface depressions, or dents, were found to occur at eutectic nodule boundaries and triple points, and were typically 10--15 [mu]m deep. The surface characteristics of the Galfan coating were reproduced by the solidification of Zn-5%Al-mischmetal alloy samples on an inert substrate, implying that surface depressions are not caused by substrate interactions. Chemical analyses of both the coating and the alloy samples indicate that impurities, particularly lead, are strongly segregated to eutectic nodule boundaries and triple points. Based on these observations, a mechanism for denting and cracking in Galfan coatings is suggested.

  13. POLLUTION PREVENTION METHODS IN THE SURFACE COATING INDUSTRY

    EPA Science Inventory

    The surface coating industry is rapidly changing to meet environmental and economic pressures. Some of the changes include new formulations which meet environmental regulations, higher performance finishes with improved properties, continued development of solventless technologie...

  14. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption

    PubMed Central

    2015-01-01

    Coating surfaces with thin or thick films of zwitterionic material is an effective way to reduce or eliminate nonspecific adsorption to the solid/liquid interface. This review tracks the various approaches to zwitteration, such as monolayer assemblies and polymeric brush coatings, on micro- to macroscopic surfaces. A critical summary of the mechanisms responsible for antifouling shows how zwitterions are ideally suited to this task. PMID:24754399

  15. Corrosion Resistance of Friction Surfaced AISI 304 Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Khalid Rafi, H.; Phanikumar, G.; Prasad Rao, K.

    2013-02-01

    Corrosion resistance of friction surfaced AISI 304 coating in boiling nitric acid and chloride containing environments was found to be similar to that of its consumable rod counterpart. This was in contrast to the autogenous fusion zone of GTAW weld which showed inferior corrosion resistance with respect to the consumable rod. The superior corrosion resistance of friction surfaced coatings was attributed to the absence of δ-ferrite in it.

  16. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    SciTech Connect

    Puli, Ramesh Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  17. Preservation of York Minster historic limestone by hydrophobic surface coatings

    PubMed Central

    Walker, Rachel A.; Wilson, Karen; Lee, Adam F.; Woodford, Julia; Grassian, Vicki H.; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-01-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from ‘breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO2/H2O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation. PMID:23198088

  18. Preservation of York Minster historic limestone by hydrophobic surface coatings

    NASA Astrophysics Data System (ADS)

    Walker, Rachel A.; Wilson, Karen; Lee, Adam F.; Woodford, Julia; Grassian, Vicki H.; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-11-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from `breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO2/H2O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

  19. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to

  20. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    PubMed

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces.

  1. Dynamic Wetting on Graphene-Coated Surface: Molecular Dynamics Investigation

    NASA Astrophysics Data System (ADS)

    Hung, Shih-Wei; Shiomi, Junichiro

    2015-11-01

    Wettability of graphene-coated surface gained significant attention recently due to discussion on the ``transparency'' (whether the wetting characteristics follow that of graphene or the underlying surface) and practical applications of graphene. In terms of static contact angle, the wettability of graphene-coated surfaces have been widely studied by experiments, simulations, and theory in recent years. However, the studies of dynamic wetting on graphene-coated surfaces are limited. In the present study, molecular dynamics simulation was performed to study the dynamic wetting of water droplet on graphene-coated surfaces from a microscopic point of view. The results show that the degree of similarity between the spreading behavior on graphene-coated surface and that on pure graphene (or that on the underlying surface) depends on time, i.e. how nonequilibrium the interface dynamics is. We also found that this feature can be altered by introducing defects into graphene. The work is partially supported by Grant-in-Aid for JSPS Fellows 26-04364 and JST CREST.

  2. Investigation of FE model size definition for surface coating application

    NASA Astrophysics Data System (ADS)

    Chen, Yanhong; Zhuang, Weimin; Wang, Shiwen; Lin, Jianguo; Balint, Daniel; Shan, Debin

    2012-09-01

    An efficient prediction mechanical performance of coating structures has been a constant concern since the dawn of surface engineering. However, predictive models presented by initial research are normally based on traditional solid mechanics, and thus cannot predict coating performance accurately. Also, the high computational costs that originate from the exclusive structure of surface coating systems (a big difference in the order of coating and substrate) are not well addressed by these models. To fill the needs for accurate prediction and low computational costs, a multi-axial continuum damage mechanics (CDM)-based constitutive model is introduced for the investigation of the load bearing capacity and fracture properties of coatings. Material parameters within the proposed constitutive model are determined for a typical coating (TiN) and substrate (Cu) system. An efficient numerical subroutine is developed to implement the determined constitutive model into the commercial FE solver, ABAQUS, through the user-defined subroutine, VUMAT. By changing the geometrical sizes of FE models, a series of computations are carried out to investigate (1) loading features, (2) stress distributions, and (3) failure features of the coating system. The results show that there is a critical displacement corresponding to each FE model size, and only if the applied normal loading displacement is smaller than the critical displacement, a reasonable prediction can be achieved. Finally, a 3D map of the critical displacement is generated to provide guidance for users to determine an FE model with suitable geometrical size for surface coating simulations. This paper presents an effective modelling approach for the prediction of mechanical performance of surface coatings.

  3. Extended surface parallel coating inspection method

    DOEpatents

    Naulleau, Patrick P.

    2006-03-21

    Techniques for rapidly characterizing reflective surfaces and especially multi-layer EUV reflective surfaces of optical components involve illuminating the entire reflective surface instantaneously and detecting the image far field. The technique provides a mapping of points on the reflective surface to corresponding points on a detector, e.g., CCD. This obviates the need to scan a probe over the entire surface of the optical component. The reflective surface can be flat, convex, or concave.

  4. Erosion of candidate hard surface coatings for gate valve applications

    SciTech Connect

    Wheeler, D.W.; Wood, R.J.K.

    1997-07-01

    This paper describes the work carried out in assessing the erosion performance of several potential hard surface coatings for use in offshore gate valves. A number of samples were tested in a slurry jet erosion facility before being analyzed and compared with coatings already in service. The results show that the Diatec 1086 WC-Co-Cr coating is the most promising alternative, with hard chrome being a more cost-effective option for some applications. It was also noted that initial surface roughness has an effect on the erosion performance of these coatings. The application is to control valves used extensively in the offshore oil industry for the regulation of hydrocarbon fluid flow.

  5. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces.

    PubMed

    Wendel, H P; Scheule, A M; Eckstein, F S; Ziemer, G

    1999-01-01

    Extracorporeal circulation (ECC) in paediatric patients with heparin-coated oxygenation systems is rarely investigated. The objective of this study was to evaluate, preclinically, the haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces. We compared 16 paediatric membrane oxygenators (Minimax, Medtronic) in an in vitro heart-lung machine model with fresh human blood. Eight of these oxygenation systems had a covalent heparin coating (Carmeda bioactive surface). After 90 min simulated ECC, the heparin-coated systems showed significantly higher platelet count, lower platelet-factor 4 release, reduced contact activation (factor XIIa and kallikrein), and lower neutrophil elastase levels (p < 0.05), compared to the noncoated oxygenator group. More biocompatible materials for paediatric operations may ameliorate the various postperfusion syndromes arising from ECC procedures, particularly unspecific inflammation, hyperfibrinolysis and blood loss.

  6. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  7. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  8. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  9. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  10. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  11. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings

    SciTech Connect

    Chen Yao; Gan Cuihua; Zhang Tainua; Yu Gang; Bai Pucun; Kaplan, Alexander

    2005-06-20

    Carbon-nanotube (CNT)-reinforced hydroxyapatite composite coatings have been fabricated by laser surface alloying. Microstructural observation using high-resolution transmission electron microscopy showed that a large amount of CNTs remained with their original tubular morphology, even though some CNTs reacted with titanium element in the substrate during laser irradiation. Additionally, measurements on the elastic modulus and hardness of the composite coatings indicated that the mechanical properties were affected by the amount of CNTs in the starting precursor materials. Therefore, CNT-reinforced hydroxyapatite composite is a promising coating material for high-load-bearing metal implants.

  12. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gan, Cuihua; Zhang, Tainua; Yu, Gang; Bai, Pucun; Kaplan, Alexander

    2005-06-01

    Carbon-nanotube (CNT)-reinforced hydroxyapatite composite coatings have been fabricated by laser surface alloying. Microstructural observation using high-resolution transmission electron microscopy showed that a large amount of CNTs remained with their original tubular morphology, even though some CNTs reacted with titanium element in the substrate during laser irradiation. Additionally, measurements on the elastic modulus and hardness of the composite coatings indicated that the mechanical properties were affected by the amount of CNTs in the starting precursor materials. Therefore, CNT-reinforced hydroxyapatite composite is a promising coating material for high-load-bearing metal implants.

  13. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  14. Light controllable surface coating for effective photothermal killing of bacteria.

    PubMed

    Kim, Sung Han; Kang, Eun Bi; Jeong, Chan Jin; Sharker, Shazid Md; In, Insik; Park, Sung Young

    2015-07-22

    Although the electronic properties of conducting films have been widely explored in optoelectronic fields, the optical absorption abilities of surface-coated films for photothermal conversion have been relatively less explored in the production of antibacterial coatings. Here, we present catechol-conjugated poly(vinylpyrrolidone) sulfobetaine (PVPS) and polyaniline (PANI) tightly linked by ionic interaction (PVPS:PANI) as a novel photothermal antibacterial agent for surface coating, which can absorb broadband near-infrared (NIR) light. Taking advantage of the NIR light absorption, this coating film can release eminent photothermal heat for the rapid killing of surface bacteria. The NIR light triggers a sharp rise in photothermal heat, providing the rapid and effective killing of 99.9% of the Gram-positive and -negative bacteria tested within 3 min of NIR light exposure when used at the concentration of 1 mg/mL. Although considerable progress has been made in the design of antibacterial coatings, the user control of NIR-irradiated rapid photothermal destruction of surface bacteria holds increasing attention beyond the traditional boundaries of typical antibacterial surfaces.

  15. Laminin coatings on implant surfaces promote osseointegration: Fact or fiction?

    PubMed

    Javed, Fawad; Al Amri, Mohammad D; Kellesarian, Sergio Varela; Al-Askar, Mansour; Al-Kheraif, Abdulaziz A; Romanos, Georgios E

    2016-08-01

    To our knowledge from indexed literature, the role of laminins in the expression of osteogenic biomarkers and osseointegration enhancement has not been systematically reviewed. The aim of the present systematic review was to assess the role of laminin coatings on implant surfaces in promoting osseointegration. To address the focused question, "Do laminin coatings on implant surfaces influence osseointegration?", indexed databases were searched from 1965 up to and including November 2015 using various combination of the following keywords: "Bone to implant contact"; "implant"; "laminins"; and "osseointegration". Letters to the Editor, case-reports/case-series, historic reviews, and commentaries were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Six studies were prospective and were performed in animals and 5 studies were in vitro. Results from 8 studies showed that laminin coatings enhanced new bone formation around implants and/or bone-to-implant contact. One study showed that laminin coated implants surfaces did not improve osseointegration. On experimental grounds, laminin coatings seem to enhance osteogenic biomarkers expression and/or osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the role of laminin coatings in promoting osseointegration around dental implants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Surface analysis of Fe-Co-Mo electrolytic coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu; Zyubanova, S. I.

    2017-06-01

    Coatings Fe-Co-Mo with a composition of 47 at.% iron, 28 at.% Cobalt and 25 at.% Molybdenum were deposited from citrate electrolyte using pulse electrolysis mode. Scanning electron and atomic force microscopy have established the surface morphology and topography. It was identified the parts with a globular structure which have an average size of 0.2-0.5μm and singly located sharp grains. Within the same scan area sites with developed surface were detected the topography of which is identical to the crystal structure of cobalt with the crystallites size of 0.2-1.75μm. The parameters Ra and Rq for parts with different morphology as well as average characteristics of coatings demonstrated the low roughness of the surface. It is found that the coercive force of Fe-Co-Mo films is 7-10 Oe, which allow us to classify the Fe-Co-Mo coatings as soft magnetic materials.

  17. RF surface resistance study of non-evaporable getter coatings

    NASA Astrophysics Data System (ADS)

    Malyshev, Oleg B.; Gurran, Lewis; Goudket, Philippe; Marinov, Kiril; Wilde, Stuart; Valizadeh, Reza; Burt, Graeme

    2017-02-01

    In many particle accelerators the beam parameters could be affected by the beam pipe wakefield impedance. It is vital to understand how the wakefield impedance might vary due to various coatings on the surface of the vacuum chamber, and this can be derived from surface resistance measurements. The bulk conductivity of two types of NEG films (dense and columnar) is determined. This is achieved by measuring the surface resistance of NEG-coated samples using an RF test cavity and fitting the experimental data to a standard theoretical model. The conductivity values obtained are then used to compare resistive wall wakefield effects in beam pipes coated with either of the two types of film.

  18. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  19. Wetting of polymer melts on coated and uncoated steel surfaces

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  20. Coating formulation and method for refinishing the surface of surface-damaged graphite articles

    DOEpatents

    Ardary, Zane L.; Benton, Samuel T.

    1988-01-01

    The described development is directed to a coating formulation for filling surface irregularities in graphite articles such as molds, crucibles, and matched die sets used in high-temperature metallurgical operations. The coating formulation of the present invention is formed of carbon black flour, thermosetting resin and a solvent for the resin. In affixing the coating to the article, the solvent is evaporated, the resin cured to bond the coating to the surface of the article and then pyrolyzed to convert the resin to carbon. Upon completion of the pyrolysis step, the coating is shaped and polished to provide the article with a surface restoration that is essentially similar to the original or desired surface finish without the irregularity.

  1. Coating formulation and method for refinishing the surface of surface-damaged graphite articles

    DOEpatents

    Ardary, Z.L.; Benton, S.T.

    1988-11-22

    The described development is directed to a coating formulation for filling surface irregularities in graphite articles such as molds, crucibles, and matched die sets used in high-temperature metallurgical operations. The coating formulation of the present invention is formed of carbon black flour, thermosetting resin and a solvent for the resin. In affixing the coating to the article, the solvent is evaporated, the resin cured to bond the coating to the surface of the article and then pyrolyzed to convert the resin to carbon. Upon completion of the pyrolysis step, the coating is shaped and polished to provide the article with a surface restoration that is essentially similar to the original or desired surface finish without the irregularity.

  2. Coating formulation and method for refinishing the surface of surface-damaged graphite articles

    DOEpatents

    Ardary, Z.L.; Benton, S.T.

    1987-07-08

    The described development is directed to a coating formulation for filling surface irregularities in graphite articles such as molds, crucibles, and matched die sets used in high-temperature metallurgical operations. The coating formulation of the present invention is formed of carbon black flour, thermosetting resin and a solvent for the resin. In affixing the coating to the article, the solvent is evaporated, the resin cured to bond the coating to the surface of the article and then pyrolyzed to convert the resin to carbon. Upon completion of the pyrolysis step, the coating is shaped and polished to provide the article with a surface restoration that is essentially similar to the original or desired surface finish without the irregularity.

  3. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-10-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

  4. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    PubMed Central

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2008-01-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules. PMID:17947576

  5. Fluoropolymer surface coatings to control droplets in microfluidic devices.

    PubMed

    Riche, Carson T; Zhang, Chuchu; Gupta, Malancha; Malmstadt, Noah

    2014-06-07

    We have demonstrated the application of low surface energy fluoropolymer coatings onto poly(dimethylsiloxane) (PDMS) microfluidic devices for droplet formation and extraction-induced merger of droplets. Initiated chemical vapor deposition (iCVD) was used to pattern fluoropolymer coatings within microchannels based on geometrical constraints. In a two-phase flow system, the range of accessible flow rates for droplet formation was greatly enhanced in the coated devices. The ability to controllably apply the coating only at the inlet facilitated a method for merging droplets. An organic spacer droplet was extracted from between a pair of aqueous droplets. The size of the organic droplet and the flow rate controlled the time to merge the aqueous droplets; the process of merging was independent of the droplet sizes. Extraction-induced droplet merging is a robust method for manipulating droplets that could be applied in translating multi-step reactions to microfluidic platforms.

  6. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  7. Method of coating the interior surface of hollow objects with a diffusion coating

    DOEpatents

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  8. Excimer surface treatment to enhance bonding in coated steels

    NASA Astrophysics Data System (ADS)

    Mueller, Robert E.; Olfert, M.; Duley, Walter W.; North, T.; Hood, J.; Sakai, D.

    1996-04-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have succeeded in significantly enhancing the adhesion characteristics of these coated steels. The laser treatment is performed by scanning focused excimer laser radiation in a raster pattern over the surface to be bonded. Adhesion tests have been carried out in the form of T peel tests, using either a hot melt nylon resin or an epoxy as the adhesive. An increase in bond strength was observed over a substantial range of surface treatment conditions. The largest improvement observed was more than a factor of three greater than for untreated surfaces. With the improved surface condition, the bond strength became limited by the cohesive strength of the adhesive. The physical structure and chemical composition of the parent and excimer treated surfaces have been examined using scanning electron microscopy and X-ray photoelectron spectroscopy to determine the nature and extent of the changes caused by the surface treatment. The effects of the observed changes on the bonding performance will be discussed. Surfaces have been processed under an inert atmosphere to isolate the effects of physical surface modification and surface oxidation. An attempt will be made to correlate the surface changes with the bonding characteristics and thereby indicate which changes are most beneficial. The ultimate goal is to optimize the surface condition for bonding and maximize the process rate.

  9. Surface property modification of coatings via self-stratification

    NASA Astrophysics Data System (ADS)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  10. Effect of esthetic coating on surface roughness of orthodontic archwires.

    PubMed

    Mousavi, Seyed Mohammad; Shamohammadi, Milad; Rastegaar, Zahra; Skini, Masoumeh; Rakhshan, Vahid

    2017-09-01

    Esthetic wires are commonly used in orthodontic treatments. Surface roughness is an important factor in the friction and bacterial adhesion in these wires. Surface roughness of esthetic wires has not been assessed, except in a few recent (mostly qualitative esthetics) studies. The aim of this study was to quantitatively compare the surface roughness of 4 coated esthetic wires with that of a conventional orthodontic wire. In this in vitro trial, 25 coated and uncoated orthodontic archwires were studied, including: NiTi Memory wire (American Orthodontics, USA) as a control group; Orthocosmetic Elastinol (Ortho Organizers, USA); Perfect (Hubit, Korea); Imagination (Gestenco, Sweden); EverWhite (American Orthodontics, USA). All were .016×.022" rectangular maxillary wires. Fifteen millimeters of wire was cut off at the posterior end and a surface area of 2000×2000nm was probed using a Scanning Probe Microscope (DS95-50E/DME, Denmark) to determine the surface roughness values. The roughness parameters of Sa, Sdq, Sv and Sy were measured and statistically compared by Kruskal-Wallis and Mann-Whitney U tests. The average range of the 4 parameters was the highest for the uncoated Ni-Ti Memory wire (control group) while the Perfect coated wire showed the lowest values. The differences were significant for parameters Sa and Sy (P<0.02 and P<0.023) and non-significant for Sv and Sdq. Significant differences existed between uncoated and coated wires regarding Sa and Sy values (P<0.01), being higher for the uncoated wires. Taking into account the study limitations, the surface roughness values of NiTi uncoated archwires were significantly higher than those of the coated wires. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  11. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  12. Surface coatings of bioactive glasses on high strength ceramic composites

    NASA Astrophysics Data System (ADS)

    Martorana, S.; Fedele, A.; Mazzocchi, M.; Bellosi, A.

    2009-04-01

    Dense and ultrafine alumina-zirconia composites (Al 2O 3-16 wt%ZrO 2 and ZrO 2-20 wt%Al 2O 3) are developed and characterized for load bearing prosthetic applications. The improvement of the ceramic/bone interface, namely of the ceramic bioactivity, is performed by a glass coating on the surface of the composites. A new composition is used to produce the glass powder, by melting at 1550 °C the mixture of oxide raw materials. The processing to obtain a homogeneous and adherent coating on the ceramic substrates is investigated: the optimal temperature for the glazing treatment is 1200 °C. The microstructure of the coating and of the ceramic/coating interface, the adhesion and some mechanical properties of the prepared glass and of the coating are analyzed. Besides, the in vitro bioactive responses, by incubation of osteoblast-like cells on the coated samples, are evaluated: positive results are confirmed after 24 h and 72 h.

  13. The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface

    NASA Astrophysics Data System (ADS)

    Das, Sudev; Bhaumik, Swapan

    2016-04-01

    The influence of coating thickness and surface roughness on pool boiling heat transfer is experimentally studied over a range of surface roughness values with varied coating thickness with water at atmospheric pressure. Test surfaces used in this experiment are namely, untreated surface (Ra = 0.0899 µm), polished surface (Ra = 0.0493 µm), TiO2 nanoparticle coated surface with a roughness (Ra) ranging from 0.0338 to 0.289 µm. The surfaces were characterized with respect to contact angle, surface roughness and coating thickness. The contact angle, surface roughness and coating thickness were measured by sessile drop method, optical surface profiler and instrument thickness monitor respectively. Heat fluxes observed ranged from 52.63 to 144.73 W/cm2. Different trends were observed in the Heat Transfer Coefficient (HTC) with respect to the surface roughness and coating thickness values on the same set of heat flux. The HTC was found to increase with increasing the roughness values for untreated and polish surface but nanoparticle coated surfaces displayed different trend in HTCs. The HTC was found to increase with increasing coating thickness with all wall superheat.

  14. Candle Soot Coating for Latent Fingermark Enhancement on Various Surfaces

    PubMed Central

    Wei, Qianhui; Zhu, Yu; Liu, Shouliang; Gao, Yongjie; Li, Xiaolong; Shi, Mi; Zhang, Xueji; Zhang, Meiqin

    2017-01-01

    We demonstrate a facile method termed candle soot coating (CSC) for fast developing latent fingermarks (LFMs) on various kinds of surfaces (glass, ceramic, metal, paper and adhesive tape). The CSC method can be considered as simple, fast, and low-cost as well as providing high contrast for LFM visualization in potential forensic applications. PMID:28696363

  15. Quaternary ammonium substituted agarose as surface coating for capillary electrophoresis.

    PubMed

    Ullsten, Sara; Söderberg, Lennart; Folestad, Staffan; Markides, Karin E

    2004-05-01

    A novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved. The polymer surface provides an intermediate electroosmotic flow of reversed direction, over a range of pH 2-11, compared to unmodified fused-silica. The coating procedure was highly reproducible with an RSD of 4%, evaluated as the electroosmotic flow mobility for 30 capillaries prepared at 10 different occasions. The application of Q-agarose coated capillaries in separation science was investigated using a set of basic drugs and model proteins and peptides. Due to the intermediate electroosmotic flow generated, the resolution of basic drugs could be increased, compared to using bare fused-silica capillaries. Moreover, the coating enabled separation of proteins and peptides with efficiencies up to 300.000 plates m(-1).

  16. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.

    PubMed

    Swartjes, J J T M; Sharma, P K; van Kooten, T G; van der Mei, H C; Mahmoudi, M; Busscher, H J; Rochford, E T J

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.

  17. Method of making a coating of a microtextured surface

    DOEpatents

    Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV

    2004-11-02

    A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.

  18. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat.

    PubMed

    Bartossek, Thomas; Jones, Nicola G; Schäfer, Christin; Cvitković, Mislav; Glogger, Marius; Mott, Helen R; Kuper, Jochen; Brennich, Martha; Carrington, Mark; Smith, Ana-Sunčana; Fenz, Susanne; Kisker, Caroline; Engstler, Markus

    2017-09-11

    The most prominent defence of the unicellular parasite Trypanosoma brucei against the host immune system is a dense coat that comprises a variant surface glycoprotein (VSG). Despite the importance of the VSG family, no complete structure of a VSG has been reported. Making use of high-resolution structures of individual VSG domains, we employed small-angle X-ray scattering to elucidate the first two complete VSG structures. The resulting models imply that the linker regions confer great flexibility between domains, which suggests that VSGs can adopt two main conformations to respond to obstacles and changes of protein density, while maintaining a protective barrier at all times. Single-molecule diffusion measurements of VSG in supported lipid bilayers substantiate this possibility, as two freely diffusing populations could be detected. This translates into a highly flexible overall topology of the surface VSG coat, which displays both lateral movement in the plane of the membrane and variation in the overall thickness of the coat.The structures of a variant surface glycoprotein (VSG) from Trypanosoma brucei suggest that VSGs adopt different conformations to respond to obstacles present in the cell membrane, enabling them to maintain a protective coat at all times.

  19. Aircraft surface coatings reduce drag, may protect against corrosion

    SciTech Connect

    Kreitinger, R.L.; Middleton, D.B.

    1982-02-01

    The aerodynamic drag on an airplane is a very important design parameter. However, after exposure to the environment and accidental spills the surface of the airplane may become corroded or erode; thus the drag may change. Researchers at Boeing Commercial Airplane Co. and the NASA-Langley Research Center have been studying the possibility of using smooth surface coatings to help reduce drag and protect the surface of the airplane. Elastomeric polyurethanes on portions of a test airplane have reduced total drag by 0.2% (as compared to a bare surface) at cruise Reynolds number.

  20. Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles.

    PubMed

    Micić, Vesna; Schmid, Doris; Bossa, Nathan; Gondikas, Andreas; Velimirovic, Milica; von der Kammer, Frank; Wiesner, Mark R; Hofmann, Thilo

    2017-08-15

    The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers. Column experiments demonstrated that a low concentration (10 mg/L) Na humate solution in synthetic water significantly improved the mobility of PAA-nano-ZVI within a standard sand medium. This effect was, however, reduced in more heterogeneous natural collector media from contaminated sites, as not an adequate amount of the collector sites favorable for PAA-nano-ZVI attachment within these media appear to have been screened by the Na humate. Na humate did not interact with the surfaces of acid-washed glass beads or standard Ottawa sand, which presented less surface heterogeneity. Important factors influencing the effectiveness of Na humate application in improving PAA-nano-ZVI mobility include the solution chemistry, the Na humate concentration, and the collector properties.

  1. Surface Coating of Tungsten Carbide by Electric Exploding of Contact

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Electric exploding of a tungsten carbide--cobalt material near-by high-speed steel surface forms on it a hardening coating. The essential structure properties of the formed coatings are determined by parameters of contact exploding electrode at the pulse current amplitude from above 106 A/cm2 and duration less than 10-4 s. The metallographic investigations of coating structures were done by microscope 'Neophot-24'. They have shown that the contact electric exploding caused the transfer of tungsten carbide and cobalt on the surface of high-speed steel. The breakdown of tungsten carbide--cobalt material took place during electrical exploding. The hardening layers of tungsten carbide and pure nanocrystalline tungsten have been formed upon the surface of high-speed steel as a result of electric exploding. Crystalline grains of tungsten have an almost spherical form and their characteristic size less than 400 nanometers. Micro hardness of the coating layers and high-speed steel structures was measured.

  2. Origin of complex impact craters on native oxide coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Samela, Juha; Nordlund, Kai; Popok, Vladimir N.; Campbell, Eleanor E. B.

    2008-02-01

    Crater structures induced by impact of keV-energy Arn+ cluster ions on silicon surfaces are measured with atomic force microscopy. Complex crater structures consisting of a central hillock and outer rim are observed more often on targets covered with a native silicon oxide layer than on targets without the oxide layer. To explain the formation of these complex crater structures, classical molecular dynamics simulations of Ar cluster impacts on oxide coated silicon surfaces, as well as on bulk amorphous silica, amorphous Si, and crystalline Si substrates, are carried out. The diameter of the simulated hillock structures in the silicon oxide layer is in agreement with the experimental results, but the simulations cannot directly explain the height of hillocks and the outer rim structures when the oxide coated silicon substrate is free of defects. However, in simulations of 5keV /atom Ar12 cluster impacts, transient displacements of the amorphous silicon or silicon oxide substrate surfaces are induced in an approximately 50nm wide area surrounding the impact point. In silicon oxide, the transient displacements induce small topographical changes on the surface in the vicinity of the central hillock. The comparison of cluster stopping mechanisms in the various silicon oxide and silicon structures shows that the largest lateral momentum is induced in the silicon oxide layer during the impact; thus, the transient displacements on the surface are stronger than in the other substrates. This can be a reason for the higher frequency of occurrence of the complex craters on oxide coated silicon.

  3. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  4. Aircraft surface coatings study: Verification of selected materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Three liquid coatings and four films that might improve and/or maintain the smoothness of transport aircraft surfaces are considered. Laboratory tests were performed on the liquid coatings (elastomeric polyurethanes) exposed to synthetic type hydraulic fluid, with and without a protective topcoat. Results were analyzed of a 14-month flight service evaluation of coatings applied to leading edges of an airline 727. Two additional airline service evaluations were initiated. Labortory tests were conducted on the films, bonded to aluminum substrate with various adhesives, to determine the best film/adhesive combinations. A cost/benefits analysis was performed and recommendations made for future work toward the application of this technology to commercial transports.

  5. Theory of Hydrostatic Lubrication for Like Charge Polymer Hydrogel Coated and Cartilage Coated Surfaces

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2011-03-01

    Polysaccharides hydrogels provide excellent lubrication of tissues and organs in humans and animals. It is argued on the basis of a solution of the Poisson-Boltzmann equation and scaling arguments that most asperities in ``contact'' at the interface between two hydrogel coated surfaces should be separated by a thin fluid layer, which is held in place by ion osmotic pressure. It is likely to be responsible for the excellent lubricating of these hydrogels. Although it appears that the same mechanism should operate in cartilage coated surfaces, it turns out that the friction coefficient is two orders of magnitude larger once equilibrium is established. A model will be provided which combines the biphasic model, traditionally used to explain the time dependence of the friction coefficient for two cartilage surfaces in contact , and the ion osmotic pressure mechanism used to explain the very low equilibrium friction coefficient for hydrogel interfaces.

  6. Lateral interactions and non-equilibrium in surface kinetics

    NASA Astrophysics Data System (ADS)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  7. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  8. Hydroxyapatite Coatings Produced by Surface-Induced Mineralizaiton

    SciTech Connect

    Campbell, Allison A.; Deatherage, Brooke L.; Li, Xiaohong S.; Nelson, Bradley J.; Bottoni, Craig R.; Dejong, E. Schuyler

    2002-01-03

    The surface-induced mineralization (SIM) process is based on the observation that, in nature, organisms use biopolymers to produce ceramic composites such as teeth, bones, and shells. The SIM process involves modification of a surface to introduce surface functionalization followed by immersion in aqueous supersaturated calcium phosphate solutions. This room temperature process has advantages over conventional methods of calcium phosphate deposition in that uniform coatings are produced onto complex-shaped and/or microporous samples. Additionally, because it is a room temperature process, biological agents can be incorporated.

  9. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  10. Surface characteristics of hot-dip metallic coatings on steel strip

    NASA Astrophysics Data System (ADS)

    Kilbane, Farrell M.

    1982-05-01

    Surfaces of hot-dip metallic coatings are frequently enriched in minor alloying elements because of the large diffusion rates of elements in the liquid state. In this study, scanning Auger microscopy is used to measure the surface chemical compositions of zinc, aluminum, and lead coatings that were applied to steel strip on continuous coating lines. Comparisons are made between the surface and bulk compositions. Surface enrichments up to 1000X the bulk concentration are reported. Processing steps after coating application are shown to further alter the coatings' surface characteristics. Finally, the effects of the variable surfaces on the products' engineering properties are discussed.

  11. A dry-surface coating method for visualization of separation

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-01-01

    A simple and reasonably accurate dry-surface coating method for the visualization of the separation line on a bluff body is described. This method is not restricted to any particular Reynolds-number range and it supplies a clear permanent record of good photographic quality. Examination of this technique in visualizing the separation angle on a circular cylinder indicated that it is accurate within about + or - 4 percent.

  12. Nanoprobe-induced electrostatic lateral quantization in near-surface resonant-tunneling heterostructures

    NASA Astrophysics Data System (ADS)

    Taylor, M. D.; Wetsel, G. C., Jr.; McBride, S. E.; Brown, R. C.; Frensley, W. R.; Seabaugh, A. C.; Kao, Y.-C.; Beam, E. A.

    1995-06-01

    We report experimental and theoretical evidence for electrostatic lateral confinement induced by a nanoprobe. The lateral confinement is manifest as oscillations of the differential conductance of a near-surface resonant-tunneling heterostructure in air at room temperature.

  13. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  14. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  15. Nisin adsorption to hydrophobic surfaces coated with the PEO–PPO–PEO triblock surfactant Pluronic® F108

    PubMed Central

    Tai, Yuan-Ching; Joshi, Pranav; McGuire, Joseph; Neff, Jennifer A.

    2008-01-01

    The adsorption and elution of the antimicrobial peptide nisin at hydrophobic, silanized silica surfaces coated with the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) surfactant Pluronic® F108 were measured in situ, with ellipsometry. While such layers are known to inhibit protein adsorption, nisin was observed to adsorb in multilayer quantities, to an extent similar to its adsorption at uncoated, hydrophobic surfaces. The rates of nisin adsorption and elution were generally slower at F108-coated surfaces. And, the sequential adsorption of nisin, including two adsorption–elution cycles at each surface, showed greater differences in adsorption rates between the first and second adsorption cycles, when evaluated at identical mass density, for uncoated relative to F108-coated surfaces. These results indicate that nisin adsorption occurs via “entrapment” within the PEO brush layer at F108-coated surfaces, in this way slowing adsorption and spontaneous elution, and inhibiting post-adsorptive molecular rearrangements by reducing the lateral mobility of nisin. While F108-coated layers rejected adsorption of serum albumin, sequential adsorption experiments carried out with nisin and albumin showed a low level of albumin adsorption when nisin was present at the interface. PMID:18359037

  16. Pulse electrodeposition of adherent nickel coatings onto anodized aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Frantz, Cédric; Vichery, Charlotte; Zechner, Johannes; Frey, Damian; Bürki, Gerhard; Cebeci, Halil; Michler, Johann; Philippe, Laetitia

    2015-03-01

    Aluminium is one of the mostly used elements in the industry because of its abundance and low weight. However, the deposition of a metallic coating requires performing the so-called zincate pre-treatment in order to allow the formation of inter-metallic bonds and thereby achieving sufficient adherence. In this work, porous anodic aluminium oxide (AAO) is used as an anchoring intermediate layer for nickel coatings. AAO is grown anodically in sulfuric acid and nickel coatings are deposited by potentiostatic reverse pulse electrodeposition onto as-anodized aluminium surfaces. The electrodeposition of nickel is initiated onto the electrochemically thinned barrier layer of AAO and pursued until the complete covering of the oxide. The electrochemical behavior of Watts and sulfamate baths is investigated by cyclic voltammetry for different barrier layer thickness, allowing to validate the thinning conditions and to determine the appropriate deposition potential of nickel. GD-OES measurements show that low duty cycles are necessary to achieve high filling ratio of the AAO. SEM micrographs show that a smooth uniform coating is obtained when nickel is deposited in presence of additives.

  17. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  18. Surface-enhanced Raman scattering from silver-coated opals.

    PubMed

    Mu, Weiqiang; Hwang, Dae-Kue; Chang, Robert P H; Sukharev, Maxim; Tice, Daniel B; Ketterson, John B

    2011-03-28

    We describe surface-enhanced Raman scattering measurements from a benzenethiol monolayer adsorbed on a silver-coated film that is, in turn, deposited on an artificial opal, where the latter is a close-packed three-dimensional dielectric lattice formed from polystyrene spheres. Data for a range of sphere sizes, silver film thicknesses, and laser excitation wavelengths are obtained. Enhancement factors can be in the range of 10(7). To partially explain these large enhancements, we have performed model finite-difference time domain simulations of the position-dependent electric fields generated at the opal surfaces for several experimentally studied laser wavelengths and sphere diameters.

  19. Surface Microstructure of Mo(C)N Coatings Investigated by AFM

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B.

    2016-12-01

    MoCN coatings have been formed by cathodic arc evaporation using the mixture of acetylene and nitrogen and pure molybdenum target. The surface structure, in conjunction with x-ray data, was analyzed by atomic force microscopy (AFM). The AFM results show differently shaped grain forms on the surface of coatings investigated. The increase in carbon in chemical coatings composition results in the reduction in surface grain size and the increase in roughness of the coatings.

  20. Optical stent inspection of surface texture and coating thickness

    NASA Astrophysics Data System (ADS)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-02-01

    Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.

  1. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  2. Wear Analysis of Thermal Spray Coatings on 3D Surfaces

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Luo, W.; Selvadurai, U.

    2014-01-01

    Even though the application of thermal spray coatings on complex geometries gained a greater interest in the last decade, the effect of different geometrical features on the wear behavior is still ill-defined. In this study, the wear resistance of FTC-FeCSiMn coated 3D surfaces was investigated. The wear test was carried out by means of two innovative testing procedures. The first test is a Pin-on-Tubes test where the rotating motion is realized by a lathe chuck. The specimens in the second test were fixed on the table and a robot arm operated the pin. This wear test was applied on specimens with concave or convex surfaces. The residual stresses, which were determined by means of an incremental hole-drilling method, show a dependency on the substrate geometry. The obtained stresses were put in relation to the different radii. After the wear test, a 3D-profilometer determined the wear volume and the sections of the coatings were characterized by a scanning electron microscope. The results indicate that the wear resistance is strongly influenced by the geometry of the substrate.

  3. Surface engineering of the quality factor of metal coated microcantilevers

    SciTech Connect

    Ergincan, O.; Kooi, B. J.; Palasantzas, G.

    2014-12-14

    We performed noise measurements to obtain the quality factor (Q) and frequency shift of gold coated microcantilevers before and after surface modification using focused ion beam. As a result of our studies, it is demonstrated that surface engineering offers a promising method to control and increase the Q factor up to 50% for operation in vacuum. Surface modification could also lead to deviations from the known Q ∼ P{sup −1} behavior at low vacuum pressures P within the molecular regime. Finally, at higher pressures within the continuum regime, where Q is less sensitive to surface changes, a power scaling Q ∼ P{sup c} with c ≈ 0.3 was found instead of c = 0.5. The latter is explained via a semi-empirical formulation to account for continuum dissipation mechanisms at significant Reynolds numbers Re ∼ 1.

  4. Lithium Surface Coatings and Improved Plasma Performance in NSTX

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.

    2007-11-01

    NSTX research on lithium-coated plasma facing components is the latest step in a decade-long, multi-institutional research program to develop lithium as a plasma-facing system that can withstand the high heat and neutron fluxes in a DT reactor. The NSTX research is also aimed towards sustaining the current non- inductively in H-mode plasmas which requires control of both wall recycling and impurity influxes. Employing several techniques to coat the plasma facing components (PFCs) with lithium, NSTX experiments have shown, for the first time, significant benefits in high-power divertor plasmas. Lithium pellet injection (LPI) uses the plasma itself to distribute lithium on the divertor or limiter surfaces. The multi-barrel LPI on NSTX can introduce either lithium pellets with masses 1 - 5 mg or powder during a discharge. This significantly lowered recycling and reduced the density in a subsequent NBI-heated, divertor plasma. Lithium coatings have also been applied with a LIThium EvaporatoR (LITER) that was installed on an upper vacuum vessel port to direct a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. The lithium was evaporated either before tokamak discharges, or continuously between and during them. By evaporating lithium into the helium glow discharge that typically precedes each tokamak discharge, a coating of the entire PFC area was achieved. Lithium depositions from a few mg to 1 g have been applied between discharges. Among the effects observed in subsequent neutral-beam heated plasmas were decreases in oxygen impurities, plasma density, and the inductive flux consumption, and increases in electron temperature, ion temperature, energy confinement and DD neutron rate. In addition, a reduction in the ELM frequency, including their complete suppression, was achieved in H-mode plasmas. Additional observations, such as, the duration of the lithium coatings, increases in core metal impurity radiation, and

  5. Surface enrichment in hot-dipped metallic coatings investigated by Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Payling, R.; Mercer, P. D.

    1985-05-01

    The treatment, appearance, and corrosion resistance of metallic coatings are largely governed by the chemical composition of the surface. Auger electron spectroscopy shows that the surfaces of hot-dipped metallic coatings differ markedly from the bulk compositions of the coatings. For example, the surfaces of terne coatings, lead-tin alloys, contain little lead. The conventional galvanized coating, which is more than 99% zinc, has a predominantly aluminium oxide surface. Typical surface compositions of a range of hot-dipped metallic coatings are provided. A qualitative prediction of the dominant metallic species present on the surface of each of these coatings is presented in terms of the relative oxygen affinities of the metals. Theoretical equations for various mechanisms, such as atomic size mismatch, solubility, and oxidation, which could lead to surface segregation are considered, in order to place the experimental observations on a more quantitative basis.

  6. Development of sol-gel icephobic coatings: effect of surface roughness and surface energy.

    PubMed

    Fu, Qitao; Wu, Xinghua; Kumar, Divya; Ho, Jeffrey W C; Kanhere, Pushkar D; Srikanth, Narasimalu; Liu, Erjia; Wilson, Peter; Chen, Zhong

    2014-12-10

    Sol-gel coatings with different roughness and surface energy were prepared on glass substrates. Methyl triethoxysilane (MTEOS), 3-Glycidyloxypropyl trimethoxysilane (GLYMO) and fluoroalkylsilane (FAS) were used to obtain a mechanically robust icephobic coating. Different amount of hydrophobic silica nano particles was added as fillers to introduce different roughness and surface energy to the coatings. The microstructure, roughness, and surface energy, together with elemental information and surface chemical state, were investigated at room temperature. The contact angle and sliding angle were measured at different temperatures to correlate the wetting behavior at low temperature with the anti-icing performance. The ice adhesion shear strength was measured inside an ice chamber using a self-designed tester. The factors influencing the ice adhesion were discussed, and the optimum anti-icing performance found in the series of coatings. It was found that lower surface energy leads to lower ice adhesion regardless of the roughness, while the roughness plays a more complicated role. The wetting behavior of the droplet on surface changes as temperature decreases. The anti-icing performance is closely related to the antiwetting property of the surfaces at subzero temperatures.

  7. Investigation of Surface Coatings on Silver Nanoparticles by Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kühn, Melanie; Ivleva, Natalia P.; Niessner, Reinhard; Baumann, Thomas

    2013-04-01

    The behavior of engineered inorganic nanoparticles (EINP) in the environment is strongly affected by their surface properties. Once introduced in the aquatic or terrestric environment, the nanoparticle surface may be altered by weathering or the formation of a coating. These changes influence the interactions of the nanoparticle with natural surfaces or interfaces as well as with other particles. Natural organic matter for example is known to have a stabilizing effect on most nanoparticles. Therefore the assessment of the fate and transport of nanoparticles in the environment requires a precise knowledge of the influence of the coating and its modifications under natural conditions. A suitable tool for the investigation of coatings on silver nanoparticles is surface enhanced Raman spectroscopy (SERS). Although silver nanoparticles themselves do not have a distinct Raman signal, the Raman signal of adsorbed or nearby substances is enhanced by a factor of 103 - 106. This leads to a considerably higher sensitivity of SERS in comparison to normal Raman microscopy. Therefore, coatings on silver nanoparticles should be accessible via the SERS effect. As a first step, plain and citrate stabilized silver nanoparticles were mixed with different natural coating substances (polygalacturonic acid, seaweed extract, and humic substances) and filtered with a polycarbonate filter to remove excessive coating material. Afterwards, the nanoparticles were redispersed from the filter by ultrasonification. This washing procedure was repeated three times while always maintaining the same concentration of nanoparticles. SERS spectra were recorded after each washing step with a LabRAM HR Raman mircospectrometer (Horiba Scientific, Japan, ? = 633 nm, 20x water-immersion-objective, measurement time 10 s). First results indicate the formation of a stabilizing layer around the nanoparticles after contact with humic substances, thus providing experimental evidence to the stabilization of EINP

  8. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  9. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Astrophysics Data System (ADS)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  10. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

    PubMed

    Reimhult, Kristina; Yoshimatsu, Keiichi; Risveden, Klas; Chen, Si; Ye, Lei; Krozer, Anatol

    2008-07-15

    Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.

  11. Tribological performance of ceramic coatings deposited on metal surfaces for micro-bearing biomedical applications

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Zykova, A.; Safonov, V.; Smolik, J.; Rogowska, R.; Luk'yanchenko, V.; Yakovin, S.

    2014-05-01

    Modification of metal materials by means of ceramic coating deposition is an effective way of forming alternative bearing surfaces. Ceramic AlN, Al2O3 and nanocomposite oxynitride coatings are widely used as protective coatings against wear, diffusion and corrosion. The enhancement of the mechanical properties, such as hardness parameters, effective Young's modulus, toughness, elastic recovery and wear resistance of the coatings, is very important for the tribological performance of the next generation of ceramic-coated ball bearing devices.

  12. Thermodynamics of hydrophobic interaction between silica surfaces coated with octadecyltrichlorosilane.

    PubMed

    Li, Zuoli; Yoon, Roe-Hoan

    2013-02-15

    Surface force measurements conducted with thiolated gold surfaces showed previously that hydrophobic interaction entails a decrease in excess film entropy, suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up work, surface force measurements have been conducted in the present work using an atomic force microscope (AFM) with silica surfaces coated with octadecyltrichlorosilane (OTS) at temperatures in the range of 10-40°C. A thermodynamic analysis of the results show that both the excess film entropy (ΔS(f)) and excess film enthalpy (ΔH(f)) decrease with decreasing thickness of the water films between the hydrophobic surfaces. It has been found also that |ΔH(f)|>|TΔS(f)|, which represents a necessary condition for the excess free energy change (ΔG(f)) to be negative and hence the hydrophobic interaction be attractive. Thus, the results obtained with both the thiolated and silylated surfaces show that hydrophobic forces originate from the structural changes in the medium. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce the free energy when they cannot form H-bonds to neighboring hydrophobic surfaces.

  13. Lateral forces on circularly polarizable particles near a surface

    PubMed Central

    Rodríguez-Fortuño, Francisco J.; Engheta, Nader; Martínez, Alejandro; Zayats, Anatoly V.

    2015-01-01

    Optical forces allow manipulation of small particles and control of nanophotonic structures with light beams. While some techniques rely on structured light to move particles using field intensity gradients, acting locally, other optical forces can ‘push' particles on a wide area of illumination but only in the direction of light propagation. Here we show that spin–orbit coupling, when the spin of the incident circularly polarized light is converted into lateral electromagnetic momentum, leads to a lateral optical force acting on particles placed above a substrate, associated with a recoil mechanical force. This counterintuitive force acts in a direction in which the illumination has neither a field gradient nor propagation. The force direction is switchable with the polarization of uniform, plane wave illumination, and its magnitude is comparable to other optical forces. PMID:26581479

  14. Lateral forces on circularly polarizable particles near a surface.

    PubMed

    Rodríguez-Fortuño, Francisco J; Engheta, Nader; Martínez, Alejandro; Zayats, Anatoly V

    2015-11-19

    Optical forces allow manipulation of small particles and control of nanophotonic structures with light beams. While some techniques rely on structured light to move particles using field intensity gradients, acting locally, other optical forces can 'push' particles on a wide area of illumination but only in the direction of light propagation. Here we show that spin-orbit coupling, when the spin of the incident circularly polarized light is converted into lateral electromagnetic momentum, leads to a lateral optical force acting on particles placed above a substrate, associated with a recoil mechanical force. This counterintuitive force acts in a direction in which the illumination has neither a field gradient nor propagation. The force direction is switchable with the polarization of uniform, plane wave illumination, and its magnitude is comparable to other optical forces.

  15. Superhydrophobic/superhydrophilic surfaces from a carbon nanotube based composite coating

    NASA Astrophysics Data System (ADS)

    Men, Xue-Hu; Zhang, Zhao-Zhu; Yang, Jin; Wang, Kun; Jiang, Wei

    2010-02-01

    A facile method for forming a MWNT-based composite coating with behavior of the superhydrophilic/superhydrophobic transition is demonstrated. The change of the surface microstructure and the surface chemical composition arising from increasing temperatures determines the surface wettability of the resulting composite coating. The coating surface shows the superhydrophobic property at 150, 200, and 360°, and displays superhydrophilic performance at 300°C.

  16. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  17. Surface effects and gold-nanostructure surface coating of whispering-gallery microresonators

    NASA Astrophysics Data System (ADS)

    Ganta, Deepak

    Scope and method of study. The purpose of this study is to explore the surface effects of high-quality-factor optical microsphere resonators and thin-film-coated microresonators in various ambient gases. In this work, we present a systematic study of the assembly and characterization of gold nanostructures. We employ a wet-chemical synthesis method for growing gold nanorods and a directed electrochemical method for assembly of gold nanowires. The adhesion methods of gold nanostructures on high-quality-factor optical microsphere resonators are also investigated. Findings and conclusions. A novel method is employed for measuring thermal accommodation coefficients of various gases like nitrogen, helium and ambient air on several coated and uncoated surfaces of fused-silica microresonators, operating at room temperature. This method is further extended to measure the absorption coefficient of a surface film or water layer on a fused-silica microresonator, and provides a novel method to find the water layer desorption and adsorption rates on the surface of a microresonator in the presence of gases like ambient air and nitrogen. We have adapted methods for growing gold nanorods of different aspect ratios (AR), and developed a novel method of growing high-AR (20-400) gold nanowires from low-AR gold nanorods. Various methods were discovered to coat these gold nanostructures and carbon nanotubes on the fused-silica surface. The most successful method involves surface modification with MPMDMS (i.e., silanization) before coating with gold nanorods. These coating methods have made microresonators useful for plasmonic sensing applications.

  18. Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices

    PubMed Central

    Viefhues, M.; Manchanda, S.; Chao, T.-C.; Anselmetti, D.; Regtmeier, J.; Ros, A.

    2011-01-01

    Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F108, poly (l-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-d-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F108 demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F108 proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable. PMID:21847528

  19. Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.

    PubMed

    Song, Jee Eun; Phenrat, Tanapon; Marinakos, Stella; Xiao, Yao; Liu, Jie; Wiesner, Mark R; Tilton, Robert D; Lowry, Gregory V

    2011-07-15

    A fundamental understanding of attachment of surface-coated nanoparticles (NPs) is essential to predict the distribution and potential risks of NPs in the environment. Column deposition studies were used to examine the effect of surface-coating hydrophobicity on NP attachment to collector surfaces in mixtures with varying ratios of octadecylichlorosilane (OTS)-coated (hydrophobic) glass beads and clean silica (hydrophilic) glass beads. Silver nanoparticles (AgNPs) coated with organic coatings of varying hydrophobicity, including citrate, polyvinylpyrrolidone (PVP), and gum arabic (GA), were used. The attachment efficiencies of GA and PVP AgNPs increased by 2- and 4-fold, respectively, for OTS-coated glass beads compared to clean glass beads. Citrate AgNPs showed no substantial change in attachment efficiency for hydrophobic compared to hydrophilic surfaces. The attachment efficiency of PVP-, GA-, and citrate-coated AgNPs to hydrophobic collector surfaces correlated with the relative hydrophobicity of the coatings. The differences in the observed attachment efficiencies among AgNPs could not be explained by classical DLVO, suggesting that hydrophobic interactions between AgNPs and OTS-coated glass beads were responsible for the increase in attachment of surface-coated AgNPs with greater hydrophobicity. This study indicates that the overall attachment efficiency of AgNPs will be influenced by the hydrophobicity of the NP coating and the fraction of hydrophobic surfaces in the environment.

  20. Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon- targeted delivery

    USDA-ARS?s Scientific Manuscript database

    This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...

  1. Do we need heparin coating for extracorporeal membrane oxygenation? New concepts and controversial positions about coating surfaces of extracorporeal circuits.

    PubMed

    Silvetti, Simona; Koster, Andreas; Pappalardo, Federico

    2015-02-01

    Blood contact with surfaces of the extracorporeal circuit provokes the activation of the coagulation system. To improve biocompatibility of the extracorporeal circuit without increasing the risk of bleeding, coatings of artificial surfaces were designed; many of them involve the use of heparin. Data in the literature show that heparin-induced thrombocytopenia is a major issue in the extracorporeal membrane oxygenation scenario, and no relevant benefits have been shown comparing heparin and no-heparin coating.

  2. Corrosion-resistant front surface aluminum mirror coatings

    NASA Astrophysics Data System (ADS)

    Guenther, Karl H.; Penny, Iain; Willey, Ronald R.

    1993-03-01

    Front surface metal mirrors need protection of the inherently fragile metal film deposited on a glass substrate. Conventional evaporated dielectric thin-film overcoats provide limited protection because of their less than dense packing. These films usually have a columnar structure with voids between the columns. The voids give access to the underlying metal film for humidity and corrosive gases or liquids. Some progress in developing better coatings was made in the early 1980s with ion-assisted deposition. Front surface aluminum mirrors with dielectric thin films deposited by reactive low-voltage ion plating have a still higher survival time, by a factor of up to three under comparable test conditions. The transmission of our best samples increased to only 10 percent when immersed in 0.2 M NaOH for 20 h. By comparison, an unprotected aluminum film dissolves in less than 5 min. Electron beam evaporated dielectric coatings provide protection for about 1.5 to 2 h in the same test solution. The reason for the significant improvement brought about by reactive low-voltage ion plating deposition, and its advantage for large-scale production is discussed.

  3. Ion Beam Textured and Coated Surfaces Experiment (IBEX)

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Stevens, Nicholas; Olle, Raymond; Merrow, James

    1992-01-01

    Ion beam textured and commercial materials suitable for use in space power systems were flown in low Earth orbit on the Long Duration Exposure Facility (LDEF) for 5.8 years. Because of their location on LDEF (98 deg from the ram direction), the 36 materials were primarily exposed to vacuum ultraviolet radiation, thermal cycling, the vacuum of space, the micrometeoroid environment, and grazing incidence atomic oxygen. Measurements of solar absorptance and thermal emittance (pre- and post-flight) showed no changes for almost all of the materials, except for the S-13G and Kapton and coated Kapton samples. The optical property stability of ion beam textured surfaces and most other surfaces indicates that they are functionally durable to the synergistic rigors of the space environment.

  4. Embroidered and surface coated polycaprolactone-co-lactide scaffolds

    PubMed Central

    Rentsch, Barbe; Bernhardt, Ricardo; Scharnweber, Dieter; Schneiders, Wolfgang; Rammelt, Stefan; Rentsch, Claudia

    2012-01-01

    Tissue engineering and regenerative techniques targeting bone include a broad range of strategies and approaches to repair, augment, replace or regenerate bone tissue. Investigations that are aimed at optimization of these strategies until clinical translation require control of systemic factors as well as modification of a broad range of key parameters. This article reviews a possible strategy using a tissue engineering approach and systematically describes a series of experiments evaluating the properties of an embroidered and surface coated polycaprolactone-co-lactide scaffold being considered as bone graft substitute for large bone defects. The scaffold design and fabrication, the scaffolds properties, as well as its surface modification and their influence in vitro are evaluated, followed by in vivo analysis of the scaffolds using orthotopic implantation models in small and large animals. PMID:23507867

  5. Boiling on horizontal surfaces coated with porous metal wicks

    SciTech Connect

    Abou-Zyan, H.Z.; Plumb, O.A.

    1997-07-01

    Boiling experiments intended to simulate heat pipe operating conditions were conducted on a copper surface covered with copper foametal and nickel fiber wicks 3.175 and 4.760 mm thick. The experiments were conducted on a horizontal surface open to the atmosphere with water as the working fluid. The experimental surface was operated like a heat pipe with distilled water supplied upstream of the heated section and transported by capillary action across a section which was adiabatic to the heated section where boiling took place. At low excess temperature, less than 10 to 20 C, the heat flux from the porous coated surfaces is comparable to or greater than that predicted for a smooth surface using the Rohsenow correlation. At higher excess temperatures corresponding to heat fluxes between 10{sup 5} and 10{sup 6} W/m{sup 2} the increase in heat flux with excess temperature is much less than that predicted by the Rohsenow correlation. When the wicks were vented by cutting slots covering 10 to 20% of the total surface area the heat flux increased, in some cases by a factor of three, for a given excess temperature. The heat flux at which the slope of the boiling curve decreased also increased for the vented surfaces. This is attributed to the provision of a low resistance path for the steam to escape providing a surface that is more highly wetted. A mathematical model for the transport with boiling in the porous wick is developed in an attempt to gain further understanding of the processes involved. The model predicts dryout conditions that are in reasonable agreement with experimental observations. However, the model predicts decreasing vapor pressure, and hence temperature, adjacent to the heated surface with increasing heat flux as a result of the decrease in relative permeability of the partially saturated wick.

  6. Functional analysis of bioactivated and antiinfective PDLLA - coated surfaces.

    PubMed

    Haidari, Selgai; Boskov, Marko; Schillinger, Ulrike; Bissinger, Oliver; Wolff, Klaus-Dietrich; Plank, Christian; Kolk, Andreas

    2017-06-01

    Common scaffold surfaces such as titanium can have side effects; for example, infections, cytotoxicity, impaired osseointegration, or low regeneration rates for bone tissue. These effects lead to poor implant integration or even implant loss. Therefore, bioactive implants are promising instruments in tissue regeneration. Osteoinductive elements-such as growth factors and anti-infectives-support wound healing and bone growth and thereby enable faster osseointegration, even in elderly patients. In this study, titanium surfaces were coated with a poly-(d,l-lactide) (PDLLA) layer containing different concentrations of copolymer-protected gene vectors (COPROGs) to locally provide bone morphogenetic protein-2 (BMP-2) or activated anti-infective agents, such as chlorhexidine gluconate, triclosan, and metronidazole, to prevent peri-implantitis. The coated titanium implants were then loaded with osteoblasts, NIH 3T3 fibroblasts, and human mesenchymal stem cells in 96-well plates. When shielded by COPROGs as a protective layer and resuspended in PDLLA, BMP-2-encoding pDNA at relatively low doses (5.63 µg/implant) induced the local expression of BMP-2. A linear dose dependence, which is common for recombinant growth factors, was not found, probably due to the retention property of the PDLLA surface. PDLLA, in general, successfully retains additional elements, such as osteoconductive growth factors (BMP-2) and anti-infective agents, which was demonstrated using metronidazole, and thus prevents the systemic application of excessive doses. These bioactive implant surfaces that provide the local release of therapeutic gene vectors or anti-infective agents allow the controlled stimulation of the implant and scaffold osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1672-1683, 2017. © 2017 Wiley Periodicals, Inc.

  7. Effect of cathodic polarization on coating doxycycline on titanium surfaces.

    PubMed

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth.

  8. Surface modifications and surface-protective coatings analyzed by means of thermal waves (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Bein, B. K.; Fotsing, J. L. N.; Gibkes, J.; Delgadillo-Holtfort, I.; Dietzel, D.; Pelzl, J.

    2003-01-01

    The depth profiles of the thermophysical properties of alloy systems, for example, shape memory alloys (NiTi), steel, and tool steel, can vary considerably due to rolling, surface machining, heat treatment, mechanical wear, and erosion. The same is true for coated tool steel samples, which show variations of the effective thermal depth profiles due to the effects of substrate preparation and deposition of the coatings, for example, plasma-etching, arc erosion, nitriding, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, and plasma spraying. In this work we present a large variety of measured effective thermal depth profiles. In a first step, we identify the effects of coating deposition and substrate preparation on the measured depth profiles. In a second step, we identify and try to quantify the effects of mechanical wear and erosion of both coated and uncoated surface. To this finality, the signals, which have been measured with the help of IR radiometry as a function of the modulation frequency, have been calibrated with reference signals measured for homogeneous samples of glassy carbon. The normalized amplitudes and phases have been approximated using layer models, mainly the two- and three-layer model with an opaque first layer, with respect to both the visible and the IR spectrum. Additionally, the signals measured for different coatings have been normalized against each other. By this latter calibration procedure, even smaller details and differences of coating deposition and substrate preparation can be identified, as well as the effects of wear and surface erosion. The virgin coated samples normally can well be described by the two-layer model, and the thermal transport parameters of the coatings as a whole can be determined quantitatively with rather good reliability (Ref. 1). The deviations from the two-layer model, which can be related to details of the deposition process, for example, to gradient layers or bond

  9. Relationships between surface roughness/stiffness of chitosan coatings and fabrication of corneal keratocyte spheroids: Effect of degree of deacetylation.

    PubMed

    Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    Fabrication of the cell spheroids from corneal keratocytes has important implications to the advance in tissue engineering while stimulation from the interface of a biopolymer coating has the ability to modulate this event. This study aims to investigate the dependence of keratocyte migration, proliferation, and differentiation on the surface roughness/stiffness of the chitosan coatings through modifications by degree of deacetylation (DD). After a series of deacetylation process, chitosan coatings with increasing DD exhibited significantly decreased surface roughness and increased surface stiffness. Relationships between the behaviors of rabbit corneal keratocytes (RCKs) and biopolymer coatings with varying DDs (between 75% and 96%) were also found during in vitro cultivation. Both the surface roughness increase and stiffness decrease could lead to enhanced cell migration, which is the main driving force for the early stage spheroid formation on chitosan substrates (e.g., within 8h). With these stimulations from the substrate interfaces, the size and morphology of RCK spheroids were greatly affected by the DD of chitosan. When fabricated on a lowered DD of chitosan material, the spheroids had a larger size with abundant extracellular matrix produced around the cells. At a later stage of spheroid cultivation (e.g., 5 days), significantly higher amount of RCKs on chitosan coatings was noted with increasing DD, indicating the substrate interface effects on cell proliferation. The keratocan expression of RCK spheroids grown on a lowered DD of chitosan was up-regulated, suggesting that both the surface roughness increase and stiffness decrease may facilitate the microenvironment for preservation of cellular phenotype. Overall, our work contributes to the scientific understanding of the keratocyte behaviors and spheroid fabrications in response to DD-mediated surface roughness/stiffness of chitosan coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  11. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings.

    PubMed

    Stafslien, Shane J; Christianson, David; Daniels, Justin; VanderWal, Lyndsi; Chernykh, Andrey; Chisholm, Bret J

    2015-01-01

    High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.

  12. Biofiltration as a Viable Alternative for Air Pollution Control at Department of Defense Surface Coating Facilities

    DTIC Science & Technology

    2007-03-01

    Perlite , and other inert materials Synthetic Material Indiginous Microorganism Population Density High Medium-Low High None None Surface ...POLLUTION CONTROL AT DEPARTMENT OF DEFENSE SURFACE COATING FACILITIES THESIS David M. Hudock, Captain, USMC AFIT/GES/ENV/07-M3 DEPARTMENT OF...DEPARTMENT OF DEFENSE SURFACE COATING FACILITIES THESIS Presented to the Faculty Department of Systems and Engineering Management

  13. Effect of silicon carbide on devitrification of a glass coating for reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.

    1978-01-01

    Devitrification (nucleation and growth of cristobalite) were investigated in the LI-0042 coating used for the space shuttle surface insulation. Excessive devitrification was found to be associated with the silicon carbide (SiC) constituent in the coating. Test results show that significant devitrification occurred only when SiC was present in the coating and when the thermal-exposure atmosphere was oxidizing.

  14. Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1974-01-01

    Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish (i.e., scratches, inclusions, etc.) act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.

  15. Explosive compact-coating of tungsten–copper alloy to a copper surface

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-03-01

    This study proposed a new method for coating tungsten–copper alloy to copper surface. First, the tungsten–copper alloy powder was pre-compacted to the copper surface. Then, the powder in the hydrogen atmosphere was sintered, and the pre-compacted powder was compacted by explosive compact-coating. Finally, diffusion sintering was conducted to improve the density of the coating layer. The theoretical density of the coating reached 99.3%. Microstructure characteristics indicated that tungsten and copper powders were well mixed. Tungsten particles were larger than copper particles. Scanning electron microscope (SEM) fracture surface analysis was different from the traditional fracture of metals. Coating and substrate joint surfaces, which were analyzed by SEM, indicated that the tungsten–copper alloy was sintered on the copper surface. The hardness of the coating layer was 197.6–245.2 HV, and the hardness of the substrate was approximately 55 HV.

  16. Structurally Integrated, Damage Tolerant Thermal Spray Coatings: Processing Effects on Surface and System Functionalities

    NASA Astrophysics Data System (ADS)

    Vackel, Andrew

    Thermal Spray (TS) coatings have seen extensive application as protective surfaces to enhance the service life of substrates prone to damage in their operating environment (wear, corrosion, heat etc.). With the advent of high velocity TS processes, the ability to deposit highly dense (>99%) metallic and cermet coatings has further enhanced the protective ability of these coatings. In addition to surface functionality, the influence of the coating application on the mechanical performance of a coated component is of great concern when such a component will experience either static or cyclic loading during service. Using a process mapping methodology, the processing-property interplay between coating materials meant to provide damage tolerant surface or for structural restoration are explored in terms of relevant mechanical properties. Most importantly, the residual stresses inherent in TS deposited coatings are shown to play a significant role in the integrated mechanical performance of these coatings. Unique to high velocity TS processes is the ability to produce compressive stresses within the deposit from the cold working induced by the high kinetic energy particles upon impact. The extent of these formation stresses are explored with different coating materials, as well as processing influence. The ability of dense TS coatings to carry significant structural load and synergistically strengthen coated tensile specimens is demonstrated as a function of coating material, processing, and thickness. The sharing of load between the substrate and otherwise brittle coating enables higher loads before yield for the bi-material specimens, offering a methodology to improve the tensile performance of coated components for structural repair or multi-functionality (surface and structure). The concern of cyclic fatigue damage in coated components is explored, since the majority of service application are designed for loading to be well below the yield point. The role of

  17. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  18. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low earth orbital environment. Thin film coatings of oxides such as SiO2 are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of SiO2 on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  19. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P. B.

    1984-01-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  20. Toxicity of nanoparticle surface coating agents: Structure-cytotoxicity relationship.

    PubMed

    Zhang, Ying; Li, Xiaoping; Yu, Hongtao

    2016-07-02

    Surface coating agents for metal nanoparticles, cationic alkyl ammonium bromides, and anionic alkyl sulfates were tested against human skin keratinocytes (HaCaT) and blood T lymphocytes (TIB-152). The surfactants of short chain (C8) are not cytotoxic, but as chain length increases, their cytotoxicity increases and levels off at C12 for cationic surfactants against both cell lines and for anionic surfactants against the TIB-152, but C14 for anionic surfactants against HaCaT. The cationic surfactants are more toxic than the anionic surfactants for HaCaT; while with similar cytotoxicity for TIB-152 cells. di- and tetra-Alkyl ammonium salts are more cytotoxic than the mono-substituted.

  1. Cuticle surface coat of plant-parasitic nematodes.

    PubMed

    Davies, Keith G; Curtis, Rosane H C

    2011-01-01

    The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.

  2. Ab Initio Investigation of Polyethylene Glycol Coating of TiO2 Surfaces

    PubMed Central

    2016-01-01

    In biomedical applications, TiO2 nanoparticles are generally coated with polymers to prevent agglomeration, improve biocompatibility, and reduce cytotoxicity. Although the synthesis processes of such composite compounds are well established, there is still a substantial lack of information on the nature of the interaction between the titania surface and the organic macromolecules. In this work, the adsorption of polyethylene glycol (PEG) on the TiO2 (101) anatase surface is modeled by means of dispersion-corrected density functional theory (DFT-D2) calculations. The two extreme limits of an infinite PEG polymer [−(OCH2CH2)n], on one side, and of a short PEG dimer molecule [H(OCH2CH2)2OH], on the other, are analyzed. Many different molecular configurations and modes of adsorption are compared at increasing surface coverage densities. At low and medium coverage, PEG prefers to lay down on the surface, while at full coverage, the adsorption is maximized when PEG molecules bind perpendicularly to the surface and interact with each other through lateral dispersions, following a mushroom to brush transition. Finally, we also consider the adsorption of competing water molecules at different coverage densities, assessing whether PEG would remain bonded to the surface or desorb in the presence of the aqueous solvent. PMID:28058086

  3. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  4. Boron nitride protective coating of beryllium window surfaces

    SciTech Connect

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment.

  5. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    PubMed

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain.

  6. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion.

    PubMed

    Shao, Wei; Zhao, Q

    2010-03-01

    Many studies suggest a strong antimicrobial activity of silver coatings. The biocidal activity of silver is related to the biologically active silver ion released from silver coatings. However, no studies have been reported on the effect of surface energy of silver coatings on antibacterial performance. In this paper, three silver coatings with various corrosion rates and surface energies were prepared on stainless steel plates using AgNO(3) based electroless plating solutions. The corrosion rate and surface energy of the silver coatings were characterized with CorrTest Electrochemistry Workstation and Dataphysics OCA-20 contact angle analyzer, respectively. The antibacterial performance of the silver coatings was evaluated with Pseudomonas aeruginosa PA01, which frequently causes medical device-associated infections. The experimental results showed that surface energy had significant influence on initial bacterial adhesion at low corrosion rate. The extended DLVO theory was used to explain the bacterial adhesion behavior.

  7. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  8. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-03-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  9. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-12-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  10. Surface plasmon response of metal spherical nanoshells coated with dielectric overlayer

    NASA Astrophysics Data System (ADS)

    Cheng, Peihong; Bao, Jilong; Wu, Ligang; Li, Xue; Zhao, Hongxia; Zhu, Renxiang; Wang, Jinxia; Li, Dongsheng

    2013-11-01

    Surface Plasmon Resonance (SPR) characteristics of metal spherical nanoshells coated with different dielectric overlayers were investigated in this Letter. Besides band position, it is found that the line width of the symmetric dipole SP resonance is affected by the overlayer coating when the coupling strength of the inner surface cavity mode and outer surface sphere mode is strong. When the surrounding dielectric constant is comparative to that of core silica, narrowest damping width is expected. The computation results also demonstrate that the quality factors and electromagnetic field distribution are dependent on the overlayer coating. Consequently, an appropriate dielectric overlayer coating may be an important way of tuning SP characteristics of metal nanoshells.

  11. Gaussian beams for surface waves in laterally slowly-varying media

    NASA Technical Reports Server (NTRS)

    Yomogida, K.

    1985-01-01

    Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. The elastodynamic equations of motion in ray-centered coordinates are derived, and a laterally slowly-varying approximation for elastodynamic equations is obtained. Parabolic equations for Love and Rayleigh waves are studied and solved, and the properties of Gaussian beams of seismic surface waves are examined.

  12. Gaussian beams for surface waves in laterally slowly-varying media

    NASA Technical Reports Server (NTRS)

    Yomogida, K.

    1985-01-01

    Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. The elastodynamic equations of motion in ray-centered coordinates are derived, and a laterally slowly-varying approximation for elastodynamic equations is obtained. Parabolic equations for Love and Rayleigh waves are studied and solved, and the properties of Gaussian beams of seismic surface waves are examined.

  13. The effect of hydroxyapatite coated screw in the lateral fragility fractures of the femur. A prospective randomized clinical study.

    PubMed

    Pesce, V; Maccagnano, G; Vicenti, G; Notarnicola, A; Moretti, L; Tafuri, S; Vanni, D; Salini, V; Moretti, B

    2014-01-01

    Due to a growing numbers of lateral fragility fractures of the femur and their high social costs the need to work out an effective strategy in order to find a better solution for these patients is warranted. From January 2010 to July 2011, we carried out a prospective randomized clinical study comparing the results of patients with femoral lateral fractures treated by nail and cephalic hydroxyapatite coated screws (study group including 27 patients) compared to the patients with the same fractures treated with nail and head standard screws (control group including 27 patients). We defined the two parts of the femoral neck as ROI 1 (under the head screw) and ROI 2 (above the femoral screw) on the AP view. The bone density of the two areas was calculated using DEXA at T0 (1st day post-surgery), at T1 (40th day post-surgery), at T2 (3 months later), at T3 (1 year later). The clinical-radiography evaluations were based on the Harris Hip Score (HHS), ADL test and x-ray views of the hip. As far as the bone mineral density average of ROI 1 and ROI 2 is concerned, we found a significant statistical increase at T1 and T3 in the study group, while it was not significant in the control group. We could account for this data through the higher mechanical stability of hydroxyapatite coated screws than standard screws. In fact, this material was responsible for improved implant osteointegration. Thanks to a 1 year follow-up we were able to demonstrate the implant utility associated with augmentation and the importance of densitometry exams such as easily repeatable and low cost diagnostics to prevent the onset of complications linked to screw loosening.

  14. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  15. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-03-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  16. Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface

    NASA Astrophysics Data System (ADS)

    Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Cinteză, Ludmila Otilia; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Ianchiş, Raluca; Anastasescu, Mihai; Stoica, Mihai

    2015-08-01

    Monolayer and bilayer coatings deposited on polypropylene (PP) surface were prepared by sol-gel process at room temperature. Monolayer coatings were produced from sol-gel acidic solutions, containing tetraethylorthosilicate (TEOS) and different co-precursors such as phenyltriethoxysilane (PhTES), octylmethyldimethoxysilane (OMDMS) and dodecyltriethoxysilane (DOTES). Bilayer coatings consist of one layer prepared in a similar way described for monolayer coatings, followed by a second layer, obtained from fluorinated silica nanoparticles dispersion. The fluorinated group has been confirmed by the presence of Csbnd F bonds along with network Sisbnd Osbnd Si vibrational mode. Water contact angle values registered for bilayer-coated polypropylene are higher, comparing with the reference (pristine PP) and with the monolayer-coated substrate, and varies as a function of the hydrophobic functional groups of the silica co-precursors: phenyl < octyl < dodecyl. The fluorooctyl functions lead to a significant decrease in the surface energy values for bilayer coating, with very small values of polar component.

  17. Quantifying surface-accessible quaternary charge for surface modified coatings via streaming potential measurements.

    PubMed

    Gupta, Murari L; Brunson, Kennard; Chakravorty, Asima; Kurt, Pinar; Alvarez, Julio C; Luna-Vera, Fernando; Wynne, Kenneth J

    2010-06-01

    Prior research established that P[AB]-copolyoxetane polyurethanes with soft blocks having A = trifluoroethoxy (CF(3)CH(2)-O-CH(2)-, 3FOx) and B = dodecylammonium-butoxy (C12) are highly effective as polymer surface modifiers (PSMs). These PSMs displayed high contact antimicrobial efficiency against spray challenge that was attributed to surface concentration of quaternary charge. Herein, using a novel cell design and polymer coating process, streaming potential (SP) measurements are reported for estimating accessible surface charge density. Fused-silica capillaries were embedded in flat polypropylene sheets, and the inner capillary walls were coated with neat HMDI-BD(30)-P[(3FOx)(C12)-87:13-5100] (PU-1) and 1 wt % PU-1 in HMDI-BD(50)-PTMO-1000 (base polyurethane 2). Effects of annealing (60 degrees C) and electrolyte flow cycles on near-surface quaternary charge concentration were determined. Neat PU-1 had a constant SP that was cycle-independent and actually increased on annealing. As-cast 1 wt % PU-1 showed initial SPs about half those for neat PU-1, with substantial attenuation over 16 measurement cycles. SPs for annealed 1 wt % PU-1 displayed lower initial values that attenuated rapidly over multiple cycles. Zeta potentials and surface charge densities were calculated from SPs and discussed relative to contact antimicrobial properties. Tapping mode atomic force microscopy (TM-AFM) imaging was employed for investigation of 1 wt % PU-1 surface morphology. Microscale phase separation occurs on annealing 1 wt % PU-1 for 24 h at 60 degrees C. Surprisingly, phase separation was also observed after short immersion of 1 wt % PU-1 coatings in water. The morphological changes are correlated with instability of near-surface charge found by SP measurements. A model is proposed for near-surface spinodal decomposition of metastable as-cast 1 wt % PU-1. The formation of a fluorous modifier rich phase apparently sequesters near-surface quaternary charge and accounts for

  18. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    PubMed

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings.

  19. Waveform synthesis of surface waves in a laterally heterogeneous earth by the Gaussian beam method

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Aki, K.

    1985-01-01

    The present investigation is concerned with an application of the Gaussian beam method to surface waves in the laterally heterogeneous earth. The employed method has been developed for ray tracing and synthesizing seismograms of surface waves in cases involving the laterally heterogeneous earth. The procedure is based on formulations derived by Yomogida (1985). Vertical structure of the wave field is represented by the eigenfunctions of normal mode theory, while lateral variation is expressed by the parabolic equation as in two-dimensional acoustic waves or elastic body waves. It is demonstrated that a large-amplitude change can result from a slight perturbation in the phase velocity model.

  20. Impact of substrate surface scratches on the laser damage resistance of multilayer coatings

    SciTech Connect

    Qiu, S; Wolfe, J; Monterrosa, A; Teslich, N; Feit, M; Pistor, T; Stolz, C

    2010-11-03

    Substrate scratches can limit the laser resistance of multilayer mirror coatings on high-peak-power laser systems. To date, the mechanism by which substrate surface defects affect the performance of coating layers under high power laser irradiation is not well defined. In this study, we combine experimental approaches with theoretical simulations to delineate the correlation between laser damage resistance of coating layers and the physical properties of the substrate surface defects including scratches. A focused ion beam technique is used to reveal the morphological evolution of coating layers on surface scratches. Preliminary results show that coating layers initially follow the trench morphology on the substrate surface, and as the thickness increases, gradually overcoat voids and planarize the surface. Simulations of the electrical-field distribution of the defective layers using the finite-difference time-domain (FDTD) method show that field intensification exists mostly near the top surface region of the coating near convex focusing structures. The light intensification could be responsible for the reduced damage threshold. Damage testing under 1064 nm, 3 ns laser irradiation over coating layers on substrates with designed scratches show that damage probability and threshold of the multilayer depend on substrate scratch density and width. Our preliminary results show that damage occurs on the region of the coating where substrate scratches reside and etching of the substrate before coating does not seem to improve the laser damage resistance.

  1. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    DOEpatents

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  2. Advantages of Oxide Films as Bases for Aluminum Pigmented Surface Coatings for Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Buzzard, R W; Mutchler, W H

    1931-01-01

    Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized.

  3. Efficient emission of positronium atoms from an Na-coated polycrystalline tungsten surface

    NASA Astrophysics Data System (ADS)

    Terabe, H.; Iida, S.; Wada, K.; Hyodo, T.; Yagishita, A.; Nagashima, Y.

    2013-06-01

    Time-of-flight spectra for the ortho-positronium emitted from clean and Na-coated tungsten surfaces have been measured using the pulsed slow positron beam at KEK-IMSS slow positron facility. Emission efficiency of positronium from the Na-coated sample was found to be several times greater than that from uncoated tungsten surfaces.

  4. Prospects of DLC coating as environment friendly surface treatment process.

    PubMed

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.

    PubMed

    Huang, Chun-Jen; Chu, Sz-Hau; Wang, Lin-Chuan; Li, Chien-Hung; Lee, T Randall

    2015-10-28

    Great care has been paid to the biointerface between a bulk material and the biological environment, which plays a key role in the optimized performance of medical devices. In this work, we report a new superhydrophilic adsorbate, called L-cysteine betaine (Cys-b), having branched zwitterionic groups that give rise to surfaces and nanoparticles with enhanced chemical stability, biofouling resistance, and inertness to environmental changes. Cys-b was synthesized from the amphoteric sulfur-containing amino acid, L-cysteine (Cys), by quaternization of its amino group. Gold surfaces modified with Cys-b exhibited prominent repellence against the nonspecific adsorption of proteins, bacteria, and fibroblast cells. In addition, Cys-b existed in zwitterionic form over a wide pH range (i.e., pH 3.4 to 10.8), and showed excellent suppression in photoinduced oxidation on gold substrates. Furthermore, the modification of hollow Ag@Au nanoshells with Cys-b gave rise to nanoparticles with excellent colloidal stability and resistance to coordinative interaction with Cu(2+). Taken together, the unique features of Cys-b offer a new nanoscale coating for use in a wide spectrum of applications.

  6. Surface-enhanced Raman spectroscopy of bacteria coated by silver

    NASA Astrophysics Data System (ADS)

    Efrima, Schlomo; Bronk, Burt V.; Czege, Jozsef

    1999-05-01

    We present a novel method to measure Raman spectra from whole bacteria cells by using Surface Enhanced Raman Scattering (SERS). We deposit a silver coat on Escherichia coli and Bacillus megaterium bacteria and measure strongly enhanced (greater than 400,000 fold) and highly reproducible Raman spectra. The spectra are rich but not overly congested, as the surface enhancement is selective to the precise chemical nature of the biochemical molecules, and their proximity to the silver particulate matter. The main bands we observe can be associated with peptides and polysaccharides in the cell- wall and its membrane. The spectra from E. coli (a Gram- negative bacterium) and B. megaterium (a Gram-positive bacterium) are similar in their general form, but differ in detail. The spectrum from a commercial yeast extract is vastly different. This approach can be extended to probe the internal chemical environment within bacteria and applied to the identification of micro-organisms also applied to studying other biochemical problems and phenomena, such as biomineralization, heavy metal toxicity, cell-wall structure and others.

  7. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  8. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  9. Increased Surface Fatigue Lives of Spur Gears by Application of a Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Cooper, Clark V.; Townsend, Dennis P.; Hansen, Bruce D.

    2003-01-01

    Hard coatings have potential for increasing gear surface fatigue lives. Experiments were conducted using gears both with and without a metal-containing, carbonbased coating. The gears were case-carburized AISI 9310 steel spur gears. Some gears were provided with the coating by magnetron sputtering. Lives were evaluated by accelerated life tests. For uncoated gears, all of fifteen tests resulted in fatigue failure before completing 275 million revolutions. For coated gears, eleven of the fourteen tests were suspended with no fatigue failure after 275 million revolutions. The improved life owing to the coating, approximately a six-fold increase, was a statistically significant result.

  10. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  11. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  12. Significance of osteogenic surface coatings on implants to enhance osseointegration under osteoporotic-like conditions.

    PubMed

    Javed, Fawad; Vohra, Fahim; Zafar, Sohail; Almas, Khalid

    2014-12-01

    The aim was to assess the significance of osteogenic surface coatings on implants to enhance osseointegration under osteoporotic-like (OP-like) conditions. To address the focused question "Do osteogenic surface coatings on implants enhance osseointegration under OP-like conditions?" PubMed/MEDLINE and Google-Scholar databases were searched from 1995 up to and including February 2014 using various keywords. Unpublished data, letters to the editor, review articles, and articles published in languages other than English were excluded. Of the 28 studies identified, 11 experimental studies were included. These studies were performed on bilaterally ovariectomized animals. In all studies, implant surface roughness was increased by various osteogenetic surface coatings including alumina, hydroxyapatite, calcium phosphate, and zoledronic acid. Nine studies reported that compared with non-coated surfaces, osteogenic coatings on implant surfaces increases bone volume and bone-to-implant contact (BIC) under OP-like conditions. In 2 studies, there was no difference in BIC around hydroxyapatite-coated implants placed in animals with and without OP-like conditions. Osteogenic coatings on implant surfaces enhanced osseointegration in animals with OP-like conditions. However, additional clinical studies are warranted to assess the role of osteogenic coatings in increasing osseointegration in patients with osteoporosis.

  13. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating.

    PubMed

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-09

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  14. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  15. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    PubMed Central

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-01-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts. PMID:27934970

  16. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    NASA Astrophysics Data System (ADS)

    Janmanee, Pichai; Muttamara, Apiwat

    2012-07-01

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  17. Analysis of surface plasmon polariton nanofocusing by asymmetric metal-coated dielectric probe: Partial metal-coating

    NASA Astrophysics Data System (ADS)

    Thu, Ngo Thi; Tanaka, Kazuo; Tanaka, Masahiro; Chien, Dao Ngoc

    2017-07-01

    For the purpose of developing the probe using surface plasmon polariton (SPP) nanofocusing that is valid for incident linearly polarized (LP) wave, the partially metal-coated dielectric conical probe is investigated numerically by the volume integral equation. It is found that it possible to perform SPP nanofocusing using this probe for incident LP Gaussian beam in addition to incident radially polarized (RP) beam. The basic characteristics of the strongly localized and enhanced optical near-fields on the tip of the probe and optical intensities inside the probe are investigated. For the incident LP beams, it is found that the optimum structure of the partially metal-coated dielectric probe exists. For the case of incident RP beam, partial metal-coating of the probe degrades the characteristic of nanofocusing, i.e., fully metal-coated conventional probe is the optimum shape for incident RP beam.

  18. Fabrication of self-lubricating cobalt coatings on metal surfaces

    NASA Astrophysics Data System (ADS)

    Friedman, Hilla; Eidelman, Orly; Feldman, Yishay; Moshkovich, Alexey; Perfiliev, Vladislav; Rapoport, Lev; Cohen, Hagai; Yoffe, Alexander; Tenne, Reshef

    2007-03-01

    Composite coatings of Co + fullerene-like WS2 nanoparticles on stainless steel substrate were obtained through electroless deposition, using DMAB (dimethyl borane complex, 97%) as the reducing agent, and by electroplating in acidic solution. Phase analysis results show that the coatings consist of Co and the fullerene-like WS2 nanoparticles alone. Tribological measurements show reduced wear and friction of the composite coatings as compared with the pure cobalt film or the stainless steel substrate.

  19. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    NASA Astrophysics Data System (ADS)

    Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M.

    2015-12-01

    This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O2 plasma treated and SWCNT coated PET fabric was better and worse than that of N2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated and SWCNT coated PET fabrics also increased with the increasing SWCNT concentration, curing time and curing temperature in the range studied. Plasma conditions and SWCNT coating parameters had signally influence on the antistatic property of plasma treated and SWCNT coated PET fabrics. Therefore, adequate parameters should be carefully selected for the optimum antistatic property of the plasma treated and SWCNT coated PET fabrics.

  20. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    PubMed

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  1. Normal-mode analysis of lateral diffusion on a bounded membrane surface.

    PubMed Central

    Koppel, D E

    1985-01-01

    The normal-mode analysis of fluorescence redistribution after photobleaching, introduced for the characterization of lateral diffusion on spherical membrane surfaces, has been generalized and extended to other surface geometries. Theoretical expressions are derived for the characteristic values and orthogonal characteristic functions of the diffusion equations for cylindrical surfaces, ellipsoids of revolution and dimpled discoidal surfaces. On the basis of these results, a simple analytical function is proposed as an empirical solution for the analysis of photobleaching data on a variety of discoidal surfaces. Special experimental and computational methods for determining the surface-diffusion coefficient are described, and demonstrated with data for lipid diffusion in erythrocyte membranes. PMID:3978205

  2. Obtaining composite Zr-Al-O coating on the surface of zirconium by microplasma oxidation

    SciTech Connect

    Gubaidulina, Tatiana A. E-mail: ostk@mail2000ru; Kuzmin, Oleg S. E-mail: ostk@mail2000ru; Fedorischva, Marina V. E-mail: kmp1980@mail.ru; Kalashnikov, Mark P. E-mail: kmp1980@mail.ru; Sergeev, Viktor P.

    2014-11-14

    The paper describes the application of the microplasma oxidation for production of Zr-Al-O composition on the surface of zirconium. Certification of a new-type power supply for depositing oxide ceramic coatings by microplasma oxidation was also carried out. The growth rate of Zr-Al-O coating amounted around 0.2 nm/s, which around 10 times exceeds that for depositing similar coatings using the similar equipment. We have studied the change of surface morphology and the chemical composition of the formed ceramic coating by means of EVO 50 scanning electron microscope and X-ray spectral analysis.

  3. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  4. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  5. Lateral Casimir Force on a Rotating Particle near a Planar Surface.

    PubMed

    Manjavacas, Alejandro; Rodríguez-Fortuño, Francisco J; García de Abajo, F Javier; Zayats, Anatoly V

    2017-03-31

    We study the lateral Casimir force experienced by a particle that rotates near a planar surface. The origin of this force lies in the symmetry breaking induced by the particle rotation in the vacuum and thermal fluctuations of its dipole moment, and therefore, in contrast to lateral Casimir forces previously described in the literature for corrugated surfaces, it exists despite the translational invariance of the planar surface. Working within the framework of fluctuational electrodynamics, we derive analytical expressions for the lateral force and analyze its dependence on the geometrical and material properties of the system. In particular, we show that the direction of the force can be controlled by adjusting the particle-surface distance, which may be exploited as a new mechanism to manipulate nanoscale objects.

  6. Lateral hydrodynamic interactions between an emulsion droplet and a flat surface evaluated by frictional force microscopy.

    PubMed

    Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Higashitani, Ko; Grieser, Franz

    2010-06-01

    We introduce a lateral atomic force microscopy (AFM) method to measure the hydrodynamic drag force acting on a microscopic emulsion droplet moving parallel to a flat surface. A tetradecane oil droplet formed in an aqueous solution of sodium dodecylsulfate was attached to a V-shaped atomic force microscopy cantilever, and lateral hydrodynamic interactions between the droplet and a flat glass surface were measured using a range of scanning velocities. The droplet was positioned either far from the oscillating surface or was pressed to the surface under a constant applied load. These measurements demonstrate the feasibility of using AFM to study lateral hydrodynamic interactions and lubricity between soft matter materials relevant to a large number of applications in areas as diverse as flavor delivery in foods to the applications of emulsions or emollients in personal care products.

  7. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity.

    PubMed

    Ma, Chufan; Nagai, Akiko; Yamazaki, Yuko; Toyama, Takeshi; Tsutsumi, Yusuke; Hanawa, Takao; Wang, Wei; Yamashita, Kimihiro

    2012-02-01

    The use of micro-arc oxidation titania (MAO TiO2) coatings to modify titanium surfaces improves the biocompatibility of implant surfaces. To obtain hydrophilic MAO TiO2 coating surfaces electric polarization, which induces surface electric fields in the materials and produces surface charges, was performed in this study. Electric polarization of the MAO TiO2 coatings was confirmed by measuring the thermally stimulated depolarization current. After electric polarization treatment the MAO TiO2 coatings did not exhibit any obvious changes in surface roughness, morphology, or phase components. X-ray photoelectron spectroscopy results indicated that electric polarization resulted in oxidation of the cathodic-faced surfaces and reduction of the anodic-faced surfaces. This result suggests that the existence of a concentration gradient of oxide ions/oxygen vacancies produced the stored space charge in the coatings. Reduction of the deionized water contact angle on the polarized MAO TiO2 surfaces was maintained for longer periods compared with the non-polarized surface. Our study demonstrated that metastable electric fields across the MAO TiO2 coating produced by electric polarization made it durably wettable by reducing the interfacial surface tension between the material and water.

  8. Effects of graphene coating and charge injection on water adsorption of solid surfaces.

    PubMed

    Guo, Yufeng; Guo, Wanlin

    2013-11-07

    The adhesion and cohesion of water molecules on graphene-coated and bare copper and mica substrates under charge injection have been extensively studied by first-principles calculations. Water adsorption on graphene-coated copper surface is weakened by injecting negative charges into the substrate, while enhanced by positive charges. Both negatively and positively charge injecting on graphene-coated mica strengthen the adsorption between water and the surface. While the adhesive and cohesive energies of water adsorption on charged bare copper and mica exhibit similar trends and much stronger response to charge injection. The charge sensitivity of water adsorbing on positively charged surfaces is significantly weakened by the graphene coating layer, mainly due to lower interfacial charge exchange. Our results suggest a viable way to modify water adsorption on a graphene-coated surface and unveil the role of graphene as a passivation layer for the wetting of a charged substrate.

  9. Formation, Removal, and Reformation of Surface Coatings on Various Metal Oxide Surfaces Inspired by Mussel Adhesives.

    PubMed

    Kang, Taegon; Oh, Dongyeop X; Heo, Jinhwa; Lee, Han-Koo; Choy, Seunghwan; Hawker, Craig J; Hwang, Dong Soo

    2015-11-11

    Mussels survive by strongly attaching to a variety of different surfaces, primarily subsurface rocks composed of metal oxides, through the formation of coordinative interactions driven by protein-based catechol repeating units contained within their adhesive secretions. From a chemistry perspective, catechols are known to form strong and reversible complexes with metal ions or metal oxides, with the binding affinity being dependent on the nature of the metal ion. As a result, catechol binding with metal oxides is reversible and can be broken in the presence of a free metal ion with a higher stability constant. It is proposed to exploit this competitive exchange in the design of a new strategy for the formation, removal, and reformation of surface coatings and self-assembled monolayers (SAM) based on catechols as the adhesive unit. In this study, catechol-functionalized tri(ethylene oxide) (TEO) was synthesized as a removable and recoverable self-assembled monolayer (SAM) for use on oxides surfaces. Attachment and detachment of these catechol derivatives on a variety of surfaces was shown to be reversible and controllable by exploiting the high stability constant of catechol to soluble metal ions, such as Fe(III). This tunable assembly based on catechol binding to metal oxides represents a new concept for reformable coatings with applications in fields ranging from friction/wettability control to biomolecular sensing and antifouling.

  10. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  11. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  12. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jung-Hui; Chang, Shuo-Hung

    2010-01-01

    This study presents the surface adhesion between hexagonal boron nitride nanotube (BNNT) and silicon based on lateral manipulation in an atomic force microscope (AFM). The BNNT was mechanically manipulated by the lateral force of an AFM pyramidal silicon probe using the scan mechanism in the imaging mode. With a controlled normal force of the AFM probe and the lateral motion, the lateral force applied to the BNNT could overcome the surface adhesion between BNNT and silicon surface. The individual BNNT is forced to slide and rotate on the silicon surface. Based on the recorded force curve, the calculated shear stress due to surface adhesion is 0.5 GPa. And the specific sliding energy loss is 0.2 J/m 2. Comparing BNNTs and carbon nanotube (CNT), the shear stress and specific sliding energy loss of BNNT are an order of magnitude larger than that of CNT. Therefore, the results show that the surface adhesion between BNNT and silicon surface is higher than that of CNT.

  14. Proximal metatarsal articular surface shape and the evolution of a rigid lateral foot in hominins.

    PubMed

    Proctor, Daniel J

    2013-12-01

    This study quantifies the proximal articular surface shape of metatarsal (MT) 4 and MT 5 using three-dimensional morphometrics. Humans and apes are compared to test whether they have significantly different shapes that are skeletal correlates to comparative lateral foot function. In addition, shod and unshod humans are compared to test for significant differences in surface shape. The MT 4 fossils OH 8, Stw 628, and AL 333-160, and the MT 5 fossils AL 333-13, AL 333-78, OH 8, and Stw 114/115 are compared with humans and apes to assess whether they bear greater similarities to humans, which would imply a relatively stable lateral foot, or to apes, which would imply a flexible foot with a midfoot break. Apes have a convex curved MT 4 surface, and humans have a flat surface. The MT 4 fossils show greater similarity to unshod humans, suggesting a stable lateral foot. Unshod humans have a relatively flatter MT 4 surface compared with shod humans. There is much overlap in MT 5 shape between humans and apes, with more similarity between humans and Gorilla. The fossil MT 5 surfaces are generally flat, most similar to humans and Gorilla. Because of the high degree of shape overlap between humans and apes, one must use caution in interpreting lateral foot function from the proximal MT 5 surface alone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Study on the in vitro release behavior of bovine serum albumin from calcium phosphate coating on pure titanium surface].

    PubMed

    Zhu, Xiaojing; Wang, Yan; Zhang, Hui; Teng, Wei; Ning, Chengyun; Zheng, Huade

    2014-09-01

    To study the incorporation rate and release behavior of bovine serum albumin (BSA) incorporated into the calcium phosphate coating by biomimetic deposition, as well as the physical and chemical properties of the hybrid coating, and to provide experimental basis for the fabrication of growth factor/biomimetic calcium phosphate coating and exploration for the loading/release behavior of growth factors. Pure titanium specimens were immersed into saturated calcium phosphate solutions(SCP) containing no BSA (controlled group) and 3 different concentrations of BSA (experimental groups) : 1, 10 and 100 mg/L. Biomimetic calcium phosphate coating was formed on titanium surface and BSA was incorporated into the coating through co-deposition. The topography of the specimen was observed using scanning electron microscopy (SEM). Chemical structure and phase composition of coatings were detected by Fourier infrared spectroscopy (FTIR) analysis and X-ray diffraction (XRD) respectively. BSA incorporation rate and release profile were determined by bicinchoninic acid protein assay kit. The biomimetic calcium phosphate coating was mainly composed of hydroxyapatite and octacalcium phosphate. BSA was successfully incorporated into the calcium phosphate coatings in all the 3 experimental groups. With the increase of BSA concentration, plate-like units of the coatings were turned into small grid structure. BSA incorporation rates of the three experimental groups were (72.4 ± 2.4)%, (62.3 ± 0.9)% and (42.2 ± 1.7)% respectively. The in vitro release test showed that all three BSA release profiles could be divided into two significant different stages: early burst release stage and later sustained release stage. The amount of BSA release of the 3 experimental groups in 24 h and 30 d were (1.57 ± 0.09), (8.82 ± 0.93), (140.24 ± 3.12) µg, and (2.39 ± 0.29), (14.39 ± 0.70), (151.06 ± 2.00) µg respectively. Biomimetic calcium phosphate coating can be used as an effective carrier for

  16. Effects of Tooth Coating Material and Finishing Agent on Bleached Enamel Surfaces by KTP Laser

    PubMed Central

    Kameda, Ayumi; Masuda, Yoshiko Murakami; Teruo, Toko; Yamada, Yoshishige; Kimura, Yuichi; Tamaki, Yukimichi; Miyazaki, Takashi

    2013-01-01

    Objective: The purpose of this study was to evaluate the effect of tooth coating material and finishing agent on bleached enamel surfaces after using KTP laser with 27% hydrogen peroxide. Background data: There have been few reports on the effects of tooth coating materials and finishing agents after bleaching. Methods: After 40 crowns of human extracted maxillary incisors were bleached by KTP laser, bleached enamels were finished with fluoride only or both of fluoride and nano-hydroxyapatite as a finishing agent. After application(s) of fluoride and/or finishing agent, the enamel surfaces were divided into 2 groups, which were covered with the coating material or without coating material. After application of coating materials, all specimens were kept for 2 weeks at 37°C of 100% humidity. After removing the coating material, color changing was measured and enamel surfaces were examined by scanning electron microscopy (SEM). Results: SEM observation of enamel surfaces treated the fluoride gel, finishing agent and coating material showed the most flattered surface compared to other groups. By measuring the color changing, few color changing was observed on the enamel surfaces treated the fluoride gel, finishing agents and coating material. Conclusion: These results suggested that applications of fluoride gel, finishing agent and coating material made the enamel-surfaces flattered and kept effects of bleaching, could prevent the re-coloration. After applications of fluoride gel and finishing agent, covering the bleached-enamel surfaces with the coating material enhanced the keeping whiteness. It would give the patients satisfaction of whiteness. PMID:24155557

  17. Surface treatments and edible coatings in food preservation

    USDA-ARS?s Scientific Manuscript database

    The use of synthetic and natural waxes and resins to coat fresh fruits and vegetables has been researched and practiced in the United States, the United Kingdom and Australia since the 1930s. Development of edible coatings for use on meat products was fist reported in the late 1950s. Currently, ed...

  18. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the

  19. Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.

    PubMed

    Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen

    2014-10-01

    The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system.

  20. Rust inhibiting coatings. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations and selected patents concerning coatings used to inhibit or prevent rust. Films, pigments, paints, resins, pastes, plastisols, cleaning liquids, and paper are examined for rust inhibiting characteristics. Coatings and rust prevention programs used on automobiles are emphasized. (Contains 250 citations and includes a subject term index and title list.)

  1. Crack-free surface sealing of plasma sprayed ceramic coatings using an excimer laser

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2002-01-01

    Yttria stabilized zirconia coatings are typically used in the aerospace industry as high-temperature thermal barriers. These coatings are normally applied by plasma thermal spray, which has an inherent problem of producing coatings containing a substantial amount of open or closed porosity. Surface sealing of plasma sprayed ceramic coatings with CO 2 and Nd:YAG lasers is always associated with the problem of cracking on melted layers. Although some attempts such as pre-heating have been used to overcome the problem, formation of cracking is still not prevented, especially in zirconia-based ceramic coatings. The present work investigates an alternative method of surface sealing of plasma sprayed 8 wt.% Y 2O 3-ZrO 2 coatings using an excimer laser. The results show that smooth, crack-free and crater-free sealing can be obtained. Effects of laser operating parameters on the sealing quality and involved mechanism are also discussed.

  2. Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings.

    PubMed

    Chang, Chia-Chih; Kolewe, Kristopher W; Li, Yinyong; Kosif, Irem; Freeman, Benny D; Carter, Kenneth R; Schiffman, Jessica D; Emrick, Todd

    2016-03-23

    Hydration is central to mitigating surface fouling by oil and microorganisms. Immobilization of hydrophilic polymers on surfaces promotes retention of water and a reduction of direct interactions with potential foulants. While conventional surface modification techniques are surface-specific, mussel-inspired adhesives based on dopamine effectively coat many types of surfaces and thus hold potential as a universal solution to surface modification. Here, we describe a facile, one-step surface modification strategy that affords hydrophilic, and underwater superoleophobic, coatings by the simultaneous deposition of polydopamine (PDA) with poly(methacryloyloxyethyl phosphorylcholine) (polyMPC). The resultant composite coating features enhanced hydrophilicity (i.e., water contact angle of ~10° in air) and antifouling performance relative to PDA coatings. PolyMPC affords control over coating thickness and surface roughness, and results in a nearly 10 fold reduction in Escherichia coli adhesion relative to unmodified glass. The substrate-independent nature of PDA coatings further promotes facile surface modification without tedious surface pretreatment, and offers a robust template for codepositing polyMPC to enhance biocompatibility, hydrophilicity and fouling resistance.

  3. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  4. High-Power Diode Laser Surface Treated HVOF Coating to Combat High Energy Particle Impact Wear

    NASA Astrophysics Data System (ADS)

    Mann, B. S.; Arya, Vivek; Pant, B. K.

    2013-07-01

    High-velocity oxy-fuel (HVOF)-sprayed coatings have performed exceptionally well in low-energy particle impact wear and are accepted worldwide. However, their application for high-energy particle impact wear (HEPIW) requires a different approach and more efforts. HVOF-coating systems typically use WC-Co, WC-Co-Cr, WC-Ni-Cr, and FeCrAlY-Cr3C2 powders. WC-Co-Cr powders are preferred when there is a high demand for corrosion resistance. WC-10Co-4Cr coating powder has been selected in the current study. To improve coating properties such as microhardness, fracture toughness, and HEPIW resistance, a new approach of surface treatment with robotically controlled high-power diode laser (HPDL) is attempted. The robotically controlled HVOF-coating deposition and laser surface treatment were monitored using real-time diagnostic control. The HPDL-treated coating has been compared with "as-sprayed" HVOF coating for HEPIW resistance, fracture toughness, microhardness and microstructure. The coating characteristics and properties after laser surface treatment have improved many times compared with "as-sprayed" HVOF coating. This is due to the elimination of pores in the coating and formation of a metallurgical bond between coating and substrate. This new development opens up a possibility of using such laser treatments in specialized areas where HEPIW damages are acute. The fracture toughness and HEPIW resistance along with optical micrographs of HPDL-treated and untreated HVOF coatings are discussed and reported in this article. HEPIW resistance is observed to be proportional to the product of fracture toughness and microhardness of the HVOF coating.

  5. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    PubMed

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.

  6. Surface studies of Os/Re/W alloy-coated impregnated tungsten cathodes

    SciTech Connect

    Ares Fang, C.S. ); Maloney, C.E. )

    1990-05-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os/Re/W alloy at right angles were studied to compare the effects of Os/Re/W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os/Re/W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os/Re/W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os/Re/W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces.

  7. The lateral surface drag coefficient of cylindrical spacecraft in a rarefied finite temperature atmosphere

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.

    1985-01-01

    In the present determination of the free molecule flow drag coefficient for a cylindrical spacecraft flying parallel to its principal axis, the lateral surface effects of thermal motion are explicitly included in terms of the average impact angle of the incident gas momentum vector. Kinetic theory is used to characterize self-shadowing, as well as to obtain an expression for the lateral surface coefficient in terms of the average impact angle of the incident momentum vector and the fractional momentum transfer along the line of impact. It is found that, for a length/diameter ratio of about 5, the lateral surface contribution to the drag coefficient is comparable to that of the front face.

  8. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For...

  9. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use equation 1 of this...

  10. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use equation 1 of this...

  11. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  12. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For...

  13. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  14. 40 CFR 63.5752 - How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... content of aluminum recreational boat surface coatings? 63.5752 Section 63.5752 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings? (a) Use...

  15. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  16. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  17. Response of human fibroblasts to implant surface coated with titanium dioxide photocatalytic films.

    PubMed

    Hoshi, Noriyuki; Negishi, Hideyuki; Okada, Shusaku; Nonami, Toru; Kimoto, Katsuhiko

    2010-10-01

    This study was to develop a titanium dioxide (TiO(2))-coated implant abutment, surface with ultraviolet (UV) light-induced hydrophilicity and investigate the initial response of human, fibroblasts to the surface modification. Commercially pure titanium (JIS 2 grade) disks were coated with TiO(2) to various, thicknesses (1, 2 or 3 μm) using peroxotitanium acid solution. The surface characteristics of each disk, were examined with X-ray diffraction (XRD), surface roughness equipment and scanning electron, microscopy (SEM). The hydrophilic change of each disk was determined by the contact angles at 0-24h, after 24-h UV irradiation. The biological response at the surface of each disk was examined by using, human periodontal ligament fibroblasts (HPLFs). The data were statistically analyzed with analysis of variance (ANOVA) and multiple-comparison tests. The TiO(2)-coated disk surface had an anatase structure. Surface roughness did not differ, significantly among the disks; the surface morphology was smooth and had a hydrophilic or superhydrophilic, status. HPLF proliferation significantly increased on the TiO(2)-coated disks compared with the uncoated disks and depended upon the coated film thickness. An anatase TiO(2)-coated surface under UV irradiation markedly improves the initial response of human fibroblasts. Copyright © 2010 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    SciTech Connect

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  19. Coat formation of surface-active proteins on aqueous surfaces during drying.

    PubMed

    Nijdam, J; Trouillet, V; Kachel, S; Scharfer, P; Schabel, W; Kind, M

    2014-11-01

    Segregation of the protein bovine serum albumin (BSA) and lactose in thin aqueous films during drying was investigated by examining the composition of the dried films using inverse micro Raman spectroscopy (IMRS) and X-ray photoelectron spectroscopy (XPS) sputter-depth profiling. The composition was uniform through the thickness of the dried films except within a 10nm region at the exposed surface where BSA had accumulated, most likely due to its surface activity. The thickness of the BSA layer was similar to the diameter of a BSA molecule, which suggests that a single monolayer of BSA adsorbed at the exposed surface. The BSA surface concentration of the dried films was constant over a wide range of BSA bulk concentrations, indicating that the aqueous surface became saturated with BSA during drying. The BSA surface layer of order 10nm was significantly thinner than the film thickness of order 10 μm, which implies that BSA formed a surface coating rather than a shell, and thus lent no structural rigidity to the film.

  20. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review

    PubMed Central

    Elzaki, Baha I.; Zhang, Yue Jun

    2016-01-01

    Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625

  1. Effect of silicon carbide ceramic coating process on the mirror surface quality

    NASA Astrophysics Data System (ADS)

    Wang, Peipei; Wang, Li; Wang, Gang; Bai, Yunli; Wang, Peng; Xiao, Zhenghang

    2016-10-01

    Silicon carbide, as a new reflector material, its excellent physical and chemical properties has been widely recognized by the industry. In order to make SiC mirror better used in space optical system, we used digital coating equipment during its coating process. By using ion-assisted electron evaporation method, we got a complete metal reflective film system on the surface of finely polished silicon carbide mirror. After automated coating process, by adjusting the coating parameters during the process, the surface roughness of silicon carbide improved from 7.8 nm to 5.1 nm, and the average optical reflectance of the surface reached 95% from visible to near-infrared. The metal reflective film system kept well after annealing and firmness test. As a result, the work of this paper will provide an important reference for high-precision coating process on large diameter SiC mirror.

  2. Effect of surface catalysis on heating to ceramic coated thermal protection systems for transatmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Kolodziej, Paul; Henline, William D.; Pincha, Elizabeth M. W.

    1988-01-01

    This paper describes the effect of surface catalysis on the heat transfer rate to the heat shield of a typical Transatmospheric Vehicle (TAV) during ascent and atmospheric entry. Surface kinetics and optical properties obtained from arc-jet tests on candidate thermal protection systems (coated metals) were used in a reacting boundary layer code to estimate the heating distribution along the surface of a TAV. Thermochemical stability of the coatings is described in terms of reduction in emittance and loss of opacifiers from the coatings during the arc-jet tests.

  3. Influence of color coatings on aircraft surface ice detection based on multi-wavelength imaging

    NASA Astrophysics Data System (ADS)

    Zhuge, Jing-chang; Yu, Zhi-jing; Gao, Jian-shu; Zheng, Da-chuan

    2016-03-01

    In this paper, a simple aircraft surface ice detection system is proposed based on multi-wavelength imaging. Its feasibility is proved by the experimental results. The influence of color coatings of aircraft surface is investigated. The results show that the ice area can be clearly distinguished from the red, white, gray and blue coatings painted aluminum plates. Due to the strong absorption, not enough signals can be detected for the black coatings. Thus, a deep research is needed. Even though, the results of this paper are helpful to the development of aircraft surface ice detection.

  4. Effect of surface catalysis on heating to ceramic coated thermal protection systems for transatmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Kolodziej, Paul; Henline, William D.; Pincha, Elizabeth M. W.

    1988-01-01

    This paper describes the effect of surface catalysis on the heat transfer rate to the heat shield of a typical Transatmospheric Vehicle (TAV) during ascent and atmospheric entry. Surface kinetics and optical properties obtained from arc-jet tests on candidate thermal protection systems (coated metals) were used in a reacting boundary layer code to estimate the heating distribution along the surface of a TAV. Thermochemical stability of the coatings is described in terms of reduction in emittance and loss of opacifiers from the coatings during the arc-jet tests.

  5. Adsorption of a binary gas mixture which laterally interacts on a random heterogeneous surface

    SciTech Connect

    Ritter, J.A.

    1992-10-01

    Analytical expressions for the adsorption of a binary gas mixture which laterally interacts on a heterogeneous surface are developed. The lateral interactions are of the Bragg-Williams type and the surface heterogeneity is modeled via a random distribution of sites described by a uniform distribution of Henry`s Law constants. The parametric study shows that complex phase behavior can be predicted, including azeotropes and sigmoidal shaped X-Y diagrams. Also, this model may be useful for modeling and designing adsorption processes as it requires few iterations to simultaneously solve the implicit and coupled algebraic expressions.

  6. Adsorption of a binary gas mixture which laterally interacts on a random heterogeneous surface

    SciTech Connect

    Ritter, J.A.

    1992-01-01

    Analytical expressions for the adsorption of a binary gas mixture which laterally interacts on a heterogeneous surface are developed. The lateral interactions are of the Bragg-Williams type and the surface heterogeneity is modeled via a random distribution of sites described by a uniform distribution of Henry's Law constants. The parametric study shows that complex phase behavior can be predicted, including azeotropes and sigmoidal shaped X-Y diagrams. Also, this model may be useful for modeling and designing adsorption processes as it requires few iterations to simultaneously solve the implicit and coupled algebraic expressions.

  7. Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces

    NASA Astrophysics Data System (ADS)

    Eder, S. J.; Bianchi, D.; Cihak-Bayr, U.; Gkagkas, K.

    2017-03-01

    In this work we discuss a method to generate laterally periodic polycrystalline samples with fractal surfaces for use in molecular dynamics simulations of abrasion. We also describe a workflow that allows us to produce random lateral distributions of simple but realistically shaped hard abrasive particles with Gaussian size distribution and random particle orientations. We evaluate some on-the-fly analysis and visualization possibilities that may be applied during a molecular dynamics simulation to considerably reduce the post-processing effort. Finally, we elaborate on a parallelizable post-processing approach to evaluating and visualizing the surface topography, the grain structure and orientation, as well as the temperature distribution in large atomistic systems.

  8. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    PubMed

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity.

  9. Oxygen post-treatment of plastic surface coated with plasma polymerized silicon-containing monomers

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.; Hollanhan, J. R., Jr. (Inventor)

    1979-01-01

    The abrasion resistance of plastic surfaces coated with polymerized organosilanes can be significantly improved by post-treatment of the polymerized silane in an oxygen plasma. For optical purposes, the advantages of this post-treatment are developed with a transparent polycarbonate resin substrate coated with plasma polymerized vinyltrimethoxysilane.

  10. Composition and method for cleaning embedded soil from surfaces having low gloss coatings

    NASA Astrophysics Data System (ADS)

    Clark, K. G.

    1984-04-01

    A composition for cleaning embedded soil from surfaces coated with flat or low-gloss coatings has elastomeric particles intermixed with a thixotropic solvent emulsion cleaner. The elastomeric particles provide an eraser-like action to absorb deeply entrapped soil so that the cleaner can emulsify or dissolve the soil and wash it away.

  11. Method of protecting the surface of a substrate. [by applying aluminide coating

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A. (Inventor); Grisaffe, S. J.

    1974-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  12. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface.

    PubMed

    Pan, Chang-Jiang; Pang, Li-Qun; Gao, Fei; Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents.

  13. Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: surface analysis.

    PubMed

    Konry, Tania; Bouhifd, Mounir; Cosnier, Serge; Whelan, Maurice; Valsesia, Andrea; Rossi, Francois; Marks, Robert S

    2007-04-15

    We present herein a photo-immobilization technique for the localized and specific conjugation of biochip platforms with different proteinaceous bioreceptors, such as antigen or antibodies. This methodology based on a photoactivable electrogenerated polymer film, pyrrole-benzophenone, allows the covalent immobilization of biomolecules through light mediation. The surface-conductive glass platform electropolymerized with poly(pyrrole-benzophenone) thin film may then be used to affinity-coat the chip with molecular recognition probes. This glass chip electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide (ITO). Thereafter, pyrrole-benzophenone monomers are electropolymerized onto the conductive metal oxide surface and then exposed to an antigen Staphylococcal Enterotoxin B (SEB)) solution and illuminated with UV light (wavelength approximately 345 nm) through a mask. As a result of the photochemical reaction, a pattern thin layer of the antigen was covalently bound to the benzophenone-modified surface. Then the sample to be analyzed, along with its specific target antibody (anti-SEB antibodies), is introduced onto the glass surface and left to react with the previously photo-immobilized antigen. When the immuno-reaction is completed, the specifically attached immunoglobulin analytes are detected by using secondary antibodies conjugated with Fluorescein isothiocyanate (FITC). The fluorescence signal emanating from the biochip surface is then quantified by two methods, using a filtered intensified charge-coupled device (CCD) camera and a grating spectrometer.

  14. Effect of Surface Coating on the Toxicity of Silver Nanomaterials on Human Skin Keratinocytes.

    PubMed

    Lu, Wentong; Senapati, Dulal; Wang, Shuguang; Tovmachenko, Oleg; Singh, Anant Kumar; Yu, Hongtao; Ray, Paresh Chandra

    2010-02-25

    As nanotechnology field continues to develop, assessing nanoparticle toxicity is very important for advancing nanoparticles for daily life application. In this Letter, we report the effect of surface coating on cyto, geno and photo-toxicity of silver nanomaterials of different shapes on human skin HaCaT keratinocytes. We found that the citrate coated colloidal silver nanoparticles at 100 µg/mL level are not geno-, cyto- and phtotoxic. On the other hand, citrate coated powder form of the silver nanoparticles are toxic. We have demonstrated that coating of the silver nanoparticles with a biodegradable polymer prevents the toxicity of the powder. Toxicity mechanism has been discussed.

  15. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes

    NASA Astrophysics Data System (ADS)

    Lu, Wentong; Senapati, Dulal; Wang, Shuguang; Tovmachenko, Oleg; Singh, Anant Kumar; Yu, Hongtao; Ray, Paresh Chandra

    2010-02-01

    As nanotechnology field continues to develop, assessing nanoparticle toxicity is very important for advancing nanoparticles for daily life application. In this Letter, we report the effect of surface coating on cyto, geno and photo-toxicity of silver nanomaterials of different shapes on human skin HaCaT keratinocytes. We found that the citrate coated colloidal silver nanoparticles at 100 μg/mL level are not geno-, cyto- and phtotoxic. On the other hand, citrate coated powder form of the silver nanoparticles are toxic. We have demonstrated that coating of the silver nanoparticles with a biodegradable polymer prevents the toxicity of the powder. Toxicity mechanism has been discussed.

  16. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  17. New configuration for efficient and durable copper coating on the outer surface of a tube

    NASA Astrophysics Data System (ADS)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; Krishnan, Mahadevan

    2017-03-01

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube is challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate's outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. The Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.

  18. Experimental investigations of relaxation of spin polarized atoms on coated surfaces

    SciTech Connect

    Bhaskar, N.D.

    1993-05-01

    The interaction of spin polarized cesium atoms on coated surfaces is examined. Coated surfaces find extensive applications in atomic devices-hydrogen masers and advanced rubidium frequency standards utilize wall coatings to obtain very narrow hyperfine resonances. A Cs atomic beam is hyperfine or spin polarized by optical pumping techniques using a single mode AlGaAs diode laser. The ground state distribution is probed before and after scattering from coated surfaces using laser induced fluorescence spectroscopy. The coatings under investigations are paraffin and organosilanes and these are known to be very weakly relaxing surfaces for polarized alkali atoms. The spin relaxation properties of paraffin and organosilane coatings have been studied in glass cell-vapor environment. In our experiments using polarized atomic beams, our goal is to examine in detail the hyperfine and spin relaxation properties of these coatings in a carefully controlled environment which is not possible in the gas cell environment. We measure the spin relaxation probability per wall collision as a function of temperature of the surface. Results of our studies will be presented.

  19. Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua

    2012-03-01

    The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.

  20. Inner Surface Coating of Non-Conductive Tubular Substrate Using Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Kreethawate, L.; Larpkiattaworn, S.; Jiemsirilers, S.; Uchikoshi, T.

    2011-10-01

    Inner surface of microporous alumina tube was coated with nanoporous alumina layer using electrophoretic deposition (EPD) process. Polypyrrole (Ppy) film was formed on the inner wall of the porous tube to give electrical conductivity by chemical polymerization of pyrrole (Py). The nanoporous structure was controled using bimodal suspension of alumina powders with 0.6 μm and 30 nm in ethanol. The thickness of the coated layer was controlled by varying the processing parameters such as deposition time and DC applied voltage. After the deposition, the coated substrate was sintered at 1250°C for 2 h to bond the coated layer with the substrate.The microstructure of the substrate and the coated layer was observed by SEM. The results show the good interfacial joining between the substrate and the coated layer; they are not seperatated after the Ppy burnt-out. Crack-free and nanoporous layer on the microporous substrate was successfully fabricated.

  1. Improving the blood compatibility of material surfaces via biomolecule-immobilized mussel-inspired coatings.

    PubMed

    Wei, Qiang; Li, Beijia; Yi, Nan; Su, Baihai; Yin, Zehua; Zhang, Fulong; Li, Jie; Zhao, Changsheng

    2011-01-01

    In this article, we presented a general protocol to prepare biomolecule-immobilized mussel-inspired polydopamine (PDA) coatings to improve the blood compatibility of broad ranges of material surfaces. It needs only a simple immersion of substrates in dopamine solution at alkaline pH to form mussel-inspired PDA coating, and then immersing the PDA coated substrates into biomolecule solution to conjugate biomolecules. XPS, water contact angle analysis, and protein assay confirmed that biomolecules could be successfully coated on several material surfaces, including nylon, cellulose, and polyethersulfone membrane surfaces. For the protein fouling resistance, the bovine serum albumin (BSA) modified surfaces were more effective than the amino acid modified surfaces. And the platelet adhesion on the BSA-modified material surfaces was obviously depressed. These results indicated that the blood compatibility of the surfaces was improved by the biomacromolecule-immobilized mussel-inspired coating which might be considered as a universal coating to modify a wide variety of materials. Copyright © 2010 Wiley Periodicals, Inc.

  2. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.

    PubMed

    Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu

    2014-06-25

    A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.

  3. eShiver: Lateral Force Feedback on Fingertips through Oscillatory Motion of an Electroadhesive Surface.

    PubMed

    Mullenbach, Joseph; Peshkin, Michael; Colgate, J Edward

    2017-01-01

    We describe a new haptic force feedback device capable of creating lateral shear force on a bare fingertip-the eShiver. The eShiver creates a net lateral force from in-plane oscillatory motion of a surface synchronized with a "friction switch" based on Johnsen-Rahbek electroadhesion. Using an artificial finger, a maximum net lateral force of ±300 mN is achieved at 55 Hz lateral oscillation frequency, and net force is shown to be a function of velocity and applied voltage, as well as the phase between them. A second set of experiments is carried out on a human finger, and a lateral force of up to ±450 mN is achieved at a lateral oscillation frequency of 1,000 Hz. This force is reached at a peak lateral surface velocity of 400 mm/s and a peak applied voltage of 400 V. We develop a simple lumped parameter model of the eShiver, and a time domain simulation of the artificial finger is shown to agree with the experimental results. Three distinct zones of operation are found, which predict the limitations of force generation and which may be used for optimization. The human finger is found to be similar to the artificial finger in its dependence on actuation parameters, suggesting that the same lumped parameter model may be applied, albeit with different parameters. Curiously, the friction force due to Johnsen-Rahbek electroadhesion is found to increase substantially over time as the finger remains in contact with the surface. Considerations for optimizing the performance of the eShiver are discussed.

  4. Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells

    NASA Astrophysics Data System (ADS)

    Khlusov, I. A.; Sharkeev, Yu. P.; Pichugin, V. F.; Legostaeva, E. V.; Litvinova, L. S.; Shupletsova, V. V.; Sokhonevich, N. A.; Khaziakhmatova, O. G.; Khlusova, M. Yu.; Gutor, S. S.; Tolkacheva, T. V.

    2016-03-01

    Results of a study of the properties of titanium oxide based coatings deposited on titanium substrates by microarc oxidation are presented that establish a relationship between physical and mechanical properties of the coating surface and their medical and biological properties. The required surface topography is formed by sandblasting of the substrate and is controlled by values of the roughness index Ra. A linear dependence of the amplitude of negative electrostatic potential of the oxide coating on the Ra value is established. The topography of the micro-arc coating surface determines its negative surface potential that apparently reduces the viability of the leukemia T cells of the Jurkat line via electrostatic and biological mechanisms unrelated to the generation of intracellular reactive oxygen species.

  5. Clean Air Act Guidelines and Standards for Solvent Use and Surface Coating Industry

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the solvent use and surface coating industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  6. Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans

    EPA Pesticide Factsheets

    This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.

  7. Fact Sheet: Control Techniques Guidelines (CTG) for Shipbuilding and Ship Repair Facilities Operation (Surface Coating)

    EPA Pesticide Factsheets

    This page contains an August 1996 fact sheet with information regarding the CTG and Alternative Control Techniques (ACT) for Surface Coating at Shipbuilding and Ship Repair Facilities Operations. This document provides a summary of this guidance

  8. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Applicability Flowchart

    EPA Pesticide Factsheets

    This page contains a January 2005 document that has a flow chart to help you determine if this National Emission Standards for Hazardous Air Pollutants (NESHAP) rule for Surface Coating of Wood Building Products applies to your facility.

  9. Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces.

    PubMed

    Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria.

  10. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    PubMed

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  11. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  12. Surface modification of titanium by nano-TiO 2/HA bioceramic coating

    NASA Astrophysics Data System (ADS)

    He, G.; Hu, J.; Wei, S. C.; Li, J. H.; Liang, X. H.; Luo, E.

    2008-11-01

    A nano-TiO 2/hydroxyapatite composite bioceramic coating was developed and applied to the surfaces of pure titanium discs by the sol-gel method. A TiO 2 anatase bioceramic coating was utilized in the inner layer, which could adhere tightly to the titanium substrate. A porous hydroxyapatite (HA) bioceramic coating was utilized in the outer layer, which has higher solubility and better short-term bioactivity. Conventional HA coatings and commercially pure titanium were used as controls. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize the crystallization, surface morphology, and thickness of the coatings. The bioactivities of the coatings were evaluated by in vitro osteoblast cultures. Results showed that the nano-TiO 2/HA composite bioceramic coating exhibited good crystallization and homogeneous, nano-scale surface morphology. In addition, the nano-TiO 2/HA coating adhered tightly to the substrate, and the in vitro osteoblast cultures exhibited satisfactory bioactivity.

  13. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    PubMed Central

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  14. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces*

    PubMed Central

    Zhao, Shi-fang; Dong, Wen-jing; Jiang, Qiao-hong; He, Fu-ming; Wang, Xiao-xiang; Yang, Guo-li

    2013-01-01

    Objective: The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. Methods: A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. Results: Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). Conclusions: The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface. PMID:23733429

  15. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  16. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended

  17. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Treesearch

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  18. Peanut, Cotton, and Corn Yield and Partial Net Income with Two Surface Drip Lateral Spacings

    USDA-ARS?s Scientific Manuscript database

    Surface drip irrigation laterals were spaced next to crop rows (0.91 m) and in alternate row middles (1.83 m) to document crop yield and partial net economic returns compared with non-irrigated peanut (Arachis hypogaea), cotton (Gossypium hirsutum), and corn (Zea mays). A drip irrigation system was ...

  19. Electroassisted Functionalization of Nitinol Surface, a Powerful Strategy for Polymer Coating through Controlled Radical Surface Initiation.

    PubMed

    Arrotin, Bastien; Delhalle, Joseph; Dubois, Philippe; Mespouille, Laetitia; Mekhalif, Zineb

    2017-03-28

    Coating Nitinol (NiTi) surfaces with a polymer layer has become very appealing in the past few years owing to its increased attraction in the biomedical field. Although its intrinsic properties helped ensure its popularity, its extensive implementation is still hampered by its nickel inclusion, making it sensitive to pitting corrosion and therefore leading to the release of carcinogenic Ni(2+) ions. Among all recent ways to modify NiTi surfaces, elaboration of self-assembled monolayers is of great interest as their high order confers a reinforcement of the metal surface corrosion resistance and brings new functionalities to the metal for postmodification processes. In this work, we compare the electroassisted and thermally assisted self-assembling of 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) to the classical immersion process on NiTi surfaces initially submitted to a hydrothermal treatment. Among all tested conditions, the electroassisted grafting of BUPA at room temperature appears to be the most promising alternative, as it allows grafting in very short times (5-10 min), thus preventing its degradation. The thus-formed layer has been proven to be sufficient to enable the surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-(dimethylamino)ethyl methacrylate.

  20. Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice

    PubMed Central

    Schipper, Meike L.; Iyer, Gopal; Koh, Ai Leen; Cheng, Zhen; Ebenstein, Yuval; Aharoni, Assaf; Keren, Shay; Bentolila, Laurent A.; Li, Jianquing; Rao, Jianghong; Chen, Xiaoyuan; Banin, Uri; Wu, Anna M.; Sinclair, Robert; Weiss, Shimon

    2011-01-01

    This study evaluates the influence of particle size, PEGylation, and surface coating on the quantitative biodistribution of near-infrared-emitting quantum dots (QDs) in mice. Polymer- or peptide-coated 64Cu-labeled QDs 2 or 12 nm in diameter, with or without polyethylene glycol (PEG) of molecular weight 2000, are studied by serial micropositron emission tomography imaging and region-of-interest analysis, as well as transmission electron microscopy and inductively coupled plasma mass spectrometry. PEGylation and peptide coating slow QD uptake into the organs of the reticuloendothelial system (RES), liver and spleen, by a factor of 6–9 and 2–3, respectively. Small particles are in part renally excreted. Peptide-coated particles are cleared from liver faster than physical decay alone would suggest. Renal excretion of small QDs and slowing of RES clearance by PEGylation or peptide surface coating are encouraging steps toward the use of modified QDs for imaging living subjects. PMID:19051182

  1. ELECTRON MICROSCOPE OBSERVATIONS ON THE CARBOHYDRATE-RICH CELL COAT PRESENT AT THE SURFACE OF CELLS IN THE RAT

    PubMed Central

    Rambourg, A.; Leblond, C. P.

    1967-01-01

    Periodic acid-silver methenamine, a fairly specific technique for glycoprotein detection, was used to stain a variety of rat tissues, in the hope of confirming the existence of a carbohydrate-rich "cell coat" at the surface of mammalian cells. It was found that nearly all cells are coated by a thin layer of stained material. Around fibrocytes and migrating blood cells, the layer is uniform and merges with the ground substance. In the nervous system, cells and processes are surrounded with a layer whose density increases in synaptic clefts. Around epithelial cells, the layer outlines apical microvilli, follows lateral interspaces, and extends between cells and basement membrane. The layer is continuous with the middle plate of desmosomes and can be followed within the wide portion of terminal bars. In contrast, staining usually vanishes when two adjacent plasma membranes fuse to form tight junctions. These findings indicate that the stained layer is a "cell coat" located outside the plasma membrane. Since the cell coat is also stained by colloidal thorium, a technique for detection of acidic carbohydrates, this structure presumably contains not only glycoprotein(s) but also acidic residues. The carbohydrates may play a role in holding cells together and in controlling the interactions between cells and environment. PMID:10976200

  2. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells using Surface Science Techniques

    DTIC Science & Technology

    2011-02-01

    cess used in the production of microfabricated vapor cells. Surface coatings with superior temperature stability are therefore required for use with...face, many aspects of which are not yet fully understood. Indeed, the production of high-quality paraffin cells re- mains more of an art than a...before the waxes were rub-coated onto the warmed surface, giving a layer with thickness of hundreds of nm to several µm. To mini- mize baseline drift

  3. Catalytic surface effect on ceramic coatings for an aeroassisted orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Steward, D. A.; Leiser, D. B.

    1984-01-01

    Surface catalytic efficiencies of glassy coatings were determined from a reaction boundary layer computation and arc-jet data. The catalytic efficiencies of the various coatings examined are discussed in terms of their reaction-rate constants. These constants are a function of the wall temperature (1290 K to 2000 K). In addition, the advantage of a thermal protection system for a bent biconic, aeroassisted orbital transfer vehicle with a low surface catalytic efficiency is discussed.

  4. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments

    PubMed Central

    Abraham, Celeste M

    2014-01-01

    This review highlights a brief, chronological sequence of the history of dental implants. This historical perspective begins with ancient civilizations and spotlights predominant dentists and their contributions to implant development through time. The physical, chemical and biologic properties of various dental implant surfaces and coatings are discussed, and specific surface treatments include an overview of machined implants, etched implants, and sand-blasted implants. Dental implant coatings such as hydroxyapatite, fluoride, and statin usage are further reviewed. PMID:24894638

  5. Process for non-contact removal of organic coatings from the surface of paintings

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1995-01-01

    The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.

  6. Process for Non-Contact Removal of Organic Coatings from the Surface of Paintings

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.

  7. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  8. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs.

    PubMed

    Upasani, Vidyadhar V; Farnsworth, Christine L; Tomlinson, Tucker; Chambers, Reid C; Tsutsui, Shunji; Slivka, Michael A; Mahar, Andrew T; Newton, Peter O

    2009-02-15

    Biomechanical and histologic analysis. To compare the strength of the bone-screw interface of standard uncoated pedicle screws with screws treated with hydroxyapatite (HA), titanium plasma spray (TPS), and a composite HA-TPS coating. Transpedicular screw fixation has become the gold standard in the treatment of various thoracolumbar spinal conditions. Pedicle screw loosening, however, has been reported, especially in mechanically demanding constructs or in vertebrae with low bone mineral density. Six mature porcine were instrumented with 4 types of titanium monoaxial pedicle screws (uncoated, HA-only coated, TPS-only coated, and HA-TPS composite coated) in a systematically varied, single-blinded fashion. After a 3-month survival period, the spines were harvested en-bloc and "time zero" control screws were instrumented in adjacent vertebrae. Screw placement and bone mineral density were evaluated with a postharvest computed tomography, and the strength of the tissue-implant interface was evaluated with a torsional screw extraction analysis (60 screws) and a nondecalcified histologic analysis (16 screws). At 3 months postoperative, peak torque increased for all 3 types of coated screws (increased fixation) and decreased significantly for the uncoated screws (P < 0.001). Although 3-month peak torque was not statistically different between the 3 screw coatings, 4 of 10 TPS-only coated screws had a peak torque that was nearly 0 (<0.1 N m) versus only 1 of 10 HA-only screws and 0 of 10 HA-TPS composite screws. Histologic analysis confirmed the biomechanical findings with improved osseointegration in the HA-only and HA-TPS composite screws. Pedicle screw coatings that promote mechanical interlocking, TPS, or direct osteoblast bonding(HA) increased screw fixation in this nonfusion model. More non-HA coated screws, however, were thought to be "loose" with a nearly zero peak extraction torque and fibrous encapsulation. Increased osseointegration with HA may result in a

  9. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    PubMed

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  10. Precision measurement of the Casimir force between metallic surfaces and the demonstration of the lateral Casimir force and temperature correction

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    The Casimir effect has recently become important because of its central role in modern physics. Despite its exclusively quantum nature, associated with the zero-point energy of a quantized field, the Casimir force between neutral metallic surfaces is a macroscopic phenomenon. Because the Casimir force increases rapidly with the distance between surfaces and strongly depends on the shape of the boundary, it plays a very important role in micro-electromechanical systems. The precision measurement of the Casimir force has also been advanced as a new powerful test for hypothetical long-range interactions, including corrections to the Newtonian gravitational law at small distances predicted by the unified gauge theories, supersymmetry, supergravity and string theory. This work develops new techniques to measure the Casimir force between a Au coated sphere and plate under different boundary conditions. At the heart of these techniques is the precision force measurement adapted to the Atomic Force Microscope. Calibrations of the necessary parameters have been developed. Here we report an improved precision measurement of the normal Casimir force. The experimental data are compared with a theory that has no adjustable parameters. Combined random and systematic error of order 2.5% of the Casimir force at the closest separation is achieved. We made the first demonstration of the lateral Casimir force between two sinusoidally corrugated surfaces. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. This demonstration opens new opportunities for the use of the Casimir effect for lateral translation in microelectromechanical systems. We also developed a sensitive differential force measurement technique for measuring the temperature correction. A preliminary experiment investigating the temperature correction to the Casimir force is reported. With further improvement, this may be able to

  11. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating.

    PubMed

    Tasnim, Nishat; Kumar, Alok; Joddar, Binata

    2017-04-01

    A persistent theme in biomaterials research comprises of surface engineering and modification of bare metallic substrates for improved cellular response and biocompatibility. Graphene Oxide (GO), a derivative of graphene, has outstanding chemical and mechanical properties; its large surface to volume ratio, ease of surface modification and processing make GO an attractive coating material. GO-coatings have been extensively studied as biosensors. Further owing to its surface nano-architecture, GO-coated surfaces promote cell adhesion and growth, making it suitable for tissue engineering applications. The need to improve the long-term durability and therapeutic effectiveness of commercially available bare 316L stainless steel (SS) surfaces led us to adopt a polymer-free approach which is cost-effective and scalable. GO was immobilized on to 316L SS utilizing amide linkage, to generate a strongly adherent uniform coating with surface roughness. GO-coated 316L SS surfaces showed increased hydrophilicity and biocompatibility with SHSY-5Y neuronal cells, which proliferated well and showed decreased reactive oxygen species (ROS) expression. In contrast, cells did not adhere to bare uncoated 316L SS meshes nor maintain viability when cultured in the vicinity of bare meshes. Therefore the combination of the improved surface properties and biocompatibility implies that GO-coating can be utilized to overcome pertinent limitations of bare metallic 316L SS implant surfaces, especially SS neural electrodes. Also, the procedure for making GO-based protective coatings can be applied to numerous other implants where the development of such protective films is necessary.

  12. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.

    PubMed

    Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed

    2015-06-01

    Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  13. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    NASA Astrophysics Data System (ADS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-06-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable.

  14. Surface coating effects on the assembly of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Meyer, Kent A.; Polemi, Alessia; Shuford, Kevin L.; Whitten, William B.; Shaw, Robert W.

    2010-10-01

    Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The shell served as a means of rigid control of the minimum spacing between the metal cores. The spectra of the assembled spheres were simulated using classical electrodynamics. The observed spectra resulted in superior characterization of the particle assembly geometry, relative to the AFM data. Experimental investigations regarding less-rigid polyvinylpyrrolidone (PVP) sphere coatings were also performed and some comparisons were made.

  15. SURFACE COATING EFFECTS ON THE ASSEMBLY OF GOLD NANOSPHERES

    SciTech Connect

    Meyer, Kent A; Shuford, Kevin L; Whitten, William B; Shaw, Robert W

    2010-01-01

    Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The 10-nm spacing of the spheres allowed discrete dipole approximation (DDA) computational simulations to provide a meaningful results regarding the dimers. Both the data and simulation indicate that the silica shell integrity was maintained throughout the assembly, so that the shell therefore served as a means of rigid control of the spacing between the metal cores. Optical perturbative effects due to the presence of the fused silica substrate were negligible. Experimental investigations regarding less rigid polyvinylpyrrolidone (PVP) coatings also were performed and some comparisons were made.

  16. Coating compositions and method for the treatment of metal surfaces

    SciTech Connect

    Das, N.; Stastny, P.M.

    1984-09-11

    An aqeuous acidic composition provides improved coating for aluminum. The composition comprises from about 10 to about 150 ppm zirconium, from about 20 to about 250 ppm fluoride, from 30 to about 125 ppm tannin, from about about 15 to about 100 ppm phosphate and from about 5 to about 50 ppm zinc, said coating solution having a tannin to phosphate ratio in the range of at least about 1:1 to about 2:1 and a pH in the range of about 2.3 to about 2.95.

  17. Radiation control coatings installed on rough-surfaced built-up roofs -- Initial results

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    The authors have tracked the solar reflectance and thermal performance of small samples of various radiation control coatings on smooth surfaces for several years on a roof test facility in East Tennessee. The focus is on white coatings because of their potential to weather, causing the solar reflectance to decrease as the coatings age. Support of the federal New Technology Demonstration Program allowed them to extend the study to more samples on smooth surfaces and entire rough-surfaced roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray-coated with a latex-based product with ceramic beads added to improve solar reflectance. In the first three months after installation, the fresh BUR coatings showed a significant decrease in both the outside-surface temperature and the heat flux through the roof insulation. Average sunlit values were generated to exclude nighttime data, data on cloudy days, and data when the uncoated patch on one roof was more strongly shaded in mid-afternoon on sunny days. The average power demand during occupied periods for the first month with the coating for the building with the thermally massive roof deck was 13% less than during the previous month without the coating. For the other buildings with a lightweight roof deck but high internal loads, there were no clear average power savings due to the coating. The authors are continuing to monitor electricity use in these all-electric buildings to calibrate a model for the peak power and annual energy use of the buildings. Modeling results to be given at the end of the two year project will address the effect of roof R-value, geographic location, and solar reflectance, including the effect of weathering, on the performance of coated roofs. The calibrated models should allow one to segregate site-specific effects such as shading and large thermal mass.

  18. Lateral manipulation of atomic size defects on the CaF(2)(111) surface.

    PubMed

    Hirth, S; Ostendorf, F; Reichling, M

    2006-04-14

    Atomic scale manipulation on insulating surfaces is one of the great challenges of non-contact atomic force microscopy. Here we demonstrate lateral manipulation of defects occupying single ionic sites on a calcium fluoride (111)-surface. Defects stem from the interaction of the residual gas with the surface. The process of surface degradation is briefly discussed. Manipulation is performed over a wide range of path lengths ranging from tens of nanometres down to a few lattice constants. We introduce a simple manipulation protocol based on line-by-line scanning of a surface region containing defects to be manipulated, and record tip-surface distance and cantilever resonance frequency detuning as a function of the manipulation pathway in real time. We suggest a hopping model to describe manipulation where the tip-defect interaction is governed by repulsive forces.

  19. Plasma modification of CoPt{sub 3} nanoparticle arrays: A route to catalytic coatings of surfaces

    SciTech Connect

    Gehl, Bernhard; Flege, Jan Ingo; Aleksandrovic, Vesna; Schmidt, Thomas; Kornowski, Andreas; Bernstorff, Sigrid; Falta, Jens; Weller, Horst; Baeumer, Marcus

    2008-07-15

    Two-dimensional layers of bimetallic cobalt-platinum nanoparticles were prepared from colloidal suspension to serve as model systems for catalytic surface coatings with well-defined chemistry and geometry. After deposition, the particle surfaces were exposed to mild rf plasmas in order to remove the passivating shell of organic ligands that covered their surfaces after preparation. X-ray photoelectron spectroscopy subsequently carried out without exposing the samples to air revealed that all carbon species can be quantitatively removed due to the treatment and that selective oxidation/reduction of the particles is possible. Grazing-incidence small-angle x-ray scattering was used to study plasma-induced changes in the particle ordering with high precision. The measurements prove that even for closely packed layers with lateral distances of less than 2 nm, changes in the mean diameters of the particles can be kept in the order of just 1%-2%.

  20. Influence of organic surface coatings on the sorption of anticonvulsants on mineral surfaces.

    PubMed

    Qu, Shen; Cwiertny, David M

    2013-10-01

    Here, we explore the role that sorption to mineral surfaces plays in the fate of two commonly encountered effluent-derived pharmaceuticals, the anticonvulsants phenytoin and carbamazepine. Adsorption isotherms and pH-edge experiments are consistent with electrostatics governing anticonvulsant uptake on metal oxides typically found in soil and aquifer material (e.g., Si, Al, Fe, Mn, and Ti). Appreciable, albeit limited, adsorption was observed only for phenytoin, which is anionic above pH 8.3, on the iron oxides hematite and ferrihydrite. Adsorption increased substantially in the presence of cationic and anionic surfactants, species also commonly encountered in wastewater effluent. For carbamazepine, we propose the enhanced uptake results entirely from hydrophobic interactions with apolar tails of surfactant surface coatings. For phenytoin, adsorption also arises from the ability of surfactants to alter the net charge of the mineral surface and thereby further enhance favorable electrostatic interactions with its anionic form. Collectively, our results demonstrate that although pristine mineral surfaces are likely not major sinks for phenytoin and carbamazepine in the environment, their alteration with organic matter, particularly surfactants, can considerably increase their ability to retain these emerging pollutants in subsurface systems.

  1. Reciprocating Sliding Behaviour of Solid Lubricant Coating over Modified Titanium Alloy Surfaces

    NASA Astrophysics Data System (ADS)

    Jothi Prakash, V. M.; Sathish, S.; Gopalakrishnan, T.; Venugopal, S.

    2017-03-01

    Tribological behaviour of contacting surfaces rigid sphere is using flat plate the with influence of normal and tangential loading (shear traction) is analysed using FEA model and surfaces being coated on flat plate by Titanium Alloy, Aluminium Alloy Molybdenum Di-sulphide. The finite element model facilitates to Evaluating the surface variables like contact stress distribution with the surface level and surface, contact pressure, shear stress and displacement. The finite element solution is validated through the hertz solution and on the successful verification.

  2. Effect of denture-coating composite on Candida albicans biofilm and surface degradation after disinfection protocol.

    PubMed

    Silva, Matheus Jacobina; de Oliveira, Denise G; Marcillo, Oscar O; Neppelenbroek, Karin H; Lara, Vanessa S; Porto, Vinícius C

    2016-04-01

    Denture stomatitis is the most common pathology affecting denture wearers and its main cause is colonisation of dentures with Candida albicans. This study investigated the effectiveness of two commercial composite surface sealants (Biscover(®) LV and Surface Coat(®)) to reduce C. albicans biofilm colonisation on denture resin, as well as their surface integrity after disinfection cycles with 1% sodium hypochlorite solution. Heat-cured acrylic resin specimens were manufactured (10 mm × 10 mm × 1 mm). The specimen surfaces were mechanically polished to simulate rough or smooth denture surfaces. Four surface-treatment groups were tested: smooth surfaces [0.3 μm of mean roughness (Ra)]; rough surfaces (3 μm of Ra); rough surfaces treated with Biscover(®) LV; and rough surfaces treated with Surface Coat(®). Specimens of each group were randomly divided to undergo immersion in distilled water or 1% sodium hypochlorite for 30 or 90 cycles each. Specimens of all groups in each immersion solution were tested using a crystal violet (CV) staining assay for biofilm quantification and by scanning electron microscopy for visual analyses of surface integrity and biofilm structure. CV assay data were analysed using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test (P < 0.05). The effectiveness and surface integrity of Biscover(®) LV-treated surfaces were similar to those of smooth surfaces, whereas Surface Coat(®) -treated surfaces presented a similar performance to rough surfaces in all solutions and cycles. These results suggest the possibility of clinical use of Biscover(®) LV for denture coating on surfaces in which mechanical polish is not indicated, such as the fitting surface. © 2016 FDI World Dental Federation.

  3. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    PubMed

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (Psurface but little influence on the barrier properties of the coatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  4. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation.

    PubMed

    Chen, Ying; Song, Yang; Zhang, Shaoxiang; Li, Jianan; Zhao, Changli; Zhang, Xiaonong

    2011-04-01

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 µm were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E(corr)) and smaller corrosion currents (I(corr)) in the modified simulated body fluid (m-SBF) at 37 °C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents.

  5. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  6. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion.

    PubMed

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-24

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  7. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  8. Surface scanning techniques to locate and study defects in painted zinc and zinc alloy coated steels

    SciTech Connect

    Isaacs, H.S.; Aldykiewicz, A.J. Jr.; Thierry, D.; Simpson, T.C.

    1995-02-01

    Current density and impedance mapping measurements have been used to locate and monitor corrosion and defects on painted surfaces in solution. Measurements are reported for painted zinc and aluminum-zinc alloy coated steel surfaces. When scratched, current density mapping showed corrosion of the metal coating started at localized sites in both dilute chloride and sulfate solutions. Different scribing techniques were tested exposing only the metal coating and both the coating and the underlying steel. Effect of roll forming was investigated. Current density mapping located corrosion susceptible defects on painted roll formed materials that were not readily discernible optically. Scanning ac mapping showed that artificially formed defects were readily observed. Local impedance variations with frequency were measured for simulated defects and defect free areas of painted surfaces. Variations in paint thickness and the presence of defects were detected using the ac techniques.

  9. Enhanced superhydrophilicity and thermal stability of ITO surface with patterned ceria coatings

    NASA Astrophysics Data System (ADS)

    Xue, Mingshan; Peng, Na; Li, Changquan; Ou, Junfei; Wang, Fajun; Li, Wen

    2015-02-01

    Surface wettability of solid materials is significant for both fundamental research and engineering applications. Compared with most existing fabrication methods of superhydrophilic surfaces by UV exposure or chemical modification, in this work, a superhydrophilic ceria coating on ITO substrate is developed by a fast, simple one-step method. It is found that the superhydrophilicity of ceria coatings is strongly dependent on both the patterned microstructures benefiting the capillary effect and the peculiar chemical composition of ceria inducing numerous oxygen vacancies and large surface free energy. Owing to the inherent physical stability of ceria, such a superhydrophilic ceria coating exhibits an excellently thermal stability at both room temperature and higher temperature. These results open up new avenues for the underlying applications of superhydrophilic coatings, such as heat transfer/dissipation.

  10. Uniform coating of high aspect ratio surfaces through atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Nolan, Mark; Povey, Ian; Elliot, Simon; Cordero, Nicolas; Pemble, Martyn; Shortt, Brian; Bavdaz, Marcos

    2012-09-01

    Innovative X-ray ray imaging optic technologies, Silicon Pore Optics for example, are often characterised by large length to pore diameter aspect ratios. Such ratios present challenges to the deposition of reflectivity enhancing metallic coatings onto the mirror substrate surfaces. The technique of Atomic Layer Deposition (ALD) is perfectly suited to addressing this challenge due to the inherent self-limiting nature of the process which yields highly uniform coatings with surface roughness compatible with the requirements of high resolution X-ray imaging. We describe the results of a project aimed at developing an optimised ALD reactor and process to coat the internal wall surfaces of high aspect ratio samples with a uniform and smooth metallic layer. For sample substrates of aspect ratio ~100 the reactor has realised an average gradient of 1nm in the thickness of an Al2O3 coating on the internal walls of a 76 mm long glass tube.

  11. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  12. Natural surface coating to inactivate Salmonella enterica serovar Typhimurium and maintain quality of cherry tomatoes.

    PubMed

    Yun, Juan; Fan, Xuetong; Li, Xihong; Jin, Tony Z; Jia, Xiaoyu; Mattheis, James P

    2015-01-16

    The objective of the present study was to investigate the effectiveness of zein-based coatings in reducing populations of Salmonella enterica serovar Typhimurium and preserving quality of cherry tomatoes. Tomatoes were inoculated with a cocktail of S. Typhimurium LT2 plus three attenuated strains on the smooth skin surface and stem scar area. The zein-based coatings with and without cinnamon (up to 20%) and mustard essential oil or a commercial wax formulation were applied onto tomatoes and the treated fruits were stored at 10 °C for up to 3 weeks. Populations of S. Typhimurium decreased with increased essential oil concentration and storage duration. S. Typhimurium populations on the smooth skin surface were reduced by 4.6 and 2.8 log colony forming units(CFU)/g by the zein coatings with 20% cinnamon and 20% mustard oil, respectively, 5h after coating. The same coating reduced populations of S. Typhimurium to levels below detection limit (1.0 log CFU/g) on the stem scar area of tomato during 7 days of storage at 10 °C. Salmonella populations were not reduced on fruit coated with the commercial wax. All of the coatings resulted in reduced weight loss compared with uncoated control. Compared with the control, loss of firmness and ascorbic acid during storage was prevented by all of the coatings except the zein coating with 20% mustard oil which enhanced softening. Color was not consistently affected by any of the coating treatments during 21 days of storage at 10°C. The results suggest that the zein-based coating containing cinnamon oil might be used to enhance microbial safety and quality of tomato.

  13. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  14. Investigation of surface finishing of carbon based coated tools for dry deep drawing of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Andreas, K.; Merklein, M.

    2016-11-01

    Global trends like growing environmental awareness and demand for resource efficiency motivate an abandonment of lubricants in metal forming. However, dry forming evokes increased friction and wear. Especially, dry deep drawing of aluminum alloys leads to intensive interaction between tool and workpiece due to its high adhesion tendency. One approach to improve the tribological behavior is the application of carbon based coatings. These coatings are characterized by high wear resistance. In order to investigate the potential of carbon based coatings for dry deep drawing, friction and wear behavior of different coating compositions are evaluated in strip drawing tests. This setup is used to model the tribological conditions in the flange area of deep drawing operations. The tribological behavior of tetrahedral amorphous (ta-C) and hydrogenated amorphous carbon coatings with and without tungsten modification (a-C:H:W, a-C:H) is investigated. The influence of tool topography is analyzed by applying different surface finishing. The results show reduced friction with decreased roughness for coated tools. Besides tool topography the coating type determines the tribological conditions. Smooth tools with ta-C and a-C:H coatings reveal low friction and prevent adhesive wear. In contrast, smooth a-C:H:W coated tools only lead to slight improvement compared to rough, uncoated specimen.

  15. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  16. Investigation of dynamic characteristics of a rotor system with surface coatings

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cao, Dengqing; Wang, Deyou

    2017-02-01

    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  17. Simulation of surface roughness during the formation of thermal spray coatings

    SciTech Connect

    Kanouff, M.P.

    1996-07-01

    The formation of a thermal spray coating was analyzed to identify methods to reduce the surface roughness of the coating. A new methodology was developed which uses a string of equally spaced node points to define the shape of the coating surface and to track the shape change as the thermal spray mass is deposited. This allows the calculation of arbitrary shapes for the coating surface which may be very complex. The model simulates the stochastic deposition of a large number of thermal spray droplets, where experimental data is used for the mass flux distribution on the target surface. This data shows that when the thermal spray mass impinges on the target surface, a large fraction of it (over-spray) splashes off the target and is re-deposited with a small spray angle, resulting in a large coating roughness. This analysis was used in a parameter study to identify methods for reducing the coating roughness. Effect of the shape of the profile for the pre-roughened substrate was found to be small. Decreasing the droplet size by a factor of 2 decreased the roughness by 13%. Increasing the spray angle for the over-spray by a factor of 2 decreased the roughness by 50%, and decreasing the amount of over- spray by a factor of 2 decreased the roughness by 51%.

  18. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma.

    PubMed

    Bhatt, Sudhir; Pulpytel, Jérome; Ceccone, Giacomo; Lisboa, Patricia; Rossi, François; Kumar, Virendra; Arefi-Khonsari, Farzaneh

    2011-12-06

    Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM.

  19. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    PubMed

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  20. Modified silica sol coatings for surface enhancement of leather.

    PubMed

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  1. Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography.

    PubMed

    Gross, Karlis A; Muller, Dirk; Lucas, Helen; Haynes, David R

    2012-05-01

    Coating characteristics such as composition, crystallite features and topography collectively impact the cell response. The influence from splats has not yet been assessed for hydroxyapatite (HAp) thermal spray coatings. The objective of this work is to (a) survey the topography on commercial implants, (b) ascertain topography formation from single splats, and (c) determine the osteoclast resorption pattern on a topographically refined coating compared to dentine. Coatings on dental implants, an orthopedic screw, a femoral stem and a knee implant were studied for reference. The effects of substrate pre-heat, roughness, spray distance and particle size on the coating roughness and topography were studied. Human-derived osteoclasts were placed on a coating with refined topography and compared to dentine, a polished coating and polished sintered HAp. A pre-heat of at least 200°C on titanium was required to form rounded splats. The greatest influence on coating roughness and topography arose from particle size. A 2-fold increase in the mean particle size from 30 to 72 μm produced a significant difference (P<0.001) in roughness from 4.8 and 9.7 μm. A model is shown to illustrate topography formation, nanostructure evolution on single splats, and the topography as seen in commercial implants. Osteoclasts showed a clear preference for activity on coatings with refined topography. A one-way ANOVA test revealed a significantly greater pit depth (P=0.022) for dentine (14 μm) compared to the as-sprayed and polished coating (5 μm). Coatings with topography display a similar number of resorption pits with dentine, but a 10-fold greater number than polished coatings, emphasizing the importance of flattened droplet topography on implant surfaces. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    PubMed

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.

    PubMed

    Xu, Lebo; Karunakaran, Raghuraman G; Guo, Jia; Yang, Shu

    2012-02-01

    We study the nonwettability and transparency from the assembly of fluorosilane modified silica nanoparticles (F-SiO(2) NPs) via one-step spin-coating and dip-coating without any surface postpassivation steps. When spin-coating the hydrophobic NPs (100 nm in diameter) at a concentration ≥ 0.8 wt % in a fluorinated solvent, the surface exhibited superhydrophobicity with an advancing water contact angle greater than 150° and a water droplet (5 μL) roll-off angle less than 5°. In comparison, superhydrophobicity was not achieved by dip-coating the same hydrophobic NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that NPs formed a nearly close-packed assembly in the superhydrophobic films, which effectively minimized the exposure of the underlying substrate while offering sufficiently trapped air pockets. In the dip-coated films, however, the surface coverage was rather random and incomplete. Therefore, the underlying substrate was exposed and water was able to impregnate between the NPs, leading to smaller water contact angle and larger water contact angle hysteresis. The spin-coated superhydrophobic film was also highly transparent with greater than 95% transmittance in the visible region. Further, we demonstrated that the one-step coating strategy could be extended to different polymeric substrates, including poly(methyl methacrylate) and polyester fabrics, to achieve superhydrophobicity.

  4. Surface characteristics of coated soft- and hardwoods due to UV-B ageing

    NASA Astrophysics Data System (ADS)

    Ncube, E.; Meincken, M.

    2010-10-01

    Wood is a valuable building material, but it is susceptible to degradation if left unprotected especially when using less durable species. Protection is commonly achieved by applying a suitable finish that should exhibit sufficient penetration, good adhesion and resistance to photo-degradation and weathering. The performance of wood coatings is largely influenced by the adhesion between the coating and substrate and any degradation of the substrate will also affect the coating. The aim of this study was to determine the degree to which the substrate degrades despite the coating and adds to the ageing of the coating from the interface. This effect can be expected to differ for soft- and hardwoods. Coated wood samples from pine and meranti wood - a soft- and hardwood - were irradiated with UV-B light to detect surface changes at various length scales and to assess the impact of the underlying wood substrate on the ageing performance of a commercially available acrylic coating. Surface modifications were determined with atomic force microscopy, Fourier transform infrared spectroscopy, colour spectroscopy, static contact angle and a surface roughness profiler.

  5. Surface modification of pure titanium by hydroxyapatite-containing composite coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Quan-Ming; Cheng, Li; Yang, Hui-Lin; Liu, Zhong-Tang; Feng, De-Hong

    2014-12-01

    Micro-arc oxidation (MAO) is commonly applied to modify the surface of titanium (Ti)-based medical implants with a bioactive and porous Ti oxide (TiO2) coating. The study reports a new method of incorporating hydroxyapatite (HA) within the TiO2 coating by MAO and alkali heat treatment (AHT) in the solution containing Ca ion and P ion. The morphology, composition and phase composition of the coatings were analyzed with scanning electron microscopy with energy-dispersive X-ray spectrometer and X-ray diffraction. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in the tapping mode. The results showed that TiO2-based coatings were obtained on pure Ti by MAO with an electrolyte containing Ca ion and P ion; the prepared MAO coatings were mainly composed of Ca, P, O and Ti. AHT transformed Ca and P to HA crystals. In conclusion, the TiO2/HA composite coatings can be obtained on the surface of pure Ti by MAO and AHT, and the addition of Ca ion and P ion to the AHT solution contributed to the formation of HA.

  6. Effect of surface roughness and calcium phosphate coating on the implant/bone response.

    PubMed

    Hayakawa, T; Yoshinari, M; Nemoto, K; Wolke, J G; Jansen, J A

    2000-08-01

    The influence of surface roughness and calcium phosphate (Ca-P) coating on the bone response of titanium implants was investigated. Four types of titanium implants, i.e. as-machined, grit blasted, as-machined with Ca-P sputter coating, and grit blasted with Ca-P sputter coating, were prepared. The Ca-P sputter-coating, produced by using the RF magnetron sputter technique, was rapid heat-treated with infrared radiation at 600 degrees C. These implants were inserted into the left and right femoral condyles and the left and right tibial diaphyses of the rabbits. After implantation periods of 2 and 12 weeks, the bone-implant interface was evaluated histologically and histomorphometrically. Histological evaluation revealed no new bone formation around different implant materials after 2 weeks of implantation. After 12 weeks, bone healing was almost completed. For both tibial and femoral implants, Ca-P coated implants always showed a higher amount of bone contact than either of the non-coated implants. On the other hand, surface roughness improved only the response to implants inserted into the tibial diaphysis. On the basis of these findings, we concluded that 1) deposition of a sputtered Ca-P coating on an implant has a beneficial effect on the bone response to this implant during the healing phase, and 2) besides implant surface conditions the bone response is also determined by local implant site conditions.

  7. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO2) coated maghemite (γ-Fe2O3) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (TB) for SiO2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (Ms) of SiO2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1- BTb)) was fitted well for both uncoated and SiO2 coated nanoparticles and yields: B =3×10-7 K-b, b=2.22 and B=0.0127 K-b, b=0.57 for uncoated and SiO2 coated nanoparticles, respectively. Higher value of B for SiO2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO2 coated nanoparticles than in uncoated γ-Fe2O3 nanoparticles.

  8. Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro.

    PubMed

    Ionescu, A C; Brambilla, E; Travan, A; Marsich, E; Donati, I; Gobbi, P; Turco, G; Di Lenarda, R; Cadenaro, M; Paoletti, S; Breschi, L

    2015-12-01

    The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens. Different concentrations of nAg inside Chitlac coating were tested (1 mM, 2 mM, 5 mM). Specimen surface was analyzed by means of field-emission scanning electron microscopy (FEISEM) and energy-dispersive X-ray spectroscopy (EDS). A 48 h monospecific Streptococcus mutans biofilm was developed over the specimen surfaces using a modified drip-flow bioreactor; adherent viable biomass was assessed by MTT test and biofilm was imaged by confocal laser-scanning microscopy (CLSM). The presence of finely dispersed nanoparticles inside the Chitlac coating was confirmed by FEISEM and EDS analysis. All nanoparticles were embedded in the Chitlac coating layer. Chitlac-nAg coatings were able to significantly decrease biofilm formation depending on the nAg concentration, reaching a -80% viable biomass decrease when the 5 mM nAg-Chitlac group was confronted to non-coated control specimens. CLSM analysis did not provide evidence of a contact-killing activity, however the antibacterial Chitlac-nAg coating was able to alter biofilm morphology preventing the development of mature biofilm structures. The microbiological model applied in this study helped in assessing the antibacterial properties of a coating designed for methacrylate surfaces. A microbiological model based on a bioreactor-grown biofilm is useful for preliminary in vitro tests of dental materials. In translational terms, an antibacterial nanocomposite coating based on Chitlac-nAg and designed to be applied to methacrylic surfaces may be a promising way to obtain dental materials able to actively prevent secondary caries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings

    NASA Astrophysics Data System (ADS)

    Ünal, Uğur Oral; Ünal, Burcu; Atlar, Mehmet

    2012-06-01

    Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the

  10. Investigation of micro- and nanostructured coatings for heat exchanger surfaces in an ice store

    NASA Astrophysics Data System (ADS)

    Oechsle, U.; Spindler, K.

    2016-09-01

    During loading ice stores an ice layer is forming on the heat exchanger surface when the surface temperature is coming below the nucleation temperature. The growing ice layer increases the heat conduction resistance and the loading performance decreases. With the application of micro- and nanostructured coatings the nucleation temperature of water drops on surfaces in an atmosphere of air can be decreased. If the coatings show similar characteristics under water, they can be used for heat exchanger surfaces in ice stores. Ideally the water in the ice store can be supercooled while ice growth is initiated at nucleation spots apart of the heat exchanger surface. Then a higher loading performance and storage capacity can be realized. First experiments have shown that the coatings can decrease the nucleation temperature.

  11. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  12. Lateral phase separation in polymer-blend thin films: surface bifurcation.

    PubMed

    Coveney, Sam; Clarke, Nigel

    2014-06-01

    We use simulations of a binary polymer blend confined between selectively attracting walls to identify and explain the mechanism of lateral phase separation via a transient wetting layer. We first show that equilibrium phases in the film are described by one-dimensional phase equilibria in the vertical (depth) dimension, and demonstrate that effective boundary conditions imposed by the film walls pin the film profile at the walls. We then show that, prior to lateral phase separation, distortion of the interface in a transient wetting layer is coupled to lateral phase separation at the walls. Using Hamiltonian phase portraits, we explain a "surface bifurcation mechanism" whereby the volume fraction at the walls evolves and controls the dynamics of the phase separation. We suggest how solvent evaporation may assist our mechanism.

  13. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  14. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  15. Surface-enhanced Raman spectroscopy (SERS) to detect natural organic coatings on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kühn, Melanie; Ivleva, Natalia P.; Klitzke, Sondra; von der Kammer, Frank; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Applications for engineered inorganic nanoparticles (EINP) are rising and causing a higher risk for EINP to be released into the environment. Their stability and transport behaviour under environmental conditions is strongly depending on their surface properties which on the other hand depend on the presence or absence of a surface coating. We assume that EINP get coated soon after their release into the environment e.g. by humic substances like humic or fulvic acids and NOM. Often EINP are stabilized by a coating agent like citrate or polyvinylpyrrolidone. Therefore, the replacement of the initial coating material or a multilayer coating has to be considered. Characterization of natural coatings on EINP is crucial to predict their environmental behaviour, but analytical methods to investigate organic coatings are scarce. To investigate humic- and fulvic acid coatings on silver nanoparticles (Ag NP) Raman micro-spectroscopy (RM) was used. RM is limited in its sensitivity, but silver nanoparticles cause an enhancement of the Raman signal of adsorbed substances by a factor of 103-106, so called surface-enhanced Raman spectroscopy (SERS). The Raman spectrum of humic acids is dominated by the carbonaceous parts of the humic acids which are known from carbon analysis and referred to as defect (D) and graphite (G) peak of carbon. Humic acids of different origin (humic acid from a lignite, suwannee river humic acid) showed differences in the D and G ratios indicating a difference in the structure of the contained carbon. With SERS humic and fulvic acid coatings on Ag NP were analysed: 1-100 mg/L humic acid stock solution were mixed with citrate and hydroxylammoniumchloride stabilized Ag NP, centrifuged and resuspended in deionized water (washing) to remove all coating material not associated with Ag NP. This washing step was repeated up to four times. SERS prooved that the coating was still present after the fourth washing step. As SERS is only sensitive for substances in

  16. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel

    USGS Publications Warehouse

    Sayre, William W.; Chamberlain, A.R.

    1964-01-01

    In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.

  17. Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wang, Zhi; Qin, Ting-Wu; Liu, Cheng-Jun; Yang, Zhi-Ming

    2008-11-01

    The effects of micropatterned surfaces coated with type I collagen (CNI) on the proliferation and morphology of rat tail tenocytes were investigated in this study. The micropatterned polydimethylsiloxane substrates were prepared by using the technique of microcontact printing and then coated with different concentrations of CNI by the microfluidic channels technology. After being seeded on the CNI-coated micropatterned substrates, the tenocytes were tested by MTT colorimetric assay at 1-, 3-, 5-, and 7-day time intervals to evaluate the proliferation of tenocytes on the substrates. The alignment and morphology of tenocytes on the CNI-coated substrates after incubation for 1 or 24 h were observed with SEM. The results showed tenocytes proliferated well with increase of CNI concentrations and identically aligned along the grooves of the CNI-coated micropatterned substrates. This could have a potential advantage in construction of engineered tendons in vitro.

  18. Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with Controlled Surface Coating and Mineralization

    PubMed Central

    Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan

    2011-01-01

    A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996

  19. In vitro three dimensional morphometry of the lateral atlantoaxial articular surfaces.

    PubMed

    Cattrysse, Erik; Provyn, Steven; Gagey, Olivier; Kool, Patrick; Clarys, Jan Pieter; Van Roy, Peter

    2008-06-15

    The present study verifies the 3-dimensional anatomic features of the lateral atlantoaxial joints with reference to a local reference frame using a direct in vitro approach. To study the concordance between the axial and atlantal articular surfaces. Detailed information of joint-configurations is imperative for understanding the complex kinematics of the upper cervical joint. Data on the quantitative morphology of the human spinal facet joints has been published, but did not include the atlanto-occipital and atlantoaxial joints. In 20 fresh spine specimens, metal markers were implanted on the cranium, the atlas, and the axis. After registration of the intact specimens, the bony segments were separated and markers and anatomic landmarks were digitized. The size, shape, and orientation relative to the local reference frame of the axis were derived from the relative position data of the joint surface landmarks. The diameters and surface areas of the inferior articular surfaces of the atlas are slightly smaller than the corresponding surfaces on the superior aspects of the axis (17.7 mm and 235 mm vs. 17.0 and 212 mm). In this sample of older-aged specimens, the curvature of the articulating surfaces is nearly flat. The absolute angle between the left and right surface areas is about 130 degrees and corresponds well between axis and atlas. The orientation of the joint surfaces of axis and atlas with respect to the sagittal plane of the axis indicates a good congruency. There seems to be a strong relationship between the anatomic features of the lateral articulating surfaces of atlas and axis. Differences in the orientation of joint surfaces to the frontal plane may be related to deviations from the neutral position. This issue raises the problem of the definition of three-dimensional-neutral joint positions.

  20. Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms

    PubMed Central

    2012-01-01

    Background The antimicrobial effects of a coating of molybdenum trioxide (MoO3) has been recently described. The metalloacid material produces oxonium ions (H3O+), which creates an acidic pH that is an effective, non specific antimicrobial. We determined the in vitro antimicrobial activity of molybdenum trioxide metalloacid-coated surfaces. Methods Metalloacid-coated and non-coated (control) surfaces were contaminated by exposing them for 15 minutes to microbial suspensions containing 105 cfu/mL. Eleven microorganisms responsible for nosocomial infections were tested: two Staphylococcus aureus strains (the hetero-vancomycin intermediate MRSA Mu50 strain and a ST80-PVL-producing MRSA strain); a vancomycin-resistant vanA Enterococcus faecium strain; three extended-spectrum beta-lactamase-producing Enterobacteriaceae strains; a MBL-producing Pseudomonas aeruginosa strain; a multidrug-resistant Acinetobacter baumannii strain; a toxin-producing Clostridium difficile strain; and two fungi (Candida albicans and Aspergillus fumigatus). The assay tested the ability of the coated surfaces to kill microorganisms. Results Against all non-sporulating microorganisms tested, metalloacid-coated surfaces exhibited significant antimicrobial activity relative to that of the control surfaces within two to six hours after contact with the microorganisms (p < 0.001). Microorganism survival on the coated surfaces was greatly impaired, whereas microorganism survival on control surfaces remained substantial. Conclusions We suggest that, facing the continuing shedding of microorganisms in the vicinity of colonized or infected patients, the continuous biocidal effect of hydroxonium oxides against multidrug-resistant microorganisms may help limit environmental contamination between consecutive cleaning procedures. PMID:23148568

  1. Surface modification of austenitic thermal-spray coatings by low-temperature nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Lindner, T.; Mehner, T.; Lampke, T.

    2016-03-01

    Thermal-spray coatings of austenitic materials are mainly used under corrosive conditions. The relatively poor wear resistance strongly limits their use. In comparative studies between nitrocarburized and untreated thermal-spray coatings, the influence of the nitrogen and carbon enrichment on the properties of the coatings and the microstructure was investigated. The cross-section micrograph of the nitrocarburized coating shows the S-phase formation in the surface layer region. The depth profile of the nitrogen and carbon concentration was determined by glow discharge optical emission spectroscopy (GDOS) analysis. A selective enrichment of the surface layer region with nitrogen and carbon by means of thermochemical heat treatment increases the wear resistance. The interstitially dissolved nitrogen and carbon causes the formation of strong compressive residual stresses and high surface hardness. Increases in the service life of existing applications or new material combinations with face-centred cubic friction partners are possible. In the absence of dimensional change, uniform as well as partial nitrogen enrichment of the thermal spray coating is possible. Nitrocarburized coatings demonstrate a significant improvement in adhesive wear resistance and extremely high surface hardness.

  2. Lateral migration and offsite surface emission of landfill gas at City of Montreal Landfill Site.

    PubMed

    Franzidis, Jean-Pierre; Héroux, Martin; Nastev, Miroslav; Guy, Christophe

    2008-04-01

    An evaluation of lateral landfill gas migration was carried out at the Saint-Michel Environmental Complex in Montreal, City of Montreal Landfill Site, Canada, between 2003 and 2005. Biogas concentration measurements and gas-pumping tests were conducted in multilevel wells installed in the backfilled overburden beside the landfill site. A migration event recorded in autumn 2004 during the maintenance shutdown of the extraction system was simulated using TOUGH-LGM software. Eleven high-density instantaneous surface monitoring (ISM) surveys of methane were conducted on the test site. Gas fluxes were calculated by geostatistical analyses of ISM data correlated to dynamic flux chamber measurements. Variograms using normal transformed data showed good structure, and kriged estimates were much better than inverse distance weighting, due to highly skewed data. Measurement-based estimates of yearly off-site surface emissions were two orders of magnitude higher than modelled advective lateral methane flux. Nucleodensimeter measurements of the porosity were abnormally high, indicating that the backfill was poorly compacted. Kriged porosity maps correlated well with emission maps and areas with vegetation damage. Pumping tests analysis revealed that vertical permeability was higher than radial permeability. All results suggest that most of the lateral migration and consequent emissions to the atmosphere were due to the existence of preferential flow paths through macropores. In December 2006, two passively vented trenches were constructed on the test site. They were successful in countering lateral migration.

  3. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants.

    PubMed

    Kim, Da Hye; Kwon, Tae-Yub

    2017-02-01

    Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  4. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    PubMed Central

    Kim, Da Hye

    2017-01-01

    Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo. PMID:28194363

  5. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    NASA Astrophysics Data System (ADS)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  6. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    SciTech Connect

    Wang, Jiangwei; Luo, Hao; Liu, Yang; He, Yang; Fan, Feifei; Zhang, Ze; Mao, Scott X.; Wang, Chongmin; Zhu, Ting

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.

  7. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    NASA Astrophysics Data System (ADS)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  8. Lateral sample surface motion in the plate-rod impact experiments

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene; Levi-Hevroni, David; Ofer, Dror; Shwartz, Dov

    1999-06-01

    Velocity of the lateral motion of the cylindrical, 9 mm diameter, 20 mm length, samples was monitored by VISAR at the different points of the sample surface at the distance 1 to 4 mm from the sample edge impacted by WHA impactors of 5-mm thickness. The impactors were accelerated in the 25-mm pneumatic gun up to the velocities of about 300 m/sec. Integrating the VISAR data recorded at the different surface points after the imacts with the same velocity allows to obtain the changes of the sample shape during the initial period of the sample deformation. It was found that the character of the lateral motion is different for the samples made of WHA and commercial Titanium alloy Ti-6Al-4V. 2-D numerical simulation of the impacts allows to conclude that strong temperature dependence of the shear strength of the titanium alloy is responsible for this difference.

  9. Tailoring the Surface Properties of Coatings Through Self-Stratification

    DTIC Science & Technology

    2016-10-13

    Biofouling 2011 ,27 (9), 1043- 1055 . 52. Aldred, N. ; lsta, L. K. ; Callow, M. E. ; Callow, J. A. ; Lopez, G. P.; Clare, A. S., Mussel (Mytilus...1043- 1055 (2011) 43 Supplemental Information Poly (ethylene) glycol modified amphiphilic siloxane polyurethane coatings and their performance as...behaviour of barnacle cyprids (Balanus amphitrite). Biofouling 2011 , 27 (9) , 1043- 1055 . 16. Krishnan, S.; Wang, N.; Ober, C. K. ; Finlay, J. A.; Callow

  10. Smart Surfaces: New Coatings & Paints with Radiation Detection Functionality

    SciTech Connect

    Farmer, J; Choi, J

    2007-03-12

    Paints are being developed and tested that might ultimately be able to detect radiological agents in the environment by incorporating special pigments into an organic polymeric binder that can be applied as a paint or coatings. These paints detect radioactive sources and contaminants with inorganic or organic scintillation or thermo-luminescent pigments, which are selected based upon the radiation ({alpha}, {beta}, {gamma} or n) to be detected, and are shown in Figure 1.

  11. Practical Shipbuilding Standards for Surface Preparation and Coatings

    DTIC Science & Technology

    1979-07-01

    5 North West Pacific . . . . . . . ...3 South West Pacific . . . . . . . ...2 Inland Waterways . . . . . . . . ...3 Great Lakes...Materials by Water Blasting Prior to Coating or Recrating”. This standard allows the use of high pressure water with and without sand. The degree of... atmosphere ; c) underside of weather decks hatch covers; d) interiors of weather deck ventilation duct for a distance of about 2.0 to 2.5 m (6 to

  12. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/gsilica. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 102 and 104 cfu/mL.

  13. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers.

    PubMed

    Ding, Xin; Yang, Chuan; Lim, Tze Peng; Hsu, Li Yang; Engler, Amanda C; Hedrick, James L; Yang, Yi-Yan

    2012-10-01

    Intravascular catheter-associated infections (CAIs), which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, strategies to prevent CAIs are in great demand. In this study, a series of diblock copolymers of PEG and cationic polycarbonate with various compositions were synthesized by metal-free organocatalytic ring-opening polymerization, and coated onto silicone rubber (a commonly used catheter material) at different concentrations via a reactive polydopamine coating. Static contact angle and X-ray photoelectron spectroscopy measurements proved the successful coating, and quartz crystal microbalance results showed that the coating thickness increased as polymer concentration increased. Methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates - leading causes of intravascular CAIs - were employed to evaluate the antibacterial and antifouling activities of the polymer coatings. Polymer coatings with a hydrophobic component effectively killed planktonic MSSA and MRSA in solution and prevented their fouling on silicone rubber surface. Live/dead cell staining experiments revealed that polymer coatings with the optimal polymer composition possessed significantly higher antifouling activity than PEG coating. In addition, scanning electron microscopic studies showed that the polymer coating inhibited S. aureus biofilm formation over a period of 7 days. Furthermore, the polymer coating caused no significant hemolysis, and there was no blood protein adsorption or platelet adhesion observed. Therefore, PEG-b-cationic polycarbonates with optimal compositions are effective antifouling and antibacterial coatings for the prevention of intravascular CAIs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Atomic vacancy-induced friction on the graphite surface: observation by lateral force microscopy.

    PubMed

    Paredes, J I; Martínez-Alonso, A; Tascón, J M D

    2003-05-01

    Lateral force microscopy has been employed to investigate the frictional behaviour of atomic vacancies on the graphite surface. Such a study was only made possible by the controlled expansion of originally single-atom vacancies into multiatom vacancies, employing oxygen plasma etching for this purpose. Enhanced friction was observed on the vacancy regions compared with pristine areas of graphite, the origin of which is examined and discussed.

  15. Method for measuring surface shear stress magnitude and direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C. (Inventor)

    1995-01-01

    A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

  16. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    SciTech Connect

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  17. Enhancement of the crystallinity of barium titanate by using a uniform barium-carbonate surface coating

    NASA Astrophysics Data System (ADS)

    Chung, Nak-Kwan; Yun, Ju-Young; Kim, Jin-Tae; Park, Jiho

    2017-05-01

    In this work, we modified the surfaces of BaTiO3 particles by using barium acetate and ammonium bicarbonate, and we studied the characteristics and sintering behaviors of the coated BaTiO3 particles. Transmission electron microscopy showed that the resultant coating layer was smooth and uniform without agglomerates. X-ray photoemission spectroscopy analysis also revealed that the surface coating layer was composed of BaCO3. After calcination at 950 °C for 5 hours, the c/ a ratio of the coated particles was found to have increased without size growth while the uncoated particles showed size growth. We finally found that the BaCO3 layer acted as a barrier to inhibit particle growth during calcination.

  18. Preparation and surface enhanced Raman scattering behavior of Ag-coated C60 nanoclusters

    NASA Astrophysics Data System (ADS)

    Kang, Shi-Zhao; Yin, Die-er; Li, Xiangqing; Mu, Jin

    2013-12-01

    Ag-coated C60 nanoclusters were prepared and characterized with X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption isotherm measurement. The Ag-coated C60 nanoclusters were assembled on the glass substrate to form a thin film using the layer-by-layer technique. Meanwhile, the surface enhanced Raman scattering (SERS) of musk xylene adsorbed on the film of Ag-coated C60 nanoclusters was explored. The results indicated that the film of Ag-coated C60 nanoclusters was a unique SERS-active substrate with a detection limit of 10-9 mol L-1 for musk xylene. Furthermore, the surface enhanced mechanisms were discussed preliminarily.

  19. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.

    PubMed

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J; Lee, Younghee; Liu, Nian; Piper, Daniela Molina; Lee, Se-Hee; Zhao, Peng; George, Steven M; Zhang, Ji-Guang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong-Min

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  20. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    SciTech Connect

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  1. Shellac and Aloe vera gel based surface coating for shelf life extension of tomatoes.

    PubMed

    Chauhan, O P; Nanjappa, C; Ashok, N; Ravi, N; Roopa, N; Raju, P S

    2015-02-01

    Shellac (S) and Aloe vera gel (AG) were used to develop edible surface coatings for shelf-life extension of tomato fruits. The coating was prepared by dissolving de-waxed and bleached shellac in an alkaline aqueous medium as such as well as in combination with AG. Incorporation of AG in shellac coating improved permeability characteristics of the coating film towards oxygen and carbon dioxide and water vapours. The coatings when applied to tomatoes delayed senescence which was characterized by restricted changes in respiration and ethylene synthesis rates during storage. Texture of the fruits when measured in terms of firmness showed restricted changes as compared to untreated control. Similar observations were also recorded in the case of instrumental colour (L*, a* and b* values). The developed coatings extended shelf-life of tomatoes by 10, 8 and 12 days in case of shellac (S), AG and composite coating (S + AG) coated fruits, respectively; when kept at ambient storage conditions (28 ± 2 °C).

  2. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  3. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  4. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) Xmore » 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  5. Lateral phase separation of mixed polymer brushes on planar and spherical surfaces

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2012-02-01

    A mixed polymer brush consists of two (or more) polymer species grafted to a surface at a high density, inducing the polymers to highly stretch to maximize favorable solvent interactions while minimizing polymer overlap. The enthalpic and entropic interactions between the different polymers give rise to lateral phase behavior on the surface. Understanding this phase separation behavior is interesting for applications in nanotemplating and controlled protein adsorption. In this work, we present a novel theoretical model to quickly predict lateral phase separated morphologies of mixed polymer brushes on planar, cylindrical and spherical surfaces. The model combines a Flory-Huggins model for enthalpic interactions between the polymer components with an Alexander-de Gennes model for the entropy of the brush layers. When there is a length difference between the polymer components, these two interactions along with the conformational entropy of the system lead to a range of morphologies including stripes, dimples, mixing, and complete phase separation. The computational efficiency of this model allows for phase diagrams to be generated with great accuracy. The results of our model thus allow for the fast prediction of lateral morphologies on different geometries.

  6. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  7. Initiation of surface and interface edge cracks in functionally graded ceramic thermal barrier coatings

    SciTech Connect

    Kokini, K.; Case, M.

    1997-04-01

    The initiation of surface and interface edge cracks in functionally graded ceramic thermal barrier coatings resulting from the application of a thermal load is studied. For a given specimen configuration, the singular behavior of the thermal stresses is analytically determined in terms of a singularity power {beta} and pseudo-stress intensity factors K{sub 1} and K{sub 2}. Crack initiation at the surface at the interface is related to the surface temperature and the temperature difference between the surface of the coating and the substrate. The experimental results are used to provide Weibull curves for the probability of survival of plasma sprayed mullite and CoCrAlY coating systems.

  8. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  9. Emission of low-energy positronium from alkali-metal coated single-crystal tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Iida, S.; Wada, K.; Mochizuki, I.; Tachibana, T.; Yamashita, T.; Hyodo, T.; Nagashima, Y.

    2016-11-01

    We have measured the time-of-flight of ortho-positronium emitted from Cs-, Na- and Li-coated single-crystal tungsten surfaces. The data obtained after the coating show a new positronium energy component with a specific energy loss in addition to the component whose emission energy is simply determined by the positron and the electron work functions. We suggest that this new component is attributed to the formation of positronium accompanied by inter-band transition and/or surface plasmon excitation at the surfaces.

  10. Toward superhydrophobic and durable coatings: effect of needle vs crater surface architecture.

    PubMed

    Dyett, Brendan P; Wu, Alex H; Lamb, Robert N

    2014-06-25

    Practical application of sol-gel derived superhydrophobic films is limited by the fragility of "needlelike" surface roughness. An efficient one step procedure is developed to prepare robust thin films with "craterlike" surface roughness from a methyltrimethoxysilane matrix and polymer sphere templates. The films could be readily spray coated to produce roughened surface textures, which are governed by template concentration and geometry. The effect of this on the wettability and robustness of thin films was examined in detail, revealing a rapid trade-off between the two characteristics due to variations in coating porosity.

  11. Emission of low-energy positronium from alkali-metal coated single-crystal tungsten surfaces.

    PubMed

    Iida, S; Wada, K; Mochizuki, I; Tachibana, T; Yamashita, T; Hyodo, T; Nagashima, Y

    2016-11-30

    We have measured the time-of-flight of ortho-positronium emitted from Cs-, Na- and Li-coated single-crystal tungsten surfaces. The data obtained after the coating show a new positronium energy component with a specific energy loss in addition to the component whose emission energy is simply determined by the positron and the electron work functions. We suggest that this new component is attributed to the formation of positronium accompanied by inter-band transition and/or surface plasmon excitation at the surfaces.

  12. Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer.

    PubMed

    Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Qi, Aiyi; Zhang, Jianxin; Liu, Lei; Zheng, Wanhua

    2013-04-08

    A lateral cavity photonic crystal surface emitting laser (LC-PCSEL) with airholes of cone-like shape etched near to the active layer is fabricated. It employs only a simple commercial epitaxial wafer without DBR and needs no wafer bonding technique. Surface emitting lasing action at 1575 nm with power of 1.8 mW is observed at room temperature, providing potential values for mass production of electrically driven PCSELs with low cost. Additionally, Fano resonance is utilized to analyze aperture equivalence of PC, and energy distribution in simplified laser structure is simulated to show oscillation and transmission characteristics of laser.

  13. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures

    NASA Astrophysics Data System (ADS)

    Naghdi, Samira; Jaleh, Babak; Shahbazi, Nima

    2016-04-01

    Graphene oxide/titania (GO/TiO2) nanocomposite have been successfully prepared by a simple method and deposited on the surface of aluminum (Al) by the electrophoretic deposition method. The effect of thermal annealing on wettability of GO/TiO2 coating has been investigated. According to the obtained results, the water contact angle (WCA) increased with an increase in annealing temperature which may be attributed to the regulation of coating from superhydrophilic (WCA ≈ 5°) to superhydrophobic (WCA ≈ 148°) via thermal annealing. Moreover, the superhydrophobic coating was changed to a superhydrophilic one by using ultraviolet irradiation and this effect was reversible by heat treatment.

  14. Fabrication of (Mn,Co)3O4 Surface Coatings onto Alloy Substrates

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Li, Xiaohong S.; Singh, Prabhakar; Stevenson, Jeffry W.

    2007-04-30

    Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, several challenges remain, including long term electrical conductivity and surface stability under interconnect exposure conditions and chromia scale evaporation. One means of extending interconnect lifetime and improving performance is to apply a protective coating, such as (Mn,Co)3O4 spinel, to the cathode side of the interconnect. These coatings have proven effective in reducing scale growth kinetics and Cr volatility. This report describes several procedures developed at PNNL for fabricating (Mn,Co)3O4 spinel coatings onto ferritic stainless steels.

  15. Dry-surface coating method for visualization of separation on a bluff body

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-01-01

    A simple and relatively accurate dry-surface coating method for visualization of the flow separation on a circular cylinder (or any bluff body) during wind tunnel tests is described. The technique consists of (1) application of a thin coating composed of an indicator and a paint carrier; (2) drying of the film; (3) conditioning of the coating with an acidic solution to ensure a suitable color reaction; (4) release into the body wake of a gas able to produce a base through chemical reaction with the solvent of the conditioning solution; and (5) color reaction according to pH.

  16. Dry-surface coating method for visualization of separation on a bluff body

    NASA Astrophysics Data System (ADS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-07-01

    A simple and relatively accurate dry-surface coating method for visualization of the flow separation on a circular cylinder (or any bluff body) during wind tunnel tests is described. The technique consists of (1) application of a thin coating composed of an indicator and a paint carrier; (2) drying of the film; (3) conditioning of the coating with an acidic solution to ensure a suitable color reaction; (4) release into the body wake of a gas able to produce a base through chemical reaction with the solvent of the conditioning solution; and (5) color reaction according to pH.

  17. Dry-surface coating method for visualization of separation on a bluff body

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.; Durgin, J. R.

    1981-01-01

    A simple and relatively accurate dry-surface coating method for visualization of the flow separation on a circular cylinder (or any bluff body) during wind tunnel tests is described. The technique consists of (1) application of a thin coating composed of an indicator and a paint carrier; (2) drying of the film; (3) conditioning of the coating with an acidic solution to ensure a suitable color reaction; (4) release into the body wake of a gas able to produce a base through chemical reaction with the solvent of the conditioning solution; and (5) color reaction according to pH.

  18. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  19. A novel photocrosslinkable and cytocompatible chitosan coating for Ti6Al4V surfaces.

    PubMed

    Zujur, Denise; Moret, Josnell; Rodriguez, Dubrasvka; Cruz, Lauren; Lira, Joaquin; Gil, Linda; Dominguez, Ernic; Alvarez-Barreto, Jose

    2015-10-16

    In this work, chitosan (CH) was used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles. CH was chemically modified, via carbodiimide chemistry, using lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photocrosslinkable, respectively. The reaction was verified by FTIR, NMR and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing polymer crosslinking and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating's cytocompatibility was determined in vitro through the culture of rat bone marrow mesenchymal stem cells, using an MTT assay, with their morphology assessed by SEM. The developed coating behaved as a hydrogel on the Ti6Al4V and was stable on the surface. FTIR and NMR confirmed the crosslinking mechanism, based on an arile ring expansion, and subsequent reaction with the CH amine groups. Furthermore, the coating was able to support cell proliferation and osteogenic differentiation. UV crosslinking of CH is easy to apply and has potential for future metallic implant surface modifications. Due to its nature as a hydrogel, the coating could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

  20. Refrigerated Wind Tunnel Tests on Surface Coatings for Preventing Ice Formation

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Clay, William C

    1930-01-01

    This investigation was conducted to determine the effectiveness of various surface coatings as a means for preventing ice formations on aircraft in flight. The substances used as coatings for these tests are divided into two groups: compounds soluble in water, and those which are insoluble in water. It was found that certain soluble compounds were apparently effective in preventing the formation of ice on an airfoil model, while all insoluble compounds which were tested were found to be ineffective.

  1. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    PubMed

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  3. Water-repellent coatings for surface and 3D wood processing

    NASA Astrophysics Data System (ADS)

    Debelova, N. N.; Gorlenko, N. P.; Volokitin, G. G.; Sarkisov, Yu S.; Dmitriyenko, V. P.; Zavyalova, E. N.; Zavyalov, P. B.

    2015-01-01

    The paper presents the results of research in organic chemical compositions for hydrophobic protection of wood with the use of surface and three-dimensional coating techniques of impregnation and chemical compositions. Water absorption indicators, angles of contact on the surface of treated samples are detected herein. Kinetic equation of the moisture diffusion transition in capillary-porous structure of wood is suggested.

  4. Osteoblastic cell attachment to hydroxyapatite-coated implant surfaces in vitro.

    PubMed

    Chang, Y L; Stanford, C M; Wefel, J S; Keller, J C

    1999-01-01

    Hydroxyapatite (HA) used as a coating for implants can exhibit varying levels of interaction with the biologic environment. The crystallinity of the HA-based coating has been shown to control the rate of dissolution and appears to play a role in the initial cellular interaction with the implant surfaces. An osteoblastic cell attachment assay was employed to examine the cell attachment to untreated and pretreated (pH 5.2, 24 hours) titanium and HA coatings of low (50%), medium (75%), and high (90%) crystallinity. A slightly higher percentage of cell attachment (%CA) was found on untreated and pretreated HA surfaces as compared to the titanium surface. No significant difference could be found in the %CA between the 3 levels of crystallinity. However, higher levels of %CA were observed on pretreated HA surfaces than on untreated HA surfaces (t test, P < .05). Elevated calcium and phosphate levels in culture medium did not have any effect on cell attachment. Scanning electron microscopic examinations revealed surface degradation of the HA coating following pretreatment in the simulated inflammatory media (pH 5.2, 24 hours). The results suggest that the altered surface topography may influence the initial cell attachment to HA surfaces.

  5. Accelerated weathering of wood surfaces coated with multifunctional allkoxysilanes by sol-gel deposition

    Treesearch

    Mandla A. Tshabalala; John E. Gangstad

    2003-01-01

    Accelerated weathering of wood surfaces coated with hexadecyltrimethoxysilane (HDTMOS) in the presence of methyltrimethoxysilane (MTMOS) by the sol-gel process was investigated. The sol-gel process allowed the deposition of a covalently bound thin layer of polysiloxane networks on the wood surface that was resistant to water sorption and water leaching. The rate of...

  6. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Metal surface coating thinner and... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... Counties Air Basin portion). (iii) This section is rescinded for metal parts and products coaters which...

  7. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Metal surface coating thinner and... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... Counties Air Basin portion). (iii) This section is rescinded for metal parts and products coaters which...

  8. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Metal surface coating thinner and... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... Counties Air Basin portion). (iii) This section is rescinded for metal parts and products coaters which...

  9. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Metal surface coating thinner and... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... Counties Air Basin portion). (iii) This section is rescinded for metal parts and products coaters which...

  10. 40 CFR 52.253 - Metal surface coating thinner and reducer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Metal surface coating thinner and... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... Counties Air Basin portion). (iii) This section is rescinded for metal parts and products coaters which...

  11. Activated platelets form protected zones of adhesion on fibrinogen and fibronectin-coated surfaces

    PubMed Central

    1993-01-01

    Leukocytes form zones of close apposition when they adhere to ligand- coated surfaces. Because plasma proteins are excluded from these contact zones, we have termed them protected zones of adhesion. To determine whether platelets form similar protected zones of adhesion, gel-filtered platelets stimulated with thrombin or ADP were allowed to adhere to fibrinogen- or fibronectin-coated surfaces. The protein- coated surfaces with platelets attached were stained with either fluorochrome-conjugated goat anti-human fibrinogen or anti-human fibronectin antibodies, or with rhodamine-conjugated polyethylene glycol polymers. Fluorescence microscopy revealed that F(ab')2 anti- fibrinogen (100 kD) did not penetrate into the contact zones between stimulated platelets and the underlying fibrinogen-coated surface, while Fab antifibrinogen (50 kD) and 10 kD polyethylene glycol readily penetrated and stained the substrate beneath the platelets. Thrombin- or ADP-stimulated platelets also formed protected zones of adhesion on fibronectin-coated surfaces. F(ab')2 anti-fibronectin and 10 kD polyethylene glycol were excluded from these adhesion zones, indicating that they are much less permeable than those formed by platelets on fibrinogen-coated surfaces. The permeability properties of protected zones of adhesion formed by stimulated platelets on surfaces coated with both fibrinogen and fibronectin were similar to the zones of adhesion formed on fibronectin alone. mAb 7E3, directed against the alpha IIb beta 3 integrin blocked the formation of protected adhesion zones between thrombin-stimulated platelets and fibrinogen or fibronectin coated surfaces. mAb C13 is directed against the alpha 5 beta 1 integrin on platelets. Stimulated platelets treated with this mAb formed protected zones of adhesion on surfaces coated with fibronectin. These protected zones were impermeable to F(ab')2 antifibronectin but were permeable to 10 kD polyethylene glycol. These results show that activated

  12. Coatings of polyethylene glycol for suppressing adhesion between solid microspheres and flat surfaces.

    PubMed

    Upadhyayula, Srigokul; Quinata, Timothy; Bishop, Stephen; Gupta, Sharad; Johnson, Noah Ray; Bahmani, Baharak; Bozhilov, Kliment; Stubbs, Jeremy; Jreij, Pamela; Nallagatla, Pratima; Vullev, Valentine I

    2012-03-20

    This article describes the development and the examination of surface coatings that suppress the adhesion between glass surfaces and polymer microspheres. Superparamagnetic doping allowed for exerting magnetic forces on the microbeads. The carboxyl functionalization of the polymer provided the means for coating the beads with polyethylene glycol (PEG) with different molecular weight. Under gravitational force, the microbeads settled on glass surfaces with similar polymer coatings. We examined the efficacy of removing the beads from the glass surfaces by applying a pulling force of ~1.2 pN. The percent beads remaining on the surface after applying the pulling force for approximately 5 s served as an indication of the adhesion propensity. Coating of PEG with molecular weight ranging between 3 and 10 kDa was essential for suppressing the adhesion. For the particular substrates, surface chemistry and aqueous media we used, coatings of 5 kDa manifested optimal suppression of adhesion: that is, only 3% of the microbeads remained on the surface after applying the pulling magnetic force. When either the glass or the beads were not PEGylated, the adhesion between them was substantial. Addition of a noncharged surfactant, TWEEN, above its critical micelle concentrations (CMCs) suppressed the adhesion between noncoated substrates. The extent of this surfactant-induced improvement of the adhesion suppression, however, did not exceed the quality of preventing the adhesion that we attained by PEGylating both substrates. In addition, the use of surfactants did not significantly improve the suppression of bead-surface adhesion when both substrates were PEGylated. These findings suggest that such surfactant additives tend to be redundant and that covalently grafted coatings of PEGs with selected chain lengths provide sufficient suppression of nonspecific interfacial interactions.

  13. DLC coatings for UHMWPE: relationship between bacterial adherence and surface properties.

    PubMed

    Del Prado, G; Terriza, A; Ortiz-Pérez, A; Molina-Manso, D; Mahillo, I; Yubero, F; Puértolas, J A; Manrubia-Cobo, M; Gómez Barrena, E; Esteban, J

    2012-10-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopedic surgery. This work presents a thorough study of several plasma-based coatings that may be used with this functionality: diamond-like carbon (DLC), fluorine-doped DLC (F-DLC), and a high-fluorine-content-carbon-fluor polymer (CF(X)). The coatings were obtained by a radio-frequency plasma-assisted deposition on ultra high molecular weight polyethylene (UHMWPE) samples and physicochemical properties of the coated surfaces were correlated with their antibacterial performance against collection and clinical Staphylococcus aureus and Staphylococcus epidermidis strains. The fluorine content and the relative amount of C-C and C-F bonds were controlled by X-ray photoelectron spectroscopy, and hydrophobicity and surface tension by contact angle measurements. Surface roughness was studied by Atomic Force Microscopy. Additional nanoidentation studies were performed for DLC and F-DLC coatings. Unpaired t test and regression linear models evaluated the adherence of S. aureus and S. epidermidis on raw and coated UHMWPE samples. Comparing with UHMWPE, DLC/UHMWPE was the least adherent surface with independence of the bacterial species, finding significant reductions (p ≤ 0.001) for nine staphylococci strains. Bacterial adherence was also significantly reduced in F-DLC/ UHMWPE and CFx/UHMWPE for six strains.

  14. Coated Tools with Crater-Like Surface Structures Have Enhanced Performance

    NASA Astrophysics Data System (ADS)

    Watmon, Titus Bitek

    2010-10-01

    This paper presents the result of an investigation into the cutting characteristics of electrical discharge machined (EDMed) surface-modified carbide cutting tool inserts. The tool inserts were coated with Titanium Nitride (TiN) by physical vapour deposition (PVD) method. In this study, comparative cutting tests using TiN coated control specimens with no EDM surface structures and TiN coated EDMed tools with crater-like surface topographies were carried out on mild steel. Various cutting speeds, up to an increase of 30% of the tool manufacturer's recommended speed were investigated. Twenty five cuts (passes) were carried out for each inserts at the speeds investigated. After every five cuts (passes), microscopic pictures of the tool wear profiles were taken in order to monitor the progressive wear on the rake face and, on the flank of the insert. The power load was monitored for each cut using an on board meter on the machine. Results obtained confirmed advantages of cutting at all speeds investigated using EDMed coated inserts in terms of reduced tool wear. Furthermore, the surface finish on the work-piece was consistently better for the EDMed inserts. It is therefore concluded, that TiN coated EDMed crater-like surface structure on tool inserts can considerably improve tool performance.

  15. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  16. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  17. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces.

    PubMed

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-21

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  18. Impact of surface coated magnetite used in magnetic drug delivery system on immune response

    NASA Astrophysics Data System (ADS)

    Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro

    2015-05-01

    Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.

  19. Cryolipolysis Conformable-Surface Applicator for Nonsurgical Fat Reduction in Lateral Thighs

    PubMed Central

    Stevens, W. Grant; Bachelor, Eric P.

    2015-01-01

    Background Vacuum applicators have been effective for cryolipolysis of the abdomen, flanks, inner thighs, back, chest, and arms. However, the lateral thighs have not been easily treated because fat from this area cannot be easily drawn into a vacuum cup. Objectives The authors investigated the safety and efficacy of a prototype applicator for treatment of “nonpinchable” fat in the lateral thighs. Methods In this prospective, nonrandomized, interventional cohort, multicenter study, a 120-minute unilateral treatment with a prototype conformable-surface applicator was performed on 1 lateral thigh of 40 patients, with the contralateral thigh serving as the control. During follow-up visits at 2 and 4 months, fat reduction was assessed by ultrasound imaging and clinical photography, and patient satisfaction surveys were completed. Results Ultrasound data indicated a 2.6-mm mean normalized reduction in fat thickness—a statistically significant reduction vs the untreated control thigh (P = 7.8E-8). According to patient survey responses, 89% of patients would recommend the procedure to a friend; 86% were satisfied with cryolipolysis for the lateral thighs; 86% noticed visible fat reduction; and 97% were likely to undergo a second treatment. A panel of 3 independent blinded physicians correctly identified baseline and posttreatment clinical photographs in 87% of cases. There were no serious adverse events or unanticipated adverse device effects. Conclusions The cryolipolysis conformable-surface applicator was safe and efficacious for treatment of lateral thigh fat. Clinical photographs and ultrasound results showed significant reduction in fat thickness, and noticeable reduction in undesirable “saddlebag” bulges. Level of Evidence: 3 Therapeutic PMID:25568236

  20. The surface and electrochemical analysis of permanganate based conversion coating on alclad and unclad 2024 alloy

    NASA Astrophysics Data System (ADS)

    Yoganandan, G.; Balaraju, J. N.; William Grips, V. K.

    2012-09-01

    In the present investigation permanganate based conversion coating (PCC) was developed on AA 2024 alloy using alkaline bath containing Mn/Mo oxyanions. Conversion coating was formed on alclad (APCC) and unclad (UPCC) aluminium alloys by simple immersion method. Surface morphology of the APCC and UPCC specimens exhibited smooth and mud-crack patterns respectively. Elemental analysis showed the presence of higher amounts of Mn (5-6 wt.%) and Mo (0.3 wt.%) on UPCC. Raman and XPS analysis showed the presence of compounds such as MnOx (Mn3O4 and Mn2O3), MnO2, KMnO4, MoOx, MoO2, MoO3/polymolybdate on both coating surfaces. The corrosion current density (icorr) values obtained for both coated surfaces were less than 1 μA/cm2. However, APCC specimen showed the lowest icorr value of about 0.05 μA/cm2 after 168 h of immersion in 3.5% NaCl. EIS studies revealed the higher charge transfer resistance (Rct) values for APCC specimen after 1 and 168 h immersion compared to UPCC. Coated specimens were also tested by continuous salt spray exposure (ASTM B117) with and without cross-hatch mark ('X') for about 750 h. Coating discoloration along with the presence of few corrosion products had been noticed on UPCC specimen after continuous salt spray exposure.

  1. The spectral emittance and stability of coatings and textured surfaces for thermophotovoltaic (TPV) radiator applications

    SciTech Connect

    Cockeram, B.V.; Hollenbeck, J.L.

    2000-11-01

    Coatings or surface modifications are needed to improve the surface emissivity of materials under consideration for TPV radiator applications to a value of 0.8 or higher. Vacuum plasma spray coatings (ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, Fe{sub 2}TiO{sub 5}, ZrTiO{sub 4}, ZrO{sub 2} + 8% Y{sub 2}O{sub 3} + 2% HfO{sub 2}, and Al{sub 2}O{sub 3} + TiO{sub 2}) and a chemical vapor deposited coating of rhenium whiskers were used to increase the surface emissivity of refractory metal and nickel-base materials. Emittance measurements following 4000 hours of vacuum annealing at 1100 C show that only the ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, and Al{sub 2}O{sub 3} + TiO{sub 2} coatings have the desired thermal stability, and maintain emissivity values higher than 0.8. These coatings are graybody emitters, and provide a high emissivity value in the wavelength range that is relevant to the TPV cells. The highest emissivity values were observed for the Al{sub 2}O{sub 3} + TiO{sub 2} coatings, with post-anneal values higher than graphite.

  2. APPLICATION OF HYDROPHILIC STARCH-BASED COATINGS TO POLYETHYLNE SURFACES

    USDA-ARS?s Scientific Manuscript database

    Methods for imparting hydrophilic surface properties to hydrophobic plastics are of interest because of their ability to retard the build-up of static electricity, to alter friction and adhesion properties between surfaces, to allow surfaces to be printed with water-based dyes and inks, and to impro...

  3. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  4. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  5. Improved surface stability and biotin binding properties of streptavidin coating on polystyrene.

    PubMed

    Ylikotila, Johanna; Välimaa, Lasse; Takalo, Harri; Pettersson, Kim

    2009-05-01

    The ultimate nature of streptavidin to bind biotin tightly is widely utilized in many solid-phase based applications to provide a universal binding surface for biotinylated molecules. However, the preparation of the streptavidin coatings by passive adsorption may heavily alter the binding properties of native streptavidin and may not result in the best possible capture surface for demanding solid-phase assays. By introducing sulphydryl groups through primary amines in the protein, we have activated and conjugated native streptavidin into larger protein polymers resulting in high local binding density when coated on polystyrene. This thiolated streptavidin formed through chemical modification has improved adsorption properties and biotin binding capability, compared to the native streptavidin. When this thiolated streptavidin is coated on polystyrene, a dense surface is formed, which provides up to 3-fold increase in the biotin binding efficiency and improves the surface stability by minimizing the desorption of the adsorbed protein from the surface during incubation. Furthermore, this high-capacity surface is resistant to harsh chemical treatments, such as denaturing conditions or mild reducing conditions. The improved adsorption properties of the thiolated streptavidin allow the coating process to be performed with shorter incubation times (15min), still providing enhanced solid-phase properties, compared to a reference streptavidin surface.

  6. METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES

    DOEpatents

    Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.

    1960-02-23

    A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.

  7. Aeromonas Flagella (Polar and Lateral) Are Enterocyte Adhesins That Contribute to Biofilm Formation on Surfaces

    PubMed Central

    Kirov, Sylvia M.; Castrisios, Marika; Shaw, Jonathan G.

    2004-01-01

    Aeromonas spp. (gram-negative, aquatic bacteria which include enteropathogenic strains) have two distinct flagellar systems, namely a polar flagellum for swimming in liquid and multiple lateral flagella for swarming over surfaces. Only ∼60% of mesophilic strains can produce lateral flagella. To evaluate flagellar contributions to Aeromonas intestinal colonization, we compared polar and lateral flagellar mutant strains of a diarrheal isolate of Aeromonas caviae for the ability to adhere to the intestinal cell lines Henle 407 and Caco-2, which have the characteristic features of human intestinal enterocytes. Strains lacking polar flagella were virtually nonadherent to these cell lines, while loss of the lateral flagellum decreased adherence by ∼60% in comparison to the wild-type level. Motility mutants (unable to swim or swarm in agar assays) had adhesion levels of ∼50% of wild-type values, irrespective of their flagellar expression. Flagellar mutant strains were also evaluated for the ability to form biofilms in a borosilicate glass tube model which was optimized for Aeromonas spp. (broth inoculum, with a 16- to 20-h incubation at 37°C). All flagellar mutants showed a decreased ability to form biofilms (at least 30% lower than the wild type). For the chemotactic motility mutant cheA, biofilm formation decreased >80% from the wild-type level. The complementation of flagellar phenotypes (polar flagellar mutants) restored biofilms to wild-type levels. We concluded that both flagellar types are enterocyte adhesins and need to be fully functional for optimal biofilm formation. PMID:15039313

  8. Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.

  9. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.

    PubMed

    Catena, Robert D; Xu, Xu

    2015-01-01

    We previously studied balance during lateral load transfers, but were left without explanation of why some individuals were successful in novel low friction conditions and others were not. Here, we retrospectively examined lower extremity kinematics between successful (SL) and unsuccessful (UL) groups to determine what characteristics may improve low friction performance. Success versus failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (SL and UL). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction, and practiced low friction. The UL group used a wide stance with rotation mostly at the hips during the high and novel low friction conditions. To successfully complete the practiced low friction task, they narrowed their stance and pivoted both feet and torso towards the direction of the load, similar to the SL group in all conditions. This successful kinematic method potentially results in reduced muscle demand throughout the task. Practitioner Summary: The reason for this paper is to retrospectively examine the different load transfer strategies that are used in a low friction lateral load transfer. We found stance width to be the major source of success, while sagittal plane motion was altered to potentially maintain balance.

  10. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS2/MoS2 monolayer heterostructure on top of an Al2O3-capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  11. Increase in the positronium emission yield from polycrystalline tungsten surfaces by sodium coating

    NASA Astrophysics Data System (ADS)

    Terabe, Hiroki; Iida, Shimpei; Yamashita, Takashi; Tachibana, Takayuki; Barbiellini, Bernardo; Wada, Ken; Mochizuki, Izumi; Yagishita, Akira; Hyodo, Toshio; Nagashima, Yasuyuki

    2015-11-01

    The study of positronium emission from metal surfaces bombarded by slow positrons provides information on the topmost layer of the metals such as electron and positron energy levels because positronium atoms are formed as the result of the interactions between the positrons and the electrons there. In the present work, time-of-flight spectra of ortho-positronium atoms emitted from polycrystalline tungsten surfaces with and without a sodium coating have been measured. The data shows a significant increase on coating in the yield of the 5 eV component due to positronium formed from thermalized positrons and conduction electrons. An attempt is made to explain the increase by an emission model based on the formation of positronium in a low electron density surface layer extended by the coating.

  12. Semiconductor with protective surface coating and method of manufacture thereof. [Patent application

    DOEpatents

    Hansen, W.L.; Haller, E.E.

    1980-09-19

    Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.

  13. Complex frequencies and field distributions of localized surface plasmon modes in graphene-coated subwavelength wires

    NASA Astrophysics Data System (ADS)

    Cuevas, Mauro; Riso, Máximo A.; Depine, Ricardo A.

    2016-04-01

    In this work we study the modal characteristics of localized surface plasmons in graphene-coated, circular cross-section wires. Localized surface plasmons are represented in terms of cylindrical multipole partial waves characterized by discrete, complex frequencies that depend on the size of the wire and can be dynamically tuned via a gate voltage. We consider both intrinsically nonplasmonic wires and intrinsically plasmonic wires. In the first case the localized surface plasmons are introduced by the graphene coating, whereas in the second case the localized eigenmodes of the graphene coating are expected to hybridize those already existing in the bare wire. We show that the approach presented here, valid for particle sizes where the retardation effects can be significant, is in good agreement with analytical expressions obtained in the limit when particle size is very small compared to the wavelength of the eigenmode and with results indirectly determined from scattering cross-section spectra.

  14. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  15. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  16. Surface observation of thin hydroxyapatite-coated implants at 80 months after insertion.

    PubMed

    Sugiyama, Tetsuya; Miake, Yasuo; Yajima, Yasutomo; Yamamoto, Kohji; Sakurai, Kaoru

    2011-04-01

    We observed surfaces and cross sections of thin hydroxyapatite (HA)-coated implants produced by the thermal decomposition method in a patient attending our clinic who underwent implant removal at 80 months due to fracture of the implants. On the implant surfaces of the removed sample, most of the HA had dissolved, and extensive osseointegration was observed where Ti had closely bonded to bone. This indicated that the HA coated on the implant surfaces had disappeared and osseointegration had been established where Ti directly bonded to the bone. In addition, calcium titanate (CaTiO(3)) and HA layers formed by the thermal decomposition method showed no desorption. The results clearly indicate the positive clinical potential of thin HA-coating by the thermal decomposition method.

  17. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  18. Computational Study of the Surface-Enhanced Raman Scattering from Silica-Coated Silver Nanowires†

    PubMed Central

    DeVetter, Brent M.; Bhargava, Rohit; Murphy, Catherine J.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) is a popular vibrational spectroscopic technique that can have several applications in chemical and biological sensing. Within the last decade or so, our ability to chemically synthesize nanostructures has improved to the point that the rational design of a variety of SERS substrates is now viable. In this report, we describe a computational study using the finite element method (FEM) to investigate the effects of patchy silica coatings on silver nanowires. We found that varying the degree of silica coating on silver nanowires impacts the enhancement and may be explained through two processes. The first process is a consequence of changes in the dielectric environment surrounding the nanowire due to the silica. As additional layers of silica coat the nanowire, the localized surface plasmon resonance of the nanowire redshifts. The second process is a result of silica distorting the local electric field around the nanowire surface. Anisotropic silica coating can influence anticipated enhancement depending on its spatial localization with respect to excited plasmon modes in the nanowire. We propose that the design of nanostructures with patchy silica coatings can be a viable tool for increasing surface enhancement. PMID:24188479

  19. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization.

    PubMed

    Heidenau, F; Mittelmeier, W; Detsch, R; Haenle, M; Stenzel, F; Ziegler, G; Gollwitzer, H

    2005-10-01

    Postoperative implant-associated infection is still an unresolved and serious complication in modern surgery. Antibacterial and biocompatible surfaces could both reduce infection rates and promote tissue integration. In this respect, a comparative study of the antibacterial as well as the biocompatible potential of different metal ions in vitro is presented. The assays used were growth inhibition tests with different metal salts carried out with tissue cells and bacteria under corresponding culture conditions. Additionally, in vitro tests in direct surface contact with tissue cells and bacteria onto a novel copper containing sol-gel derived titanium dioxide coating (Cu-TiO2) and a fourfold Cu-TiO2 coating were performed. The values were compared to a non-filled titanium dioxide coating and standard Ti6Al4V alloy. SEM-investigations were performed to approve the results of the in vitro tests. Among Ag+, Zn2+, Co2+, Al3+ and Hg2+, the growth inhibition tests revealed an outstanding position of copper ions as antibacterial but nevertheless bio-tolerant additive. These results were affirmed by the cell tests in direct surface contact and SEM-investigations, where best cell growth was found on the Cu-TiO2 coatings. Highest antibacterial properties with a tolerable cytocompatibility could be observed on the fourfold Cu-TiO2 coatings. Consequently, surfaces with custom-tailored antibacterial properties may be established and could be of particular interest in revision and tumor arthroplasty.

  20. An electron microscopic investigation of the surface coat of the electrocyte of electrophorus electricus.

    PubMed

    Benchimol, M; de Souza, W; Machado, R D

    1977-09-26

    The surface coat of the electrocyte of the main electric organ of Electrophorus electricus was studied using cytochemical methods (periodic acid-silver methanamine, periodic acid-chromic acid-silver methenamine, periodic acid-thiosemicarbazide-silver proteinate, Concanavalin A - horseradish peroxidase, ruthenium red, Alcian-blue lanthanum nitrate, colloidal iron hydroxide and cationized ferritin). The surface of the electrocyte presents perpendicularly oriented tubular invaginations of the cell membrane. The fibrous coat 50-100 nm thick, penetrates into the lumen of the invaginations. It is also observed in the synaptic clefts existent in the posterior face of the electrolyte. The coating of the surface membrane gives a positive reaction with all techniques used. Binding of colloidal iron hydroxide particles was observed only in the outer layer of the coat. With the Alcian-blue lanthanum nitrate technique , microtubules were observed in the cytoplasm of the electrocyte. The results indicate that the surface coat of the electrocyte contains mucopolysaccharides, glycoproteins, acid mucopolysaccharides and anionic sites detected at low (colloidal iron hydroxyde) and neutral (cationized ferritin) pH.

  1. Surface Characteristics and Bioactivity of a Novel Natural HA/Zircon Nanocomposite Coated on Dental Implants

    PubMed Central

    Karamian, Ebrahim; Khandan, Amirsalar

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average Ra (14.54 μm) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity (Xc) was measured by XRD data, which indicated the minimum value (Xc = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating. PMID:24822204

  2. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  3. Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization

    NASA Astrophysics Data System (ADS)

    Bosco, R.; Leeuwenburgh, S. C. G.; Jansen, J. A.; van den Beucken, J. J. J. P.

    2014-08-01

    The ultimate goal for surface modifications in bone implants is to achieve biologically active surface able to control and trigger specific tissue response. In this study was evaluated the effects of organic compound, derived from extracellular matrix, involved in tissue mineralization. Alkaline phosphatase (ALP) plays a fundamental role in bone mineralization concurrently with collagen, the main organic components of bones. Electrospray deposition (ESD) was used to coat titanium disks with ALP and collagen at room temperature. To verify the synergistic role of ALP and collagen different conformations of coatings (mixed and layered) were obtained and their mineralization capacity was tested in vitro. The mineralization tests indicated the fundamental role of collagen to increase ALP coating retention. Analyses indicated that the coating conformation has a role; in fact the mixed group showed improved ALP retention, enzymatic activity and unique mineralized surface morphology. ESD demonstrated to be a successful method to deposit organic molecules preserving their properties as indicated by the in vitro results. These findings proved the synergistic effect of ALP and collagen in inducing mineralization offering an intriguing coating constituent for medical device that aim to trigger surface mineralization such as bone implants.

  4. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants.

    PubMed

    Karamian, Ebrahim; Khandan, Amirsalar; Motamedi, Mahmood Reza Kalantar; Mirmohammadi, Hesam

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average R a (14.54 μm) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity (X c ) was measured by XRD data, which indicated the minimum value (X c = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating.

  5. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    NASA Astrophysics Data System (ADS)

    Terriza, A.; Del Prado, G.; Ortiz Pérez, A.; Martínez, M. J.; Puértolas, J. A.; Molina Manso, D.; González-Elipe, A. R.; Yubero, F.; Gómez Barrena, E.; Esteban, J.

    2010-11-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CFX). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F -DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  6. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA

  7. 3-D micro surface profilometry employing novel Mirau-based lateral scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Le, Manh-Trung; Lin, Yi-Shiuan

    2014-09-01

    An innovative 3-D surface imaging methodology for reconstructing micro surface profiles with a long depth measuring range and a nano-scale resolution was developed using the newly developed Mirau-based lateral scanning interferometry (LSI). The current measuring field of view (FOV) of conventional white light interferometers is limited by microscopic views of the existing interferometric objectives, such as those in Michelson, Mirau or Linnik designs. Moreover, the vertical scanning operation required for acquiring volumetric interferometric data is extremely time-consuming and makes white light vertical scanning interferometry (VSI) infeasible for automatic optical inspection (AOI) of micro 3-D structures. To resolve this, a newly developed white light LSI method based on Mirau’s optical configuration was developed by controlling the tilting angle of the reference mirror in the Mirau interferometric objective. With the proposed optical configuration, the surface is inspected at a tilting angle with respect to the maximum coherence plane of the interferometric system along its lateral scanning direction when the objective lies perpendicular to the tested surface. In addition, a system calibration method was developed to establish an accurate mathematical mapping model between the object depth and the lateral axis. To evaluate the feasibility of the methodology, a calibrated step height was measured for evaluating the accuracy and repeatability. Some industrial samples, such as photon spacers and other microstructures fabricated by nano-imprinting processes, were measured to verify the actual performance on real components. It was found that the measurement repeatability was controlled less than 60 nm within one standard deviation for a maximum measurable depth of 27.21 µm.

  8. [THE IMMUNOLOGIC INDICATORS IN PATIENTS WITH CARIES OF CONTACT SURFACES OF LATERAL TEETH].

    PubMed

    Heigetyan, A V; Bragin, E A; Maksiukov, S Yu; Labushkina, A V; Alutina, E L; Harseeva, G G

    2015-08-01

    The samplings of patients aged 18-45 years with caries of contact surfaces of lateral teeth (n=18) and healthy adults aged 18-20 years with intact teeth (n=18) were examined The saliva taken in rotary vial on empty stomach in amount of 3-4 mi served as assay for analysis. To identify secretory immunoglobulin A, interleukin lβ, interleukin-4 and interferon y saliva was centrifuged during 15 min under 1500 rpm. The supernatant fluid was analyzed using enzymoimmunoassay (test-systems "Vector-Best", Novosibirsk). The registration of reaction was implemented using multiscan Labsystem under wavelength 450 nm. The content of secretory immunoglobulin A was expressed in mg/l, cytokines - in pg/ml. It is demonstrated that in patients with caries average level of interleukin lβ was almost two times higher (p<0.05) than analogous indicator in healthy examined patients. In healthy patients average level of interferon γ significantly (more than in 10 times) exceeded upper limit of allowable standard and was higher (p<0.05) in comparison with such in patients with caries of contact surfaces. The analysis of content of secretory immunoglobulin A in saliva established that in healthy patients average values of the given indicator were higher (p<0.05) than in patients with caries of contact surfaces of lateral teeth. The lower content of secretory immunoglobulin A and interferon y against the background of increased level of interleukin lβ was detected in saliva of patients with caries of contact surfaces of lateral teeth. This occurrence can be considered as factor predisposing to development of caries process.

  9. Influence of the viscosity and the substrate on the surface hydrophobicity of polyurethane coatings

    NASA Astrophysics Data System (ADS)

    Meincken, M.; Klash, A.; Seboa, S.; Sanderson, R. D.

    2006-11-01

    Tailor-made polyurethane (PU) dispersions were synthesized as coatings for paperboard for dry food packaging. For this purpose a low moisture-vapor transmission rate and a high surface hydrophobicity are desirable characteristics, which are both met by PU. However, it was found that the surface hydrophobicity of water-borne PU dispersions depends strongly on the viscosity of the dispersion. This dependency was studied by static contact angle measurements (SCA) as well as a novel technique using digital pulsed-force mode atomic force microscopy (DPFM-AFM). Comparison of the results validated that DPFM-AFM is a valuable tool to characterize the surface hydrophilicity. Both techniques confirmed that the surface hydrophobicity varies with the viscosity and that an optimum viscosity for the PU coating with a maximum surface hydrophobicity can consequently be determined. It was found that both lower as well as higher viscosities led to a less hydrophobic surface.

  10. Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application.

    PubMed

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2015-11-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompability properties with better responses for corrosion and barrier properties, due to the presence of rutile crystalline structure. PEO may be a promising surface treatment option to improve the electrochemical behavior of dental implants mitigating treatment failures.

  11. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  12. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays.

    PubMed

    Dudek, Magdalena M; Gandhiraman, R P; Volcke, C; Cafolla, Attilio A; Daniels, Stephen; Killard, Anthony J

    2009-09-15

    The modification of cyclo-olefin polymer Zeonor by plasma-enhanced chemical vapor deposition to form a silica-like surface and evaluation of its application for lateral flow bioassays applications are discussed in this study. The SiOx layer was extensively characterized using contact angle measurements, atomic force microscopy, and Fourier transform infrared spectroscopy in attenuated total internal reflectance mode where the presence of a uniform SiOx film was clearly identified. The SiOx modification resulted in a surface with enhanced wettability and excellent fluidic properties when combined with a hot-embossed micropillar capillary fill-based substrate. The SiOx surface also had the ability to accelerate the clotting of human plasma, which may have application in certain types of blood coagulation assays.

  13. Assessment of the effects of surface preparation and coatings on the susceptibility of line pipe to stress-corrosion cracking

    SciTech Connect

    Beavers, J.A. )

    1992-02-24

    Objectives were to evaluate susceptibility of pipeline steel to SCC when coated with coal-tar enamel, fusion-bonded epoxy (FBE), and polyethylene tape coatings. The tests included standard cathodic disbondment tests, potential gradients beneath disbonded coatings, electrochemical measurements, and SCC tests. It was concluded that factors affecting relative SCC susceptibility of pipelines with different coatings are the disbonding resistance of the coating and the ability of the coating to pass cathodic protection (CP) current. FBE coated pipelines would be expected to exhibit good SCC resistance, since the FBE coating had high cathodic disbonding resistance and could pass CP current. Grit blasting at levels used at coating mills may be beneficial or detrimental to SCC susceptibility. Excellent correlation was found between th Almen strip deflection and change in SCC threshold stress. It appears to be beneficial to remove as much mill scale as possible, and a white surface finish probably should also be specified. 50 figs, 10 tabs.

  14. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  15. Control of surface morphology of carbide coating on Co-Cr-Mo implant alloy.

    PubMed

    Vandamme, N S; Topoleski, L D T

    2005-07-01

    Wear of materials used in artificial joints is a common failure mode of artificial joints. A low wear rate for implants is believed to be critical for extending implant service time. We developed a carbide-coated Co-Cr-Mo implant alloy created in plasma of methane and hydrogen mixed gas by a microwave plasma-assisted surface reaction. The carbide-coated Co-Cr-Mo has a unique "brain coral-like" surface morphology and is much harder than uncoated Co-Cr-Mo. The effect of plasma processing time and temperature on the surface morphology of the top carbide layer was studied toward optimizing the surface coating. The ratios of average roughness, Ra, core roughness, Rk, and summation of core roughness, reduced peak height (Rpk) and reduced valley depth (Rvk), Rk+Rpk+Rvk, for the 6-h/985 degrees C coating to those for the 0.5-h/985 degrees C coating were 1.9, 1.7, and 1.9, respectively. The ratios of Ra, Rk, and Rk+Rpk+Rvk for the 4-h/1000 degrees C coating to those for the 4-h/939 degrees C coating were 2.3, 2.3, and 2.0, respectively. With the proper combination of plasma processing time and temperature, it may be possible to change the thickness of the peak-valley top cluster by fourfold from approximately 0.6 microm to approximately 2.5 microm. Finally, the growth mechanism of the carbide layers on Co-Cr-Mo was discussed in the context of atomic composition analysis.

  16. Surface ultrastructure and mechanical properties of three different white-coated NiTi archwires.

    PubMed

    Ryu, Seong-Hee; Lim, Byung-Suh; Kwak, Eun Joo; Lee, Gi-Ja; Choi, Samjin; Park, Ki-Ho

    2015-01-01

    The recent trend in orthodontic treatment is to apply esthetic materials to orthodontic appliances with adequate clinical performance. The aim of this study was to investigate the ultrastructure (surface roughness) and mechanical properties (load-deflection curve) of three as-received, white-coated superelastic nickel-titanium (NiTi) archwires using atomic force microscopy (AFM) and modified three-point bending test assessments, respectively. Three representative esthetic NiTi archwires were used, silver-platinum- and polymer-coated NiTi Natural Dany (Dany group), epoxy resin-coated Orthoforce Ultraesthetic™ (Ultra group), and Teflon®-coated Perfect (Perfect group). Uncoated metallic areas of each wire were used as controls. The diameter of the Perfect archwire was significantly larger than that of other archwires. The Dany and Ultra groups showed more deflection than the Perfect group. The hysteresis area of the Dany and Ultra groups showed approximately two- and fourfold increases compared to the control and the Perfect group. The Dany group (2037.5 ± 527.3 nm) had the highest peak-to-peak surface roughness in the coated areas, followed by the Ultra group (811.1 ± 407.5 nm) and the Perfect group (362.7 ± 195.8 nm). However, reverse nanostructural changes in the surface roughness were observed in the uncoated metallic areas. The results suggested that the load-deflection properties and the surface roughness of superelastic NiTi archwires were affected directly by the coating materials. Although the efficiency of orthodontic treatment was affected by various factors, when only considering the frictional force and mechanostructural properties, the epoxy resin-coated Orthoforce Ultraesthetic™ archwires were the most effective for orthodontic treatment.

  17. Biocompatibility of Cation Coated on Plasma-Polymerized Ti Surface

    NASA Astrophysics Data System (ADS)

    Lee, Kang; Ko, Yeong-Mu; Kim, Byung-Hoon

    2012-08-01

    In this study, we investigated the bone formation properties and cell responses on Na-, Mg-, K-, and Ca-ion-exchanged carboxyl plasma polymerized titanium (Ti) surfaces. The phase and morphologies of deposits bonelike apatite were significantly influence by the cation species. Na and Mg ions promote bonelike apatite nucleation and growth on plasma-functionalized Ti surfaces in simulated body fluid (SBF) and improves the crystallinity of the bonelike apatite deposited layer. The cell viability tests revealed significantly enhanced viability on the Ca-ion-exchanged plasma-functionalized Ti surface than on any other surface.

  18. Semaphorin 3F confines ventral tangential migration of lateral olfactory tract neurons onto the telencephalon surface.

    PubMed

    Ito, Keisuke; Kawasaki, Takahiko; Takashima, Seiji; Matsuda, Ikuo; Aiba, Atsu; Hirata, Tatsumi

    2008-04-23

    Ventral tangential migration of neurons is the most prominent mode of neuronal translocation during earliest neurogenesis in the mouse telencephalon. A typical example of the neurons that adopt this migration mode is guidepost neurons in the lateral olfactory tract designated as lot cells. These neurons are generated from the neocortical neuroepithelium and migrate tangentially down to the ventral edge of the neocortex abutting the ganglionic eminence, on which the future lateral olfactory tract develops. We show here that this migration stream is repelled by a secreted axon guidance molecule, semaphorin 3F through interaction with its specific receptor, neuropilin-2. Accordingly, in mutant mice for semaphorin 3F or neuropilin-2, lot cells ectopically penetrated into the deep brain domain, which normally expresses semaphorin 3F. These results reveal that semaphorin 3F is an important regulator of the ventral tangential migration stream, confining the migrating neurons on the telencephalon surface by repelling from the deeper domain.

  19. Modeling and Analysis of Lateral Propagation of Surface Acoustic Waves Including Coupling Between Different Waves.

    PubMed

    Zhang, Benfeng; Han, Tao; Tang, Gongbin; Zhang, Qiaozhen; Omori, Tatsuya; Hashimoto, Ken-Ya

    2017-09-01

    This paper discusses lateral propagation of surface acoustic waves (SAWs) in periodic grating structures when two types of SAWs exist simultaneously and are coupled. The thin plate model proposed by the authors is extended to include the coupling between two different SAW modes. First, lateral SAW propagation in an infinitely long periodic grating is modeled and discussed. Then, the model is applied to the Al-grating/42° YX-LiTaO3 (42-LT) substrate structure, and it is shown that the slowness curve shape changes from concave to convex with the Al grating thickness. The transverse responses are also analyzed on an infinitely long interdigital transducer on the structure, and good agreement is achieved between the present and the finite-element method analyses. Finally, SAW resonators are fabricated on the Cu grating/42-LT substrate structure, and it is experimentally verified that the slowness curve shape of the shear horizontal SAW changes with the Cu thickness.

  20. Chemical and morphological changes of reusable surface insulation coatings as a function of convectively heated cyclic testing

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Goldstein, H. E.

    1973-01-01

    The effects of convective heating upon reusable surface insulation coatings were studied utilizing scanning electron microscopy, X-ray fluorescence, and X-ray diffraction. Samples of coated silica, mullite, and ceramic mullite fiber were cycled in an arc plasma stream up to 15 times for 15 minutes per cycle at surface temperatures simulating those on the space shuttle vehicle. The surfaces of ceramic mullite fiber and mullite coatings were roughened substantially by the convectively heated environment while the silica was significantly smoothed after testing. Scanning electron microscopy also showed surface cracking of varying degrees in all of the coatings. The surface chemistry of the coatings as examined by X-ray fluorescence revealed that significant changes in composition were occurring during cycling, particularly within the mullite coating.

  1. Friction Reduction of Chrome-Coated Surface with Micro-Dimple Arrays Generated by Electrochemical Micromachining

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolei; Qu, Ningsong; Hou, Zhibao; Wang, Xiaolei; Zhu, Di

    2017-01-01

    Surface coating and surface texture play a significant role in enhancing the tribological properties of mechanical components. In this study, to further improve the tribological properties of a chrome-coated surface, arrays of circular- and square-shaped micro-dimples were generated on chrome-coated surfaces via electrochemical machining. Through-mask electrochemical micromachining (TMEMM) is a popular electrochemical micromachining method for generating micro-dimple arrays. However, photolithography is a necessary process in conventional TMEMM before electrochemical micromachining, which is time-consuming and expensive when used in mass production. A reusable polydimethylsiloxane mask was introduced to prepare the micro-dimples. Circular micro-dimples of 120 μm diameter and square micro-dimples of 106 μm side length were fabricated on a chrome-coated surface. The results of friction tests indicated that at a load of 220 N, 10 μm deep micro-dimples reduced the coefficient of friction (CoF) significantly compared to an untextured surface. At a load of 320 and 420 N, the CoF continually decreased when the depth of the micro-dimples was increased from 0 to 20 μm. In addition, the results showed that, compared to circular micro-dimples, square micro-dimples contributed to a higher friction reduction ratio under the same conditions. The best friction reduction ratio was found for square dimples with a depth of 20 μm.

  2. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating

    PubMed Central

    Liu, Danqing; Liu, Ling; Onck, Patrick R.; Broer, Dirk J.

    2015-01-01

    In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response. PMID:25775559

  3. Penetration of chlorhexidine coating into tooth enamel: A surface analytical study.

    PubMed

    Sodhi, Rana N S; Symington, John

    2016-06-19

    Chlorhexidine has proved an efficient antibacterial agent and has been used successfully to prevent new carious lesions in the teeth of adults and children. The substantivity of chlorhexidine has not been identified with any precision, but is certainly not of short duration. In this work, surface analytical techniques have been applied to study the chemical composition, distribution, and penetration of an applied liquid coating containing chlorhexidine onto tooth enamel in order to ascertain mechanisms by which chlorhexidine keeps its long term substantivity. Several hypotheses have been put forward with regard to its substantivity, including concepts of chlorhexidine remaining as a reservoir upon application either in the epithelial surfaces, the tooth surface, or the biofilm. Alternatively, it has been proposed the teeth themselves act as the reservoir. To study this, a chlorhexidine containing liquid coating was applied to the surface of teeth. These were subsequently transversely cross-sectioned. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were performed on both surfaces to ascertain chemical composition and distribution of the applied coating. It was found that it formed a coating layer of about 25 μm thick. High spatial ToF-SIMS images showed little evidence of substantial diffusion of chlorhexidine into the enamel, either from the surface or via the enamel lamellae.

  4. Friction Reduction of Chrome-Coated Surface with Micro-Dimple Arrays Generated by Electrochemical Micromachining

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolei; Qu, Ningsong; Hou, Zhibao; Wang, Xiaolei; Zhu, Di

    2017-02-01

    Surface coating and surface texture play a significant role in enhancing the tribological properties of mechanical components. In this study, to further improve the tribological properties of a chrome-coated surface, arrays of circular- and square-shaped micro-dimples were generated on chrome-coated surfaces via electrochemical machining. Through-mask electrochemical micromachining (TMEMM) is a popular electrochemical micromachining method for generating micro-dimple arrays. However, photolithography is a necessary process in conventional TMEMM before electrochemical micromachining, which is time-consuming and expensive when used in mass production. A reusable polydimethylsiloxane mask was introduced to prepare the micro-dimples. Circular micro-dimples of 120 μm diameter and square micro-dimples of 106 μm side length were fabricated on a chrome-coated surface. The results of friction tests indicated that at a load of 220 N, 10 μm deep micro-dimples reduced the coefficient of friction (CoF) significantly compared to an untextured surface. At a load of 320 and 420 N, the CoF continually decreased when the depth of the micro-dimples was increased from 0 to 20 μm. In addition, the results showed that, compared to circular micro-dimples, square micro-dimples contributed to a higher friction reduction ratio under the same conditions. The best friction reduction ratio was found for square dimples with a depth of 20 μm.

  5. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating.

    PubMed

    Liu, Danqing; Liu, Ling; Onck, Patrick R; Broer, Dirk J

    2015-03-31

    In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response.

  6. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  7. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.

    PubMed

    Vinitnantharat, S; Rattanasirisophon, W; Ishibashi, Y

    2007-01-01

    This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (K(F)) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitos approximately equal to an coated coconut shell (CC) approximately equal to uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 microg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

  8. Use of plasma sprayed coatings as surface treatments for aluminum adherends

    SciTech Connect

    Davis, G.D.; Whisnant, P.L.; Groff, G.B.

    1996-12-31

    Surface treatments for metal adherends prior to adhesive bonding typically use chromates and/or strong acids and bases. Such materials are hazardous to personnel and harmful to the environment following disposal. To reduce release of these substances into the environment and lower disposal costs, plasma spray treatments are being developed as surface treatments for aluminum adherends. These treatments eliminate liquid and gaseous wastes and provide bond strength and durability comparable to that provided by the conventional chemical treatments. They have other potential advantages of being more suited for repair/refurbishment and less sensitive to metallurgical differences from alloy to alloy. Plasma sprayed coatings are used in a variety of applications where a coating tailored for specific properties is needed that may or may not be chemically or structurally similar to the base substrate. Plasma spraying has been shown to provide excellent high-temperature bond performance with titanium (unlike conventional oxidation treatments) and durability approaching that of phosphoric acid anodization for aluminum. Success has also been reported using other coatings on aluminum, titanium, and steel. Plasma spraying has the important advantage of versatility. A wide range of coatings (metals, ceramics, and polymers) can be deposited onto an equally wide range of substrates, and the coating properties can be optimized for a given application, independent of the substrate. Because of this versatility, plasma-sprayed coatings have been used for wear resistance, thermal barriers, EMI/RF shielding, corrosion resistance, slip/slide resistance, and biocompatibility in addition to adhesion.

  9. A surface-based analysis of language lateralization and cortical asymmetry.

    PubMed

    Greve, Douglas N; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R; Fischl, Bruce; Brysbaert, Marc

    2013-09-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl's gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013-2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by differences

  10. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    PubMed Central

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  11. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  12. Surface modified polysiloxane a sensitive coatings for QCM sensors

    NASA Astrophysics Data System (ADS)

    Ying, Zhihua; Jiang, Yadong; Du, Xiaosong; Xie, Guangzhong; Yang, Yajie; Tai, Huiling

    2008-02-01

    A quartz crystal microbalance (QCM) gas sensor with polysiloxane sensing film was fabricated for detection of dimethyl methyl phosphonate (DMMP), the simulant of chemical warfare agents (CWAs). Poly(methyl-3,3,3-trifluoropropylsiloxane) (PMTFPS) was oxygen plasma treated and then grafted with sulfosalicylic acid (SSA). The resultant SSA modified PMTFPS (SMP) was drop-coated on the electrode of QCM. Compared with the PMTFPS-QCM and SSA-QCM sensors, the sensitivity of SMP-QCM sensor was much higher. However, the SMP films showed less resistance to humidity variations. The selectivity of SMP-QCM sensor to DMMP was also investigated, and better results was showed out after SSA grafted.

  13. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption.

    PubMed

    Vinluan, Rodrigo D; Liu, Jinbin; Zhou, Chen; Yu, Mengxiao; Yang, Shengyang; Kumar, Amit; Sun, Shasha; Dean, Andrew; Sun, Xiankai; Zheng, Jie

    2014-08-13

    Ultrasmall glutathione-coated luminescent gold nanoparticles (GS-AuNPs) are known for their high resistance to serum protein adsorption. Our studies show that these NPs can serve as surface ligands to significantly enhance the physiological stability and lower the serum protein adsorption of superparamagnetic iron oxide nanoparticles (SPIONs), in addition to rendering the NPs the luminescence property. After the incorporation of GS-AuNPs onto the surface of SPIONs to form the hybrid nanoparticles (HBNPs), these SPIONs' protein adsorption was about 10-fold lower than those of the pure glutathione-coated SPIONs suggesting that GS-AuNPs are capable of providing a stealth effect against serum proteins.

  14. A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces.

    PubMed

    Saif, Muhammad Jawwad; Anwar, Jamil; Munawar, Munawar Ali

    2009-01-06

    A hybrid coating is prepared on a glass surface by a sol-gel process using tetraethoxysilane (TEOS) and Q(4)N(+)-Si(OR)(3). Transparent coatings with smooth surfaces were investigated against both Gram-positive (Escherichia coli) and Gram-negative bacteria (Staphylococcus aureus). A rapid decrease of the count for both strains was observed within 72 h. A significant correlation has been observed between the concentration of Q(4)N(+)-Si(OR)(S) and the antibacterial activity which has been thoroughly investigated.

  15. Ultrastructural visualisation of carbohydrate groups in the surface coating of hamster alveolar macrophages and pneumonocytes.

    PubMed Central

    Meban, C

    1986-01-01

    The surface coating of the alveolar macrophages and pneumonocytes of hamster lung was studied using an electron microscopy technique. Slices of lung tissue were fixed in aldehyde, labelled with a battery of lectin-horseradish peroxidase conjugates, incubated in a diaminobenzidine-hydrogen peroxide medium and then postfixed in an osmium tetroxide solution. The results of the study suggest that the surface coating of the pneumonocytes and macrophages contains the following carbohydrate groups: N-acetylgalactosamine, N-acetylglucosamine, D-mannose, L-fucose, D-galactose and sialic acid. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:2447050

  16. Laser surface heat treatment of electroless Ni-P-SiC coating on Al356 alloy

    NASA Astrophysics Data System (ADS)

    Hashemi, Sayed Hamid; Shoja-Razavi, Reza

    2016-11-01

    Electroless Ni-P-SiC coatings are recognized for their hardness and wear resistance. In the present study, electroless Ni-P coatings containing SiC particles were co-deposited on Al356 substrate. Laser surface heat treatment was performed using 700 W Nd:YAG pulsed laser. Effects of different laser operating parameters, such as laser scan rate, laser average power and defocusing distance on microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results of microstructural characterization indicated that the laser treatment under different operating conditions produced composite coating contained nanocrystallined Ni-based matrix with SiC particles Ni3P, Ni12P5, Ni5P2, Ni8P3 precipitates. The microhardness measurements showed that the hardness of the coating was increased up to 60%, due to laser heat treatment, without effect on base metal.

  17. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    NASA Astrophysics Data System (ADS)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  18. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  19. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating.

    PubMed

    Hao, Ni; Wang, Yan-Bing; Zhang, Shi-Ping; Shi, Su-Qing; Nakashima, Kenichi; Gong, Yong-Kuan

    2014-09-01

    Control over cell-material surface interactions is the key to many new and improved biomedical devices. In this study, we present a simple yet effective surface modification method that allows for the surface reconstruction and formation of cell outer membrane mimetic structure on coatings that have significantly increased hemocompatibility. To achieve this, a phosphorylcholine end-capped poly(butylene succinate) (PBS-PC) was synthesized and dip-coated on coverslips. The surface structure of the amphiphilic PBS-PC film was reconstructed by heating in a vacuum oven to obtain the less hydrophilic surface and by immersing in hot water to obtain the more hydrophilic surface. Significant changes in the surface element concentration were observed by X-ray photoelectron spectroscopy analysis and changes in surface wettability were measured by sensitive dynamic contact angle technique. Scanning electron microscope images showed different morphologies of the reconstructed surfaces. Interestingly, the reconstruction between the less hydrophilic and more hydrophilic surfaces is reversible. More importantly, both the reconstructed surfaces are stable in room condition for more than 6 months, and both the surfaces show significant improvement in hemocompatibility as revealed by protein adsorption and platelet adhesion measurements. This reversible surface reconstruction strategy and the interesting results may be significant for fabricating stable and hemocompatible surfaces on differently shaped biomedical devices. © 2013 Wiley Periodicals, Inc.

  20. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    NASA Astrophysics Data System (ADS)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  1. Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies.

    PubMed

    Cheung, Jackie L Y; Wand, Nadina V; Ooi, Cher-Pheng; Ridewood, Sophie; Wheeler, Richard J; Rudenko, Gloria

    2016-11-01

    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a

  2. Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies

    PubMed Central

    Cheung, Jackie L. Y.; Wand, Nadina V.; Ooi, Cher-Pheng; Ridewood, Sophie

    2016-01-01

    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a

  3. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    PubMed

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  4. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    PubMed Central

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation. PMID:27492929

  5. Assessment of plasma sprayed coatings to modify surface friction for railroad applications

    NASA Astrophysics Data System (ADS)

    Davis, Heidi Lynn

    For the past hundred years, railroads have been an important means of transportation for passengers and freight. Over the years train traffic, speeds, and loads have increased steadily leading to a more severe wheel/rail environment that exceeds the design limits of the steels thus causing increased wear, decreased rail life, and higher maintenance costs. The cost of controlling friction and the resulting damage is an area of ever-increasing concern. One potential method of modifying friction is by changing the surface properties of the rail. The work reported herein was carried out as part of a larger effort to modify surface friction of rails. The original focus of this research was to use high velocity air plasma spraying to develop friction enhancing coatings for the rail surface. Using the methodology developed at the Oregon Graduate Institute, the plasma spray parameters were optimized and the coatings were tested on the Amsler machine under rolling/sliding wear conditions to determine viability prior to full scale testing. Stainless steel and composite 1080 steel were investigated as potential materials for increasing friction. Poor results with these coatings shifted the research focus to understanding the durability of the coatings and to failure analysis of initial 1080 steel full scale samples tested by the Facility for Accelerated Service Testing that had failed prematurely. After re-optimization of parameters and preparation methodologies further full scale samples (1080 steel/nylon) were tested and failure analysis was performed. Optical and scanning electron microscopy were used to evaluate the microstructure of coatings from the tested samples. The laboratory scale Amsler test did not appear to be a good indicator of the performance of the coating in full scale tests, because variations in microstructure were caused by differences in sample size, geometry and spraying methods when scaling up from a small Amsler roller to a large rail sample. The

  6. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    NASA Astrophysics Data System (ADS)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the

  7. Lateral photovoltaic effect in p-type silicon induced by surface states

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  8. The role of surface heterogeneity and lateral interactions in the adsorption of volatile organic compounds on rutile surface

    NASA Astrophysics Data System (ADS)

    Metaxa, E.; Kolliopoulos, A.; Agelakopoulou, T.; Roubani-Kalantzopoulou, F.

    2009-04-01

    Volatile organic compounds (VOCs) are pollutants of great interest because they are very harmful for both human health and the environment, even at very low concentrations. In this work we present and discuss the results of the experimental chromatographic study of the role of surface heterogeneity and lateral interactions in the adsorption of volatile organic compounds - ethanol, acetaldehyde and acetone - on the surface of rutile (TiO 2), a typical oxide widely used as a white pigment and a photocatalyst, as well. The ethanol, acetaldehyde and acetone were chosen because they contain the same heteroatom (O) and they have small carbon-chains. The novel method of Reversed Flow-Inverse Gas Chromatography is used, which has a powerful mathematical background and comprises a simple experimental arrangement for the determination of energetic physicochemical quantities directly from the experimental data, by means of a time-resolved analysis. In particular, several important physicochemical quantities are determined, as local adsorption energy, local adsorption isotherm, local monolayer capacity, non-adsorbed gaseous concentration of adsorbate, density probability function for the adsorption energy values, as well as the differential energy of adsorption due to lateral interactions among molecules adsorbed on the heterogeneous solid surface of TiO 2. By means of these quantities, appropriate answers are achieved to critical questions of: (a) What is the type of the adsorption isotherm of a system? (b) Where are the adsorbed molecules located on the heterogeneous surface? (c) What is the nature of the surface bonds? (d) What is the type of non-ideality of the system and (e) How does the adsorbate affect the adsorbent properties?

  9. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    PubMed Central

    2010-01-01

    Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu) in eliminating pathogens for these surfaces would be to coat the aluminum (Al) items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO) of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al) followed by electroplating of copper (Cu) in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE) ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the risk of infection and

  10. Surface studies and measurement of pumping characteristic of NEG coating (Ti-V-Zr)

    SciTech Connect

    Sharma, R.K.; Sinha, Atul K.; Jagannath; Gadkari, S.C.; Singh, M.R.; Gupta, S.K.; Basak, D.C.

    2014-07-01

    NEGs (non evaporable getters) when coated as thin film on the inner wall of vacuum pipes or chamber play vital role in the evacuation of a sealed off system after heating it to activation temperature. It creates the uniformity of pressure between two long pipes where pumping is not possible at each and every part. Ternary coating of materials Ti, Zr and V has prepared on SS304L by DC-magnetron sputtering technique. These coatings was claimed to be very good in H{sub 2} adsorption which lead to achieve very low pressures of the order of 10{sup -12}-10{sup -13} mbar, low SEY(Secondary Electron Yield) and Low photo desorption yield compared to bare SS surface. We have shown the morphology of surfaces of these coatings which play the principal role in adsorption of (H{sub 2},CO,CO{sub 2}, H{sub 2}O etc.) have been extensively studied by SEM/EDX technique. SEM showed the micron size thick film. Film thickness of micron level is useful for NEG to work for no. of atmospheric exposed cycles. Reduction of superficial surface oxide after heating it to different temperatures was main concern and studied by X-ray Photoelectron spectroscopic technique. It has also reported the pumping characteristic of the NEG coating. (author)

  11. Multiple surface fracture of ceramic thermal barrier coatings under transient thermal loads

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yoshimi Ruth

    1997-11-01

    The objective of this research is to develop a fundamental understanding of the thermal fracture process in multi-layer ceramic coatings subjected to concentrated thermal loads. This was accomplished by investigating the crack initiation and propagation process using experimental and analytical means. Controlled experiments were developed where specimens were heated and cooled under a concentrated thermal load. The appearance of multiple surface cracks was observed as damage progressed. In some cases crack deflection along the interface was also observed. These cracks were modeled and studied analytically mainly by numerical methods. The analysis showed that the presence of multiple surface cracks was beneficial in preventing the initiation of interface cracks; thus, delaying spalling. Three methods of maximizing coating life were considered, including, minimization of the peak stresses, the minimization of strain energy release rate, and the maximization of surface crack formation. The models were then used to conduct a parametric study that investigated the effects of geometry and material properties on the thermal fracture characteristics of the multi-layer coatings. One application of this research is ceramic thermal barrier coatings which are used in diesel engines to provide thermal protection for the metal parts. A better understanding of the fracture process would provide designers with the necessary tools to develop a coating with a longer life. The research results could also be applied to other multi-layer material system subjected to thermal loads.

  12. Colonization of Bacteria on the Surfaces of Cold-Sprayed Copper Coatings Alters Their Electrochemical Behaviors

    NASA Astrophysics Data System (ADS)

    Suo, Xinkun; Abdoli, Leila; Liu, Yi; Xia, Peng; Yang, Guanjun; Li, Hua

    2017-04-01

    Copper coatings were fabricated on stainless steel plates by cold spraying. Attachment and colonization of Bacillus sp. on their surfaces in artificial seawater were characterized, and their effects on anticorrosion performances of the coatings were examined. Attached bacteria were observed using field emission scanning electron microscopy. Electrochemical behaviors including potentiodynamic polarization and electrochemical impedance spectroscopy with/without bacterial attachment were evaluated using commercial electrochemical analysis station Modulab. Results show that Bacillus sp. opt to settle on low-lying spots of the coating surfaces in early stage, followed by recruitment and attachment of extracellular polymeric substances (EPS) secreted through metabolism of Bacillus sp. The bacteria survive with the protection of EPS. An attachment model is proposed to illustrate the bacterial behaviors on the surfaces of the coatings. Electrochemical data show that current density under Bacillus sp. environment decreases compared to that without the bacteria. Charge-transfer resistance increases markedly in bacteria-containing seawater, suggesting that corrosion resistance increases and corrosion rate decreases. The influencing mechanism of bacteria settlement on corrosion resistance of the cold-sprayed copper coatings was discussed and elucidated.

  13. Colonization of Bacteria on the Surfaces of Cold-Sprayed Copper Coatings Alters Their Electrochemical Behaviors

    NASA Astrophysics Data System (ADS)

    Suo, Xinkun; Abdoli, Leila; Liu, Yi; Xia, Peng; Yang, Guanjun; Li, Hua

    2017-02-01

    Copper coatings were fabricated on stainless steel plates by cold spraying. Attachment and colonization of Bacillus sp. on their surfaces in artificial seawater were characterized, and their effects on anticorrosion performances of the coatings were examined. Attached bacteria were observed using field emission scanning electron microscopy. Electrochemical behaviors including potentiodynamic polarization and electrochemical impedance spectroscopy with/without bacterial attachment were evaluated using commercial electrochemical analysis station Modulab. Results show that Bacillus sp. opt to settle on low-lying spots of the coating surfaces in early stage, followed by recruitment and attachment of extracellular polymeric substances (EPS) secreted through metabolism of Bacillus sp. The bacteria survive with the protection of EPS. An attachment model is proposed to illustrate the bacterial behaviors on the surfaces of the coatings. Electrochemical data show that current density under Bacillus sp. environment decreases compared to that without the bacteria. Charge-transfer resistance increases markedly in bacteria-containing seawater, suggesting that corrosion resistance increases and corrosion rate decreases. The influencing mechanism of bacteria settlement on corrosion resistance of the cold-sprayed copper coatings was discussed and elucidated.

  14. Quantitative test method for evaluation of anti-fingerprint property of coated surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Linda Y. L.; Ngian, S. K.; Chen, Z.; Xuan, D. T. T.

    2011-01-01

    An artificial fingerprint liquid is formulated from artificial sweat, hydroxyl-terminated polydimethylsiloxane and a solvent for direct determination of anti-fingerprint property of a coated surface. A range of smooth and rough surfaces with different anti-fingerprint (AF) properties were fabricated by sol-gel technology, on which the AF liquid contact angles, artificial fingerprint and real human fingerprints (HF) were verified and correlated. It is proved that a surface with AF contact angle above 87° is fingerprint free. This provides an objective and quantitative test method to determine anti-fingerprint property of coated surfaces. It is also concluded that AF property can be achieved on smooth and optically clear surfaces. Deep porous structures are more favorable than bumpy structure for oleophobic and AF properties.

  15. Surface Wave Mode Conversion due to Lateral Heterogeneity and its Impact on Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Datta, A.; Priestley, K. F.; Chapman, C. H.; Roecker, S. W.

    2016-12-01

    Surface wave tomography based on great circle ray theory has certain limitations which become increasingly significant with increasing frequency. One such limitation is the assumption of different surface wave modes propagating independently from source to receiver, valid only in case of smoothly varying media. In the real Earth, strong lateral gradients can cause significant interconversion among modes, thus potentially wreaking havoc with ray theory based tomographic inversions that make use of multimode information. The issue of mode coupling (with either normal modes or surface wave modes) for accurate modelling and inversion of body wave data has received significant attention in the seismological literature, but its impact on inversion of surface waveforms themselves remains much less understood.We present an empirical study with synthetic data, to investigate this problem with a two-fold approach. In the first part, 2D forward modelling using a new finite difference method that allows modelling a single mode at a time, is used to build a general picture of energy transfer among modes as a function of size, strength and sharpness of lateral heterogeneities. In the second part, we use the example of a multimode waveform inversion technique based on the Cara and Leveque (1987) approach of secondary observables, to invert our synthetic data and assess how mode conversion can affect the process of imaging the Earth. We pay special attention to ensuring that any biases or artefacts in the resulting inversions can be unambiguously attributed to mode conversion effects. This study helps pave the way towards the next generation of (non-numerical) surface wave tomography techniques geared to exploit higher frequencies and mode numbers than are typically used today.

  16. Generation of Accurate Lateral Boundary Conditions for a Surface-Water Groundwater Interaction Model

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.; Tsou, M.; Panday, S. M.; Kool, J.; Wei, X.

    2010-12-01

    The 106 mile long Peace River in Florida flows south from Lakeland to Charlotte Harbor and has a drainage basin of approximately 2,350 square miles. A long-term decline in stream flows and groundwater potentiometric levels has been observed in the region. Long-term trends in rainfall, along with effects of land use changes on runoff, surface-water storage, recharge and evapotranspiration patterns, and increased groundwater and surface-water withdrawals have contributed to this decline. The South West Florida Water Management District (SWFWMD) has funded the development of the Peace River Integrated Model (PRIM) to assess the effects of land use, water use, and climatic changes on stream flows and to evaluate the effectiveness of various management alternatives for restoring stream flows. The PRIM was developed using MODHMS, a fully integrated surface-water groundwater flow and transport simulator developed by HydroGeoLogic, Inc. The development of the lateral boundary conditions (groundwater inflow and outflow) for the PRIM in both historical and predictive contexts is discussed in this presentation. Monthly-varying specified heads were used to define the lateral boundary conditions for the PRIM. These head values were derived from the coarser Southern District Groundwater Model (SDM). However, there were discrepancies between the simulated SDM heads and measured heads: the likely causes being spatial (use of a coarser grid) and temporal (monthly average pumping rates and recharge rates) approximations in the regional SDM. Finer re-calibration of the SDM was not feasible, therefore, an innovative approach was adopted to remove the discrepancies. In this approach, point discrepancies/residuals between the observed and simulated heads were kriged with an appropriate variogram to generate a residual surface. This surface was then added to the simulated head surface of the SDM to generate a corrected head surface. This approach preserves the trends associated with

  17. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    PubMed

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (<10 μm) was achievable. The bone trabeculae interweaved with the pore struts, establishing a large contact area which might enable an improved load transfer and stronger implant/bone interface. Furthermore, there was a clear interconnection with the surrounding cortical bone, suggesting that mechanical interlocking of the coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Regenerating titanium ventricular assist device surfaces after gold/palladium coating for scanning electron microscopy.

    PubMed

    Achneck, Hardean E; Serpe, Michael J; Jamiolkowski, Ryan M; Eibest, Leslie M; Craig, Stephen L; Lawson, Jeffrey H

    2010-01-01

    Titanium is one of the most commonly used materials for implantable devices in humans. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a nonconductive sample requires a conductive coating on the surface. A gold/palladium coating is commonly used and to date no method has been described to "clean" such gold/palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium-based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titaniumsurfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. (c) 2009 Wiley-Liss, Inc.

  19. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment.

    PubMed

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-12-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  20. Thromboresistant and endothelialization effects of dopamine-mediated heparin coating on a stent material surface.

    PubMed

    Bae, In-Ho; Park, In-Kyu; Park, Dae Sung; Lee, Haeshin; Jeong, Myung Ho

    2012-05-01

    Heparinization of surfaces has proven a successful strategy to prevent thrombus formation. Inspired by the composition of adhesive proteins in mussels, the authors used dopamine to immobilize heparin on a stent surface. This study aimed to assess the thromboresistant and endothelialization effects of dopamine-mediated heparin (HPM) coating on a stent material surface. The HPM was synthesized by bonding dopamine and heparin chemically. Cobalt-chromium (Co-Cr) alloy disks were first placed in the HPM solution and applied to surface stability then underwent thromboresistant tests and human umbilical vein endothelial cells (HUVEC) cytotoxicity assays. The results showed not only thromboresistant activity and a stable state of heparin on the surfaces after investigation with toluidine blue and thrombin activation assay but also proliferation of HUVEC in vitro. Studies on animals showed that the HPM-coated stent has no obvious inflammation response and increasing of restenosis rate compared to the bare metal stent (BMS) indicating good biocompatibility as well as safety in its in vivo application. Moreover, improving the endothelial cell (EC) proliferation resulted in a higher strut-covering rate (i.e., endothelialization) with shuttle-shaped EC in the HPM-coated stent group compared to that of the BMS group. These results suggest that this facile coating approach could significantly promote endothelialization and offer greater safety than the BMS for its much improved thromboresistant property. Moreover, it may offer a platform for conjugating secondary drugs such as anti-proliferative drugs.