Science.gov

Sample records for laterally excited liquid-tank

  1. Composite lateral electric field excited piezoelectric resonator.

    PubMed

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases.

  2. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks....

  3. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  4. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  5. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  6. Lateralization of Motor Excitability during Observation of Bimanual Signs

    ERIC Educational Resources Information Center

    Mottonen, Riikka; Farmer, Harry; Watkins, Kate E.

    2010-01-01

    Viewing another person's hand actions enhances excitability in an observer's left and right primary motor (M1) cortex. We aimed to determine whether viewing communicative hand actions alters this bilateral sensorimotor resonance. Using single-pulse transcranial magnetic stimulation (TMS), we measured excitability in the left and right M1 while…

  7. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car... 49 Transportation 3 2014-10-01 2014-10-01 false General specification applicable to...

  8. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  9. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  10. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  11. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  12. Parametric resonance of flexible footbridges under crowd-induced lateral excitation

    NASA Astrophysics Data System (ADS)

    Piccardo, Giuseppe; Tubino, Federica

    2008-03-01

    The excessive lateral sway motion caused by crowds walking across footbridges has attracted great public attention in the past few years. Three possible mechanisms responsible for such lateral vibrations have been investigated in the literature: direct resonance, dynamic interaction, and internal resonance. In this paper, starting from a critical review of the mechanisms proposed in the literature, a parametric excitation mechanism is analyzed, based on a forcing model whose amplitude is a function of deck oscillations. A stability criterion is identified, depending on the ratio between the structural and excitation frequencies, on the ratio of the structural and pedestrian masses, and on the structural damping. The proposed mechanism can be achieved for very flexible footbridges, with a lateral natural frequency around 0.5 Hz, corresponding to a half of the lateral walking frequency. This situation can occur in modern structures, such as in the case of the London Millennium Footbridge.

  13. Transient sloshing in half-full horizontal elliptical tanks under lateral excitation

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Aghabeigi, Mostafa

    2011-07-01

    A semi-analytical mathematical model is developed to study the transient liquid sloshing characteristics in half-full horizontal cylindrical containers of elliptical cross section subjected to arbitrary lateral external acceleration. The problem solution is achieved by employing the linear potential theory in conjunction with conformal mapping, resulting in linear systems of ordinary differential equations which are truncated and then solved numerically by implementing Laplace transform technique followed by Durbin's numerical inversion scheme. A ramp-step function is used to simulate the lateral acceleration excitation during an idealized turning maneuver. The effects of tank aspect ratio, excitation input time, and baffle configuration on the resultant sloshing characteristics are examined. Limiting cases are considered and good agreements with available analytic and numerical solutions as well as experimental data are obtained.

  14. Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations

    NASA Astrophysics Data System (ADS)

    Zarfam, R.; Khaloo, A. R.

    2012-03-01

    The formulation of three-dimensional dynamic behavior of a Beam On Elastic Foundation (BOEF) under moving loads and a moving mass is considered. The weight of the vehicle is modeled as a moving point load, however the effect of the lateral excitation is considered by modeling: (case 1) a lateral moving load with random intensity for wind excitation and (case 2) a moving mass just in lateral direction of the beam for earthquake excitation. A Dirac-delta function is used to describe the position of the moving load and the moving mass along the beam. The beam foundations are considered as elastic Winkler-type in two perpendicular transverse directions. This model is proposed to investigate the bending response of the rails under the effect of traveling vehicle weight while a random excitation such as earthquake or wind takes place. The results showed the importance of considering the effect of earthquake/wind actions as in bending stress of the beam on elastic foundations. The effect of different regions (different support stiffness) and different velocities of the vehicle on the response of the beam are investigated in mentioned directions. At the end, a linear optimal control algorithm with displacement-velocity feedback is proposed as a solution to suppress the response of BOEFs. By the method of modal analyses and taking into account enough number of vibration modes, state-space equation is obtained, then sufficient number of actuators was chosen for each direction. Stochastic analyses were performed in lateral direction in order to illustrate a comprehensive view for the response of the beam under the random moving load in both controlled and uncontrolled systems. Furthermore, the efficiency of control algorithm on critical velocities is verified by parametric analyses in the vertical direction with the constant moving load for different regions.

  15. A lateral field excited ZnO film bulk acoustic wave sensor working in viscous environments

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Liuyin; Liu, Weihui

    2013-09-01

    We present a lateral field excited ZnO film bulk acoustic resonator (FBAR) operated in pure-shear mode and analyze its performances in viscous liquids. The electrodes of the device are located on the film surface and normal to the c-axis of the ZnO film. The proposed device works near 1.44 GHz with a Q-factor up to 360 in air and 310 in water, which are higher than those of the quasi-shear thickness field excited FBAR. The resonant frequency is decreased with the increasing square root of the product of the viscosity and density with a linear dependence in the viscosity below 148.7 mPa s. The mass sensitivity of 670 Hz cm2 ng-1 was measured by monitoring the frequency change during the volatilization of saline solution loaded on the resonator. In addition, the levels of the noise and the mass resolutions were measured in various viscous environments. The proposed device yields the mass resolution of 670 Hz cm2 ng-1 and the high mass resolution of 0.06 ng cm-2. These results indicated that the lateral field excited ZnO FBAR had superior sensitivity for the bio-sensing applications in viscous biological liquids.

  16. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  17. Lateral transport properties of thermally excited magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Zhou, X. J.; Shi, G. Y.; Han, J. H.; Yang, Q. H.; Rao, Y. H.; Zhang, H. W.; Lang, L. L.; Zhou, S. M.; Pan, F.; Song, C.

    2017-02-01

    Spin information carried by magnons is attractive for computing technology, and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here, we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport.

  18. Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review

    NASA Astrophysics Data System (ADS)

    Venuti, Fiammetta; Bruno, Luca

    2009-09-01

    This paper aims to provide a review and critical analysis of the state of the art concerning crowd-structure interaction phenomena on footbridges. The problem of lateral vibrations induced by synchronised pedestrians, namely the Synchronous Lateral Excitation, is specifically addressed. Due to the multi-physic and multi-scale nature of the complex phenomenon, several research fields can contribute to its study, from structural engineering to biomechanics, from transportation engineering to physics and applied mathematics. The different components of the overall coupled dynamical system - the structure, the crowd and their interactions - are separately analysed from both a phenomenological and modelling point of view. A special attention is devoted to those models, which explicitly account for the interaction between mechanical and living systems.

  19. Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Mohammadi, M. M.; Jarrahi, Miad

    2014-01-01

    Linear potential theory in conjunction with the conformal mapping technique are employed to develop rigorous mathematical models for two-dimensional transient sloshing in non-deformable baffled horizontal circular cylindrical vessels, filled with inviscid incompressible fluids to arbitrary depths, and subjected to arbitrary time-dependent lateral accelerations. Three common baffle configurations are considered, namely, a pair of free surface-touching horizontal side baffles, and a central surface-piercing or bottom-mounted vertical baffle of arbitrary extension. The first few normalized antisymmetric/symmetric sloshing frequencies of the partially-filled tanks are tabulated for selected baffle extension and fill depth ratios. Also, the effects of liquid fill depth or baffle length parameter on the impulsive, total and modal convective mass ratios are examined. A ramp-step function is used to replicate the lateral acceleration excitation encountered in an idealized turning maneuver. Durbin's numerical Laplace transform inversion scheme was applied to solve the resulting truncated linear sets of ordinary differential equations in the time-domain. The effects of excitation input time, fill level, and baffle configuration/extension on the force and moment amplification factors are illustrated through appropriate design charts. Furthermore, the transient hydrodynamic responses to a real seismic event are calculated and the effectiveness of baffle configuration/length on suppression of the induced destabilizing lateral forces are examined. Limiting cases are considered and rigorous verifications are made by comparison with the available data as well as with the numerical simulations performed by using a commercial CFD software package.

  20. Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors.

    PubMed

    Zhang, Jun; Han, Xiao-Hu; Li, Hong-Zhao; Zhu, Jing-Ning; Wang, Jian-Jun

    2008-12-19

    Through whole-cell patch recordings in brainstem slices, the effects of histamine on neuronal activity of the lateral vestibular nucleus (LVN) were investigated. Bath application of histamine elicited a concentration-dependent excitation of both spontaneous firing (n=19) and silent (n=7) LVN neurons. Moreover, histamine induced a stable inward current in the LVN neurons (n=5) and the histamine-induced depolarization of membrane potential persisted in the presence of tetrodotoxin (n=4), indicating a direct post-synaptic effect of the histamine on the LVN neurons. Selective histamine H2 receptor antagonist ranitidine effectively blocked the histamine-evoked excitatory responses on the LVN neurons (n=4), but selective histamine H1 receptor antagonist triprolidine did not (n=4). In addition, selective histamine H2 receptor agonist dimaprit (n=3) rather than 2-pyridylethylamine (n=4), a selective histamine H1 receptor agonist, mimicked the excitatory action of histamine on LVN neurons. The results demonstrate that histamine excites the LVN neurons via post-synaptic histamine H2 receptors and suggest that the central histaminergic projection arising from the hypothalamus may modulate LVN neurons activity and actively influence the vestibular reflexes and functions.

  1. Nicotinic receptor-mediated biphasic effect on neuronal excitability in chick lateral spiriform neurons.

    PubMed

    Liu, Y-B; Guo, J-Z; Chiappinelli, V A

    2007-09-21

    Local neuronal circuits integrate synaptic information with different excitatory or inhibitory time windows. Here we report that activation of nicotinic acetylcholine receptors (nAChRs) leads to biphasic effects on excitability in chick lateral spiriform (SPL) neurons during whole cell recordings in brain slices. Carbachol (100 microM in the presence of 1 microM atropine) produced an initial short-term increase in the firing rates of SPL neurons (125+/-14% of control) that was mediated by postsynaptic nAChRs. However, after 3 min exposure to nicotinic agonists, the firing rate measured during an 800 ms depolarizing pulse declined to 19+/-7% (100 microM carbachol) or 26+/-8% (10 microM nicotine) of the control rate and remained decreased for 10-20 min after washout of the agonists. Similarly, after 60 s of electrically-stimulated release of endogenous acetylcholine (ACh) from cholinergic afferent fibers, there was a marked reduction (45+/-5% of control) in firing rates in SPL neurons. All of these effects were blocked by the nAChR antagonist dihydro-beta-erythroidine (30 microM). The inhibitory effect was not observed in Ca(2+)-free buffer. The nAChR-mediated inhibition depended on active G-proteins in SPL neurons and was prevented by the GABA(B) receptor antagonist phaclofen (200 microM), while the GABA(B) receptor agonist baclofen (10 microM) decreased firing rate in SPL neurons to 13+/-1% of control. The inhibitory response thus appears to be due to a nAChR-mediated enhancement of presynaptic GABA release, which then activates postsynaptic GABA(B) receptors. In conclusion, activation of nAChRs in the SPL initiates a limited time window for an excitatory period, after which a prolonged inhibitory effect turns off this window. The prolonged inhibitory effect may serve to protect SPL neurons from excessive excitation.

  2. Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjng; Wang, Peng; Guo, Qiuquan; Zhang, Zhen; Ma, Jilong

    2017-04-01

    Frequent assay of hemostatic status is an essential issue for the millions of patients using anticoagulant drugs. In this paper, we presented a micro-fabricated film bulk acoustic sensor for the real-time monitoring of blood clotting and the measurement of hemostatic parameters. The device was made of an Au/ZnO/Si3N4 film stack and excited by a lateral electric field. It operated under a shear mode resonance with the frequency of 1.42 GHz and had a quality factor of 342 in human blood. During the clotting process of blood, the resonant frequency decreased along with the change of blood viscosity and showed an apparent step-ladder curve, revealing the sequential clotting stages. An important hemostatic parameter, prothrombin time, was quantitatively determined from the frequency response for different dilutions of the blood samples. The effect of a typical anticoagulant drug (heparin) on the prothrombin time was exemplarily shown. The proposed sensor displayed a good consistency and clinical comparability with the standard coagulometric methods. Thanks to the availability of direct digital signals, excellent potentials of miniaturization and integration, the proposed sensor has promising application for point-of-care coagulation technologies.

  3. Integrated fluorescence detection of labeled biomolecules using a prism-like PDMS microfluidic chip and lateral light excitation.

    PubMed

    Novo, Pedro; Chu, Virginia; Conde, João Pedro

    2014-06-21

    Microfabricated amorphous silicon photodiodes were integrated with prism-like PDMS microfluidics for the detection and quantification of fluorescence signals. The PDMS device was fabricated with optical quality surfaces and beveled sides. A 405 nm laser beam perpendicular to the lateral sides of the microfluidic device excites the fluorophores in the microchannel at an angle of 70° to the normal to the microchannel/photodiode surface. This configuration, which makes use of the total internal reflection of the excitation beam and the isotropy of the fluorescence emission, minimizes the intensity of excitation light that reaches the integrated photodetector. A difference of two orders of magnitude was achieved in the reduction of the detection noise level as compared with a normally incident excitation configuration. A limit-of-detection of 5.6 × 10(10) antibodies per square centimeter was achieved using antibodies labeled with a model organic fluorophore. Furthermore, the results using the lateral excitation scheme are in good proportionality agreement with those by fluorescence quantification using wide-field fluorescence microscopy.

  4. Learning Enhances Intrinsic Excitability in a Subset of Lateral Amygdala Neurons

    ERIC Educational Resources Information Center

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R., Jr.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little…

  5. Equivalent mechanical model of large-amplitude liquid sloshing under time-dependent lateral excitations in low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Nan, Miao; Junfeng, Li; Tianshu, Wang

    2017-01-01

    Subjected to external lateral excitations, large-amplitude sloshing may take place in propellant tanks, especially for spacecraft in low-gravity conditions, such as landers in the process of hover and obstacle avoidance during lunar soft landing. Due to lateral force of the order of gravity in magnitude, the amplitude of liquid sloshing becomes too big for the traditional equivalent model to be accurate. Therefore, a new equivalent mechanical model, denominated the "composite model", that can address large-amplitude lateral sloshing in partially filled spherical tanks is established in this paper, with both translational and rotational excitations considered. The hypothesis of liquid equilibrium position following equivalent gravity is first proposed. By decomposing the large-amplitude motion of a liquid into bulk motion following the equivalent gravity and additional small-amplitude sloshing, a better simulation of large-amplitude liquid sloshing is presented. The effectiveness and accuracy of the model are verified by comparing the slosh forces and moments to results of the traditional model and CFD software.

  6. Endogenous Cannabinoids Trigger the Depolarization-Induced Suppression of Excitation in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Kodirov, Sodikdjon A.; Jasiewicz, Julia; Amirmahani, Parisa; Psyrakis, Dimitrios; Bonni, Kathrin; Wehrmeister, Michael; Lutz, Beat

    2010-01-01

    The amygdala is a key area of the brain where the emotional memories are stored throughout the lifespan. It is well established that synapses in the lateral nucleus of amygdala (LA) can undergo long-term potentiation, a putative cellular correlate of learning and memory. However, a type of short-term synaptic plasticity, known as…

  7. Performance evaluation of a novel rotational damper for structural reinforcement steel frames subjected to lateral excitations

    NASA Astrophysics Data System (ADS)

    Sanati, M.; Khadem, S. E.; Mirzabagheri, S.; Sanati, H.; Khosravieh, M. Y.

    2014-03-01

    In this study, a novel rotational damper called a Rotational Friction Viscoelastic Damper (RFVD) is introduced. Some viscoelastic pads are added to the Rotational Friction Damper (RFD) in addition to the friction discs used in this conventional device. Consequently, the amount of energy dissipated by the damper increases in low excitation frequencies. In fact, the input energy to the structure is simultaneously dissipated in the form of friction and heat by frictional discs and viscoelastic pads. In order to compare the performance of this novel damper with the earlier types, a set of experiments were carried out. According to the test results, the RFVD showed a better performance in dissipating input energy to the structure when compared to the RFD. The seismic behavior of steel frames equipped with these dampers was also numerically evaluated based on a nonlinear time history analysis. The numerical results verified the performance of the dampers in increasing the energy dissipation and decreasing the energy input to the structural elements. In order to achieve the maximum dissipated energy, the dampers need to be installed in certain places called critical points in the structure. An appropriate approach is presented to properly find these points. Finally, the performance of the RFVDs installed at these critical points was investigated in comparison to some other configurations and the validity of the suggested method in increasing the energy dissipation was confirmed.

  8. Nonlinear seismic response of a partially-filled rectangular liquid tank with a submerged block

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Biswal, Kishore Chandra

    2016-04-01

    The seismic response of partially-filled two-dimensional rigid rectangular liquid tanks with a bottom-mounted submerged block is numerically simulated. The Galerkin-weighted-residual based finite element method (FEM) is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on the mixed Eulerian-Lagrangian (MEL) method, a fourth order explicit Runge-Kutta scheme is used for the time-stepping integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used to mimic the viscosity induced damping. Three different earthquake motions characterized on the basis of low, intermediate and high frequency contents are used to study the effect of frequency content on the nonlinear dynamic response of this tank-liquid-submerged block system. The effect of the submerged block on the impulsive and convective response components of the hydrodynamic forces manifested in terms of base shear, overturning base moment and pressure distribution along the tank wall as well as the block wall has been quantified vis-a-vis frequency content of ground motions. It is observed that the convective response of this tank-liquid system is highly sensitive to the frequency content of the ground motion.

  9. Super harmonic nonlinear lateral vibrations of a segmented driveline incorporating a tuned damper excited by non-constant velocity joints

    NASA Astrophysics Data System (ADS)

    Browne, Michael; Palazzolo, Alan

    2009-06-01

    Typical industrial vibration problem solving includes utilization of linear vibration measurement and analysis techniques. These techniques have appeared to be sufficient with most vibration problem solving requirements. This is partially due to the lack of proper identification of the nonlinear dynamic response in measured data of actual engineering systems. Therefore, as an example, a vehicle driveshaft exhibits a nonlinear super harmonic jump due to universal joint excitations. This phenomenon is partially responsible for objectionable audible noise in the vehicle. Previously documented measurements or analytical predictions of vehicle driveshaft systems do not indicate nonlinear jump as a typical vibration mode. Physical measurements of the phenomena will be provided with subsequent analysis. Second, the secondary moment exciting the driveshaft system is derived with subsequent analysis showing the harmonic and super harmonic excitations. Third, a derivation of a model incorporating the linear and nonlinear modeling of a large degree of freedom system is introduced. Finally, simulations with the derived model with the universal joint excitations will be presented showing the correlation to physical test results. Therefore, a typical automotive driveshaft system is capable of producing nonlinear response, and thus the assumption of linearity is not sufficient for design validation or problem resolution in this case.

  10. Aromatic Lateral Substituents Influence the Excitation Energies of Hexaaza Lanthanide Macrocyclic Complexes: A Wave Function Theory and Density Functional Study.

    PubMed

    Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-09-24

    The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.

  11. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    PubMed

    Calvo-Gallardo, Enrique; de Pascual, Ricardo; Fernández-Morales, José-Carlos; Arranz-Tagarro, Juan-Alberto; Maroto, Marcos; Nanclares, Carmen; Gandía, Luis; de Diego, Antonio M G; Padín, Juan-Fernando; García, Antonio G

    2015-01-01

    Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.

  12. Histamine Increases Neuronal Excitability and Sensitivity of the Lateral Vestibular Nucleus and Promotes Motor Behaviors via HCN Channel Coupled to H2 Receptor

    PubMed Central

    Li, Bin; Zhang, Xiao-Yang; Yang, Ai-Hong; Peng, Xiao-Chun; Chen, Zhang-Peng; Zhou, Jia-Yuan; Chan, Ying-Shing; Wang, Jian-Jun; Zhu, Jing-Ning

    2017-01-01

    Histamine and histamine receptors in the central nervous system actively participate in the modulation of motor control. In clinic, histamine-related agents have traditionally been used to treat vestibular disorders. Immunohistochemical studies have revealed a distribution of histaminergic afferents in the brainstem vestibular nuclei, including the lateral vestibular nucleus (LVN), which is critical for adjustment of muscle tone and vestibular reflexes. However, the mechanisms underlying the effect of histamine on LVN neurons and the role of histamine and histaminergic afferents in the LVN in motor control are still largely unknown. Here, we show that histamine, in cellular and molecular levels, elicits the LVN neurons of rats an excitatory response, which is co-mediated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and K+ channels linked to H2 receptors. Blockage of HCN channels coupled to H2 receptors decreases LVN neuronal sensitivity and changes their dynamic properties. Furthermore, in behavioral level, microinjection of histamine into bilateral LVNs significantly promotes motor performances of rats on both accelerating rota-rod and balance beam. This promotion is mimicked by selective H2 receptor agonist dimaprit, and blocked by selective H2 receptor antagonist ranitidine. More importantly, blockage of HCN channels to suppress endogenous histaminergic inputs in the LVN considerably attenuates motor balance and coordination, indicating a promotion role of hypothalamo-vestibular histaminergic circuit in motor control. All these results demonstrate that histamine H2 receptors and their coupled HCN channels mediate the histamine-induced increase in excitability and sensitivity of LVN neurons and contribute to the histaminergic improvement of the LVN-related motor behaviors. The findings suggest that histamine and the histaminergic afferents may directly modulate LVN neurons and play a critical role in the central vestibular

  13. Histamine Increases Neuronal Excitability and Sensitivity of the Lateral Vestibular Nucleus and Promotes Motor Behaviors via HCN Channel Coupled to H2 Receptor.

    PubMed

    Li, Bin; Zhang, Xiao-Yang; Yang, Ai-Hong; Peng, Xiao-Chun; Chen, Zhang-Peng; Zhou, Jia-Yuan; Chan, Ying-Shing; Wang, Jian-Jun; Zhu, Jing-Ning

    2016-01-01

    Histamine and histamine receptors in the central nervous system actively participate in the modulation of motor control. In clinic, histamine-related agents have traditionally been used to treat vestibular disorders. Immunohistochemical studies have revealed a distribution of histaminergic afferents in the brainstem vestibular nuclei, including the lateral vestibular nucleus (LVN), which is critical for adjustment of muscle tone and vestibular reflexes. However, the mechanisms underlying the effect of histamine on LVN neurons and the role of histamine and histaminergic afferents in the LVN in motor control are still largely unknown. Here, we show that histamine, in cellular and molecular levels, elicits the LVN neurons of rats an excitatory response, which is co-mediated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and K(+) channels linked to H2 receptors. Blockage of HCN channels coupled to H2 receptors decreases LVN neuronal sensitivity and changes their dynamic properties. Furthermore, in behavioral level, microinjection of histamine into bilateral LVNs significantly promotes motor performances of rats on both accelerating rota-rod and balance beam. This promotion is mimicked by selective H2 receptor agonist dimaprit, and blocked by selective H2 receptor antagonist ranitidine. More importantly, blockage of HCN channels to suppress endogenous histaminergic inputs in the LVN considerably attenuates motor balance and coordination, indicating a promotion role of hypothalamo-vestibular histaminergic circuit in motor control. All these results demonstrate that histamine H2 receptors and their coupled HCN channels mediate the histamine-induced increase in excitability and sensitivity of LVN neurons and contribute to the histaminergic improvement of the LVN-related motor behaviors. The findings suggest that histamine and the histaminergic afferents may directly modulate LVN neurons and play a critical role in the central vestibular

  14. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  15. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  16. Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    apl.uw.edu/dasaro LONG-TERM GOALS I seek to understand the processes controlling lateral mixing in the ocean, particularly at the submesoscale ...APPROACH During AESOP, Lee and D’Asaro pioneered an innovative approach to measuring submesoscale structure in strong fronts. An adaptive measurement...injection of potential vorticity and scalars is predicted to create an intense ‘ submesoscale soup’ of high small-scale variance. The combination of small

  17. Lateral Mixing

    DTIC Science & Technology

    2012-11-08

    to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . 1 DISTRIBUTION STATEMENT A. Approved for...integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to...2011 I also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the

  18. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  19. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  20. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  1. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  2. [Lateral retinacular release].

    PubMed

    Verdonk, P; Bonte, F; Verdonk, R

    2008-09-01

    This overview of numerous studies discusses, based on short-term and long-term results, which diagnoses are indications for lateral retinacular release. No significant differences in outcome between arthroscopic and open lateral release could be documented. Isolated lateral release offers a good success rate for treating a stable patella with excessive lateral pressure. In patellar instability, the results are less favorable in long-term follow-up evaluation. Hyperlaxity with hypermobility of the patella is an absolute contraindication. Lateral release provides only temporary benefit for patellofemoral osteoarthritis. Proximal and/or distal realignment of the extensor mechanism gives better results than isolated lateral release.

  3. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  4. Tennis Elbow (Lateral Epicondylitis)

    MedlinePlus

    .org Tennis Elbow (Lateral Epicondylitis) Page ( 1 ) Tennis elbow, or lateral epicondyliti s, is a painful condition of the elbow caused by overuse. Not surprisingly, playing tennis or other racquet sports can cause ...

  5. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis Overview By Mayo Clinic Staff Amyotrophic lateral sclerosis (a-my-o-TROE-fik LAT-ur-ul skluh-ROE-sis), or ALS, is a progressive nervous system (neurological) disease that ...

  6. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  7. Excited charmed mesons

    SciTech Connect

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.

  8. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  9. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  10. Reading Disability and Laterality.

    ERIC Educational Resources Information Center

    Sparrow, Sara S.

    The purpose of this study was to determine how retarded readers differed from normal readers in the various ways laterality is manifested. An additional purpose was to investigate the development of laterality as seen across several age levels. Subjects were 80 white male 9-, 10-, 11-, and 12-year-olds from regular classrooms in suburban…

  11. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis (ALS) is a nervous system disease that attacks nerve cells called neurons in your brain and spinal cord. These neurons ... breathing machine can help, but most people with ALS die from respiratory failure. The disease usually strikes ...

  12. [Amyotrophic lateral sclerosis].

    PubMed

    Veldink, J H; Weikamp, J; Schelhaas, H J; van den Berg, L H

    2010-01-01

    Amyotrophic lateral sclerosis is one of the most severe and disabling diseases of the nervous system. Amyotrophic lateral sclerosis leads to the progressive weakening of the muscles in the arms, legs, face, mouth and trunk. The onset of the disease is insidious, starting with weakness in the hands or feet or with slurred speech. The weakness worsens and patients pass away as a result of weakness of the respiratory muscles on average within 3 years of the onset of the disease. In the Netherlands, approximately 400 patients are diagnosed with amyotrophic lateral sclerosis every year. There is no diagnostic test for this neuro-muscular disease; the diagnosis is established by excluding other disorders that resemble amyotrophic lateral sclerosis. Only one drug is able to inhibit the progression of the disease to any extent: riluzole. Treatment, therefore, is mainly focused on supportive measures and those which enhance the quality of life optimally.

  13. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  14. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  15. Bilateral lateral periodontal cyst.

    PubMed

    Govil, Somya; Gupta, Vishesh; Misra, Neeta; Misra, Pradyumna

    2013-05-10

    The bilateral lateral periodontal cyst is a rare nasological entity, which despite clinical and radiological presentation is being diagnosed by histological characteristics. It is asymptomatic in nature and is observed in routine radiography. The aim and objective of this article is to present a rare case of bilateral lateral periodontal cyst in a 14-year-old child. The clinical and radiographical findings, along with its management have been discussed. Enucleation of bilateral cyst without extraction of the adjacent tooth was performed. Lesion samples were sent for histopathological analysis. The histopathological analysis revealed a thin, non keratinised stratified squamous epithelium resembling reduced enamel epithelium. Epithelial plaques were also seen. A clinicopathological correlation incorporating the surgical, radiographical and gold standard histopathological findings was obtained to suggest the final diagnosis of the bilateral lateral periodontal cyst.

  16. Lateral Thinking of Prospective Teachers

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Xavier, S. Amaladoss

    2013-01-01

    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  17. Excitability dependent pattern formation

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kaumudi; Gholami, Azam; Bodenschatz, Eberhard

    2014-03-01

    On starvation, the amoebae Dictyostelium discoideum emit the chemo-attractant cyclic adenosine monophosphate (cAMP) at specific frequencies. The neighboring amoebae sense cAMP through membrane receptors and produce their own cAMP. Soon the cells synchronize and move via chemotaxis along the gradient of cAMP. The response of the amoebae to the emission of cAMP is seen as spiral waves or target patterns under a dark field microscope. The causal reasons for the selection of one or the other patterns are still unclear. Here we present a possible explanation based on excitability. The excitability of the amoebae depends on the starvation time because the gene expression changes with starvation. Cells starved for longer times are more excitable. In this work, we mix cells of different excitabilities to study the dependence of the emergent patterns on the excitability. Preliminary results show a transition from spirals to target patterns for specific excitabilities. A phase map of the patterns for different combinations of excitability and number densities is obtained. We compare our findings with numerical simulations of existing theoretical models.

  18. 15. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 WITH EXCITER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 WITH EXCITER No. 1 BEHIND. OVERHEAD CRANE DANGLES AT TOP OF PHOTO. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  19. Onset dominance in lateralization.

    PubMed

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  20. Geomagnetic excitation of nutation

    NASA Astrophysics Data System (ADS)

    Ron, C.; Vondrák, J.

    2015-08-01

    We tested the hypothesis of Malkin (2013), who demonstrated that the observed changes of Free Core Nutation parameters (phase, amplitude) occur near the epochs of geomagnetic jerks. We found that if the numerical integration of Brzeziński broad-band Liouville equations of atmospheric/oceanic excitations is re-initialized at the epochs of geomagnetic jerks, the agreement between the integrated and observed celestial pole offsets is improved (Vondrák & Ron, 2014). Nevertheless, this approach assumes that the influence of geomagnetic jerks leads to a stepwise change in the position of celestial pole, which is physically not acceptable. Therefore we introduce a simple continuous excitation function that hypothetically describes the influence of geomagnetic jerks, and leads to rapid but continuous changes of pole position. The results of numerical integration of atmospheric/oceanic excitations and this newly introduced excitation are then compared with the observed celestial pole offsets, and prove that the agreement is improved significantly.

  1. Lateral Attitude Change.

    PubMed

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented.

  2. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  3. Amyotrophic lateral sclerosis.

    PubMed

    Malik, Rabia; Lui, Andrew; Lomen-Hoerth, Catherine

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting 20,000 to 30,000 people in the United States. The mainstay of care of patients affected by this disease is supportive and given the multifaceted nature of their needs is provided most efficiently through multidisciplinary clinics that have shown to prolong survival and improve quality of life. The authors discuss in detail evidence-based management of individuals affected by this condition.

  4. Conjugal amyotrophic lateral sclerosis

    PubMed Central

    Dewitt, John D.; Kwon, Julia; Burton, Rebecca

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The incidence of sporadic ALS is 1.5 to 2.7 in 100,000, and the prevalence is 5.2 to 6.0 in 100,000. Conjugal ALS is even rarer than sporadic ALS. We report a case of conjugal ALS encountered in our outpatient neurology clinic. PMID:22275781

  5. Lateral Elbow Tendinopathy

    PubMed Central

    Bhabra, Gev; Wang, Allan; Ebert, Jay R.; Edwards, Peter; Zheng, Monica; Zheng, Ming H.

    2016-01-01

    Lateral elbow tendinopathy, commonly known as tennis elbow, is a condition that can cause significant functional impairment in working-age patients. The term tendinopathy is used to describe chronic overuse tendon disorders encompassing a group of pathologies, a spectrum of disease. This review details the pathophysiology of tendinopathy and tendon healing as an introduction for a system grading the severity of tendinopathy, with each of the 4 grades displaying distinct histopathological features. Currently, there are a large number of nonoperative treatments available for lateral elbow tendinopathy, with little guidance as to when and how to use them. In fact, an appraisal of the clinical trials, systematic reviews, and meta-analyses studying these treatment modalities reveals that no single treatment reliably achieves outstanding results. This may be due in part to the majority of clinical studies to date including all patients with chronic tendinopathy rather than attempting to categorize patients according to the severity of disease. We relate the pathophysiology of the different grades of tendinopathy to the basic science principles that underpin the mechanisms of action of the nonoperative treatments available to propose a treatment algorithm guiding the management of lateral elbow tendinopathy depending on severity. We believe that this system will be useful both in clinical practice and for the future investigation of the efficacy of treatments. PMID:27833925

  6. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals.

  7. Slosh wave excitation and stability of spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  8. Gravity-jitters and excitation of slosh waves

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.; Wu, J. L.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  9. Diamond heteroepitaxial lateral overgrowth

    SciTech Connect

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  10. Excitation Methods for Bridge Structures

    SciTech Connect

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  11. Creativity in later life.

    PubMed

    Price, K A; Tinker, A M

    2014-08-01

    The ageing population presents significant challenges for the provision of social and health services. Strategies are needed to enable older people to cope within a society ill prepared for the impacts of these demographic changes. The ability to be creative may be one such strategy. This review outlines the relevant literature and examines current public health policy related to creativity in old age with the aim of highlighting some important issues. As well as looking at the benefits and negative aspects of creative activity in later life they are considered in the context of the theory of "successful ageing". Creative activity plays an important role in the lives of older people promoting social interaction, providing cognitive stimulation and giving a sense of self-worth. Furthermore, it is shown to be useful as a tool in the multi-disciplinary treatment of health problems common in later life such as depression and dementia. There are a number of initiatives to encourage older people to participate in creative activities such as arts-based projects which may range from visual arts to dance to music to intergenerational initiatives. However, participation shows geographical variation and often the responsibility of provision falls to voluntary organisations. Overall, the literature presented suggests that creative activity could be a useful tool for individuals and society. However, further research is needed to establish the key factors which contribute to patterns of improved health and well-being, as well as to explore ways to improve access to services.

  12. Spin waves and magnetic excitations

    SciTech Connect

    Borovik-Romanov, A.S.; Sinha, S.K.

    1988-01-01

    This book describes both simple spin waves (magnons) and complicated excitations in magnetic systems. The following subjects are covered: - various methods of magnetic excitation investigations such as neutron scattering on magnetic excitations, spin-wave excitation by radio-frequency, power light scattering on magnons and magnetic excitation observation within the light-absorption spectrum; - oscillations of magnetic electron systems coupled with phonons, nuclear spin systems and localized impurity modes: - low-dimensional magnetics, amorphous magnetics and spin glasses.

  13. Lower lateral crural reverse plasty.

    PubMed

    Kubilay, Utku; Azizli, Elad; Erdoğdu, Suleyman

    2013-11-01

    The lateral crus plays a significant role in the aesthetic appearance of the nose. Excessive concavities of the lower lateral crura can lead to heavy aesthetic disfigurement of the nasal tip and to insufficiencies of the external nasal valve. The lateral crus of the alar cartilage may also cause a concavity of the alar rim and even collapse of the alar rim in severe cases. Surgical techniques performed on the lateral crus help to treat both functional and aesthetic deformities of the lateral nasal tip. We present a reverse plasty technique for the lateral crus, and we evaluated the advantages and disadvantages of the technique.

  14. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  15. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  16. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  17. Primary Lateral Sclerosis

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; Dimachkie, Mazen M.; Floeter, Mary Kay; Mitsumoto, Hiroshi

    2015-01-01

    Synopsis Primary lateral sclerosis (PLS) is characterized by insidious onset of progressive upper motor neuron dysfunction in the absence of clinical signs of lower motor neuron involvement. Patients experience stiffness, decreased balance and coordination, and mild weakness, and if the bulbar region is affected, difficulty speaking and swallowing, and emotional lability. The diagnosis is made based on clinical history, typical exam findings, and diagnostic testing negative for other causes of upper motor neuron dysfunction. EMG is normal, or only shows mild neurogenic findings in a few muscles, not meeting El Escorial criteria. Although no test is specific for PLS, some neurodiagnostic tests are supportive: including absent or delayed central motor conduction times; and changes in the precentral gyrus or corticospinal tracts on MRI, DTI or MR Spectroscopy. Treatment is largely supportive, and includes medications for spasticity, baclofen pump, and treatment for pseudobulbar affect. The prognosis in PLS is more benign than ALS, making this a useful diagnostic category. PMID:26515619

  18. Lateral Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Lateral abdominal wall (LAW) defects can manifest as a flank hernias, myofascial laxity/bulges, or full-thickness defects. These defects are quite different from those in the anterior abdominal wall defects and the complexity and limited surgical options make repairing the LAW a challenge for the reconstructive surgeon. LAW reconstruction requires an understanding of the anatomy, physiologic forces, and the impact of deinnervation injury to design and perform successful reconstructions of hernia, bulge, and full-thickness defects. Reconstructive strategies must be tailored to address the inguinal ligament, retroperitoneum, chest wall, and diaphragm. Operative technique must focus on stabilization of the LAW to nonyielding points of fixation at the anatomic borders of the LAW far beyond the musculofascial borders of the defect itself. Thus, hernias, bulges, and full-thickness defects are approached in a similar fashion. Mesh reinforcement is uniformly required in lateral abdominal wall reconstruction. Inlay mesh placement with overlying myofascial coverage is preferred as a first-line option as is the case in anterior abdominal wall reconstruction. However, interposition bridging repairs are often performed as the surrounding myofascial tissue precludes a dual layered closure. The decision to place bioprosthetic or prosthetic mesh depends on surgeon preference, patient comorbidities, and clinical factors of the repair. Regardless of mesh type, the overlying soft tissue must provide stable cutaneous coverage and obliteration of dead space. In cases where the fasciocutaneous flaps surrounding the defect are inadequate for closure, regional pedicled flaps or free flaps are recruited to achieve stable soft tissue coverage. PMID:23372458

  19. Reflexive Planning for Later Life

    ERIC Educational Resources Information Center

    Denton, Margaret A.; Kemp, Candace L.; French, Susan; Gafni, Amiram; Joshi, Anju; Rosenthal, Carolyn J.; Davies, Sharon

    2004-01-01

    Informed by Giddens' (1991) concept of "reflexive life" planning and the notion of later life as a time of increasing social and financial risk, this research explores the idea of "reflexive planning for later life". We utilize a conceptual model that incorporates three types of planning for later life: public protection, self-insurance, and…

  20. Lateral Thinking and Technology Education.

    ERIC Educational Resources Information Center

    Waks, Shlomo

    1997-01-01

    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  1. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  2. Experiments on excitation waves

    NASA Astrophysics Data System (ADS)

    Müller, S. C.

    Recent trends in the experimentation on chemical and biochemical excitation waves are presented. In the Belousov-Zhabotinsky reaction, which is the most suitable chemical laboratory system for the study of wave propagation in excitable medium, the efficient control of wave dynamics by electrical fields and by light illumination is illustrated. In particular, the effects of a feedback control are shown. Further new experiments in this system are concerned with three-dimensional topologies and boundary effects. Important biological applications are found in the aggregation of slime mould amoebae, in proton waves during oscillatory glycolysis, and in waves of spreading depression in neuronal tissue as studied by experiments in chicken retina. Numerical simulations with appropriate reaction-diffusion models complement a large number of these experimental findings.

  3. Excitable scale free networks

    NASA Astrophysics Data System (ADS)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  4. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  5. Pulse excitation of bolometer bridges

    NASA Technical Reports Server (NTRS)

    Rusk, S. J.

    1972-01-01

    Driving bolometer bridge by appropriately phased excitation pulses increases signal-to-noise ratio of bolometer sensor which operates on a chopped light beam. Method allows higher applied voltage than is possible by conventional ac or dc excitation.

  6. Apparatus for photon excited catalysis

    NASA Technical Reports Server (NTRS)

    Saffren, M. M. (Inventor)

    1977-01-01

    An apparatus is described for increasing the yield of photonically excited gas phase reactions by extracting excess energy from unstable, excited species by contacting the species with the surface of a finely divided solid.

  7. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  8. Design of lateral heterostructure from arsenene and antimonene

    NASA Astrophysics Data System (ADS)

    Sun, Qilong; Dai, Ying; Ma, Yandong; Yin, Na; Wei, Wei; Yu, Lin; Huang, Baibiao

    2016-09-01

    Lateral heterostructures fabricated by two-dimensional building blocks have opened up exciting realms in material science and device physics. Identifying suitable materials for creating such heterostructures is urgently needed for the next-generation devices. Here, we demonstrate a novel type of seamless lateral heterostructures with excellent stabilities formed within pristine arsenene and antimonene. We find that these heterostructures could possess direct and reduced energy gaps without any modulations. Moreover, the highly coveted type-II alignment and the high carrier mobility are also identified, marking the enhanced quantum efficiency. The tensile strain can result in efficient bandgap engineering. Besides, the proposed critical condition for favored direct energy gaps would have a guiding significance on the subsequent works. Generally, our predictions not only introduce new vitality into lateral heterostructures, enriching available candidate materials in this field, but also highlight the potential of these lateral heterostructures as appealing materials for future devices.

  9. Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle

    PubMed Central

    Lee, Kyu Ho; Choi, Hong Lim; Jeong, Eui Cheol

    2016-01-01

    Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty. PMID:27462563

  10. Get excited: reappraising pre-performance anxiety as excitement.

    PubMed

    Brooks, Alison Wood

    2014-06-01

    Individuals often feel anxious in anticipation of tasks such as speaking in public or meeting with a boss. I find that an overwhelming majority of people believe trying to calm down is the best way to cope with pre-performance anxiety. However, across several studies involving karaoke singing, public speaking, and math performance, I investigate an alternative strategy: reappraising anxiety as excitement. Compared with those who attempt to calm down, individuals who reappraise their anxious arousal as excitement feel more excited and perform better. Individuals can reappraise anxiety as excitement using minimal strategies such as self-talk (e.g., saying "I am excited" out loud) or simple messages (e.g., "get excited"), which lead them to feel more excited, adopt an opportunity mind-set (as opposed to a threat mind-set), and improve their subsequent performance. These findings suggest the importance of arousal congruency during the emotional reappraisal process.

  11. Amyotrophic lateral sclerosis

    PubMed Central

    Wijesekera, Lokesh C; Leigh, P Nigel

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in

  12. Search for Gluonic Excitations

    SciTech Connect

    Eugenio, Paul

    2007-10-26

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  13. Search for Gluonic Excitations

    SciTech Connect

    Paul Eugenio

    2007-10-01

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  14. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  15. Metastable Interactions: Dissociative Excitation.

    DTIC Science & Technology

    1985-05-01

    participate. The mercuric halide compounds HgBr2 , HgCl 2 , and HgI2 are of recent interest because of laser output achieved on the B2 E - X2 E transition in...the * respective mercuric halide radicals in the range of 400-600 nm. Population inversion has been obtained by photodissociation and electron impact...excitation in mixtures o the mercuric - halide compounds and the rare gases. Chang and -* Burnham (3) have noted Improved laser efficiency and improved

  16. Early history of the pre-excitation syndrome.

    PubMed

    Hanon, Sam; Shapiro, Michael; Schweitzer, Paul

    2005-01-01

    This brief review discusses the interesting early history of the pre-excitation syndrome. In 1913 Cohn and Fraser published the first patient with a short P-R interval, wide QRS complexes, and paroxysmal tachycardia. This was followed by other cases of pre-excitation syndrome, all of which were considered to be due to bundle branch blocks. In 1930 Wolff, Parkinson, and White reported 11 patients with the syndrome, which came to bear their name. Two years later, Holzmann and Scherf suggested bypass tracts as the most likely mechanism of pre-excitation syndrome. In 1942, Wood et al. documented the first accessory connection at autopsy. Despite these early studies supporting the bypass theory, the quest for alternative mechanisms continued until the 1970s when electrophysiological studies and surgical therapy confirmed accessory connections as the mechanism of pre-excitation syndrome.

  17. Amyotrophic Lateral Sclerosis Research Program

    DTIC Science & Technology

    2010-08-01

    U.S. Army Medical Research and Materiel Command Amyotrophic Lateral Sclerosis Research Program Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2010 4. TITLE AND SUBTITLE Amyotrophic Lateral Sclerosis Research Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...research programs such as the Amyotrophic Lateral Sclerosis Research Program (ALSRP) is allo- cated via specific guidance from Congress. Proposal

  18. [Lateral mandibular deviations].

    PubMed

    Gotte, P

    1980-01-01

    The mandibular laterodeviation is one of the most evident malformations of the face, because it alters the lower third of the face. Etiologically it can be classified into: Static laterodeviations caused by teeth; Static laterodeviations caused by skeleton change: by monolateral hypertrophy (condyle, condyle and neck of the condyle, half mandible hypertrophy); by monolateral hypertrophy (congenital pathological); Dinamic laterodeviations functional. The midline displacement with posterior monolateral cross bite is caused by width discrepancy between the upper and lower dental arch resulting in a lateral shifting of the mandible. This laterodeviation is also called "laterale forced bite" or "articular cross bite". Articular cross bite is generally corrected by orthodontics during the interceptive period when the growth of the jaws is still present. In the author's opinion the orthognathic surgery is absolutely necessary for adult dental laterodeviation already stabilized. The skeletal laterodeviation must always be treated by orthognathic surgery. It is the author's practice to use the sagittal bilateral osteotomy at the angle and ramus level whose lines of osteotomy at the angle are different from one another depending on the displacement and rotation which one must do to the mandible to get contact surfaces which are larger enough to ensure proper union because the two mandibular halves have different lengths and different angles. This kind of operation normalizes the occlusion and is sometime sufficient to harmonize the oval of the lower third of the face. In the anterior part of the chin is still laterodeviated one continues with a wedge shaped osteotomy at the tip of the chin in order to reposition the tip to the midline and with an additional osteotomy at the hypertrophied angle level. If laterodeviation is joined by other bone malformations in can be considered a symptom which is more or less marked. In this case, therefore, laterodeviation is a part of a

  19. Excitability in Dictyostelium development

    NASA Astrophysics Data System (ADS)

    Schwab, David

    2013-03-01

    Discovering how populations of cells reliably develop into complex multi-cellular structures is a key challenge in modern developmental biology. This requires an understanding of how networks at the single-cell level, when combined with intercellular signaling and environmental cues, give rise to the collective behaviors observed in cellular populations. I will present work in collaboration with the Gregor lab, showing that the signal-relay response of starved cells of the amoebae Dictyostelium discoideum can be well modeled as an excitable system. This is in contrast to existing models of the network that postulate a feed-forward cascade. I then extend the signal-relay model to describe how spatial gradient sensing may be achieved via excitability. One potential advantage of relying on feedback for gradient sensing is in preventing ``cheaters'' that do not produce signals from taking over the population. I then combine these models of single-cell signaling and chemotaxis to perform large-scale agent-based simulations of aggregating populations. This allows direct study of how variations in single-cell dynamics modify population behavior. In order to further test this model, I use the results of a screen for mutant cell lines that exhibit altered collective patterns. Finally, I use an existing FRET movie database of starved cell populations at varying cell densities and dilution rates to study heterogeneity in repeated spatio-temporal activity patterns.

  20. Resonating cantilever mass sensor with mechanical on-plane excitation

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  1. A Pascalian lateral drift sensor

    NASA Astrophysics Data System (ADS)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  2. Front interaction induces excitable behavior

    NASA Astrophysics Data System (ADS)

    Parra-Rivas, P.; Matías, M. A.; Colet, P.; Gelens, L.; Walgraef, D.; Gomila, D.

    2017-02-01

    Spatially extended systems can support local transient excitations in which just a part of the system is excited. The mechanisms reported so far are local excitability and excitation of a localized structure. Here we introduce an alternative mechanism based on the coexistence of two homogeneous stable states and spatial coupling. We show the existence of a threshold for perturbations of the homogeneous state. Subthreshold perturbations decay exponentially. Superthreshold perturbations induce the emergence of a long-lived structure formed by two back to back fronts that join the two homogeneous states. While in typical excitability the trajectory follows the remnants of a limit cycle, here reinjection is provided by front interaction, such that fronts slowly approach each other until eventually annihilating. This front-mediated mechanism shows that extended systems with no oscillatory regimes can display excitability.

  3. Theoretical study of time-resolved luminescence in semiconductors. IV. Lateral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Maiberg, Matthias; Bertram, Frank; Müller, Mathias; Scheer, Roland

    2017-02-01

    In the fourth part of this series, we study the impact of lateral inhomogeneities on the time-resolved luminescence decay (TRL) after a pulsed excitation by means of simulation with Synopsys® TCAD and analytical approximation. This work consists of two parts: In the first part, the effect of excitations being inhomogeneous on a lateral scale is investigated. It turns out that for localized excitations there may be a strong lateral diffusion of charge carriers, thereby limiting the resolution of a micro-TRL experiment. In this case, a replacement of the inhomogeneous excitation in the simulation by a homogeneous excitation and an average photon density is not possible, especially due to defect saturation depending non-linearly on the excitation. In the second part, we consider a homogeneous excitation and study inhomogeneous material parameters, namely, inhomogeneous charge carrier lifetimes, band gaps, and doping densities. We find that their effects strongly depend on their characteristic lengths of variation. For length scales smaller than the diffusion length, inhomogeneous material parameters can lead to curved luminescence decays.

  4. Abnormal band of lateral meniscus.

    PubMed

    Giordano, Brian; Goldblatt, John

    2009-01-01

    This article describes a case of an "abnormal band" of the lateral meniscus, extending from the posterior horn of the true lateral meniscus to its antero-mid portion, observed during arthroscopy in a 45-year-old white man of Bosnian descent. The periphery of the aberrant lateral meniscus was freely mobile, and not connected to the underlying true lateral meniscus. Preoperative physical examination findings were consistent with medial-sided meniscal pathology only; however, evidence of an anomalous lateral meniscus was seen with magnetic resonance imaging. This anatomical pattern is rare and has been reported in the literature only once, in a report of 2 Asian patients. This article illustrates an anatomical variant of the lateral meniscus in a non-Asian patient with a clinical presentation that has not been previously described. In addition to the case report, the article presents a comprehensive review of the existing body of literature on anomalous lateral meniscus patterns. We believe that the definitions of the types of aberrant meniscus can be clarified to establish improved accuracy in reporting.

  5. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  6. Optically excited states in positronium

    NASA Technical Reports Server (NTRS)

    Howell, R. H.; Ziock, Klaus P.; Magnotta, F.; Dermer, Charles D.; Failor, R. A.; Jones, K. M.

    1990-01-01

    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium.

  7. What causes amyotrophic lateral sclerosis?

    PubMed Central

    Martin, Sarah; Al Khleifat, Ahmad; Al-Chalabi, Ammar

    2017-01-01

    Amyotrophic lateral sclerosis is a neurodegenerative disease predominantly affecting upper and lower motor neurons, resulting in progressive paralysis and death from respiratory failure within 2 to 3 years. The peak age of onset is 55 to 70 years, with a male predominance. The causes of amyotrophic lateral sclerosis are only partly known, but they include some environmental risk factors as well as several genes that have been identified as harbouring disease-associated variation. Here we review the nature, epidemiology, genetic associations, and environmental exposures associated with amyotrophic lateral sclerosis.

  8. Lateral vibration effects in atomic-scale friction

    SciTech Connect

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E.; Gnecco, E.

    2014-02-24

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superimposed at finite temperature. Nevertheless, the peak values of the lateral force, and the total energy losses, are expected to increase with the excitation amplitude, which may limit the practical relevance of this effect.

  9. Simulation of transient dynamic behavior in laterally coupled VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Riyopoulos, Spilios

    2002-06-01

    A novel, fast simulation tool for transient response is developed to study jitter and noise caused by lateral cavity interactions in VCSEL arrays. The cavity mode profiles, obtained from a paraxial eigenmode analysis, are used to derive fast 1-D rate equations that implement gain confinement, edge clipping, wide angle scattering and diffraction (self-interference) losses. These equations are augmented by lateral coupling terms describing the interactions among nearest neighbor cavities. Slow time scale coupling describes interactions of phase-shifted cavities via mutually induced electric polarization, cross-hole burning and cross-cavity gain due to optical fringe-field interactions. The tool is used to study cavity cross-talk, lateral bit pattern error effects, and the possibility of excitation of long range modulations over the array. Conclusions relating VCSEL packing density to BER, bit suppression by neighboring cavities, and array phase locking are given.

  10. Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Fiore, Victor; Yang, Yong; Kuzyk, Mark C.; Barbour, Russell; Tian, Lin; Wang, Hailin

    2011-09-01

    We report the experimental demonstration of storing optical information as a mechanical excitation in a silica optomechanical resonator. We use writing and readout laser pulses tuned to one mechanical frequency below an optical cavity resonance to control the coupling between the mechanical displacement and the optical field at the cavity resonance. The writing pulse maps a signal pulse at the cavity resonance to a mechanical excitation. The readout pulse later converts the mechanical excitation back to an optical pulse. The storage lifetime is determined by the relatively long damping time of the mechanical excitation.

  11. Lateral Dominance and Reading Disability.

    ERIC Educational Resources Information Center

    Harris, Albert J.

    1979-01-01

    Theory and research on the relation of lateral dominance to the causation of reading disability are reviewed. Both direct and indirect measures of cerebral hemisphere functioning are considered. (SBH)

  12. Hyperaldosteronism: diagnosis, lateralization, and treatment.

    PubMed

    Harvey, Adrian M

    2014-06-01

    Primary hyperaldosteronism is an important and commonly unrecognized secondary cause of hypertension. This article provides an overview of the current literature with respect to screening, diagnosis, and lateralization. Selection and outcomes of medical and surgical treatment are discussed.

  13. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  14. The Excitable Membrane

    PubMed Central

    Offner, Franklin F.

    1972-01-01

    The model of the excitable membrane assumes common channels for Na+ and K+; the two ion species interact within the pores through their electrostatic forces. The electric field varies across the membrane and with time, as a result of ionic redistribution. Ionic flow is primarily controlled by energy barriers at the two interfaces and by Ca++ adsorption at the external interface. When the membrane is polarized, the high electric field at the external interface acting on the membrane fixed charge keeps the effective channel diameter small, so that only dihydrated ions can cross the interface. The higher energy required to partially dehydrate Na+ accounts for its lower permeability when polarized. Depolarized, the channel entrance can expand, permitting quadrihydrated ions to pass; the large initial Na+ flow is the result of the large concentration ratio across the interface. The effect at the internal interface is symmetric; Na+ crosses with greater difficulty when the membrane is depolarized. Na+ inactivation occurs when the ion distribution within the membrane has assumed its new steady-state value. Calculations based on parameters consistent with physicochemical data agree generally with a wide range of experiments. The model does not obey the two fundamental Hodgkin-Huxley (HH) postulates (independence principle, ion flow proportional to thermodynamic potential). In several instances the model predicts experimental results which are not predicted by the HH equations. ImagesFIGURE 12 PMID:4655662

  15. Double excitations in finite systems.

    PubMed

    Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G

    2009-01-28

    Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.

  16. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  17. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  18. Excitation of guided waves in layered structures with negative refraction.

    PubMed

    Shadrivov, Ilya; Ziolkowski, Richard; Zharov, Alexander; Kivshar, Yuri

    2005-01-24

    We study the electromagnetic beam reflection from layered structures that include the so-called double-negative metamaterials, also called left-handed metamaterials. We predict that such structures can demonstrate a giant lateral Goos-Hänchen shift of the scattered beam accompanied by a splitting of the reflected and transmitted beams due to the resonant excitation of surface waves at the interfaces between the conventional and double-negative materials as well as due to the excitation of leaky modes in the layered structures. The beam shift can be either positive or negative, depending on the type of the guided waves excited by the incoming beam. We also perform finite-difference time-domain simulations and confirm the major effects predicted analytically.

  19. Optineurin and amyotrophic lateral sclerosis.

    PubMed

    Maruyama, Hirofumi; Kawakami, Hideshi

    2013-07-01

    Amyotrophic lateral sclerosis is a devastating disease, and thus it is important to identify the causative gene and resolve the mechanism of the disease. We identified optineurin as a causative gene for amyotrophic lateral sclerosis. We found three types of mutations: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Optineurin negatively regulates the tumor necrosis factor-α-induced activation of nuclear factor kappa B. Nonsense and missense mutations abolished this function. Mutations related to amyotrophic lateral sclerosis also negated the inhibition of interferon regulatory factor-3. The missense mutation showed a cyotoplasmic distribution different from that of the wild type. There are no specific clinical symptoms related to optineurin. However, severe brain atrophy was detected in patients with homozygous deletion. Neuropathologically, an E478G patient showed transactive response DNA-binding protein of 43 kDa-positive neuronal intracytoplasmic inclusions in the spinal and medullary motor neurons. Furthermore, Golgi fragmentation was identified in 73% of this patient's anterior horn cells. In addition, optineurin is colocalized with fused in sarcoma in the basophilic inclusions of amyotrophic lateral sclerosis with fused in sarcoma mutations, and in basophilic inclusion body disease. These findings strongly suggest that optineurin is involved in the pathogenesis of amyotrophic lateral sclerosis.

  20. Lateral epicondylitis of the elbow.

    PubMed

    Tosti, Rick; Jennings, John; Sewards, J Milo

    2013-04-01

    Lateral epicondylitis, or "tennis elbow," is a common musculotendinous degenerative disorder of the extensor origin at the lateral humeral epicondyle. Repetitive occupational or athletic activities involving wrist extension and supination are thought to be causative. The typical symptoms include lateral elbow pain, pain with wrist extension, and weakened grip strength. The diagnosis is made clinically through history and physical examination; however, a thorough understanding of the differential diagnosis is imperative to prevent unnecessary testing and therapies. Most patients improve with nonoperative measures, such as activity modification, physical therapy, and injections. A small percentage of patients will require surgical release of the extensor carpi radialis brevis tendon. Common methods of release may be performed via percutaneous, arthroscopic, or open approaches.

  1. Lateral Diffusion in an Archipelago

    PubMed Central

    Saxton, Michael J.

    1982-01-01

    Lateral diffusion of molecules in lipid bilayer membranes can be hindered by the presence of impermeable domains of gel-phase lipid or of proteins. Effective-medium theory and percolation theory are used to evaluate the effective lateral diffusion constant as a function of the area fraction of fluid-phase lipid and the permeability of the obstructions to the diffusing species. Applications include the estimation of the minimum fraction of fluid lipid needed for bacterial growth, and the enhancement of diffusion-controlled reactions by the channeling effect of solid patches of lipid. PMID:7052153

  2. Terahertz ratchet effects in graphene with a lateral superlattice

    NASA Astrophysics Data System (ADS)

    Olbrich, P.; Kamann, J.; König, M.; Munzert, J.; Tutsch, L.; Eroms, J.; Weiss, D.; Liu, Ming-Hao; Golub, L. E.; Ivchenko, E. L.; Popov, V. V.; Fateev, D. V.; Mashinsky, K. V.; Fromm, F.; Seyller, Th.; Ganichev, S. D.

    2016-02-01

    Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction.

  3. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  4. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  5. Excitations of strange bottom baryons

    NASA Astrophysics Data System (ADS)

    Woloshyn, R. M.

    2016-09-01

    The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.

  6. Lateral Entry of Military Personnel

    DTIC Science & Technology

    1992-03-01

    completion is accounted for in the training costs used here.) There is evidence that people with post -secondary education, the most likely lateral entrants...between worker and ocupation . Untrained entrants typically sign on for a specialty with little or no experience. -, 18 x, .. The military bears the risk

  7. Laterality of basic auditory perception.

    PubMed

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  8. Anxiety and Lateral Cerebral Function

    ERIC Educational Resources Information Center

    Tucker, Don M.; And Others

    1978-01-01

    Examines the effect of stressful and nonstressful experimental situations upon the processing capacity of each cerebral hemisphere, through observing the differential performance tasks presented to right and left visual half-fields (VHFs). Also examines attentional bias and lateral eye movements. (Author/RK)

  9. Amyotrophic lateral sclerosis mimic syndromes

    PubMed Central

    Ghasemi, Majid

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) misdiagnosis has many broad implications for the patient and the neurologist. Potentially curative treatments exist for certain ALS mimic syndromes, but delay in starting these therapies may have an unfavorable effect on outcome. Hence, it is important to exclude similar conditions. In this review, we discuss some of the important mimics of ALS. PMID:27326363

  10. Lateral Inhibition during Nociceptive Processing.

    PubMed

    Quevedo, Alexandre S; Mørch, Carsten Dahl; Andersen, Ole K; Coghill, Robert C

    2017-02-11

    Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer-controlled CO2-laser. Lines (5mm wide) of variable lengths (4cm, 8cm) were compared to two-point stimuli delivered at the same position/separation as the length of lines. When compared to one-point control stimuli, two-point stimulus patterns produced statistically significant spatial summation of pain, while no such summation was detected during line stimulus patterns. Direct comparison of pain intensity evoked by two-point pattern stimuli with line pattern stimuli revealed that two-point patterns were perceived as significantly more painful, despite the fact that the two-point pattern stimulated far smaller areas of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.

  11. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet... generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has...

  12. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet... generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has...

  13. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet... generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has...

  14. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet... generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has...

  15. 46 CFR 111.12-3 - Excitation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet... generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has...

  16. Research advances in amyotrophic lateral sclerosis, 2009 to 2010.

    PubMed

    Traub, Rebecca; Mitsumoto, Hiroshi; Rowland, Lewis P

    2011-02-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of upper and lower motor neurons that causes progressive weakness and death. The breadth of research in ALS continues to grow with exciting new discoveries in disease pathogenesis and potential future therapeutics. There is a growing list of identified mutations in familial ALS, including those in genes encoding TDP-43 and FUS/TLS, which are expanding our understanding of the role of RNA modulation in ALS pathogenesis. There is a greater appreciation for the role of glial cells in motor neuron disease. Mitochondrial dysfunction is also being shown to be critical for motor neuron degeneration. In addition to pharmacotherapy, there are promising early developments with therapeutic implications in the areas of RNA interference, stem cell therapies, viral vector-mediated gene therapy, and immunotherapy. With greater understanding of ALS pathogenesis and exciting new therapeutic technologies, there is hope for future progress in treating this disease.

  17. Electrostatic Tuning of Cellular Excitability

    PubMed Central

    Börjesson, Sara I.; Parkkari, Teija; Hammarström, Sven; Elinder, Fredrik

    2010-01-01

    Abstract Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substances can tune channel opening, and consequently excitability, by an electrostatic interaction with the channel's voltage sensors. The direction of the effect depends on the charge of the substance. This was shown by three compounds sharing an arachidonyl backbone but bearing different charge: arachidonic acid, methyl arachidonate, and arachidonyl amine. Computer simulations of membrane excitability showed that small changes in the voltage dependence of Na and K channels have prominent impact on excitability and the tendency for repetitive firing. For instance, a shift in the voltage dependence of a K channel with −5 or +5 mV corresponds to a threefold increase or decrease in K channel density, respectively. We suggest that electrostatic tuning of ion channel activity constitutes a novel and powerful pharmacological approach with which to affect cellular excitability. PMID:20141752

  18. Electron-excited molecule interactions

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  19. Redox Control of Cardiac Excitability

    PubMed Central

    Aggarwal, Nitin T.

    2013-01-01

    Abstract Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation. Antioxid. Redox Signal. 18, 432–468. PMID:22897788

  20. Genetics Home Reference: juvenile primary lateral sclerosis

    MedlinePlus

    ... primary lateral sclerosis, juvenile Merck Manual Consumer Version: Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases Patient Support and ... domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001 Oct;29(2):160-5. ...

  1. Excitation with quantum light. I. Exciting a harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Carreño, J. C. López; Laussy, F. P.

    2016-12-01

    We present a two-part study of the excitation of an optical target by quantum light. In this first part, we introduce the problematic and address the first case of interest, that of exciting the quantum harmonic oscillator, corresponding to, e.g., a single-mode passive cavity or a noninteracting bosonic field. We introduce a mapping of the Hilbert space that allows to chart usefully the accessible regions. We then consider the quantum excitation from single-photon sources in the form of a two-level system under various regimes of (classical) pumping: incoherent, coherent, and in the Mollow triplet regime. We close this first part with an overview of the material to be covered in the subsequent work.

  2. Preserving Dignity in Later Life.

    PubMed

    São José, José Manuel

    2016-09-01

    This article examines how elders who receive social care in the community experience loss of dignity and how they preserve their dignity. Qualitative research revealed that loss of dignity is a major concern for these elders and that they preserve their dignity differently, ranging from actively engaging with life to detaching themselves from life. We conclude that, in later life, preserving dignity while receiving social care differs from preserving dignity in the context of health care, especially health care provided in institutional settings. Furthermore, preserving dignity in later life, while receiving social care, is a complex process, depending not only on performing activities and individual action and responsibility, but also on other actions, some of them involving a certain inactivity/passivity, and interactions with others, especially caregivers. This article offers some insights to developing better policies and care practices for promoting dignity in the context of community-based social care.

  3. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    SciTech Connect

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  4. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  5. Sadomasochism, sexual excitement, and perversion.

    PubMed

    Kernberg, O F

    1991-01-01

    Sadomasochism, an ingredient of infantile sexuality, is an essential part of normal sexual functioning and love relations, and of the very nature of sexual excitement. Sadomasochistic elements are also present in all sexual perversions. Sadomasochism starts out as the potential for erotic masochism in both sexes, and represents a very early capacity to link aggression with the libidinal elements of sexual excitement. Sexual excitement may be considered a basic affect that overcomes primitive splitting of love and hatred. Erotic desire is a more mature form of sexual excitement. Psychoanalytic exploration makes it possible to uncover the unconscious components of sexual excitement: wishes for symbiotic fusion and for aggressive penetration and intermingling; bisexual identifications; the desire to transgress oedipal prohibitions and the secretiveness of the primal scene, and to violate the boundaries of a teasing and withholding object. The relation between these wishes and the development of erotic idealization processes in both sexes is explored in the context of a critical review of the pertinent psychoanalytic literature.

  6. Cerebellar on-beam and lateral inhibition: two functionally distinct circuits.

    PubMed

    Cohen, D; Yarom, Y

    2000-04-01

    Optical imaging of voltage-sensitive dyes in an isolated cerebellum preparation was used to study the spatiotemporal functional organization of the inhibitory systems in the cerebellar cortex. Responses to surface stimulation of the cortex reveal two physiologically distinct inhibitory systems, which we refer to as lateral and on-beam inhibition following classical terminology. Lateral inhibition occurs throughout the area responding to a stimulus, whereas on-beam inhibition is confined to the area directly excited by parallel fibers. The time course of the lateral inhibition is twice as long as that of the on-beam inhibition. Both inhibitory responses increase with stimulus intensity, but the lateral inhibition has a lower threshold, and it saturates at lower stimulus intensity. The amplitude of the on-beam inhibition is linearly related to the excitation at the same location, whereas that of the lateral inhibition is linearly related to the excitation at the center of the beam. Repetitive stimulation is required to activate on-beam inhibition, whereas the same stimulus paradigm reveals prolonged depression of the lateral inhibition. We conclude that lateral inhibition reflects the activation of molecular layer interneurons, and its major role is to increase the excitability of the activated area by disinhibition. The on-beam inhibition most likely reflects Golgi cell inhibition of granule cells. However, Purkinje cell collateral inhibition of Golgi cells cannot be excluded. Both possibilities suggest that the role of the on-beam inhibition is to efficiently modulate, in time and space, the mossy fiber input to the cerebellar cortex.

  7. Indirect excitation of ultrafast demagnetization

    PubMed Central

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions. PMID:26733106

  8. Indirect excitation of ultrafast demagnetization.

    PubMed

    Vodungbo, Boris; Tudu, Bharati; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H; Granitzka, Patrick W; Jaouen, Nicolas; Dakovski, Georgi L; Moeller, Stefan; Minitti, Michael P; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.

  9. Stochastic excitation of stellar oscillations

    NASA Astrophysics Data System (ADS)

    Samadi, Reza

    2001-05-01

    Since more than about thirty years, solar oscillations are thought to be excited stochastically by the turbulent motions in the solar convective zone. It is currently believed that oscillations of stars lower than 2 solar masses - which possess an upper convective zone - are excited stochastically by turbulent convection in their outer layers. Providing that accurate measurements of the oscillation amplitudes and damping rates are available it is possible to evaluate the power injected into the modes and thus - by comparison with the observations - to constrain current theories. A recent theoretical work (Samadi & Goupil, 2001; Samadi et al., 2001) supplements and reinforces the theory of stochastic excitation of star vibrations. This process was generalized to a global description of the turbulent state of their convective zone. The comparison between observation and theory, thus generalized, will allow to better know the turbulent spectrum of stars, and this in particular thanks to the COROT mission.

  10. Excitation optimization for damage detection

    SciTech Connect

    Bement, Matthew T; Bewley, Thomas R

    2009-01-01

    A technique is developed to answer the important question: 'Given limited system response measurements and ever-present physical limits on the level of excitation, what excitation should be provided to a system to make damage most detectable?' Specifically, a method is presented for optimizing excitations that maximize the sensitivity of output measurements to perturbations in damage-related parameters estimated with an extended Kalman filter. This optimization is carried out in a computationally efficient manner using adjoint-based optimization and causes the innovations term in the extended Kalman filter to be larger in the presence of estimation errors, which leads to a better estimate of the damage-related parameters in question. The technique is demonstrated numerically on a nonlinear 2 DOF system, where a significant improvement in the damage-related parameter estimation is observed.

  11. Indirect excitation of ultrafast demagnetization

    DOE PAGES

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; ...

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset andmore » at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.« less

  12. Indirect excitation of ultrafast demagnetization

    SciTech Connect

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.

  13. Recurrent Excitation in Neocortical Circuits

    NASA Astrophysics Data System (ADS)

    Douglas, Rodney J.; Koch, Christof; Mahowald, Misha; Martin, Kevan A. C.; Suarez, Humbert H.

    1995-08-01

    The majority of synapses in the mammalian cortex originate from cortical neurons. Indeed, the largest input to cortical cells comes from neighboring excitatory cells. However, most models of cortical development and processing do not reflect the anatomy and physiology of feedback excitation and are restricted to serial feedforward excitation. This report describes how populations of neurons in cat visual cortex can use excitatory feedback, characterized as an effective "network conductance," to amplify their feedforward input signals and demonstrates how neuronal discharge can be kept proportional to stimulus strength despite strong, recurrent connections that threaten to cause runaway excitation. These principles are incorporated into models of cortical direction and orientation selectivity that emphasize the basic design principles of cortical architectures.

  14. Modeling excitable systems: Reentrant tachycardia

    NASA Astrophysics Data System (ADS)

    Lancaster, Jarrett L.; Hellen, Edward H.; Leise, Esther M.

    2010-01-01

    Excitable membranes are an important type of nonlinear dynamical system, and their study can be used to provide a connection between physical and biological circuits. We discuss two models of excitable membranes important in cardiac and neural tissues. One model is based on the Fitzhugh-Nagumo equations, and the other is based on a three-transistor excitable circuit. We construct a circuit that simulates reentrant tachycardia and its treatment by surgical ablation. This project is appropriate for advanced undergraduates as a laboratory capstone project or as a senior thesis or honors project and can also be a collaborative project, with one student responsible for the computational predictions and another for the circuit construction and measurements.

  15. Calculation of molecular excitation rates

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1993-01-01

    State-to-state collisional excitation rates for interstellar molecules observed by radio astronomers continue to be required to interpret observed line intensities in terms of local temperatures and densities. A problem of particular interest is collisional excitation of water which is important for modeling the observed interstellar masers. In earlier work supported by a different NASA Grant, excitation of water in collisions with He atoms was studied; after many years of successively more refined calculations that problem now seems to be well understood, and discrepancies with earlier experimental data for related (pressure broadening) phenomena are believed to reflect experimental errors. Because of interstellar abundances, excitation by H2, the dominant interstellar species, is much more important than excitation by He, although it has been argued that rates for excitation by these are similar. Under the current grant theoretical study of this problem has begun which is greatly complicated by the additional degrees of freedom which must be included both in determining the interaction potential and also in the molecular scattering calculation. We have now computed the interaction forces for nearly a thousand molecular geometries and are close to having an acceptable global fit to these points which is necessary for the molecular dynamics calculations. Also, extensive modifications have been made to the molecular scattering code, MOLSCAT. These included coding the rotational basis sets and coupling matrix elements required for collisions of an asymmetric top with a linear rotor. A new method for numerical solution of the coupled equations has been incorporated. Because of the long-ranged nature of the water-hydrogen interaction it is necessary to integrate the equations to rather large intermolecular separations, and the integration methods previously available in MOLSCAT are not ideal for such cases. However, the method used by Alexander in his HIBRIDON code is

  16. Excited-to-excited-state scattering using weak measurements

    NASA Astrophysics Data System (ADS)

    U, Satya Sainadh; Narayanan, Andal

    2015-11-01

    Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper we theoretically analyze the process of elastic resonance fluorescence from a V -type three-level atomic system, using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean scattering time between these states show an amplification effect during interaction with the vacuum bath modes of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification. Using our theory we reproduce the published experimental results carried out in such a system. More importantly, our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of a single atom or between common excited state configurations of interacting multiatom systems.

  17. Directional excitation without breaking reciprocity

    NASA Astrophysics Data System (ADS)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  18. Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Kuang, C. F.; Ding, Z. H.

    2011-09-01

    The fluorescence excitation field by photonic nanojet has been investigated, where a SiO 2 microsphere is illuminated by the radial polarized beam. We show that radial polarization illumination can achieve very strong three-dimensional confinement of photonic nanojet below the diffraction limit, especially the longitudinal light field. It is also noted that the location of maximum excitation field intensity spot is not almost change by wavelength, but the volume of excitation field is depended on wavelength. Compared to single-photon excitation, two-photon excitation based on photonic nanojet can obtain the least illumination volume, with lateral FWHM ≈ λ/4 and axial FWHM < λ/10. This offers a broad range of application in single-molecule detection, ultra-resolution microscopy and nanopatterning.

  19. Direct lateral maneuvers in hawkmoths

    PubMed Central

    Greeter, Jeremy S. M.; Hedrick, Tyson L.

    2016-01-01

    ABSTRACT We used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  20. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  1. Diagnosis of amyotrophic lateral sclerosis.

    PubMed

    Rowland, L P

    1998-10-01

    This review of the differential diagnosis of amyotrophic lateral sclerosis focuses on two themes. The first is practical, how to establish the diagnosis based primarily on clinical findings buttressed by electrodiagnosis. The main considerations are multifocal motor neuropathy and cervical spondylotic myelopathy. The second theme is the relationship of motor neuron disease to other conditions, including benign fasciculation (Denny-Brown, Foley syndrome), paraneoplastic syndromes, lymphoproliferative disease, radiation damage, monomelic amyotrophy (Hirayama syndrome), as well as an association with parkinsonism, dementia and multisystem disorders of the central nervous system.

  2. The split hand syndrome in amyotrophic lateral sclerosis.

    PubMed

    Eisen, Andrew; Kuwabara, Satoshi

    2012-04-01

    In amyotrophic lateral sclerosis (ALS), hand muscle wasting preferentially affects the 'thenar (lateral) hand', including the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles, with relative sparing of the hypothenar muscles (the abductor digiti minimi (ADM)). This peculiar pattern of dissociated atrophy of the intrinsic hand muscles is termed the 'split hand' and is rarely seen in diseases other than ALS. The muscles involved in the split hand are innervated through the same spinal segments (C8 and T1), and FDI and ADM, which are differentially affected, are both ulnar nerve innervated. The physiological mechanisms underlying the split hand in ALS are incompletely understood but both cortical and spinal/peripheral mechanisms are probably involved. Motor potentials evoked by magnetic stimulation are significantly smaller when recorded from the thenar complex, compared with the hypothenar muscles, supporting a cortical mechanism. But peripheral axonal excitability studies have suggested that APB/FDI motor axons have more prominent persistent sodium currents than ADM axons, leading to higher axonal excitability and thereby more ready degeneration. Pincer or precision grip is vital to human hand function, and frequent use of thenar complex muscles may lead to greater oxidative stress and metabolic demands at both upper and lower motoneurons innervating the APB and FDI. The split hand is a useful diagnostic sign in early ALS, and recent objective studies indicate that the sign has a high degree of specificity.

  3. Pseudorandom selective excitation in NMR

    NASA Astrophysics Data System (ADS)

    Walls, Jamie D.; Coomes, Alexandra

    2011-09-01

    In this work, average Hamiltonian theory is used to study selective excitation under a series of small flip-angle θ-pulses θ ≪ {π}/{3} applied either periodically [corresponding to the DANTE pulse sequence] or aperiodically to a spin-1/2 system. First, an average Hamiltonian description of the DANTE pulse sequence is developed that is valid for frequencies either at or very far from integer multiples of {1}/{τ}, where τ is the interpulse delay. For aperiodic excitation, a single resonance, νsel, can be selectively excited if the θ-pulse phases are modulated in concert with the interpulse delays. The conditions where average Hamiltonian theory can be accurately applied to describe the dynamics under aperiodic selective pulses, which are referred to as pseudorandom-DANTE or p-DANTE sequences, are similar to those found for the DANTE sequence. Signal averaging over different p-DANTE sequences improves the apparent selectivity at νsel by reducing the excitations at other frequencies. Experimental demonstrations of p-DANTE sequences and comparisons with the theory are presented.

  4. Predictions for Excited Strange Baryons

    SciTech Connect

    Fernando, Ishara P.; Goity, Jose L.

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  5. Elementary Excitations in Quantum Liquids.

    ERIC Educational Resources Information Center

    Pines, David

    1981-01-01

    Discusses elementary excitations and their role in condensed matter physics, focusing on quantum plasma, helium liquids, and superconductors. Considers research primarily conducted in the 1950s and concludes with a brief survey of some closely related further developments. (Author/JN)

  6. Pattern Formation in Excitable Media

    NASA Astrophysics Data System (ADS)

    Mikhailov, Alexander S.

    1997-03-01

    In this talk I give a short review of the history and the current state of theoretical research on spiral wave patterns in excitable media. I start with the theoretical model of wave propagation in excitable media proposed in 1946 by Wiener and Rosenblueth(N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. Mexico 16 (1946) 205). This model describes spiral waves rotating around obstacles. I show how, by taking additionally into account curvature effects and gradual recovery of the medium after passage of an excitation wave, the model is generalized to describe freely rotating spiral waves and the breakup which produces spirals. In the context of this kinematic model, complex dynamics of spiral waves, i.e. their meandering, drift and resonance, is discussed. Instabilities of spiral waves in confined geometries, i.e. inside a circular region and on a sphere, are analyzed. At the end, I show how spiral waves in such systems can be efficiently controlled by application of a delayed global feedback. The talk is based on the review paper(A. S. Mikhailov, V. A. Davydov, and V. S. Zykov, Complex dynamics of spiral waves and motion of curves, Physica D 70 (1994) 1) and the monograph(A. S. Mikhailov, Foundations of Synergetics I, 2nd revised edition (Springer, Berlin, 1994)).

  7. Launch Excitement with Water Rockets

    ERIC Educational Resources Information Center

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  8. Fast excitation variable period wiggler

    SciTech Connect

    van Steenbergen, A.; Gallardo, J.; Romano, T.; Woodle, M.

    1991-01-01

    The design of an easily stackable, variable period length, fast excitation driven wiggler, making use of geometrically alternating substacks of Vanadium Permandur ferromagnetic laminations, interspaced with conductive, non magnetic, laminations which act as eddy current induced field reflectors,'' is discussed and experimental results obtained with short wiggler models are presented.

  9. Fast excitation variable period wiggler

    SciTech Connect

    van Steenbergen, A.; Gallardo, J.; Romano, T.; Woodle, M.

    1991-12-31

    The design of an easily stackable, variable period length, fast excitation driven wiggler, making use of geometrically alternating substacks of Vanadium Permandur ferromagnetic laminations, interspaced with conductive, non magnetic, laminations which act as eddy current induced ``field reflectors,`` is discussed and experimental results obtained with short wiggler models are presented.

  10. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  11. Communicating the Excitement of Science

    ScienceCinema

    Michael Turner

    2016-07-12

    In this talk (which will include some exciting science) I will discuss some lessons I have learned about communicating science to scientists (in my own field and others), students, the public, the press, and policy makers in giving 500+ colloquia and seminars, 300+ public lectures and many informal presentations (including cocktail parties).

  12. Exciting cytoskeleton-membrane waves

    NASA Astrophysics Data System (ADS)

    Shlomovitz, R.; Gov, N. S.

    2008-10-01

    Propagating waves on the surface of cells, over many micrometers, involve active forces. We investigate here the mechanical excitation of such waves when the membrane is perturbed by an external oscillatory force. The external perturbation may trigger the propagation of such waves away from the force application. This scheme is then suggested as a method to probe the properties of the excitable medium of the cell, and learn about the mechanisms that drive the wave propagation. We then apply these ideas to a specific model of active cellular membrane waves, demonstrating how the response of the system to the external perturbation depends on the properties of the model. The most outstanding feature that we find is that the excited waves exhibit a resonance phenomenon at the frequency corresponding to the tendency of the system to develop a linear instability. Mechanical excitation of membrane waves in cells at different frequencies can therefore be used to characterize the properties of the mechanism underlying the existence of these waves.

  13. Lateral gene transfer, rearrangement, reconciliation

    PubMed Central

    2013-01-01

    Background Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer, even though in unicellular organisms it can have an important confounding effect, and can be a rich source of information on the function of genes through the detection of transfers of clusters of genes. Result We report an algorithm together with its implementation, DeCoLT, that reconstructs ancestral genome organization based on reconciled gene trees which summarize information on sequence evolution, gene origination, duplication, loss, and lateral transfer. DeCoLT optimizes in polynomial time on the number of rearrangements, computed as the number of gains and breakages of adjacencies between pairs of genes. We apply DeCoLT to 1099 gene families from 36 cyanobacteria genomes. Conclusion DeCoLT is able to reconstruct adjacencies in 35 ancestral bacterial genomes with a thousand gene families in a few hours, and detects clusters of co-transferred genes. DeCoLT may also be used with any relationship between genes instead of adjacencies, to reconstruct ancestral interactions, functions or complexes. Availability http://pbil.univ-lyon1.fr/software/DeCoLT/ PMID:24564205

  14. Students Excited by Stellar Discovery

    NASA Astrophysics Data System (ADS)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  15. Band Excitation Kelvin probe force microscopy utilizing photothermal excitation

    SciTech Connect

    Collins, Liam; Jesse, Stephen; Balke, Nina; Rodriguez, Brian J.; Kalinin, Sergei; Li, Qian

    2015-03-13

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standard ambient KPFM approach, amplitude modulated KPFM. In conclusion, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.

  16. Band Excitation Kelvin probe force microscopy utilizing photothermal excitation

    DOE PAGES

    Collins, Liam; Jesse, Stephen; Balke, Nina; ...

    2015-03-13

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standardmore » ambient KPFM approach, amplitude modulated KPFM. In conclusion, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.« less

  17. LATERAL EPICONDYLITIS OF THE ELBOW

    PubMed Central

    Cohen, Marcio; da Rocha Motta Filho, Geraldo

    2015-01-01

    Lateral epicondylitis, also known as tennis elbow, is a common condition that is estimated to affect 1% to 3% of the population. The word epicondylitis suggests inflammation, although histological analysis on the tissue fails to show any inflammatory process. The structure most commonly affected is the origin of the tendon of the extensor carpi radialis brevis and the mechanism of injury is associated with overloading. Nonsurgical treatment is the preferred method, and this includes rest, physiotherapy, cortisone infiltration, platelet-rich plasma injections and use of specific immobilization. Surgical treatment is recommended when functional disability and pain persist. Both the open and the arthroscopic surgical technique with resection of the degenerated tendon tissue present good results in the literature. PMID:27047843

  18. LATERAL EPICONDYLITIS OF THE ELBOW.

    PubMed

    Cohen, Marcio; da Rocha Motta Filho, Geraldo

    2012-01-01

    Lateral epicondylitis, also known as tennis elbow, is a common condition that is estimated to affect 1% to 3% of the population. The word epicondylitis suggests inflammation, although histological analysis on the tissue fails to show any inflammatory process. The structure most commonly affected is the origin of the tendon of the extensor carpi radialis brevis and the mechanism of injury is associated with overloading. Nonsurgical treatment is the preferred method, and this includes rest, physiotherapy, cortisone infiltration, platelet-rich plasma injections and use of specific immobilization. Surgical treatment is recommended when functional disability and pain persist. Both the open and the arthroscopic surgical technique with resection of the degenerated tendon tissue present good results in the literature.

  19. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  20. Imaging lesions of the lateral hip.

    PubMed

    Pan, Judong; Bredella, Miriam A

    2013-07-01

    The lateral aspect of the hip is composed of a complex array of osseous and soft tissue structures. Both common and uncommon clinical entities are encountered in the lateral hip. This article briefly introduces fundamental imaging anatomy and the functional roles of different osseous and soft tissue structures in the lateral aspect of the hip, followed by a discussion of relevant imaging findings of lateral hip pathology. Greater trochanteric pain syndrome is frequently encountered in patients with lateral hip pain and encompasses a spectrum of soft tissue abnormalities including trochanteric and subgluteal bursitis, and tendinopathy or tears of the gluteal tendons. In addition, different types of injuries to the gluteal myotendinous unit and injuries to the indirect head of the rectus femoris, proximal iliotibial band, and the lateral joint capsular ligaments can present with lateral hip pain. Some of the less common soft tissue abnormalities of the lateral hip include Morel-Lavallée lesion and meralgia paresthetica.

  1. Scanning thermal imaging of an electrically excited aluminum microstripe

    NASA Astrophysics Data System (ADS)

    Samson, Benjamin; Aigouy, Lionel; Latempa, Rossella; Tessier, Gilles; Aprili, Marco; Mortier, Michel; Lesueur, Jérôme; Fournier, Danièle

    2007-07-01

    We study the Joule heating of a 1.25 μm wide aluminum microstripe excited by an electrical current. The temperature changes are measured with a scanning thermal microscope that uses a small fluorescent particle as a sensor. The lateral resolution observed for this sample is better than 300 nm. We have compared the temperature distribution in the stripe with a simple analytical model of heat propagation in the wire and the substrate. A good qualitative agreement is observed, although the measured temperature is much smaller than the estimated one, showing that the heat transfer between the hot wire and the fluorescent probe is not fully efficient.

  2. Light baryons and their excitations

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios

    2016-11-01

    We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.

  3. Receiver-exciter controller design

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  4. Studies of Highly Excited Atoms.

    DTIC Science & Technology

    1986-04-02

    collisions with photoions produced by the absorption of two blue laser photons or to an effect varying as the square of the number of excited atoms. Since...Physique Atomique , F-91191. (4). Our calculations indicate values of a = 3x 108 Gif-sur-Yvette. France. ., (d Permanent address: Fakultat fur Physik...collisions with points of particular importance for this experi- photoions produced by the absorption of two blue- -- ment. First, the atomic beam is

  5. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  6. Synaptic Control of Motoneuronal Excitability

    PubMed Central

    Rekling, Jens C.; Funk, Gregory D.; Bayliss, Douglas A.; Dong, Xiao-Wei; Feldman, Jack L.

    2016-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. PMID:10747207

  7. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  8. Self-excited multifractal dynamics

    NASA Astrophysics Data System (ADS)

    Filimonov, V.; Sornette, D.

    2011-05-01

    We introduce the self-excited multifractal (SEMF) model, defined such that the amplitudes of the increments of the process are expressed as exponentials of a long memory of past increments. The principal novel feature of the model lies in the self-excitation mechanism combined with exponential nonlinearity, i.e. the explicit dependence of future values of the process on past ones. The self-excitation captures the microscopic origin of the emergent endogenous self-organization properties, such as the energy cascade in turbulent flows, the triggering of aftershocks by previous earthquakes and the "reflexive" interactions of financial markets. The SEMF process has all the standard stylized facts found in financial time series, which are robust to the specification of the parameters and the shape of the memory kernel: multifractality, heavy tails of the distribution of increments with intermediate asymptotics, zero correlation of the signed increments and long-range correlation of the squared increments, the asymmetry (called "leverage" effect) of the correlation between increments and absolute value of the increments and statistical asymmetry under time reversal.

  9. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  10. Hemispheric Laterality in Music and Math

    ERIC Educational Resources Information Center

    Szirony, Gary Michael; Burgin, John S.; Pearson, L. Carolyn

    2008-01-01

    Hemispheric laterality may be a useful concept in teaching, learning, training, and in understanding more about human development. To address this issue, a measure of hemispheric laterality was compared to musical and mathematical ability. The Human Information Processing Survey (HIPS) instrument, designed to measure hemispheric laterality, was…

  11. Neurones in the brain stem of the cat excited by vagal afferent fibres from the heart and lungs.

    PubMed Central

    Bennett, J A; Goodchild, C S; Kidd, C; McWilliam, P N

    1985-01-01

    Extracellular recordings were made from 164 neurones in the nucleus tractus solitarius and dorsal motor vagal nucleus of the chloralose-anaesthetized cat. 139 neurones were excited synaptically and 25 non-synaptically by electrical stimulation of cardiac and pulmonary vagal branches. Synaptically excited neurones fall into two populations, one activated solely by myelinated afferent fibres and a second activated solely by non-myelinated afferent fibres. 94 neurones were synaptically excited by afferent fibres in a single vagal branch while 45 were excited by stimulation of two or three branches. Neurones responding to volleys in myelinated afferent fibres were located in both medial and lateral regions of the nucleus tractus solitarius whilst those excited by non-myelinated afferent fibres were restricted to the medial region. Consistent differences in the locations of neurones excited by stimulation of either cardiac or pulmonary or by single or several branches could not be distinguished. PMID:4093876

  12. Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Raman, G.

    1997-01-01

    Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.

  13. On Diversity of Configurations Generated by Excitable Cellular Automata with Dynamical Excitation Intervals

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2012-11-01

    Excitable cellular automata with dynamical excitation interval exhibit a wide range of space-time dynamics based on an interplay between propagating excitation patterns which modify excitability of the automaton cells. Such interactions leads to formation of standing domains of excitation, stationary waves and localized excitations. We analyzed morphological and generative diversities of the functions studied and characterized the functions with highest values of the diversities. Amongst other intriguing discoveries we found that upper boundary of excitation interval more significantly affects morphological diversity of configurations generated than lower boundary of the interval does and there is no match between functions which produce configurations of excitation with highest morphological diversity and configurations of interval boundaries with highest morphological diversity. Potential directions of future studies of excitable media with dynamically changing excitability may focus on relations of the automaton model with living excitable media, e.g. neural tissue and muscles, novel materials with memristive properties and networks of conductive polymers.

  14. Exercise and amyotrophic lateral sclerosis.

    PubMed

    de Almeida, J P Lopes; Silvestre, R; Pinto, A C; de Carvalho, M

    2012-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease in which much burden is geared towards end-of-life care. Particularly in the earlier stages of ALS, many people have found both physiological and psychological boosts from various types of physical exercise for disused muscles. Proper exercise is important for preventing atrophy of muscles from disuse-a key for remaining mobile for as long as possible-and as long as it is possible to exercise comfortably and safely, for preserving cardiovascular fitness. However, the typical neuromuscular patient features a great physical inactivity and disuse weakness, and for that reason many controversial authors have contested exercise in these patients during years, especially in ALS which is rapidly progressive. There is an urgent need for dissecting in detail the real risks or benefits of exercise in controlled clinical trials to demystify this ancient paradigm. Yet, recent research studies document significant benefits in terms of survival and quality of life in ALS, poor cooperation, small sample size, uncontrolled and short-duration trials, remain the main handicaps. Sedentary barriers such as early fatigue and inherent muscle misuse should be overcome, for instance with body-weight supporting systems or non-invasive ventilation, and exercise should be faced as a potential non-monotonous way for contributing to better health-related quality of life.

  15. Lateral violence in the perioperative setting.

    PubMed

    Bigony, Lorraine; Lipke, Tammy G; Lundberg, Ashley; McGraw, Carrie A; Pagac, Gretchen L; Rogers, Anne

    2009-04-01

    Lateral violence is disruptive, bullying, intimidating, or unsettling behavior that occurs between nurses in the workplace. The perioperative setting fosters lateral violence because of the inherent stress of performing surgery; high patient acuity; a shortage of experienced personnel; work demands; and the restriction and isolation of the OR, which allows negative behaviors to be concealed more easily. Lateral violence affects nurses' health and well-being and their ability to care for patients. Interventions to reduce lateral violence include empowerment of staff members and zero tolerance for lateral violence.

  16. Control of excitation in the fluorescence microscope.

    PubMed

    Lea, D J; Ward, D J

    1979-01-01

    In fluorescence microscopy image brightness and contrast and the rate of fading depend upon the intensity of illumination of the specimen. An iris diaphragm or neutral density filters may be used to reduce fluorescence excitation. Also the excitation bandwidth may be varied by using a broad band exciter filter with a set of interchangeable yellow glass filters at the lamphouse.

  17. Influence of torsional-lateral coupling on stability behavior of geared rotor systems

    NASA Technical Reports Server (NTRS)

    Schwibinger, P.; Nordmann, R.

    1987-01-01

    In high-performance turbomachinery trouble often arises because of unstable nonsynchronous lateral vibrations. The instabilities are mostly caused by oil-film bearings, clearance excitation, internal damping, annular pressure seals in pumps, or labyrinth seals in turbocompressors. In recent times the coupling between torsional and lateral vibrations has been considered as an additional influence. This coupling is of practical importance in geared rotor systems. The literature describes some field problems in geared drive trains where unstable lateral vibrations occurred together with torsional oscillations. This paper studies the influence of the torsional-lateral coupling on the stability behavior of a simple geared system supported by oil-film bearings. The coupling effect is investigated by parameter studies and a sensitivity analysis for the uncoupled and coupled systems.

  18. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  19. Excited states in 129I

    NASA Astrophysics Data System (ADS)

    Deleanu, D.; Balabanski, D. L.; Venkova, Ts.; Bucurescu, D.; Mărginean, N.; Ganioǧlu, E.; Căta-Danil, Gh.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; Filipescu, D.; Ghiţă, D.; Glodariu, T.; Ivaşcu, M.; Mărginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2013-01-01

    Excited states in 129I were populated with the 124Sn(7Li,2n) reaction at 23 MeV. In-beam measurements of γ-ray coincidences were performed with an array of eight HPGe detectors and five LaBr3(Ce) scintillation detectors. Based on the γγ coincidence data, a positive parity band structure built on the 7/2+ ground state was established and the πg7/2 configuration at oblate deformation was assigned to it. The results are compared to interacting Boson-Fermion model (IBFM) and total Routhian surface (TRS) calculations.

  20. Volumetric Light-Field Excitation

    PubMed Central

    Schedl, David C.; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  1. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM

  2. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  3. Gene circuit designs for noisy excitable dynamics.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2011-05-01

    Certain cellular processes take the form of activity pulses that can be interpreted in terms of noise-driven excitable dynamics. Here we present an overview of different gene circuit architectures that exhibit excitable pulses of protein expression, when subject to molecular noise. Different types of excitable dynamics can occur depending on the bifurcation structure leading to the specific excitable phase-space topology. The bifurcation structure is not, however, linked to a particular circuit architecture. Thus a given gene circuit design can sustain different classes of excitable dynamics depending on the system parameters.

  4. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  5. Three-photon excitation in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hell, Stefan W.; Bahlmann, Karsten; Schrader, Martin; Soini, Aleksi; Malak, Henryk; Gryczynski, Ignacy; Lakowicz, Joseph R.

    1996-01-01

    We show experiments proving the feasibility of scanning fluorescence microscopy by three-photon excitation. Three-photon excitation fluorescence axial images are shown of polystyrene beads stained with the fluorophore 2,5- bis(4-biphenyl)oxazole (BBO). Three-photon excitation is performed at an excitation wavelength of 900 nm and with pulses of 130 fs duration provided by a mode-locked titanium-sapphire laser. Fluorescence is collected between 350 and 450 nm. The fluorescence image signal features a third-order dependence on the excitation power, also providing intrinsic 3-D imaging. The resolution of a three-photon excitation microscope is increased over that of a comparable two-photon excitation microscope.

  6. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis.

    PubMed

    Vucic, Steve; Lin, Cindy Shin-Yi; Cheah, Benjamin C; Murray, Jenna; Menon, Parvathi; Krishnan, Arun V; Kiernan, Matthew C

    2013-05-01

    Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0

  7. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  8. Summary of lateral-control research

    NASA Technical Reports Server (NTRS)

    Toll, Thomas A

    1947-01-01

    A summary has been made of the available information on lateral control. A discussion is given of the criterions used in lateral-control specifications, of the factors involved in obtaining satisfactory lateral control, and of the methods employed in making lateral-control investigations in flight and in wind tunnels. The available data on conventional flap-type ailerons having various types of aerodynamic balance are presented in a form convenient for use in design. The characteristics of spoiler devices and booster mechanisms are discussed. The effects of Mach number, boundary layer, and distortion of the wing or of the lateral-control system are considered insofar as the available information permits. An example is included to illustrate the use of the design data. The limitations of the available information and some of the lateral-control problems that remain to be solved are indicated.

  9. Photoionization study of doubly-excited helium at ultra-high resolution

    SciTech Connect

    Kaindl, G.; Schulz, K.; Domke, M.

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  10. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures.

    PubMed

    Xu, Jinyou; Ma, Liang; Guo, Pengfei; Zhuang, Xiujuan; Zhu, Xiaoli; Hu, Wei; Duan, Xiangfeng; Pan, Anlian

    2012-08-01

    Nanoscale dual-wavelength lasers are attractive for their potential applications in highly integrated photonic devices. Here we report the growth of nanoribbon lateral heterostructures made of a CdS(x)Se(1-x) central region with epitaxial CdS lateral sides using a multistep thermal evaporation route with a moving source. Under laser excitation, the emission of these ribbons indicates sandwich-like structures along the width direction, with characteristic red emission in the center and green emission at both edges. More importantly, dual-wavelength lasing with tunable wavelengths is demonstrated at room temperature based on these single-nanoribbon heterostructures for the first time. These achievements represent a significant advance in designing nanoscale dual-wavelength lasers and have the potential to open up new and exciting opportunities for diverse applications in integrated photonics, optoelectronics, and sensing.

  11. Diverse precerebellar neurons share similar intrinsic excitability

    PubMed Central

    Kolkman, Kristine E.; McElvain, Lauren E.; du Lac, Sascha

    2011-01-01

    The cerebellum dedicates a majority of the brain’s neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch clamp recordings to neurons in 8 precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis (NRTP), and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perfom similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition. PMID:22090493

  12. The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis

    PubMed Central

    Bae, Jong Seok; Simon, Neil G.; Menon, Parvathi; Vucic, Steve

    2013-01-01

    The development of hyperexcitability in amyotrophic lateral sclerosis (ALS) is a well-known phenomenon. Despite controversy as to the underlying mechanisms, cortical hyperexcitability appears to be closely related to the interplay between excitatory corticomotoneurons and inhibitory interneurons. Hyperexcitability is not a static phenomenon but rather shows a pattern of progression in a spatiotemporal aspect. Cortical hyperexcitability may serve as a trigger to the development of anterior horn cell degeneration through a 'dying forward' process. Hyperexcitability appears to develop during the early disease stages and gradually disappears in the advanced stages of the disease, linked to the destruction of corticomotorneuronal pathways. As such, a more precise interpretation of these unique processes may provide new insight regarding the pathophysiology of ALS and its clinical features. Recently developed technologies such as threshold tracking transcranial magnetic stimulation and automated nerve excitability tests have provided some clues about underlying pathophysiological processes linked to hyperexcitability. Additionally, these novel techniques have enabled clinicians to use the specific finding of hyperexcitability as a useful diagnostic biomarker, enabling clarification of various ALS-mimic syndromes, and the prediction of disease development in pre-symptomatic carriers of familial ALS. In terms of nerve excitability tests for peripheral nerves, an increase in persistent Na+ conductances has been identified as a major determinant of peripheral hyperexcitability in ALS, inversely correlated with the survival in ALS. As such, the present Review will focus primarily on the puzzling theory of hyperexcitability in ALS and summarize clinical and pathophysiological implications for current and future ALS research. PMID:23626643

  13. Epidemiology of amyotrophic lateral sclerosis.

    PubMed

    Kurtzke, J F

    1982-01-01

    Motor neuron disease (MND) is used in this paper as the generic label, encompassing the clinical variants of amyotrophic lateral sclerosis (ALS), progressive myelopathic muscular atrophy (PMMA), and progressive bulbar palsy (PBP). ALS is limited to instances of anterior horn cell plus pyramidal tract involvement. When only anterior horn cell lesions are inferred, either PMMA or PBP is used, depending on the levels of involvement; when both cord and brain stem are affected. PBP is the designation. Mortality data on MND have been available for a number of countries since 1949. The coding used under international rules has varied considerably over this interval. Before 1969, hereditary muscular atrophies were included. Since 1979, no subdivision by type of MND is possible. International death rates for MND have all been rather close to 1 per 100,000 population per year, though perhaps nearer to 1.4 on the average in recent years. There has been an increasing proportion of MND deaths coded to ALS between 1949 and 1977. There is no notable geographic variation among countries, nor within countries such as the U.S. and Denmark. A slight upward trend in death rates over time in the U.S. is matched by a slight decrease in Denmark. Death rates from all sources indicate a male preponderance for ALS or MND as a whole, at about 1.5 to 1, male to female. There is also a consistent predilection by age, with few deaths under age 50 or so and a clear maximum in age-specific death rates at about age 70. This holds for both sexes. In the U.S., there is also a white-nonwhite difference, with a ratio of about 1.6:1 but with age and sex differences similar to whites. Average annual incidence rates from among white occidental populations range mostly between 0.6 and 1.8 per 100,000 population for MND and about 0.8 and 1.5 per 100,000 for ALS. Again a male predilection is seen. There is a clear maximum in age-specific incidence rates at about age 65 in all surveys except that of

  14. Cervicitis associated with lateral cervical displacement.

    PubMed

    Gjoni, Indira; Muneyyirci-Delale, Ozgul

    2012-01-01

    Lateral cervical displacement has been recognized as a sign of endometriosis; however, other causes of the finding have not been explored. In our experience, patients without endometriosis are presenting with lateral cervical displacement, mainly towards the left of midline. The common finding in these cases is the presence of cervicitis leading us to hypothesize the role of cervicitis in causing lateral displacement of the cervix. Future research into this area will provide us with a stronger understanding of the role that lateral cervical displacement plays in the development of pelvic pathology and the development of cervical cancer.

  15. Acoustic reflex patterns in amyotrophic lateral sclerosis.

    PubMed

    Canale, Andrea; Albera, Roberto; Lacilla, Michelangelo; Canosa, Antonio; Albera, Andrea; Sacco, Francesca; Chiò, Adriano; Calvo, Andrea

    2017-02-01

    The aim of the study is to investigate acoustic reflex testing in amyotrophic lateral sclerosis patients. Amplitude, latency, and rise time of stapedial reflex were recorded for 500 and 1000 Hz contralateral stimulus. Statistical analysis was performed by the Wilcoxon test and the level of significance was set at 5 %. Fifty-one amyotrophic lateral sclerosis patients and ten sex- and age-matched control subjects were studied. Patients were further divided in two groups: amyotrophic lateral sclerosis-bulbar (38 cases, with bulbar signs at evaluation) and amyotrophic lateral sclerosis-spinal (13 cases, without bulbar signs at evaluation). Stapedial reflex was present in all patients. There was a statistically significant difference in the mean amplitude, latency, and rise time between the amyotrophic lateral sclerosis patients as compared with the controls. Amplitude was lower in both the amyotrophic lateral sclerosis-bulbar and the amyotrophic lateral sclerosis-spinal patients than in the controls (p < 0.05) and rise time was longer in both patient groups compared with the controls (p < 0.05). These results confirm the presence of abnormal acoustic reflex patterns in amyotrophic lateral sclerosis cases with bulbar signs and, moreover, suggesting a possible subclinical involvement of the stapedial motor neuron even in amyotrophic lateral sclerosis-spinal patients. Amplitude and rise time seem to be good sensitive parameters for investigating subclinical bulbar involvement.

  16. Multiphoton excitation of fluorescent DNA base analogs.

    PubMed

    Katilius, Evaldas; Woodbury, Neal W

    2006-01-01

    Multiphoton excitation was used to investigate properties of the fluorescent DNA base analogs, 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI). 2-aminopurine, a fluorescent analog of adenine, was excited by three-photon absorption. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2AP for DNA-protein interaction studies. However, high excitation power and long integration times needed to acquire high signal-to-noise fluorescence correlation curves render three-photon excitation FCS of 2AP not very useful for studying DNA base dynamics. The fluorescence properties of 6-methylisoxanthopterin, a guanine analog, were investigated using two-photon excitation. The two-photon absorption cross-section of 6MI was estimated to be about 2.5 x 10(-50) cm(4)s (2.5 GM units) at 700 nm. The two-photon excitation spectrum was measured in the spectral region from 700 to 780 nm; in this region the shape of the two-photon excitation spectrum is very similar to the shape of single-photon excitation spectrum in the near-UV spectral region. Two-photon excitation of 6MI is suitable for fluorescence correlation measurements. Such measurements can be used to study DNA base dynamics and DNA-protein interactions over a broad range of time scales.

  17. Excitation of interstellar hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Neufild, David A.; Green, Sheldon

    1994-01-01

    We have computed new rate coefficients for the collisional excitation of HCl by He, in the close-coupled formalism and using an interaction potential determined recently by Willey, Choong, & DeLucia. Results have been obtained for temperatures between 10 K and 300 K. With the use of the infinite order sudden approximation, we have derived approximate expressions of general applicability which may be used to estimate how the rate constant for a transition (J to J prime) is apportioned among the various hyperfine states F prime of the final state J prime. Using these new rate coefficients, we have obtained predictions for the HCl rotational line strengths expected from a dense clump of interstellar gas, as a function of the HCl fractional abundance. Over a wide range of HCl abundances, we have found that the line luminosities are proportional to abundance(exp 2/3), a general result which can be explained using a simple analytical approximation. Our model for the excitation of HCl within a dense molecular cloud core indicates that the J = 1 goes to 0 line strengths measured by Blake, Keene, & Phillips toward the Orion Molecular Cloud (OMC-1) imply a fractional abundance n(HCl)/n(H2) approximately 2 x 10(exp -9), a value which amounts to only approximately 0.3% of the cosmic abundance of chlorine nuclei. Given a fractional abundance of 2 x 10(exp -9), the contribution of HCl emission to the total radiative cooling of a dense clump is small. For Orion, we predict a flux approximately 10(exp -19) W/sq cm for the HCl J = 3 goes to 2 line near 159.8 micrometers, suggesting that the strength of this line could be measured using the Infrared Space Observatory.

  18. Statistical dynamo theory: Mode excitation.

    PubMed

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  19. Vannevar Bush: Fifty Years Later

    NASA Astrophysics Data System (ADS)

    Lagowski, J. J.

    1995-12-01

    It is ironic that the 50th anniversary year of Vannevar Bush's Report to President Truman entitled "Science the Endless Frontier", which put into motion the eminently successful current system of education of scientists in this country occurs at a time when serious questions are being asked about the usefulness of that very system. Bush viewed his proposal to establish a national research foundation (later to be called the National Science Foundation) as a "social compact." Judgment of scientific merit would be delegated to expert peers in return for scientific progress, which would ultimately benefit the nation in terms of scientific needs--military security, economic productivity, and enhanced quality of life. Bush wanted the funding of basic research intertwined with training, and preferred to use universities for this purpose rather than industrial or national labs. Bush viewed college and university scientists as teachers and investigators. He believed university-based research would uniquely encourage and engage the next generation of scientists as no other institutional arrangement could. Bush did not trust industry's commitment to basic research, an instinct that proved prophetic. The academic reserve of scientists (PhD's in training and postdoctoral students) that existed before World War II, and upon which the United States could draw for its needs, which were primarily associated with defense efforts, was probably one of the defining factors in Bush's suggested strategy. Currently, that reserve of talent has gotten so large that it is the obvious throttle in the pipeline slowing the continued development of the university research enterprise. Since 1977, the rate at which we have trained new scientists exceeds an average of 4% annually. Since 1987, the "science work force"--PhD's--has grown at three times the rate of the general labor supply. Temporary positions for postdoctoral scientists have grown even faster (over 5% per year since 1989). To compound

  20. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  1. Depression in later life: an overview with treatment recommendations.

    PubMed

    Ellison, James M; Kyomen, Helen H; Harper, David G

    2012-03-01

    We have already entered a new, more exciting, and hopeful era in the treatment of late-life depression. The increasing numbers of older adults who are surviving to more advanced ages and the greater recognition of late-life depression’s prevalence and impact on quality of life emphasize how important it is to detect and treat this disorder. Our increasing repertoire of evidence-based psychotherapeutic, pharmacologic, and neurotherapeutic treatment interventions offers many treatment alternatives, allowing substantial individualization of treatment approach. Demonstration of the effectiveness of depression treatment in primary care suggests the feasibility of increasing our patients’ access to care. Growing appreciation of the pathophysiology of depression and its interrelationships with cognitive impairment may increase our ability to limit or delay certain aspects of cognitive impairment through more aggressive treatment of depression. Improved recognition and treatment of late-life depression holds great potential for improving physical and mental health in later life, reducing disability in later years, and improving quality of life.

  2. Circadian regulation of human cortical excitability

    PubMed Central

    Ly, Julien Q. M.; Gaggioni, Giulia; Chellappa, Sarah L.; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N.; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  3. Gender and Marital Happiness in Later Life

    ERIC Educational Resources Information Center

    Kaufman, Gayle; Taniguchi, Hiromi

    2006-01-01

    In this study, the authors examine the effect of gender ideology on marital happiness in later life. Studies of marital satisfaction in later life have tended to neglect such attitudes, although they have received increasing attention in the literature on younger marriages. The authors use data from married individuals who range in age from 51 to…

  4. Aeromonas hydrophila Lateral Flagellar Gene Transcriptional Hierarchy

    PubMed Central

    Wilhelms, Markus; Gonzalez, Victor; Merino, Susana

    2013-01-01

    Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ54/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella. PMID:23335410

  5. Laterality and Reading Proficiency in Children.

    ERIC Educational Resources Information Center

    Leong, Che Kan

    1980-01-01

    Discusses some current concepts of the laterality/reading relationship. An overview of Samuel T. Orton's hypotheses of cerebral dominance and "strephosymbolia" is provided, and both visual half-field and dichotic listening studies as direct, empirical tests of laterality are discussed. (MKM)

  6. Laterality and Dyslexia: A Critical View.

    ERIC Educational Resources Information Center

    Hiscock, Merrill; Kinsbourne, Marcel

    1982-01-01

    Research is reviewed concerning the current state of knowledge about normal hemispheric specialization; distinctions among such terms as dominance, laterality, and lateralization; and models of abnormal cerebral organization in dyslexic children. The question of dyslexic subtypes is undertaken along such dimensions as handedness, eyedness, and…

  7. Lateral Asymmetries in Infant Melody Perception.

    ERIC Educational Resources Information Center

    Balaban, Marie T.; Anderson, Linda M.; Wisniewski, Amy B.

    1998-01-01

    Two experiments investigated lateral asymmetries in eight-month-olds' perception of contour-altered and contour-preserved melody changes. Found that infants who heard a contour-altered change showed a left-ear advantage, whereas infants who heard a contour-preserved change showed a right-ear advantage. The pattern of lateralization for melody…

  8. Factors Affecting Lateral Stability and Controllability

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Toll, Thomas A

    1948-01-01

    The effects on dynamic lateral stability and controllability of some of the important aerodynamic and mass characteristics are discussed and methods are presented for estimating the various stability parameters to be used in the calculation of the dynamic lateral stability of airplanes with swept and low-aspect-ratio wings.

  9. Later Life: A Time to Learn

    ERIC Educational Resources Information Center

    Russell, Helen

    2008-01-01

    In this article, an emerging framework for investigating and interpreting the experiences of learning in later life is presented. This framework is contextualized by a study in which the lived experiences of later-life computer learners were investigated. Significant ontological and existential interpretations from the study provided insights into…

  10. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  11. 33 CFR 62.25 - Lateral marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks....

  12. 33 CFR 62.25 - Lateral marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks....

  13. 33 CFR 62.25 - Lateral marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks....

  14. 33 CFR 62.25 - Lateral marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks....

  15. 33 CFR 62.25 - Lateral marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks....

  16. Excitement in shame: the price we pay.

    PubMed

    Aledort, Stewart L

    2014-01-01

    This paper explores the role of excitement in shame, extending the theoretical underpinnings of my work (Aledort, 2002, 2003, 2008, 2009) on narcissism and the omnipotent child syndrome. Shame, excitement, and early narcissistic self-states are complexly intermingled, each influencing the other. Empathy alone is insufficient; the passion connected to shame can be easily hidden. Detailed case studies describe a model for working with the excitement in shame, how it functions, and how it gets resolved.

  17. Collisional energy transfer from excited nitrogen dioxide

    SciTech Connect

    Patten, K.O.

    1991-05-01

    The radiative lifetimes of gaseous nitrogen dioxide excited by pulsed, tunable dye laser radiation are determined for excitation wavelengths ranging from 400 to 750 nm. When the data are expressed in the form of zero-pressure radiative rate constants (k{sub 0}/s{sup {minus}1}), they fit a linear equation with respect to excitation energy. This fit predicts a radiative lifetime of 64 {mu}s for 400 nm excitation and 102 {mu}s at 750 nm. The effects of pressure, observation delay time, and wavelength range of the fluorescence detection apparatus are determined for both radiative lifetime and quenching constant. Dispersed fluorescence spectra from excited nitrogen dioxide are analyzed into three-parameter functions that approximate the corresponding excited state population distributions. Energy transfer from nitrogen dioxide excited at 532 nm and colliding with thirteen buffer gases is studied by this population deconvolution method. The energy removal rate constants increase in the order Ne < Ar < Kr < Xe < He < CO < N{sub 2} < O{sub 2} < NO < NO{sub 2} < CO{sub 2} < SF{sub 6} < SO{sub 2}. The energy transfer rate constant is strongly correlated with the number of degrees of freedom of the buffer molecule and with low vibrational frequencies of the buffer molecule. Population deconvolution from excited nitrogen dioxide fluorescence spectra is again employed to find energy removal rate constants for the NO {sub 2}{sup *}-NO{sub 2} collisions, excited by dye laser at 475.34, 435.04, and 400.00 nm. The energy transfer rate constant increases with decreasing excitation wavelength. The energy removal rate constant between 400 and 532 nm excitation increases as the (3.6 {plus minus} 0.4) power of the excitation photon energy. 76 refs., 67 figs., 16 tabs.

  18. [Lateral ligament injuries of the ankle joint].

    PubMed

    Walther, M; Kriegelstein, S; Altenberger, S; Volkering, C; Röser, A; Wölfel, R

    2013-09-01

    Lateral ligament injuries are the most common sports injury and have a high incidence even in non-sportive activities. Although lateral ligament injuries are very common there is still a controversial debate on the best management. The diagnosis is based on clinical examination and X-ray images help to rule out fractures. Further imaging, especially magnetic resonance imaging (MRI) is used to diagnose associated injuries. According to the recommendations of the various scientific societies the primary therapy of lateral ligament injuries is conservative. Chronic ankle instability develops in 10-20 % of patients and the instability can be a result of sensomotoric deficits or insufficient healing of the lateral ligament complex. If the patient does not respond to an intensive rehabilitation program an operative reconstruction of the lateral ligaments has to be considered. Most of the procedures currently performed are anatomical reconstructions due to better long-term results compared to tenodesis procedures.

  19. Ultrasonographic Differentiation of Lateral Elbow Pain

    PubMed Central

    Obuchowicz, R.; Bonczar, M.

    2016-01-01

    Lateral elbow pain is often attributed to degenerative or posttraumatic impairment of the common extensor tendon. Ultrasonography assesses the soft tissue structures of the lateral elbow, allowing the differentiation between various underlying processes, including angiofibroblastic degeneration, hyaline degeneration, and inflammation, and exclusion of other possible causes of pain such as posterior interosseous and lateral antebrachial nerve compression. Furthermore, the real-time imaging nature of ultrasonography enables the detection of impingement of the lateral synovial fold, degenerative changes in the elbow recess, and elbow posterolateral instability during dynamic maneuvers. Ultrasonography is widely accessible and well tolerated by patients, making it a perfect method for establishing an initial diagnosis and monitoring the healing process. This review describes the possible causes of lateral elbow pain and their ultrasonographic differentiation. PMID:27689169

  20. Associations between schizotypy and cerebral laterality.

    PubMed

    Park, Haeme R P; Waldie, Karen E

    2017-03-01

    Atypical lateralization for language has been found in schizophrenia, suggesting that language and thought disorders on the schizophrenia spectrum may be due to left hemispheric dysfunction. However, research with those with non-clinical schizotypy has been inconsistent, with some studies finding reduced or reversed language laterality (particularly with positive schizotypal traits), and others finding typical left hemispheric specialization. The aim of the current study was to use both a behavioural (dual reading-finger tapping) task and an functional magnetic resonance imaging lexical decision task to investigate language laterality in a university sample of high- and low-schizotypal adults. Findings revealed no evidence for atypical lateralization in our sample for both overall schizotypy (measured by the Oxford-Liverpool Inventory of Feelings and Experiences) and positive schizotypy (measured by the Unusual Experiences subscale) groups. Our findings provide further evidence that non-clinical schizotypy is not associated with atypical language laterality.

  1. Verification of the friction coefficients determining method for Froude pendulum self-excited vibrations

    NASA Astrophysics Data System (ADS)

    Piatkowski, Tomasz; Wolski, Miroslaw

    2017-03-01

    The article presents the numerical verification of the method for the static and kinetic coefficients determination of dry friction for kinematic pairs in the conditions of self-excited vibrations occurring in the Froude pendulum. In this method, the kinetic friction coefficient should be determined first, and used later when calculating the coefficient of static friction. The friction coefficients are determined by measuring the amplitude of self-excited vibrations of the pendulum. The amplitude measurement for calculation of the kinetic friction coefficient should be carried out when the sliding friction conditions exists, and the static one - when the stick-slip phenomenon appears. The proposed method was verified in the Adams environment.

  2. Spatially encoded multiple-quantum excitation.

    PubMed

    Ridge, Clark D; Borvayeh, Leila; Walls, Jamie D

    2013-05-28

    In this work, we present a simple method to spatially encode the transition frequencies of nuclear spin transitions and to read out these frequencies within a single scan. The experiment works by combining pulsed field gradients with an excitation sequence that selectively excites spin transitions within certain sample regions. After the initial excitation, imaging the resulting ẑ-magnetization is used to determine the locations where the excitations occurred, from which the corresponding transition frequencies are determined. Simple experimental demonstrations of this technique on one- and two-spin systems are presented.

  3. Laser Excited Fluorescence Studies Of Black Liquor

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.

    1986-10-01

    Laser excited fluorescence of black liquor was investigated as a possible monitoring technique for pulping processes. A nitrogen pumped dye laser was used to examine the fluorescence spectrum of black liquor solutions. Various excitation wavelengths were used between 290 and 403 nm. Black liquor fluorescence spectra were found to vary with both excitation wavelength and black liquor concentration. Laser excited fluorescence was found to be a sensitive technique for measurement of black liquor with good detection limits and linear response over a large dynamic range.

  4. Quasiparticle excitations in superdeformed [sup 192]Hg

    SciTech Connect

    Fallon, P. ); Lauritsen, T.; Ahmad, I.; Carpenter, M.P. ); Cederwall, B.; Clark, R.M. ); Crowell, B. ); Deleplanque, M.A.; Diamond, R.M. ); Gall, B.; Hannachi, F. ); Henry, R.G.; Janssens, R.V.F.; Khoo, T.L. ); Korichi, A. ); Lee, I.Y.; Macchiavelli, A.O. (Nuclear Science Division, Lawrence

    1995-04-01

    For the first time, two excited superdeformed (SD) bands have been observed in the double closed shell superdeformed nucleus [sup 192]Hg. One of the SD bands exhibits a pronounced peak in the dynamic moment of inertia which is interpreted as a crossing between two excited SD configurations involving the [ital N]=7 intruder and the [512]5/2 orbitals. This is only the second occurrence of such a crossing in a SD nucleus around [ital A]=190. The second excited SD band has near identical transition energies to an excited SD band in [sup 191]Hg.

  5. Designing a metallic nanoconcentrator for a lateral multijunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Wang, Trudie; Peumans, Peter

    2011-06-01

    A lateral multijunction photovoltaic (PV) concept is introduced that explores the unique ability of plasmonic nanoantennas to locally concentrate optical energy and spectrally filter incoming light at the subwavelength level. This electromagnetic field enhancement near the localized plasmon resonance modes of the metallic nanoantennas can be used to selectively increase light absorption in semiconductor nanowires at specific spectral and spatial regions. In our geometry, we take advantage of the ring antenna's ability to excite two distinct plasmon modes in order to carry out spectral splitting and concentration of the electromagnetic field. A localized dipolar surface plasmon mode near the material resonance of the silver nanoantenna results from the ring behaving as an effective disk in the visible region and focuses the field on the external surface of the ring while a dipolar bonding resonance mode dependent on the coupling of modes excited on the inner and outer surface of the ring geometry in the near infrared (NIR) region focuses energy in the cavity of the ring. Using finite difference time domain (FDTD) simulations, we describe the basic mechanisms at work and demonstrate that the subwavelength ring antennas can couple incident light into semiconductor nanowires placed both inside and outside the ring through the two modes with minimal loss in the metal. The modes are used to laterally split different spectral regions of broadband incident light optimized to the material bandgap of the nanowires located in the regions of field enhancement to produce the lateral multijunction effect. We demonstrate that, for example, a ring antenna with both an internal diameter and a thickness of 40 nm can enhance absorption by 6x in the visible region for a 100 nm tall AlAs nanowire placed just outside the ring and by 380x in the NIR region for a geometrically similar GaAs nanowire placed inside the ring. Both enhancements occur just above the material band gaps of the

  6. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat.

    PubMed

    Brown, P Leon; Shepard, Paul D

    2016-09-01

    The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience.

  7. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  8. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  9. Model to Design Drip Hose Lateral Line

    NASA Astrophysics Data System (ADS)

    Ludwig, Rafael; Cury Saad, João Carlos

    2014-05-01

    Introduction The design criterion for non-pressure compensating drip hose is normally to have 10% of flow variation (Δq) in the lateral line, corresponding to 20% of head pressure variation (ΔH). Longer lateral lines in drip irrigation systems using conventional drippers provide cost reduction, but it is necessary to obtain to the uniformity of irrigation [1]. The use of Δq higher levels can provide longer lateral lines. [4] proposes the use of a 30% Δq and he found that this value resulted in distribution uniformity over 80%. [1] considered it is possible to extend the lateral line length using two emitters spacing in different section. He assumed that the spacing changing point would be at 40% of the total length, because this is approximately the location of the average flow according with [2]. [3] found that, for practical purposes, the average pressure is located at 40% of the length of the lateral line and that until this point it has already consumed 75% of total pressure head loss (hf ). In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. Objective The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. Methodology A computer program was developed in Delphi® based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area

  10. A lateral electrophoretic flow diagnostic assay.

    PubMed

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E; Neira, Hector D; Fletcher, Daniel A; Herr, Amy E

    2015-03-21

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.

  11. Olfactory coding in the honeybee lateral horn.

    PubMed

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  12. Nuclear excitations and reaction mechanisms

    SciTech Connect

    Fallieros, S.; Levin, F.S.

    1990-08-01

    The main theme of this report is the study and interpretation of the sequence of events that occur during the collisions of nuclear particles. Some of the processes discussed in parts A and B involve short range interactions; others involve interactions of long range. In most of part A one of the particles in the initial or in the final state (or in both) is a photon, which serves as a probe of the second particle, which may be a nucleus, a proton, a pion or any other hadron. The complexity of the processes taking place during the collisions makes it necessary to simplify some aspects of the physical problem. This leads to the introduction of modals which are used to describe a limited number of features in as much detail as possible. The main interest is the understanding of the hadronic excitations which result from the absorption of a photon and the determination of the fundamental structure constants of the target particle. In part B, all the particles are hadrons. The purpose here is to develop and apply optimal quantal methods appropriate for describing the interacting systems. Of particular interest are three-particle collision systems in which the final state consists of three free particles. Part B also considers the process of nuclear fusion as catalyzed by bound muons.

  13. Multi-photon excitation microscopy

    PubMed Central

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-01-01

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments. PMID:16756664

  14. Multi-photon excitation microscopy.

    PubMed

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-06-06

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.

  15. Ankle instability and arthroscopic lateral ligament repair.

    PubMed

    Acevedo, Jorge I; Mangone, Peter

    2015-03-01

    Over the last 50 years, the surgical management of chronic lateral ankle ligament insufficiency has focused on 2 main categories: local soft-tissue reconstruction and tendon grafts/transfer procedures. There is an increasing interest in the arthroscopic solutions for chronic instability of the ankle. Recent biomechanical studies suggest the at least one of the arthroscopic techniques can provide equivalent results to current open local soft-tissue reconstruction (such as the modified Brostrom technique). Arthroscopic lateral ankle ligament reconstruction is becoming an increasingly acceptable method for the surgical management of chronic lateral ankle instability.

  16. Experiments and analysis of lateral piezoresistance gauges

    SciTech Connect

    Wong, M.K.W.

    1993-07-01

    The response of lateral piezoresistance gauges to shock wave uniaxial strain loading has been examined in a combined experimental and calculational effort. Plate impact experiments provided lateral gauge data which were analyzed using quasi-static and dynamic inclusion analyses. Experimental data showed that the response of the lateral gauge output depended upon the matrix material and gauge emplacement method. The calculations indicated that these differences were due to complex gauge-matrix interactions. These interactions were influenced by the stress and strain distributions in and around the gauge, plasticity effects, properties of the gauge and matrix materials, and emplacement conditions.

  17. Cosmetic Lateral Canthoplasty: Lateral Canthoplasty to Lengthen the Lateral Canthal Angle and Correct the Outer Tail of the Eye

    PubMed Central

    Yun, Byung Min

    2016-01-01

    There are many women who want larger and brighter eyes that will give a favorable impression. Surgical methods that make the eye larger and brighter include double eyelidplasty, epicanthoplasty, as well as lateral canthoplasty. Double eyelidplasty produces changes in the vertical dimension of the eyes, whereas epicanthoplasty and lateral canthoplasty create changes in the horizontal dimension of the eyes. Epicanthoplasty, a surgical procedure which enlarges the eye horizontally, is performed at the inner corner of the eye, whereas lateral canthoplasty enlarges the outer edge of the eye. In particular, if the slant of the palpebral fissure is raised and the horizontal dimension of the palpebral fissure is short, adjusting the slant of the palpebral fissure through lateral canthoplasty can achieve an enlargement of eye width and smoother features. Depending on the patient's condition, even better results can be achieved if this procedure is performed in conjunction with other procedures, such as double eyelidplasty, epicanthoplasty, eye roll formation surgery, fat graft, and facial bone contouring surgery. In this paper, the authors will introduce in detail their surgical method for a cosmetic lateral canthoplasty that lengthens the lateral canthal angle and corrects the outer tail of the eyes, in order to ease the unfavorable impression. PMID:27462564

  18. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    NASA Astrophysics Data System (ADS)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  19. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    PubMed Central

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  20. What Gets a Cell Excited? Kinky Curves

    ERIC Educational Resources Information Center

    Kay, Alan R.

    2014-01-01

    Hodgkin and Huxley's (5) revealing the origins of cellular excitability is one of the great triumphs of physiology. In an extraordinarily deft series of papers, they were able to measure the essential electrical characteristics of neurons and synthesize them into a quantitative model that accounts for the excitability of neurons and other…

  1. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  2. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  3. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  4. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  5. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  6. Multiphoton excited fluorescence spectroscopy of biomolecular systems

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2001-09-01

    Recent work on the emerging application of multiphoton excitation to fluorescence studies of biomolecular dynamics and structure is reviewed. The fundamental principles and experimental techniques of multiphoton excitation are outlined, fluorescence lifetimes, anisotropy and spectra in membranes, proteins, hydrocarbons, skin, tissue and metabolites are featured, and future opportunities are highlighted.

  7. Study of excited nucleons and their structure

    SciTech Connect

    Burkert, Volker D.

    2014-01-01

    Recent advances in the study of excited nucleons are discussed. Much of the progress has been achieved due to the availability of high precision meson production data in the photoproduction and electroproduction sectors, the development of multi-channel partial wave analysis techniques, and advances in Lattice QCD with predictions of the full excitation spectrum.

  8. Dynamic responses of railroad car models to vertical and lateral rail inputs

    NASA Technical Reports Server (NTRS)

    Sewall, J. L.; Parrish, R. V.; Durling, B. J.

    1971-01-01

    Simplified dynamic models were applied in a study of vibration in a high-speed railroad car. The mathematical models used were a four-degree-of-freedom model for vertical responses to vertical rail inputs and a ten-degree-of-freedom model for lateral response to lateral or rolling (cross-level) inputs from the rails. Elastic properties of the passenger car body were represented by bending and torsion of a uniform beam. Rail-to-car (truck) suspensions were modeled as spring-mass-dashpot oscillators. Lateral spring nonlinearities approximating certain complicated truck mechanisms were introduced. The models were excited by displacement and, in some cases, velocity inputs from the rails by both deterministic (including sinusoidal) and random input functions. Results were obtained both in the frequency and time domains. Solutions in the time domain for the lateral model were obtained for a wide variety of transient and random inputs generated on-line by an analog computer. Variations in one of the damping properties of the lateral car suspension gave large fluctuations in response over a range of car speeds for a given input. This damping coefficient was significant in reducing lateral car responses that were higher for nonlinear springs for three different inputs.

  9. Numerical simulation of excited jet mixing layers

    NASA Astrophysics Data System (ADS)

    Scott, J. N.; Hankey, W. L.

    1987-01-01

    A numerical simulation of unsteady flow in jet mixing layers, both with and without external excitation, has been performed by solving the time-dependent compressible Navier-Stokes equations. Computations were performed on a CRAY X-MP computer using MacCormick's explicit finite difference algorithm. Different excitation methods were investigated and were shown to be very effective in controlling the well organized periodic production, shedding and pairing of large scale vortex structures. It is found that pressure excitation was generally more effective than temperature excitation, and that grid refinement results in substantial improvement in the resolution of unsteady features. The location and orientation, in addition to the frequency, of the excitation source are shown to have a significant influence on the production and interaction of large scale vortex structures in the jet mixing layer.

  10. Excited States of Non-Isolated Chromophores

    NASA Astrophysics Data System (ADS)

    Matsika, S.; Kozak, C.; Kistler, K.

    2009-06-01

    The photophysical and photochemical behavior of nucleobases is very important because of their biological role as the building blocks in DNA and RNA. Great progress has been made in understanding the excited-state properties of single bases. In order to understand the photophysical properties of nucleobases in complex environments we have investigated their excited states (a) in aqueous solutions and (b) as π-stacked dimers in DNA. The solvatochromic shifts of the excited states of pyrimidine nucleobases in aqueous solution have been investigated using a combined QM/MM procedure where the quantum mechanical solute is described using high level multireference configuration interaction methods while molecular dynamics simulations are used to obtain the structure of the solvent around the solute in an average way. The excited states of π-stacked nucleobases have also been investigated using various ab initio methods. The effect of the environment on the excited states and conical intersections is investigated.

  11. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  12. Loss of excitation of synchronous generator

    NASA Astrophysics Data System (ADS)

    Krištof, Vladimír; Mešter, Marián

    2017-01-01

    This paper presents results of study of loss-of-excitation phenomena simulations. Loss of excitation is a very common fault in synchronous machine operating and can be caused by short circuit of the field winding, unexpected field breaker open or loss-of-excitation relay mal-operation. According to the statistic [1], the generator failure due to loss-of-excitation accounts for 69% of all generator failures. There has been concern over possible incorrect operation of the relay when operating the generator in the under-excited region, during stable transient swings and during major system disturbances. This article can serve as inputs for system operators in preparation of operation area or protection relaying area.

  13. Individualized optimal surgical extent of the lateral neck in papillary thyroid cancer with lateral cervical metastasis.

    PubMed

    Park, Jae-Yong; Koo, Bon Seok

    2014-06-01

    Despite an excellent prognosis, cervical lymph node (LN) metastases are common in patients with papillary thyroid cancer (PTC). The presence of metastasis is associated with an increased risk of locoregional recurrence, which significantly impairs quality of life and may decrease survival. Therefore, it has been an important determinant of the extent of lateral LN dissection in the initial treatment of PTC patients with lateral cervical metastasis. However, the optimal extent of therapeutic lateral neck dissection (ND) remains controversial. Optimizing the surgical extent of LN dissection is fundamental for balancing the surgical morbidity and oncological benefits of ND in PTC patients with lateral neck metastasis. We reviewed the currently available literature regarding the optimal extent of lateral LN dissection in PTC patients with lateral neck metastasis. Even in cases with suspicion of metastatic LN at the single lateral level or isolated metastatic lateral LN, the application of ND including all sublevels from IIa and IIb to Va and Vb may be overtreatment, due to the surgical morbidity. When there is no suspicion of LN metastasis at levels II and V, or when multilevel aggressive neck metastasis is not found, sublevel IIb and Va dissection may not be necessary in PTC patients with lateral neck metastasis. Thus consideration of the individualized optimal surgical extent of lateral ND is important when treating PTC patients with lateral cervical metastasis.

  14. Lateralized courtship in a parasitic wasp.

    PubMed

    Romano, Donato; Donati, Elisa; Canale, Angelo; Messing, Russell H; Benelli, Giovanni; Stefanini, Cesare

    2016-01-01

    Lateralization (i.e. left-right asymmetries in the brain and behaviour) of courtship displays has been examined in a growing number vertebrate species, while evidence for invertebrates is limited. In this study, we investigated lateralization of courtship and mating displays in the parasitic wasp Leptomastidea abnormis. Results showed a population-level lateralization of male courtship displays. Male antennal tapping on the female's head was right-biased. However, right-biased male courtship acts were not characterized by higher male antennal tapping frequencies, nor success in mating although antennal tapping frequency was higher in males with mating success with respect to unsuccessful males. Overall, our results add basic knowledge to the behavioural ecology of insect parasitoids. To the best of our knowledge, this is the first report of behavioural lateralization in parasitic Hymenoptera.

  15. Genetics Home Reference: amyotrophic lateral sclerosis

    MedlinePlus

    ... DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013 Aug 7;79( ... Miller CC, Shaw CE. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type ...

  16. Genetics Home Reference: lateral meningocele syndrome

    MedlinePlus

    ... Additional Information & Resources MedlinePlus (1 link) Health Topic: Connective Tissue Disorders Genetic and Rare Diseases Information Center (1 ... and Musculoskeletal and Skin Diseases: Heritable Disorders of Connective Tissue Educational Resources (3 links) Disease InfoSearch: Lateral meningocele ...

  17. The laterality effect: myth or truth?

    PubMed

    Cohen Kadosh, Roi

    2008-03-01

    Tzelgov and colleagues [Tzelgov, J., Meyer, J., and Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 166-179.], offered the existence of the laterality effect as a post-hoc explanation for their results. According to this effect, numbers are classified automatically as small/large versus a standard point under autonomous processing of numerical information. However, the genuinity of the laterality effect was never examined, or was confounded with the numerical distance effect. In the current study, I controlled the numerical distance effect and observed that the laterality effect does exist, and affects the processing of automatic numerical information. The current results suggest that the laterality effect should be taken into account when using paradigms that require automatic numerical processing such as Stroop-like or priming tasks.

  18. The lateralization of symptoms in schizophrenia.

    PubMed

    Taylor, P; Fleminger, J J

    1981-03-01

    An awareness of symptoms being lateralized was established in almost half of a series of 60 acutely ll schizophrenics and is reported in a further series of 16 patients with this disorder. Case illustrations are given. The symptoms most commonly showing this phenomenon were hypochondriacal delusions and hallucinations, usually of an auditory kind. Possible mechanisms underlying the phenomenon are discussed. Some evidence was found for a difference between the sexes in the direction of lateralization symptoms.

  19. Management of horizontally impacted dilacerated lateral incisor

    PubMed Central

    Katta, Anil Kumar; Peddu, Revathi; Vannala, Venkataramana; Dasari, Vaishnavi

    2015-01-01

    Impaction of maxillary lateral incisor with odontome and retained deciduous tooth is not often seen in regular dental practice. Impaction of anterior teeth cause generalized spacing which affects the esthetics of the face. Here we report a case of an 18-year-old patient with horizontally impacted dilacerated lateral incisor, which was bought into occlusion with the help of orthodontic tooth movement within a span of 18 months. PMID:26538954

  20. Brain and behavioral lateralization in invertebrates

    PubMed Central

    Frasnelli, Elisa

    2013-01-01

    Traditionally, only humans were thought to exhibit brain and behavioral asymmetries, but several studies have revealed that most vertebrates are also lateralized. Recently, evidence of left–right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. Here I present some examples in invertebrates of sensory and motor asymmetries, as well as asymmetries in the nervous system. I illustrate two cases where an asymmetric brain is crucial for the development of some cognitive abilities. The first case is the nematode Caenorhabditis elegans, which has asymmetric odor sensory neurons and taste perception neurons. In this worm left/right asymmetries are responsible for the sensing of a substantial number of salt ions, and lateralized responses to salt allow the worm to discriminate between distinct salt ions. The second case is the fruit fly Drosophila melanogaster, where the presence of asymmetry in a particular structure of the brain is important in the formation or retrieval of long-term memory. Moreover, I distinguish two distinct patterns of lateralization that occur in both vertebrates and invertebrates: individual-level and population-level lateralization. Theoretical models on the evolution of lateralization suggest that the alignment of lateralization at the population level may have evolved as an evolutionary stable strategy in which individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. This implies that lateralization at the population-level is more likely to have evolved in social rather than in solitary species. I evaluate this new hypothesis with a specific focus on insects showing different level of sociality. In particular, I present a series of studies on antennal asymmetries in honeybees and other related species of bees, showing how insects may be extremely useful to test the

  1. Lateral epicondylitis: a review of the literature.

    PubMed

    Waseem, Mohd; Nuhmani, S; Ram, C S; Sachin, Yadav

    2012-01-01

    Lateral epicondylitis (Tennis Elbow) is the most frequent type of myotendinosis and can be responsible for substantial pain and loss of function of the affected limb. Muscular biomechanics characteristics and equipment are important in preventing the conditions. This article present on overview of the current knowledge on lateral Epicondylitis and focuses on Etiology, Diagnosis and treatment strategies, conservative treatment are discussed and recent surgical techniques are outlined. This information should assist health care practitioners who treat patients with this disorder.

  2. Localization of electrons and excitations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven

    2006-07-01

    Electrons, electron holes, or excitations in finite or infinite 'multimer systems' may be localized or delocalized. In the theory of Hush, localization depends on the ratio Δ/ λ ( Δ/2 = coupling; λ = reorganization energy). The latter theory has been extended to the infinite system [S. Larsson, A. Klimkāns, Mol. Cryst. Liq. Cryst. 355 (2000) 217]. The metal/insulator transition often takes place abruptly as a function of Δ/ λ. It is argued that localization in a system with un-filled bands cannot be determined on the basis of Mott-Hubbard U alone, but depends on the number of accessible valence states, reorganization energy λ and coupling Δ (=2t). In fact U = 0 does not necessarily imply delocalization. The analysis here shows that there are many different situations for an insulator to metal transition. Charge transfer in doped NiO is characterized by Ni 2+ - Ni 3+ exchange while charge transfer in pure NiO is characterized by a disproportionation 2Ni 2+ → Ni + + Ni 3+. In spite of the great differences between these two cases, U has been applied without discrimination to both. The relevant localization parameters appear to be Δ and λ in the first case, with only two oxidation states, and U, Δ and λ in the second case with three oxidation states. The analysis is extended to insulator-metal transitions, giant magnetic resistance (GMR) and high Tc superconductivity (SC). λ and Δ can be determined quite accurately in quantum mechanical calculations involving only one and two monomers, respectively.

  3. Transcript profiling of early lateral root initiation.

    PubMed

    Himanen, Kristiina; Vuylsteke, Marnik; Vanneste, Steffen; Vercruysse, Steven; Boucheron, Elodie; Alard, Philippe; Chriqui, Dominique; Van Montagu, Marc; Inzé, Dirk; Beeckman, Tom

    2004-04-06

    At the onset of lateral root initiation in Arabidopsis thaliana, the phytohormone auxin activates xylem pole pericycle cells for asymmetric cell division. However, the molecular events leading from auxin to lateral root initiation are poorly understood, in part because the few responsive cells in the process are embedded in the root and are thus difficult to access. A lateral root induction system, in which most xylem pole pericycle cells were synchronously activated by auxin transport inhibition followed by auxin application, was used for microarray transcript profiling. Of 4,600 genes analyzed, 906 significantly differentially regulated genes were identified that could be grouped into six major clusters. Basically, three major patterns were discerned representing induced, repressed, and transiently expressed genes. Analysis of the coregulated genes, which were specific for each time point, provided new insight into the molecular regulation and signal transduction preceding lateral root initiation in Arabidopsis. The reproducible expression profiles during a time course allowed us to define four stages that precede the cell division in the pericycle. These early stages were characterized by G1 cell cycle block, auxin perception, and signal transduction, followed by progression over G1/S transition and G2/M transition. All these processes took place within 6 h after transfer from N-1-naphthylphthalamic acid to 1-naphthalene acetic acid. These results indicate that this lateral root induction system represents a unique synchronized system that allows the systematic study of the developmental program upstream of the cell cycle activation during lateral root initiation.

  4. Inclination Excitation in Compact Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Adams, Fred C.

    2015-05-01

    The Kepler Mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. We have explored the effectiveness of dynamical mechanisms in exciting orbital inclination in this class of solar systems. The two mechanisms we discuss are self-excitation of orbital inclination in initially (nearly) coplanar planetary systems and perturbations by additional unseen larger bodies in the outer regions of the solar systems. For both of these scenarios, we determine the regimes of parameter space for which orbital inclination can be effectively excited. For compact planetary systems with the observed architectures, we find that the orbital inclination angles are not spread out appreciably through self-excitation, resulting in a negligible scatter in impact parameter and a subsequently stable transiting system. In contrast, companions in the outer solar system can be effective in driving variations of the inclination angles of the inner planetary orbits, leading to significant scatter in impact parameter and resultantly non-transiting systems. We present the results of our study, the regimes in which each excitation method - self-excitation of inclination and excitation by a perturbing secondary - are relevant, and the magnitude of the effects.

  5. Chirp excitation of ultrasonic guided waves.

    PubMed

    Michaels, Jennifer E; Lee, Sang Jun; Croxford, Anthony J; Wilcox, Paul D

    2013-01-01

    Most ultrasonic guided wave methods require tone burst excitations to achieve some degree of mode purity while maintaining temporal resolution. In addition, it is often desirable to acquire data using multiple frequencies, particularly during method development when the best frequency for a specific application is not known. However, this process is inconvenient and time-consuming, particularly if extensive signal averaging at each excitation frequency is required to achieve a satisfactory signal-to-noise ratio. Both acquisition time and data storage requirements may be prohibitive if responses from many narrowband tone burst excitations are measured. Here chirp excitations are utilized to address the need to both test at multiple frequencies and achieve a high signal-to-noise ratio to minimize acquisition time. A broadband chirp is used to acquire data at a wide range of frequencies, and deconvolution is applied to extract multiple narrowband responses. After optimizing the frequency and duration of the desired tone burst excitation, a long-time narrowband chirp is used as the actual excitation, and the desired tone burst response is similarly extracted during post-processing. Results are shown that demonstrate the efficacy of both broadband and narrowband chirp excitations.

  6. Concert halls with strong lateral reflections enhance musical dynamics

    PubMed Central

    Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W.; Lokki, Tapio

    2014-01-01

    One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians’ skill, but here we show that interactions between the concert-hall acoustics and listeners’ hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall’s established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note’s fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry. PMID:24591584

  7. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2017-01-01

    We study the resonant tidal excitation of g modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave (GW) signal of the inspiral. Previous studies of this type treated the NS core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g modes is fundamentally different in the two cases: in a normal fluid core, the buoyancy is due to gradients in the proton-to-neutron fraction, whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid NS therefore has a denser spectrum of g modes with frequencies above 10 Hz. As a result, many more g modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of GW detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and a normal fluid NS (˜10-3-10-2rad). A phase error of this magnitude is too small to be measured from a single event with the current generation of GW detectors.

  8. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin

    2017-01-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies treated the NS core as a normal fluid and did not account for its superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron (or hyperon) fraction. The latter yields a stronger stratification and a superfluid NS has a denser spectrum of g-modes. As a result, many more g-modes undergo resonant tidal excitation during the inspiral. We find that = 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid NS ( 10-3 -10-2rad). A phase error of this magnitude is too small to be measured with the current generation of gravitational wave detectors.

  9. Giant transmission Goos-Hänchen shift in surface plasmon polaritons excitation and its physical origin

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Liu, Ju; Li, Zhi-Yuan

    2015-07-01

    Excitation of surface plasmon polaritons (SPPs) propagating at the interface between a dielectric medium and a silver thin film by a focused Gaussian beam in a classical Kretschmann prism setup is studied theoretically. We find that the center of the transmitted Gaussian evanescent wave has a giant lateral shift relative to the incident Gaussian beam center for a wide range of incident angle and Gaussian beam wavelength to excite SPPs, which can be more than two orders of magnitude larger than the silver film thickness. The phenomenon is closely related with the conventional Goos-Hänchen effect for total internal reflection of light beam, and it is called the transmission Goos-Hänchen shift. We find that this lateral shift depends heavily on the excitation wavelength, incident angle, and the silver layer thickness. Finite-difference time-domain simulations show that this transmission Goos-Hänchen shift is induced by a unique dynamical process of excitation, transport, and leakage of SPPs. Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11374357).

  10. Seismic excitation by space shuttles

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  11. Ionization of excited xenon atoms by electrons

    NASA Astrophysics Data System (ADS)

    Erwin, Daniel A.; Kunc, Joseph A.

    2004-08-01

    Measured cross sections for electron-impact ionization of excited Xe atoms are not presently available. Therefore, we combine in this work the formalisms of the binary encounter approximation and Sommerfeld’s quantization of atomic orbits and derive from first-principles cross sections for ionization of excited atoms by electrons of low and moderate energies (up to a few hundred eV ). The approach of this work can be used to calculate the cross sections for electron-impact ionization of excited atoms and atomic ions other than xenon.

  12. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  13. Vibrational excitation of CO by blackbody radiation

    NASA Astrophysics Data System (ADS)

    Arriola, L.; Wilson, J. W.

    1985-09-01

    Lasers excited by blackbody radiation are of interest for power beaming applications in space. In such a system sunlight is collected and focused into a blackbody cavity, heating it to approximately 2000 K. An appropriate absorbing molecule is vibrationally heated but not translationally heated when passed through the blackbody cavity. The vibrationally excited gas is then mixed with a lasant resulting in laser emission. The number density of CO molecules within a blackbody radiation field of a given temperature and pressure is calculated. Such calculations show the degree of excitation achievable, under ideal conditions, from blackbody pumping.

  14. Language lateralization shifts with learning by adults.

    PubMed

    Plante, Elena; Almryde, Kyle; Patterson, Dianne K; Vance, Christopher J; Asbjørnsen, Arve E

    2015-05-01

    For the majority of the population, language is a left-hemisphere lateralized function. During childhood, a pattern of increasing left lateralization for language has been described in brain imaging studies, suggesting that this trait develops. This development could reflect change due to brain maturation or change due to skill acquisition, given that children acquire and refine language skills as they mature. We test the possibility that skill acquisition, independent of age-associated maturation can result in shifts in language lateralization in classic language cortex. We imaged adults exposed to an unfamiliar language during three successive fMRI scans. Participants were then asked to identify specific words embedded in Norwegian sentences. Exposure to these sentences, relative to complex tones, resulted in consistent activation in the left and right superior temporal gyrus. Activation in this region became increasingly left-lateralized with repeated exposure to the unfamiliar language. These results demonstrate that shifts in lateralization can be produced in the short term within a learning context, independent of maturation.

  15. Lateral restraint assembly for reactor core

    DOEpatents

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  16. Language Lateralization Shifts with Learning by Adults

    PubMed Central

    Plante, Elena; Almryde, Kyle; Patterson, Dianne K.; Vance, Christopher J.; Asbjørnsen, Arve E.

    2014-01-01

    For the majority of the population, language is a left hemisphere lateralized function. During childhood, a pattern of increasing left lateralization for language has been described in brain imaging studies, suggesting this trait develops. This development could reflect change due to brain maturation or change due to skill acquisition, given that children acquire and refine language skills as they mature. We test the possibility that skill acquisition, independent of age-associated maturation can result in shifts in language lateralization in classic language cortex. We imaged adults exposed to unfamiliar language during three successive fMRI scans. Participants were then asked to identify specific words embedded in Norwegian sentences. Exposure to these sentences, relative to complex tones, resulted in consistent activation in the left and right superior temporal gyrus. Activation in this region became increasingly left lateralized with repeated exposure to the unfamiliar language. These results demonstrate that shifts in lateralization can be produced in the short-term within a learning context, independent of maturation. PMID:25285756

  17. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  18. The aeronomy of vibrationally excited ozone

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Allen, J. E., Jr.

    1980-01-01

    Theoretical calculations show that above 80 km in the earth's atmosphere the production of vibrationally excited ozone by chemical processes leads to number densities which are usually larger than those expected for local thermodynamic equilibrium. Quenching of highly excited molecules produced in O+O2+M, O3+M provided a significant source of the lower lying states above the mesopause while the 9.6 microns emission of O3 (0,0,1) was a major sink. Analysis of available laboratory results implied that reactions involving excited ozone play a significant role in the global ozone balance despite the relatively small abundance of the molecule. However, this effect is implicit in many of the rate coefficients currently used in stratospheric calculations. In the upper mesosphere and lower thermosphere, where the excited state populations differ from those for thermal equilibrium, published reaction rate data are not necessarily applicable to aeronomic calculations.

  19. How to excite a rogue wave

    SciTech Connect

    Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J. M.

    2009-10-15

    We propose initial conditions that could facilitate the excitation of rogue waves. Understanding the initial conditions that foster rogue waves could be useful both in attempts to avoid them by seafarers and in generating highly energetic pulses in optical fibers.

  20. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  1. Acoustics of Excited Jets: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Brown, Cliffard A.

    2005-01-01

    The idea that a jet may be excited by external forcing is not new. The first published demonstration of a jet responding to external pressure waves occurred in the mid-1800's. It was not, however, until the 1950's, with the advent of commercial jet aircraft, that interest in the subject greatly increased. Researchers first used excited jets to study the structure of the jet and attempt to determine the nature of the noise sources. The jet actuators of the time limited the range (Reynolds and Mach numbers) of jets that could be excited. As the actuators improved, more realistic jets could be studied. This has led to a better understanding of how jet excitation may be used not only as a research tool to understand the flow properties and noise generation process, but also as a method to control jet noise.

  2. The DSS-14 C-band exciter

    NASA Technical Reports Server (NTRS)

    Rowan, D. R.

    1989-01-01

    The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.

  3. Inclination Excitation in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Adams, Fred C.

    2015-01-01

    The Kepler Mission has detected dozens of planetary systems with more than four transiting planets. This sample provides a collection of planetary systems with little or no excited inclination between the inferred orbits. This present study examines the magnitude and efficacy of three potential mechanisms for exciting orbital inclination in these systems: self-excitation of orbital inclination in initially coplanar planetary systems, perturbations by larger bodies within the planetary systems, and perturbations by massive bodies external to the systems. For each of these mechanisms, we determine the regime(s) of parameter space for which orbital inclination excitation is effective. This work provides constraints on the properties (masses and orbital elements) of possible additional bodies in observed planetery systems, and on their dynamical history. One interesting application is to consider the relative size of the external perturbations both in and out of clusters.

  4. Ultrafast optical excitation of magnetic skyrmions

    PubMed Central

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-01-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures. PMID:25897634

  5. Faraday waves under time-reversed excitation.

    PubMed

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  6. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  7. Mode Selective Excitation Using Coherent Control Spectroscopy

    SciTech Connect

    Singh, Ajay K.; Konradi, Jakow; Materny, Arnulf; Sarkar, Sisir K.

    2008-11-14

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, femtosecond laser pulses are spectrally broad and therefore coherently excite several molecular modes. While the temporal resolution is high, usually no mode-selective excitation is possible. This paper demonstrates the feasibility of selectively exciting specific molecular vibrations in solution phase with shaped fs laser excitation using a feedback-controlled optimization technique guided by an evolutionary algorithm. This approach is also used to obtain molecule-specific CARS spectra from a mixture of different substances. The optimized phase structures of the fs pulses are characterized to get insight into the control process. Possible applications of the spectrum control are discussed.

  8. Magnetic Excitation for Spin Vibration Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Mehmed, Oral; Brown, Gerald V.

    1997-01-01

    The Dynamic Spin Rig Laboratory (DSRL) at the NASA Lewis Research Center is a facility used for vibration testing of structures under spinning conditions. The current actuators used for excitation are electromagnetic shakers which are configured to apply torque to the rig's vertical rotor. The rotor is supported radially and axially by conventional bearings. Current operation is limited in rotational speed, excitation capability, and test duration. In an effort to enhance its capabilities, the rig has been initially equipped with a radial magnetic bearing which provides complementary excitation and shaft support. The new magnetic feature has been used in actual blade vibration tests and its performance has been favorable. Due to the success of this initial modification further enhancements are planned which include making the system fully magnetically supported. This paper reports on this comprehensive effort to upgrade the DSRL with an emphasis on the new magnetic excitation capability.

  9. Lateral force microscopy of multiwalled carbon nanotubes.

    PubMed

    Lievonen, J; Ahlskog, M

    2009-06-01

    Carbon nanotubes are usually imaged with the atomic force microscope (AFM) in non-contact mode. However, in many applications, such as mechanical manipulation or elasticity measurements, contact mode is used. The forces affecting the nanotube are then considerable and not fully understood. In this work lateral forces were measured during contact mode imaging with an AFM across a carbon nanotube. We found that, qualitatively, both magnitude and sign of the lateral forces to the AFM tip were independent of scan direction and can be concluded to arise from the tip slipping on the round edges of the nanotube. The dependence on the normal force applied to the tip and on the ratio between nanotube diameter and tip radius was studied. We show that for small values of this ratio, the lateral force signal can be explained with a simple geometrical model.

  10. Lateral ligament reconstruction procedures for the ankle.

    PubMed

    Tourné, Y; Mabit, C

    2017-02-01

    Capsule/ligament lesions of the lateral compartment of the ankle lead to lateral laxity, which is a prime contributor to chronic ankle instability. Lateral ligament reconstruction stabilizes the joint. Exhaustive preoperative clinical and paraclinical work-up is essential. The present article classifies, presents and criticizes the main techniques in terms of long-term stabilization and reduction of osteoarthritis risk. Anatomic ligament repair with reinforcement (mainly extensor retinaculum) or anatomic ligament reconstruction are the two recommended options. Non-anatomic reconstructions using the peroneus brevis should be abandoned. Arthroscopy is increasingly being developed, but results need assessment on longer follow-up than presently available. Postoperative neuromuscular reprogramming is fundamental to optimal recovery. Finally, the concept of complex ankle instability is discussed from the diagnostic and therapeutic points of view. The various forms of ligament reconstruction failure and corresponding treatments are reported.

  11. Autologous split peroneus longus lateral ankle stabilization.

    PubMed

    Budny, Adam M; Schuberth, John M

    2012-01-01

    Lateral ankle instability is a common clinical entity, and a variety of surgical procedures are available for stabilization after conservative management fails. Herein the authors reviewed outcomes after performing autologous split peroneus longus lateral ankle stabilization, using a previously described surgical technique to anatomically recreate the anterior talofibular and calcaneofibular ligaments. Twenty-five consecutive patients from 2 surgeons' practices underwent reconstruction between March 2007 and January 2011 with a minimum follow-up of 12 (range 12 to 51) months (mean 29.5 months). Follow-up interviews demonstrated 92.0% good or excellent outcomes with only 8.0% rating the outcome as fair and none as poor; 92.0% had no recurrent sprains or difficulty going up or down hills; 88.0% related no difficulty with uneven ground. The authors conclude that the autologous split peroneus longus lateral ankle stabilization results in a stable ankle with a low rate of complications and high patient satisfaction.

  12. Knee ligament injury during lateral impact.

    PubMed

    Hearon, B F; Brinkley, J W; Raddin, J H; Fleming, B W

    1985-01-01

    A volunteer woman subject incurred injury to her right knee consisting of a torn anterior cruciate ligament and stretched medial collateral ligament during a lateral (+Gy) impact test. Similar injury has not been reported in the English-language literature an accidental sideward automotive crashes or lateral impact experimentation involving humans. The primary mechanism which produced this injury was external tibial rotation on the femur with the knee flexed. The factors contributing to the injury included extraordinarily forceful leg bracing by the subject, her knee joint laxity or hypermobility, and the absence of side supports to limit lower extremity flailing during the impact response. In future lateral impact tests, women subjects should be used with caution and any subject with abnormal joint mobility should be excluded from participation.

  13. The Lateral Instability of Deep Rectangular Beams

    NASA Technical Reports Server (NTRS)

    Dumont, C; Hill, H N

    1937-01-01

    Experimental and analytical studies were made of solid and hollow deep rectangular beams to study their lateral instability under various conditions of loading and restraint. The tests were made on bars and tubes of 17ST aluminum alloy. Failure by lateral buckling occurred only in tests on the solid beams. It was found that, within the elastic range, the test results were in agreement with the classical theory for the lateral buckling of deep beams as given by Prandtl, Mitchell, and Timoshenko. The tests were extended to the inelastic range, where it was found that the substitution for Young's modulus of an average modulus of elasticity derived from the stress-strain curve made it possible to predict instability at high stresses.

  14. Electron impact vibrational excitation of methyl chloride

    NASA Astrophysics Data System (ADS)

    Sakaamini, Ahmad; Hargreaves, Leigh; Khakoo, Murtadha

    2016-05-01

    Low energy differential cross sections and excitation functions for vibrational excitation of CH3 Cl are presented for five vibrational features in the electron energy loss spectrum of this molecule. Electron energies range from 1 eV to 15 eV and scattering angles from 10o to 125o. Results will be compared to existing data for CH3 Cl in the literature. Funded by a NSF-AMOP-RUI Grant.

  15. Fast pulsed excitation wiggler or undulator

    DOEpatents

    van Steenbergen, Arie

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  16. Intrinsic asymmetry of polar motion excitation

    NASA Astrophysics Data System (ADS)

    Bizouard, C.

    2012-12-01

    Anisotropy of the pole tide and Earth triaxiality make the polar motion excitation asymmetric with respect to and y pole coordinates (Okamoto and Sasao 1977). After having proposed a general description of these non isotropic effects, we show that there are significant in light of the contemporaneous accuracy of the pole coordinates and cannot be cast aside in the interpretation of the Chandler wobble excitation

  17. Psychiatric disorders prior to amyotrophic lateral sclerosis

    PubMed Central

    Goldacre, Raph; Talbot, Kevin; Goldacre, Michael J.

    2016-01-01

    It is recognized that neuropsychiatric conditions are overrepresented in amyotrophic lateral sclerosis (ALS) patient kindreds and psychiatric symptoms may precede the onset of motor symptoms. Using a hospital record linkage database, hospitalization with a diagnosis of schizophrenia, bipolar disorder, depression, or anxiety was significantly associated with a first diagnosis of ALS within the following year. This is likely to specifically reflect the clinicopathological overlap of ALS with frontotemporal dementia. A diagnosis of depression was significantly associated with a first record of ALS ≥5 years later, in keeping with growing evidence for major depressive disorder as an early marker of cerebral neurodegeneration. Ann Neurol 2016;80:935–938 PMID:27761925

  18. Amyotrophic Lateral Sclerosis: A Historical Perspective.

    PubMed

    Katz, Jonathan S; Dimachkie, Mazen M; Barohn, Richard J

    2015-11-01

    This article looks back in time to see where the foundational basis for the understanding of amyotrophic lateral sclerosis originated. This foundation was created primarily in France by Jean-Martin Charcot and his fellow countrymen and disciples, along with key contributions from early clinicians in England and Germany. The early work on amyotrophic lateral sclerosis provides a useful foundation for today's clinicians with respect to tying together genetic and biologic aspects of the disorder that have been discovered over the past few decades.

  19. [Lateral chest X-rays. Radiographic anatomy].

    PubMed

    García Villafañe, C; Pedrosa, C S

    2014-01-01

    Lateral chest views constitute an essential part of chest X-ray examinations, so it is fundamental to know the anatomy on these images and to be able to detect the variations manifested on these images in different diseases. The aim of this article is to review the normal anatomy and main normal variants seen on lateral chest views. For teaching purposes, we divide the thorax into different spaces and analyze each in an orderly way, especially emphasizing the anatomic details that are most helpful for locating lesions that have already been detected in the posteroanterior view or for detecting lesions that can be missed in the posteroanterior view.

  20. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  1. The 'too muchness' of excitement: sexuality in light of excess, attachment and affect regulation.

    PubMed

    Benjamin, Jessica; Atlas, Galit

    2015-02-01

    This paper brings together contemporary thinking about early attachment and affect regulation with our clinical and theoretical understanding of the problems of adult sexuality. In addition to recent theories of affect regulation and attachment, we incorporate Laplanche's idea of 'excess', which was an important transitional concept integrating real experience with fantasy in sexuality. We elaborate the idea of excess-- 'too-muchness' --to illuminate the early overwhelming of the psyche that affects the formation of sexuality. Linked to recent theoretical developments, this idea helps to grasp the relationship between sexual excitement and early affect regulation, showing how excitement becomes dangerous, thus impeding or distorting desire. The 'too-muchness' of excitement recalls the experience of being a stimulated, overwhelmed, unsoothed child and influences later inability to tolerate sexual arousal and the excitement affect. A clinical case illustrates this connection between attachment trauma, anxiety about sexuality, as well as shameful experiences of gender identity as an area of trauma. We emphasize the importance of working through the terrors and desires of the mother-baby relationship as they emerge in the transference-countertransference in order to develop the ability to hold excitement and stimulation without experiencing the too-much as the intolerable. This includes the working-through of ruptures related to overstimulation as well as the delicate balance of attention to fantasy and intersubjective work in the transference.

  2. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  3. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    PubMed

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.

  4. Fundamentals of lateral and vertical heterojunctions of atomically thin materials

    NASA Astrophysics Data System (ADS)

    Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K.; Ozkan, Cengiz; Tongay, Sefaattin

    2016-02-01

    At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that ``the interface is the device''. This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.

  5. Fundamentals of lateral and vertical heterojunctions of atomically thin materials.

    PubMed

    Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K; Ozkan, Cengiz; Tongay, Sefaattin

    2016-02-21

    At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.

  6. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.

    PubMed

    Perera, Nirma D; Turner, Bradley J

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is caused by selective loss of upper and lower motor neurons by complex mechanisms that are incompletely understood. Motor neurons are large, highly polarised and excitable cells with unusually high energetic demands to maintain resting membrane potential and propagate action potentials. This leads to higher ATP consumption and mitochondrial metabolism in motor neurons relative to other cells. Here, we review increasing evidence that defective energy metabolism and homeostasis contributes to selective vulnerability and degeneration of motor neurons in ALS. Firstly, we provide a brief overview of major energetic pathways in the CNS, including glycolysis, oxidative phosphorylation and the AMP-activated protein kinase (AMPK) signalling pathway, while highlighting critical metabolic interactions between neurons and astrocytes. Next, we review evidence from ALS patients and transgenic mutant SOD1 mice for weight loss, hypermetabolism, hyperlipidemia and mitochondrial dysfunction in disease onset and progression. Genetic and therapeutic modifiers of energy metabolism in mutant SOD1 mice will also be summarised. We also present evidence that additional ALS-linked proteins, TDP-43 and FUS, lead to energy disruption and mitochondrial defects in motor neurons. Lastly, we review emerging evidence including our own that dysregulation of the AMPK signalling cascade in motor neurons is an early and common event in ALS pathogenesis. We suggest that an imbalance in energy metabolism should be considered an important factor in both progression and potential treatment of ALS.

  7. The Assessment of Cerebral Laterality: The Sherman-Kulhavy Laterality Assessment Inventory. Technical Report No. 4.

    ERIC Educational Resources Information Center

    Sherman, Jay L.; Kulhavy, Raymond W.

    The Sherman-Kulhavy Laterality Assessment Inventory (LAI), an instrument for determining cerebral laterality, was administered to 1,000 undergraduates to determine the ability of the LAI to discriminate between right- and left-dominant groups. Each S was administered the LAI, a 45-item verbal report instrument which assesses both fine and gross…

  8. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging

    DOE PAGES

    Wu, Xiang; Lee, Hyungseok; Bilsel, Osman; ...

    2015-01-01

    One of the key roadblocks in UCNP development is its extremely limited choices of excitation wavelengths. We report a generic design to program UCNPs to possess highly tunable dye characteristic excitation bands. Using such distinctive properties, we were able to develop a new excitation wavelength selective security imaging. Finally, this work unleashed the greater freedom of the excitation wavelengths of the upconversion nanoparticles and we believe it is a game-changer in the field and this method will enable numerous applications that are currently limited by existing UCNPs.

  9. Religious Attendance and Loneliness in Later Life

    ERIC Educational Resources Information Center

    Rote, Sunshine; Hill, Terrence D.; Ellison, Christopher G.

    2013-01-01

    Purpose of the Study: Studies show that loneliness is a major risk factor for health issues in later life. Although research suggests that religious involvement can protect against loneliness, explanations for this general pattern are underdeveloped and undertested. In this paper, we propose and test a theoretical model, which suggests that social…

  10. Cerebral Lateralization and Its Effect on Drawing.

    ERIC Educational Resources Information Center

    Thomas, Yvonne A.; Thomas, Stephen B.

    1983-01-01

    Discusses the importance of both sides of the brain for the development of drawing skills but notes that the left brain can inhibit the action of the right brain. Provides a discussion of cerebral lateralization and child development. Suggests five drawing exercises to help develop hemispheric cooperation. (SB)

  11. The potential lateral growth of lithalsas

    NASA Astrophysics Data System (ADS)

    Pissart, Albert; Calmels, Fabrice; Wastiaux, Cécile

    2011-03-01

    The lithalsas in the Hudson Bay region of northern Québec, Canada, are the closest modern analogs of ancient features that collapsed to form conspicuous circular depressions ("viviers") common in the Hautes-Fagnes, a region in Belgium. Observations made in both regions are complementary and suggest that these mounds formed by frost heaving displacing soil not only upward, as previously assumed, but also laterally. This lateral displacement is consistent with diverse observations and inferences, which include (1) the simple rounded outline, either circular or oval, typical of both active and relic lithalsas; (2) evidence of local lateral extension inferred from exposures of the relic forms; (3) the relative inefficiency of solifluction in accumulating surface material to form the peripheral ramparts of remnant lithalsas due to the very gentle slopes of the mounds; and (4) the dip of ice lenses within a lithalsa in the Hudson Bay region, perhaps indicating that the freezing front dipped outward along its periphery. The growth of segregation ice is the primary driver for the vertical growth and lateral enlargement of a lithalsa.

  12. Amyotrophic lateral sclerosis: the role of exercise.

    PubMed

    Lisle, Stuart; Tennison, Matthew

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a chronic progressive neurodegenerative disease affecting both the upper and lower motor neurons. Given the deterioration of skeletal muscle function, historically there has been concern regarding exercise and its affect on ALS. This article reviews and explains current research, helping patients, caregivers, and providers be equipped better to make decisions regarding the treatment of ALS with exercise.

  13. Biphasic cell responses on laterally mobile films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2013-03-01

    The engineering of polymer surfaces or matrices that are capable of controlling cell adhesion has been widely explored. In nearly all of these works, the polymer chains (and ligands) are chemically attached to the underlying substrate, and therefore these systems are inherently static. By contrast, cellular environments such as the extracellular matrix (ECM) are dynamic and remodeled by biochemical reactions and biophysical forces. Borrowing this concept from Nature, we created polymer films by an interfacial self-assembly process, whereby individual chains can exhibit lateral mobility (in-plane diffusive motion). NIH 3T3 fibroblasts seeded on such RGD-presenting polymer films show biphasic responses in spreading and adhesion strength to lateral mobility, with a minimal response for intermediate mobility values. Futhermore, preliminary immuno-staining experiments reveal that the total area of focal adhesions demonstrates a similar biphasic trend to the cellular-scale behaviors. In contrast, actin filaments or stress fibers appear to be unaffected by the substrate lateral mobility. These results show that lateral mobility is an important, although not fully explored aspect of mechano-sensing by cells, and can potentially give new perspectives on cell-ECM interactions. National Science Foundation

  14. Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Sudermann, James E.; Schlee, Keith L.

    2008-01-01

    Predicting the effect of fuel slosh on the attitude control system of a spacecraft or launch vehicle is a very important and challenging task. Whether the spacecraft is spinning or moving laterally, the dynamic effect of the fuel slosh helps determine whether the spacecraft will remain on its intended trajectory. Three categories of slosh can be caused by launch vehicle or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These are bulk-fluid motion, subsurface wave motion (currents), and free-surface slosh. Each of these slosh types has a periodic component defined by either a spinning or a lateral motion. For spinning spacecraft, all three types of slosh can greatly affect stability. Bulk-fluid motion and free-surface slosh can affect the lateral-slosh characteristics. For either condition, an unpredicted coupled resonance between the spacecraft and its onboard fuel could threaten a mission. This ongoing research effort seeks to improve the accuracy and efficiency of modeling techniques used to predict these types of fluid motions for lateral motion. Particular efforts focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  15. Clinical Psychology and Amyotrophic Lateral Sclerosis

    PubMed Central

    Pagnini, Francesco; Rossi, Gabriella; Lunetta, Christian; Banfi, Paolo; Corbo, Massimo

    2010-01-01

    Amyotrophic lateral sclerosis is a fatal and progressive disease, characterized by progressive muscles weakness, with consequent loss of physical capacities. Psychologists can play an important role in ALS care, by providing clinical activities in every step of the disease, including support and counseling activities directed to patients, their caregivers and to physicians. PMID:21833203

  16. Lateral Hip Pain in an Athletic Population

    PubMed Central

    Grumet, Robert C.; Frank, Rachel M.; Slabaugh, Mark A.; Virkus, Walter W.; Bush-Joseph, Charles A.; Nho, Shane J.

    2010-01-01

    Context: Historically, the term greater trochanteric pain syndrome has been used to describe a spectrum of conditions that cause lateral-sided hip pain, including greater trochanteric bursitis, snapping iliotibial band, and/or strains or tendinopathy of the abductor mechanism. Diagnosis of these conditions may be difficult because clinical presentations are variable and sometimes inconclusive. Especially difficult is differentiating intrinsic pain from pain referred to the greater trochanteric region. The purposes of this article are to review the relevant anatomy and pathophysiology of the lateral hip. Evidence Acquisition: Data were collected through a thorough review of the literature conducted through a MEDLINE search of all relevant papers between 1980 and January 2010. Results: Recent advances in imaging and an improved understanding of pathomechanics have helped to guide the evaluation, diagnosis, and appropriate treatment for patients presenting with lateral hip pain. Conclusion: Various diagnostic tools and treatment modalities can be used to effectively manage the athletic patient presenting with lateral hip pain. PMID:23015937

  17. Profiling 1366 Technologies: One Year Later

    ScienceCinema

    Van Mierlo, Frank; Sachs, Ely

    2016-07-12

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  18. The Columbine Tragedy Ten Years Later

    ERIC Educational Resources Information Center

    Hammond, Jane

    2009-01-01

    Some tragedies are so emblazoned in people's minds that years later they can recall where they were when they first heard the news. The assassinations of John F. Kennedy and Martin Luther King Jr., the Challenger explosion, and the Sept. 11 terrorist attacks are among these events. So also is the Columbine High School tragedy of April 20, 1999.…

  19. Imaging appearances of lateral ankle ligament reconstruction.

    PubMed

    Chien, Alexander J; Jacobson, Jon A; Jamadar, David A; Brigido, Monica Kalume; Femino, John E; Hayes, Curtis W

    2004-01-01

    Six patients were retrospectively identified as having undergone lateral ligament reconstruction surgery. The surgical procedures were categorized into four groups: direct lateral ligament repair, peroneus brevis tendon rerouting, peroneus brevis tendon loop, and peroneus brevis tendon split and rerouting. At radiography and magnetic resonance (MR) imaging, the presence of one or more suture anchors in the region of the anterior talofibular ligament indicates direct ligament repair, whereas a fibular tunnel indicates peroneus brevis tendon rerouting or loop. Both ultrasonography (US) and MR imaging demonstrate rerouted tendons as part of lateral ankle reconstruction; however, MR imaging can also depict the rerouted tendon within an osseous tunnel if present, especially if T1-weighted sequences are used. Artifact from suture material may obscure the tendon at MR imaging but not at US. With both modalities, the integrity of the rerouted peroneus brevis tendon is best evaluated by following the tendon proximally from its distal attachment site, which typically remains unchanged. The rerouted tendon or portion of the tendon can then be traced proximally to its reattachment site. Familiarity with the surgical procedures most commonly used for lateral ankle ligament reconstruction, and with the imaging features of these procedures, is essential for avoiding diagnostic pitfalls and ensuring accurate assessment of the ligament reconstruction.

  20. Depression in Later Life: Recognition and Treatment.

    ERIC Educational Resources Information Center

    Schmall, Vicki L.; And Others

    This guide is designed to help readers understand depression and factors related to its onset in later life; recognize signs of depression and potential suicide; and know actions they can take if they suspect an older family member or friend may be depressed or contemplating suicide. Following a brief introduction, a chapter on depression…

  1. One hand clapping: lateralization of motor control

    PubMed Central

    Welniarz, Quentin; Dusart, Isabelle; Gallea, Cécile; Roze, Emmanuel

    2015-01-01

    Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output. PMID:26082690

  2. Lateral drug diffusion in human nails.

    PubMed

    Palliyil, Biji B; Li, Cong; Owaisat, Suzan; Lebo, David B

    2014-12-01

    The main objective of the current work is to demonstrate the process of passive lateral diffusion in the human nail plate and its effect on the passive transungual permeation of antifungal drug ciclopirox olamine (CPO). A water soluble dye, methyl red sodium salt (MR) was used to visualize the process of lateral diffusion using a novel suspended nail experiment. The decline in concentration of CPO correlates with that of concentration of MR from the proximal to the distal end of the nail in suspended nail study. Three toenails each were trimmed to 5 mm × 5 mm (25 mm(2)), 7 mm × 7 mm (49 mm(2)), and 9 mm × 9 mm (81 mm(2)) to study the extent and effect of lateral diffusion of the CPO on its in vitro transungual permeation. The permeation flux of CPO decreased as the surface area of the toenail increased. There was a positive correlation between the concentrations of CPO and MR in the area of application and in the peripheral area of the toenails of the three surface areas, confirming the findings in the suspended nail experiment. Profound lateral diffusion of CPO was demonstrated and shown to reduce the in vitro passive transungual drug permeation and prolong the lag-time in human toenails. The study data implies that during passive in vitro transungual permeation experiments, the peripheral nail around the area of drug application has to be kept to a minimum, in order to get reliable data which mimics the in vivo situation.

  3. Lateralized Temporal Order Judgement in Dyslexia

    ERIC Educational Resources Information Center

    Liddle, Elizabeth B.; Jackson, Georgina M.; Rorden, Chris; Jackson, Stephen R.

    2009-01-01

    Temporal and spatial attentional deficits in dyslexia were investigated using a lateralized visual temporal order judgment (TOJ) paradigm that allowed both sensitivity to temporal order and spatial attentional bias to be measured. Findings indicate that adult participants with a positive screen for dyslexia were significantly less sensitive to the…

  4. Defining Mental Health in Later Life.

    ERIC Educational Resources Information Center

    Qualls, Sara Honn

    2002-01-01

    Traditional models for defining mental health have used statistical definitions and symptom-based definitions. In a lifespan psychological approach, mental health in later life is defined as acceptance of the aging self as an active being who creates meaning, maintains maximum autonomy, and sustains positive relationships. (Contains 12…

  5. Piston measurement by quadriwave lateral shearing interferometry.

    PubMed

    Mousset, Soazic; Rouyer, Claude; Marre, Gabrielle; Blanchot, Nathalie; Montant, Sébastien; Wattellier, Benoit

    2006-09-01

    We present what is to our knowledge a new method for measuring the relative piston between two independent beams separated by a physical gap, typical of petawatt facilities. The feasibility of this measurement, based on quadriwave lateral shearing interferometry, has been demonstrated experimentally: piston has been measured with accuracy and sensitivity better than 50 nm.

  6. Modeling lateral acceleration effects on pilot performance

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinan, D. L.

    1982-01-01

    Attendant to the direct side force maneuver of a Vectored Force Fighter is the transverse acceleration imposed on the pilot. This lateral acceleration (Gy), when combind with a positive Gz stress, is a potential source of pilot tracking performance impairment. A research effort to investigate these performance decrements includes experimental as well as anaytical pilot performance modeling using the Optimal Control Model.

  7. Lateral Eye Movement Behavior in Children.

    ERIC Educational Resources Information Center

    Reynolds, Cecil R.; Kaufman, Alan S.

    1980-01-01

    The conjugate lateral eye movement phenomenon was investigated for 52 children aged 2 through 10 using both spatial and verbal-analytic questions. The phenomenon was observed in 50 subjects and appeared well-established by age 3 1/2. Some interesting developmental findings and discrepancies with the results of adult studies are noted. (Author/SJL)

  8. Laparoscopic versus open left lateral segmentectomy

    PubMed Central

    Carswell, Kirstin A; Sagias, Filippos G; Murgatroyd, Beth; Rela, Mohamed; Heaton, Nigel; Patel, Ameet G

    2009-01-01

    Background Laparoscopic liver surgery is becoming increasingly common. This cohort study was designed to directly compare perioperative outcomes of the left lateral segmentectomy via laparoscopic and open approach. Methods Between 2002 and 2006 43 left lateral segmentectomies were performed at King's College Hospital. Those excluded from analysis included previous liver resections, polycystic liver disease, liver cirrhosis and synchronous operations. Of 20 patients analysed, laparoscopic (n = 10) were compared with open left lateral segmentectomy (n = 10). Both groups had similar patient characteristics. Results Morbidity rates were similar with no wound or chest infection in either group. The conversion rate was 10% (1/10). There was no difference in operating time between the groups (median time 220 minutes versus 179 minutes, p = 0.315). Surgical margins for all lesions were clear. Less postoperative opiate analgesics were required in the laparoscopic group (median 2 days versus 5 days, p = 0.005). The median postoperative in-hospital stay was less in the laparoscopic group (6 days vs 9 days, p = 0.005). There was no mortality. Conclusion Laparoscopic left lateral segmentectomy is safe and feasible. Laparoscopic patients may benefit from requiring less postoperative opiate analgesia and a shorter post-operative in-hospital stay. PMID:19735573

  9. [Upper lateral incisor with 2 canals].

    PubMed

    Fabra Campos, H

    1991-01-01

    Clinical case summary of the patient with an upper lateral incisor with two root canals. The suspicion that there might be an anatomic anomaly in the root that includes a complex root canal system was made when an advanced radicular groove was detected in the lingual surface or an excessively enlarged cingulum.

  10. Profiling 1366 Technologies: One Year Later

    SciTech Connect

    Van Mierlo, Frank; Sachs, Ely

    2011-01-01

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  11. Laterality, Implicit Memory, and Attention Disorder.

    ERIC Educational Resources Information Center

    Shaw, Geraldine A.; Brown, Geoffrey

    1991-01-01

    Presents study showing children with behaviors characteristic of attention disorder/hyperactivity deficit and high intelligence have more mixed laterality and allergies. Finds these children gather and use more diverse nonverbal and poorly focused information. Concludes such children use uncommon information when exhibiting novelty in nonverbal…

  12. Preparing Future Faculty: Ten Years Later

    ERIC Educational Resources Information Center

    Murphy, Sean P.; Aiossa, Elizabeth; Winter, Mary Mugica

    2010-01-01

    When Sean Murphy designed the Graduate Student Internship Program at the College of Lake County (CLC), his 2001 TETYC article about the then two-year-old program detailed his programmatic response to the job market. Ten years later, the CLC-DePaul University partnership remains the strongest of the original dozen cross-sector relationships CLC…

  13. iPS Cells 10 Years Later.

    PubMed

    2016-09-08

    In 2006, Takahashi and Yamanaka reported the breakthrough discovery of induction of pluripotent stem cells from fibroblasts by a combination of defined factors. Ten years later, Cell editor João Monteiro brings together Shinya Yamanaka and Hans Schöler, one the original reviewers of the landmark study, to revisit the history behind the paper and its long-lasting legacy.

  14. Adolescent Sexual Debut and Later Delinquency

    ERIC Educational Resources Information Center

    Armour, Stacy; Haynie, Dana L.

    2007-01-01

    Does sexual debut (i.e., experiencing sexual intercourse for the first time) increase the risks of participating in later delinquent behavior? Does this risk increase if adolescents experience early sexual debut relative to the timing experienced by one's peers? Although many factors have been linked to sexual debut, little research has examined…

  15. Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays.

    PubMed

    Wirth, Corina; Lüscher, Hans-R

    2004-04-01

    We investigated the spatiotemporal evolution of activity in the rat barrel cortex using multielectrode arrays (MEAs). In acute brain slices, field potentials were recorded simultaneously from 60 electrodes with high spatial and temporal resolution. This new technique allowed us to map functionally discrete barrels and to observe the interplay between the excitatory and inhibitory network. The local field potentials (LFPs) were elicited by focal electrical stimulation in layer 4 (L4). Excitation recorded in a single barrel was first confined to the stimulated barrel and subsequently spread in a columnar manner to layer 2/3 (L2/3). This excitation in L4 and lower L2/3 was followed by inhibition curtailing excitation to a short period lasting only approximately 2 ms. In the uppermost layer, a long-lasting (approximately 10 ms), laterally spreading band of excitation remained active. Blockade of GABAA-receptors resulted in a long-lasting and diffuse activation of L4 and lower L2/3 and abolition of activation of the upper L2/3. Thus inhibition not only shaped the spatial-temporal map of excitation in L4 and lower L2/3 but also resulted indirectly in an excitatory action in the superficial layers. Stimulation in L6 revealed a feedforward inhibition to L4 and subsequently an excitatory L6-L4-L6 loop. The complex interplay between excitation and inhibition opens two spatial windows of excitation in the infra- and supragranular layers. They may prepare the L5 pyramidal neuron for associating top-down input from other cortical regions with bottom-up input from the whisker pad to generate behaviorally relevant output.

  16. Positively and negatively large Goos-Hänchen lateral displacements from a single negative layered structure.

    PubMed

    Talebzadeh, Robabeh; Namdar, Abdolrahman

    2012-09-20

    We study the electromagnetic beam reflection from layered structures that include the so-called ε-negative and the μ-negative materials, also called single negative materials. We predict that such structures can demonstrate a giant lateral Goos-Hänchen shift of the resonant excitation of surface waves at the interface between the conventional and single negative materials, as well as due to the excitation of leaky modes in the layered structures. Then we replace the conventional layer with a left-handed layer (a material with both ε<0 and μ<0). We show that the Goos-Hänchen shift can be positive and negative depending on the type of this layer (conventional or LH material), which can support TE or TM surface waves.

  17. Electronic excitations in long polyenes revisited.

    PubMed

    Schmidt, Maximilian; Tavan, Paul

    2012-03-28

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000)] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ≤ N ≤ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ≤ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B(u)(-) states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B(u)(-) state is the third excited singlet state for N < 12 and becomes the second for N ≥ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  18. Electronic excitations in long polyenes revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Tavan, Paul

    2012-03-01

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  19. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  20. Asymptotic properties of mathematical models of excitability.

    PubMed

    Biktasheva, I V; Simitev, R D; Suckley, R; Biktashev, V N

    2006-05-15

    We analyse small parameters in selected models of biological excitability, including Hodgkin-Huxley (Hodgkin & Huxley 1952 J. Physiol.117, 500-544) model of nerve axon, Noble (Noble 1962 J. Physiol.160, 317-352) model of heart Purkinje fibres and Courtemanche et al. (Courtemanche et al. 1998 Am. J. Physiol.275, H301-H321) model of human atrial cells. Some of the small parameters are responsible for differences in the characteristic time-scales of dynamic variables, as in the traditional singular perturbation approaches. Others appear in a way which makes the standard approaches inapplicable. We apply this analysis to study the behaviour of fronts of excitation waves in spatially extended cardiac models. Suppressing the excitability of the tissue leads to a decrease in the propagation speed, but only to a certain limit; further suppression blocks active propagation and leads to a passive diffusive spread of voltage. Such a dissipation may happen if a front propagates into a tissue recovering after a previous wave, e.g. re-entry. A dissipated front does not recover even when the excitability restores. This has no analogy in FitzHugh-Nagumo model and its variants, where fronts can stop and then start again. In two spatial dimensions, dissipation accounts for breakups and self-termination of re-entrant waves in excitable media with Courtemanche et al. kinetics.

  1. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  2. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  3. [Pre-excitation syndrome in monozygotic twins].

    PubMed

    Mispireta, J L; Cárdenas, M; Attié, F; Martínez-Ríos, M A; Medrano, G A

    1976-01-01

    A family group of seven members is presented, two of which have pre-excitation syndrome. These subjects are identical twin brothers. One of them has the W-P-W syndrome tipe B, and the other has L-G-L syndrome. The latter had an associated atrial-septal defect, and the other twin had no associated cardiovascular lesions. Both underwent electrocardiographic and vectorcardiographic studies, as well as His bundle electrograms. In the case with W-P-W, the diagnosis was made by electrocardiography, and was confirmed by vertocardiography. The His bundle electrogram showed the habitual findings in this type of pre-excitation. The His bundle potential was preceded by the beginning of the delta wave. The patient with W-P-W had episodes of supraventricular paroxysmal tachycardia, some of these with antegrade conduction through the normal pathway, and others with conduction through the anomalous pathway. The other had a L-G-L syndrome, demonstrated by electrocardiography and vectorcardiography. During the register of the His bundle electrogram, he did not present pre-excitation, the tracings in basal conditions as well as during atrial stimulation were normal. The conclusion is that many factors exist which back up the hypothesis that the pre-excitation syndromes occur because of anomalous pathways, and that this type of alteration might have a sex linked genetic basis. This presumption appears to be confirmed by the presence of pre-excitation in identical twin brothers. Other possibilities are also discussed.

  4. Theory of elementary excitations in quasiperiodic structures

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Cottam, M. G.

    2003-03-01

    The aim of this work is to present a comprehensive and up-to-date review of the main physical properties (such as energy profiles, localization, scale laws, multifractal analysis, transmission spectra, transmission fingerprints, electronic structures, magnetization curves and thermodynamic properties) of the elementary excitations that can propagate in multilayered structures with constituents arranged in a quasiperiodic fashion. These excitations include plasmon-polaritons, spin waves, light waves and electrons, among others. A complex fractal or multifractal profile of the energy spectra is the common feature among these excitations. The quasiperiodic property is formed by the incommensurate arrangement of periodic unit cells and can be of the type referred to as deterministic (or controlled) disorder. The resulting excitations are characterized by the nature of their Fourier spectrum, which can be dense pure point (as for the Fibonacci sequence) or singular continuous (as for the Thue-Morse and double-period sequences). These sequences are described in terms of a series of generations that obey particular recursion relations, and they can be considered as intermediate systems between a periodic crystal and the random amorphous solids, thus defining a novel description of disorder. A discussion is also included of some spectroscopic techniques used to probe the excitations, emphasizing Raman and Brillouin light scattering.

  5. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  6. Knee joint input into the peripheral region of the ventral posterior lateral nucleus of cat thalamus.

    PubMed

    Hutchison, W D; Lühn, M A; Schmidt, R F

    1992-05-01

    1. Experiments were carried out in chloralose-anesthetized cats to study the responses of neurons in the lateral thalamus to excitation of afferent fibres from the knee joint. 2. Single- and multi-unit recordings were made with tungsten electrodes in dorsoventral penetrations through the ventral posterior lateral nucleus (VPL) during electrical stimulation of the medial articular nerve (MAN) of the cat's knee joint at an intensity sufficient to excite slowly conducting unmyelinated fibers. The locations of the recording sites were verified by recovering electrolytic lesion sites in histological sections (Nissl and cytochrome oxidase staining). 3. The average earliest latency for excitation of thalamic responses was 19.1 +/- 8.5 (SD) ms (n = 50). The threshold for excitation of most thalamic units was found to correspond to peripheral joint afferent fibers of the A-delta group. 4. The majority of neurons responding to MAN stimulation were found to be dorsal or ventral to the low-threshold cutaneous hindlimb region of the lateral division of the VPL (stereotaxic coordinates: AP 9.0-11.5; ML 7.0-9.5). In the ventral periphery of the VPL, most neurons responding to MAN stimulation (11/14) were wide dynamic range (WDR) with a discrete cutaneous receptive field on the hindpaw digits. Six WDR neurons were found dorsal to the hindlimb VPL with a convergent receptive field on the hindlimb (but not hindpaw digits). No nociceptive-specific knee joint units were found. 5. Other neurons were found dorsal to the hindlimb VPL with large receptive fields often encompassing the whole contralateral leg, including skin and deep hindlimb structures, possibly in a region described as the dorsal portion of the posterior complex (POd). Some neurons were found with no receptive field. 6. This study provides the first observations on the responses of lateral thalamic neurons to stimulation of the MAN of the cat knee joint. These results demonstrate a central pathway conveying impulses from

  7. Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions

    NASA Astrophysics Data System (ADS)

    Ding, X. D.; An, J.; Xu, J. B.; Li, C.; Zeng, R. Y.

    2009-06-01

    A multifrequency scanning probe technique which can enhance the spatial resolution of electrostatic force microscopy (EFM) in amplitude-modulation mode under ambient conditions is demonstrated. The first eigenmode of a cantilever is used for topographic imaging, while the second eigenmode is resonantly excited with a sinusoidal modulation voltage applied to the cantilever to measure electrostatic force in lift mode. Two-dimensional images and spectra of electrostatic force are obtained. The lateral resolution of the multifrequency EFM is demonstrated to be better than 15 nm and a theoretical explanation is postulated.

  8. Measuring acetabular component position on lateral radiographs - ischio-lateral method.

    PubMed

    Pulos, Nicholas; Tiberi Iii, John V; Schmalzried, Thomas P

    2011-01-01

    The standard method for the evaluation of arthritis and postoperative assessment of arthroplasty treatment is observation and measurement from plain films, using the flm edge for orientation. A more recent employment of an anatomical landmark, the ischial tuberosity, has come into use as orientation for evaluation and is called the ischio-lateral method. In this study, the use of this method was evaluated as a first report to the literature on acetabular component measurement using a skeletal reference with lateral radiographs. Postoperative radiographs of 52 hips, with at least three true lateral radiographs taken at different time periods, were analyzed. Component position was measured with the historical method (using the flm edge for orientation) and with the new method using the ischio-lateral method. The mean standard deviation (SD) for the historical approach was 3.7° and for the ischio-lateral method, 2.2° (p < 0.001). With the historical method, 19 (36.5%) hips had a SD greater than ± 4°, compared to six hips (11.5%) with the ischio-lateral method. By using a skeletal reference, the ischio-lateral method provides a more consistent measurement of acetabular component position. The high intra-class correlation coefficients for both intra- and inter-observer reliability indicate that the angle measured with this simple method, which employs no further technology, increased time, or cost, is consistent and reproducible for multiple observers.

  9. Patterns of conductivity in excitable automata with updatable intervals of excitations

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2012-11-01

    We define a cellular automaton where a resting cell excites if number of its excited neighbors belong to some specified interval and boundaries of the interval change depending on ratio of excited and refractory neighbors in the cell's neighborhood. We calculate excitability of a cell as a number of possible neighborhood configurations that excite the resting cell. We call cells with maximal values of excitability conductive. In exhaustive search of functions of excitation interval updates we select functions which lead to formation of connected configurations of conductive cells. The functions discovered are used to design conductive, wirelike, pathways in initially nonconductive arrays of cells. We demonstrate that by positioning seeds of growing conductive pathways it is possible to implement a wide range of routing operations, including reflection of wires, stopping wires, formation of conductive bridges, and generation of new wires in the result of collision. The findings presented may be applied in designing conductive circuits in excitable nonlinear media, reaction-diffusion chemical systems, neural tissue, and assemblies of conductive polymers.

  10. Lateral cephalometric radiograph versus lateral nasopharyngeal radiograph for quantitative evaluation of nasopharyngeal airway space

    PubMed Central

    Pereira, Suelen Cristina da Costa; Beltrão, Rejane Targino Soares; Janson, Guilherme; Garib, Daniela Gamba

    2014-01-01

    Objective This study compared lateral radiographs of the nasopharynx (LN) and lateral cephalometric radiographs (LC) used to assess nasopharyngeal airway space in children. Material and Methods One examiner measured the nasopharyngeal space of 15 oral breathing patients aged between 5 and 11 years old by using LN and LC. Both assessments were made twice with a 15-day interval in between. Intergroup comparison was performed with t-tests (P < 0.05). Results Comparison between LN and LC measurements showed no significant differences. Conclusion Lateral cephalometric radiograph is an acceptable method used to assess nasopharyngeal airway space. PMID:25279526

  11. Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish.

    PubMed

    Zipser, B; Bennett, M V

    1976-07-01

    A signal associated with the neural command to discharge the electric organ is recorded in cells of the lateral line lobe. Responses of cells activated by medium receptor inputs are facilitated or less frequently inhibited during this command-associated signal. Only responses to disynaptic inputs are affected, the monosynaptic response is not altered. The periods of facilitation and inhibition occur at times at which electroreceptor activity evoked by organ discharge reaches the lateral line lobe. Presumably the command-associated signal is important in electrolocation. Cells responding to large receptor inputs are inhibited by the command-associated signal. Activity evoked by large receptors is transmitted in a mesencephalic fiber tract. The tract response is also inhibited by the command-associated signal. Since each organ discharge would excite all the large receptors at short latency, there would be little information contained in their responses. Inhibiting discharge-evoked activity may allow the system to return to maximum sensitivity most rapidly.

  12. Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes

    SciTech Connect

    Armstrong, Clare L; Barrett, M; Heiss, Arno; Salditt, Tim; Katsaras, John; Shi, An-Chang; Rheinstadter, Maikel C

    2012-01-01

    Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be softer than fluid bilayers, but better ordered than bilayers in the gel phase.

  13. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.

    PubMed

    He, Meng-Dong; Zhang, Gui; Liu, Jian-Qiang; Li, Jian-Bo; Wang, Xin-Jun; Huang, Zhen-Rong; Wang, Lingling; Chen, Xiaoshuang

    2014-03-24

    We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

  14. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    NASA Astrophysics Data System (ADS)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo

    2016-07-01

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  15. Stationary Phonon Squeezing by Optical Polaron Excitation

    NASA Astrophysics Data System (ADS)

    Papenkort, T.; Axt, V. M.; Kuhn, T.

    2017-03-01

    We demonstrate that a stationary squeezed phonon state can be prepared by a pulsed optical excitation of a semiconductor quantum well. Unlike previously discussed scenarios for generating squeezed phonons, the corresponding uncertainties become stationary after the excitation and do not oscillate in time. The effect is caused by two-phonon correlations within the excited polaron. We demonstrate by quantum kinetic simulations and by a perturbation analysis that the energetically lowest polaron state comprises two-phonon correlations which, after the pulse, result in an uncertainty of the lattice momentum that is continuously lower than in the ground state of the semiconductor. The simulations show the dynamics of the polaron formation process and the resulting time-dependent lattice uncertainties.

  16. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  17. Asymmetric magnon excitation by spontaneous toroidal ordering

    SciTech Connect

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-04-12

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky–Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin–orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. Furthermore, the implications regarding candidate materials for asymmetric magnon excitations are presented.

  18. Photothermal measurements using a localized excitation source

    NASA Astrophysics Data System (ADS)

    Aamodt, L. C.; Murphy, J. C.

    1981-08-01

    Optical-beam deflection (OBD) photothermal imaging uses spatially localized excitation to observe spatial variations in the sample surface temperature. This paper analyzes OBD signals produced by localized excitation in terms of three-dimensional thermal diffusion in the sample and in the fluid region in contact with the sample. The dependence of the signals on the local optical absorption coefficient, on gas/sample thermal properties, on modulation frequency, and on the probe/excitation beam radii are discussed with special attention being given to determining the spatial resolution possible for OBD imaging. A criterion for photothermal ''saturation'' appropriate to localized optical absorption is developed. Finally, a new variant of the OBD technique is introduced, which is especially adapted to studying optical and thermal boundaries in the plane of the sample. Some comparisons between theory and experiment are provided which illustrate transverse thermal diffusion.

  19. Resonance Raman excitation profiles of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1981-01-01

    The resonance Raman spectrum of lycopene has been examined in acetone solvent and excitation profiles of the three fundamentals ν1, ν2, and ν3 have been determined. The excitation data and the visible spectrum have been analyzed using two-mode and three-mode vibrational models, with the two-mode model involving virtual states of ν1 and ν2 giving the best fit to the data. This mode mixing or Duskinsky effect was not observed for β-carotene. The single-mode and three-mode theories which have been used to explain the corresponding data for β-carotene are shown to be inconsistent with the experimental data of lycopene. Equations for calculating excitation profiles and visible spectra are given.

  20. On modulations of the Chandler wobble excitation

    NASA Astrophysics Data System (ADS)

    Zotov, L.; Bizouard, C.

    2012-12-01

    We derive the Chandler wobble excitation from the polar motion (PM) observations by using the Panteleev corrective filtering. The latter method is based on inversion of the Euler-Liouville equation, with additional filtering in the Chandler frequency band. The excitation reconstruction reveals amplitude changes different from the one observed in the Chandler wobble itself. Their main feature, well observable over the length of the day (LOD), is the presence of a 18.6-year amplitude modulation synchronous with the lunar orbital precession cycle and tidal effects. The filtering of oceanic and atmospheric excitation in the Chandler frequency band also reveals a coherent 18.6-year oceanic pattern. Most probably the ocean provide a channel for the tidal energy transfer.

  1. Chandler wobble excitation reconstruction and analysis

    NASA Astrophysics Data System (ADS)

    Zotov, Leonid

    2010-05-01

    Different methods of geodetic excitation reconstruction from observations of the polar motion are compared. Among them Wilson-Jeffreys filter, Tikhonov regularization, Panteleev corrective smoothing. Reconstruction of Chandler excitation is an inverse problem, aggravated by the strong annual oscillation, which is nearby in frequency band. Special attempts to filter annual oscillation out were undertaken, among them the harmonic model subtraction, Singular Spectrum Analysis (SSA) and Panteleev smoothing. Obtained results compared one with another and with geophysical excitations, such as atmospheric and oceanic angular momentum, El Nino event, solar and lunar tides. Amplitude and phase correlation analysis was performed. Phase change of the Chandler oscillation in the 30-th of the XX century found a partial explanation. This work is supported by grant of the President of Russia MK-4234.2009.5

  2. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  3. Minimizing broadband excitation under dissipative conditions

    NASA Astrophysics Data System (ADS)

    Gelman, David; Kosloff, Ronnie

    2005-12-01

    Optimal control theory is employed for the task of minimizing the excited-state population of a dye molecule in solution. The spectrum of the excitation pulse is contained completely in the absorption band of the molecule. Only phase control is studied which is equivalent to optimizing the transmission of the pulse through the medium. The molecular model explicitly includes two electronic states and a single vibrational mode. The other degrees of freedom are classified as bath modes. The surrogate Hamiltonian method is employed to incorporate these bath degrees of freedom. Their influence can be classified as electronic dephasing and vibrational relaxation. In accordance with experimental results, minimal excitation is associated with a negatively chirped pulses. Optimal pulses with more complex transient structure are found to be superior to linearly chirped pulses. The difference is enhanced when the fluence is increased. The improvement degrades when dissipative effects become more dominant.

  4. Excited light meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas, Hadron Spectrum Collaboration

    2012-04-01

    I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.

  5. Asymptotic wave propagation in excitable media.

    PubMed

    Bernus, Olivier; Vigmond, Edward

    2015-07-01

    Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue, confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.

  6. Shear layer excitation, experiment versus theory

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.; Stahl, B.

    1984-01-01

    The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.

  7. Self-excitation of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2016-04-01

    The novel effect of self-excitation of surface plasmons (SESP) in a plasmonic nanocavity is predicted, and its theory is developed from first principles. It is assumed that the cavity is formed by a nanogap between two metals and contains polarizable inclusions. Basing on the dyadic Green's function of the structure, the equations for the field in the cavity are investigated. It is shown that under certain conditions the field becomes unstable that leads to its self-excitation. The threshold criterion for self-excitation as well as the frequency of self-oscillation are derived in an analytical form. The SESP effect is explained in terms of a positive feedback for the polarization of inclusions provided by the field reflected from the cavity walls. These findings suggest a principally new avenue to surface plasmon generation which does not employ stimulated emission and is different from SPASER or plasmon laser.

  8. Nanoscale control of phonon excitations in graphene

    PubMed Central

    Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo

    2015-01-01

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454

  9. Excited baryons in the 1/Nc expansion

    NASA Astrophysics Data System (ADS)

    Matagne, N.; Stancu, Fl.

    2012-04-01

    We briefly describe the 1/Nc expansion method for studying baryon masses. Two approaches of the large Nc excited baryons have been proposed so far. The first one, based on the Hartree picture, treats the baryon as a ground state core and an excited quark and the second one, suggested recently, considers the baryon globally, without decoupling the system. The masses of excited states of mixed orbital symmetry of nonstrange and strange baryons belonging to the lowest [70, -] multiplet are calculated in the 1/Nc expansion to order 1/Nc with the new method which allows to considerably reduce the number of linearly independent operators entering the mass formula. The status of the resonance Λ(1405) is discussed.

  10. Customized MFM probes with high lateral resolution

    PubMed Central

    Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Summary Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  11. Motorcycle state estimation for lateral dynamics

    NASA Astrophysics Data System (ADS)

    Teerhuis, A. P.; Jansen, S. T. H.

    2012-08-01

    The motorcycle lean (or roll) angle development is one of the main characteristics of motorcycle lateral dynamics. Control of motorcycle motions requires an accurate assessment of this quantity and for safety applications also the risk of sliding needs to be considered. Direct measurement of the roll angle and tyre slip is not available; therefore, a method of model-based estimation is developed to estimate the state of a motorcycle. This paper investigates the feasibility of such a motorcycle state estimator (MCSE). A simplified analytic model of a motorcycle is developed by comparison to an extended multi-body model of the motorcycle, designed in Matlab/SimMechanics. The analytic model is used inside an extended Kalman filter. Experimental results of an instrumented Yamaha FJR1300 motorcycle show that the MCSE is a feasible concept for obtaining signals related to the lateral dynamics of the motorcycle.

  12. Robust lateral control of highway vehicles

    SciTech Connect

    Byrne, R.H.; Abdallah, C.

    1994-08-01

    Vehicle lateral dynamics are affected by vehicle mass, longitudinal velocity, vehicle inertia, and the cornering stiffness of the tires. All of these parameters are subject to variation, even over the course of a single trip. Therefore, a practical lateral control system must guarantee stability, and hopefully ride comfort, over a wide range of parameter changes. This paper describes a robust controller which theoretically guarantees stability over a wide range of parameter changes. The robust controller is designed using a frequency domain transfer function approach. An uncertainty band in the frequency domain is determined using simulations over the range of expected parameter variations. Based on this bound, a robust controller is designed by solving the Nevanlinna-Pick interpolation problem. The performance of the robust controller is then evaluated over the range of parameter variations through simulations.

  13. Epidural Abscess Masquerading as Lateral Sinus Thrombosis

    PubMed Central

    Brodner, David C.; Cutler, Jeff; Gianoli, Gerard J.; Amedee, Ronald G.

    2000-01-01

    Controversy regarding the use of anticoagulants, the evacuation of the sinus, or the use of medical treatment alone surrounds the treatment of lateral sinus thrombosis. Treatment of an epidural abscess associated with coalescent mastoiditis is much less controversial-drainage is usually recommended. The differing treatments of these complications mandate accurate diagnosis. The advent of more sophisticated radiological studies has facilitated diagnosis of these complications; however, tests are not infallible. We present three cases in which preoperative imaging demonstrates an epidural abscess mimicking lateral sinus thrombosis by compression of the vessel. A false-positive computed tomography (CT) or magnetic resonance imaging (MRI) study may lead to the wrong diagnosis and, consequently, improper treatment. In light of this possibility, we recommend surgical exploration in all such cases. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:17171148

  14. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market.

  15. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  16. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  17. Early Taste Experiences and Later Food Choices

    PubMed Central

    De Cosmi, Valentina; Scaglioni, Silvia; Agostoni, Carlo

    2017-01-01

    Background. Nutrition in early life is increasingly considered to be an important factor influencing later health. Food preferences are formed in infancy, are tracked into childhood and beyond, and complementary feeding practices are crucial to prevent obesity later in life. Methods. Through a literature search strategy, we have investigated the role of breastfeeding, of complementary feeding, and the parental and sociocultural factors which contribute to set food preferences early in life. Results. Children are predisposed to prefer high-energy, -sugar, and -salt foods, and in pre-school age to reject new foods (food neophobia). While genetically determined individual differences exist, repeated offering of foods can modify innate preferences. Conclusions. Starting in the prenatal period, a varied exposure through amniotic fluid and repeated experiences with novel flavors during breastfeeding and complementary feeding increase children’s willingness to try new foods within a positive social environment. PMID:28165384

  18. Measurement of excited layer thickness in highly photo-excited GaAs

    NASA Astrophysics Data System (ADS)

    Liang, Lingliang; Tian, Jinshou; Wang, Tao; Wu, Shengli; Li, Fuli; Gao, Guilong

    2016-10-01

    Highly photo-excited layer thickness in GaAs is measured using a pump probe arrangement. A normally incident pump illumination spatially modulated by a mask will induce a corresponding refractive index change distribution in the depth direction due to edge scattering and attenuation absorption effect, which can deflect the probe beam passing through this excited region. Maximum deflection of the probe beam will be limited by the thickness of excited layer, and thus can also be employed to measure the thickness of the photo-excited layer of the material. Theoretical calculation confirms the experimental results. This method can find its application in measurements of photo-excited layer thickness of many kinds of materials and be significant to study the characteristics of materials in laser machining, grating and waveguide fabricating.

  19. Influence of excitation and deexcitation processes on the dynamics of laser-excited argon clusters

    NASA Astrophysics Data System (ADS)

    Moll, M.; Schlanges, M.; Bornath, Th.; Krainov, V. P.

    2015-03-01

    The excitation of atomic clusters by intense infrared laser pulses leads to the creation of highly charged ions and to the emission of energetic photons. These phenomena, which follow from ionization processes occurring in the cluster, depend significantly on the population of ground states and excited states in the laser-produced nanoplasma. This makes it necessary to account for collisional excitation and deexcitation processes. We investigate the interaction of femtosecond laser pulses with argon clusters by means of a nanoplasma model. Considering laser excitation with single and double pulses, we analyze the role of excitation and deexcitation processes in detail and calculate the yield of highly charged ions and of energetic photons in different wavelength regimes.

  20. Liquefaction-Induced Lateral Spread Displacement

    DTIC Science & Technology

    1993-06-01

    available from these larger events, however, is too meager to provide adequate statistical constraint on the regression analysis. Thus, extrapolation to...the lateral spreads that developed in the South of Market and Mission Creek zones of San Francisco during the 1906 earthquake moved only about 10% to...History Database (After Bartlett and Youd, 1992) 1906 San Francisco Earthquake Coyote Creek Bridge near Milpitas, California Mission Creek Zone in San

  1. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  2. Laterally-Biased Quantum IR Detectors

    DTIC Science & Technology

    2013-10-23

    Sistemas Optoelectronicos y Microtecnologia Calle Ramiro de Maeztu 7 Madrid 28040 SPAIN EOARD Grant 12-3006 Report Date: October 2013 Final...Universidad Politecnica de Madrid Instituto de Sistemas Optoelectronicos y Microtecnologia Calle Ramiro de Maeztu 7 Madrid 28040 SPAIN 8. PERFORMING...Z39-18 Laterally-biased quantum IR detectors – Report Nov 2013 1 EOARD - Award No. FA8655-12-1-3006 Instituto de Sistemas Optoelectrónicos

  3. A lateralized brain network for visuospatial attention.

    PubMed

    Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Forkel, Stephanie J; Simmons, Andrew; Vergani, Francesco; Murphy, Declan G M; Catani, Marco

    2011-09-18

    Right hemisphere dominance for visuospatial attention is characteristic of most humans, but its anatomical basis remains unknown. We report the first evidence in humans for a larger parieto-frontal network in the right than left hemisphere, and a significant correlation between the degree of anatomical lateralization and asymmetry of performance on visuospatial tasks. Our results suggest that hemispheric specialization is associated with an unbalanced speed of visuospatial processing.

  4. [Surgical anatomy of the lateral ventricles].

    PubMed

    Lejeune, J-P; Baroncini, M; Peltier, J; Le Gars, D

    2011-01-01

    The lateral ventricle is a deep-seated cavity, overlayed by a cortical mantle which contains eloquent areas, especially on the dominant hemisphere, and surrounded by the optic radiations. The surgical approach requires a thorough preoperative reflexion based on magnetic resonance imaging, in order to understand the site of origin and the vascular pedicles of the tumor. Surgical approaches to the frontal horn, temporal horn and atrium are successively described.

  5. Evaluation and management of amyotrophic lateral sclerosis.

    PubMed

    Valadi, Nojan

    2015-06-01

    Motor neuron diseases can cause progressive impairment of voluntary muscles of movement, respiration, speech, and swallowing. This review discusses the most common motor neuron disease, amyotrophic lateral sclerosis (ALS). It reviews the evaluation, diagnosis, and management of ALS, and its epidemiology, pathophysiology, and management. A coordinated approach by the primary care physician and neurologist is necessary with a focus on treatment options, durable medical equipment needs, and end-of-life discussions.

  6. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  7. Electron-impact vibrational excitation of cyclopropane

    SciTech Connect

    Čurík, R. Čársky, P.; Allan, M.

    2015-04-14

    We report a very detailed test of the ab initio discrete momentum representation (DMR) method of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison of its results with an extensive set of experimental data, covering the entire range of scattering angles from 10{sup ∘} to 180{sup ∘} and electron energies from 0.4 to 20 eV. The DMR calculations were carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space, and the interaction between the scattered electron and the target molecule was described by exact static-exchange potential corrected by a density functional theory (DFT) correlation-polarization interaction that models target’s response to the field of incoming electron. The theory is found to quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of extreme angles and at low energies, and thus provides full understanding of the excitation mechanism. It is shown that the overlap of individual vibrational bands caused by limited experimental resolution and rotational excitation must be properly taken into account for correct comparison of experiment and theory. By doing so, an apparent discrepancy between published experimental data could be reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting mode ν{sub 4} of A{sub 1}{sup ″} symmetry by the 5.5 eV A{sub 2}{sup ′} resonance, surprisingly because the currently accepted selection rules predict this process to be forbidden. The DMR theory shows that the excitation is caused by an incoming electron in an f-wave of A{sub 2}{sup ′} symmetry which causes excitation of the non-symmetric HCH twisting mode ν{sub 4} of the A{sub 1}{sup ″} symmetry and departs in p- and f-waves of A{sub 2}{sup ″} symmetry.

  8. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V.

    2017-01-03

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  9. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  10. Lateral flow immunoassay using magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Taton, Kristin; Johnson, Diane; Guire, Patrick; Lange, Erik; Tondra, Mark

    2009-05-01

    Magnetic particles have been adapted for use as labels in biochemical lateral flow strip tests. Standard gold particle lateral flow assays are generally qualitative; however, with magnetic particles, quantitative results can be obtained by using electronic detection systems with giant magnetoresistive (GMR) sensors. As described here, these small integrated sensor chips can detect the presence of magnetic labels in capture spots whose volume is approximately 150 μm×150 μm×150 μm. The range of linear detection is better than two orders of magnitude; the total range is up to four orders of magnitude. The system was demonstrated with both indirect and sandwich enzyme-linked immunosorbent assays (ELISAs) for protein detection of rabbit IgG and interferon-γ, respectively, achieving detection of 12 pg/ml protein. Ultimately, the goal is for the detector to be fully integrated into the lateral flow strip backing to form a single consumable item that is interrogated by a handheld electronic reader.

  11. Perturbations Caused by Lateral Stress Gauges

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Harris, E. J.

    2007-12-01

    In principle, stress gauges mounted to measure lateral stresses in a shocked matrix allow the shear strength of the material to be determined. Interpreting the records from lateral stress gauges is hindered by the fact that the stress field in the insulating layer in which the gauges are mounted can differ signifcantly from the stress field that would be generated in the sample if no gauge were present. A series of high resolution Eulerian code calculations have been run which suggest that the stresses in the insulating layer vary with distance and time in a way that depends on the thickness of the layer, the shock strength, and the elastic and plastic properties of both the layer and the matrix. In particular, if the shock velocity in the matrix material is high the stress at a typical gauge position initially rises to a sharp peak then falls with time, but when the shock velocity in the matrix is low the stress rises relatively gradually throughout the time of interest. The shapes of the stress-time profiles predicted by the hydrocode compare well with the results of lateral gauge experiments on several different materials.

  12. Lateral approach for supraclavicular brachial plexus block

    PubMed Central

    Sahu, DK; Sahu, Anjana

    2010-01-01

    A lateral approach described by Volker Hempel and Dr. Dilip Kotharihas been further studied, evaluated and described in detail in the present study. The aim of this study was to evaluate lateral approach of supraclavicular brachial plexus block, mainly in terms of successes rate and complication rate. The study was conducted in secondary level hospital and tertiary level hospital from 2004 to 2008. It was a prospective nonrandomized open-level study. Eighty-two patients of both sexes, aged between 18 and 65 years with ASA Grade I and II scheduled to undergo elective major surgery of the upper limb below the midarm, were selected for this new lateral approach of brachial plexus block. The onset and duration of sensory and motor block, any complications and need for supplement anaesthesia were observed. Success and complication rate were calculated in percentage. Average onset and duration of sensory and motor block was calculated as mean ± SD and percentage. Out of 82 patients, 75 (92%) have got successful block with no significant complication in any case. PMID:20885867

  13. Lateral jet injection into typical combustor flowfields

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1986-01-01

    The experimental problem of lateral jet injection into typical flow fields in the absence of combustion was studied. All flow fields being investigated have no expansion of the crossflow (the test section to swirler diameter ratio D/d = 1), after its passage through an optional swirler (with swirl vane angle phi = 0 (swirler removed), 45, and 70 degree). The lateral jet(s) is(are) located one test-section diameter downstream of the test-section inlet (x/D = 1). The lateral jets have round-sectioned nozzles, each of which has an area of 1/100th of the cross sectional area of the crossflow (A sub j/A sub c = 1/100). Jet-to-crossflow velocity ratios of R = v sub j/u sub o = 2, 4, and 6 were investigated. Helium-bubble low visualization, five-hole pitot probe time-mean velocity measurements, and single-wire time-mean velocity and normal and shear stress turbulence data were obtained in the research program.

  14. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  15. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  16. Laser Excited Fluorescence For Forensic Diagnostics

    NASA Astrophysics Data System (ADS)

    McKinney, Robert E.

    1986-07-01

    The application of laser excited fluorescence to the detection and identification of latent fingerprints was first accomplished ten years ago. The development of the technology has progressed rapidly with the introduction of commercial equipment by several manufacturers. Systems based on Argon-ion, Copper-vapor, and frequency-doubled Nd:YAG lasers are compared. The theoretical basis of detection by fluorescence is discussed along with the more useful techniques of dye staining. Other applications of the laser excited fluorescence in forensic investigation include gunshot residue analysis, serology, collection of trace evidence, and document examination.

  17. The resonance Raman excitation profile of lutein

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    The resonance Raman excitation profiles for the ν 1, ν 2 and ν 3 vibrations of lutein in acetone, toluene and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found in acetone and toluene, but the results in carbon disulfide indicate a possible breakdown in the three-mode model. The major broadening mechanism is homogeneous, with about a 25% contribution from inhomogeneous broadening.

  18. The resonance Raman excitation profile of fucoxanthin

    NASA Astrophysics Data System (ADS)

    Ballard, L. J.; Glasgow, L. A.; Hoskins, L. C.; Krohe, T.

    1989-01-01

    The resonance Raman excitation profiles (RREPs) of the ν 1 and ν 2 vibrations of fucoxanthin in acetone and toluene solvents have been studied. Fucoxanthin, which is a predominant pigment in marine seaweed and phytoplankton, has several structural differences from carotenoids for which excitation profiles have been determined. The RREPs for fucoxanthin are interpreted in terms of a two-mode model and show a B2 value which is approximately 20% lower than for carotenoids like β-carotene and lutein which occur in higher plants. Excellent fits between experimental data and the theoretical model were observed in both solvents.

  19. Double Photoionization of excited Lithium and Beryllium

    SciTech Connect

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  20. Elementary spin excitations in ultrathin itinerant magnets

    NASA Astrophysics Data System (ADS)

    Zakeri, Khalil

    2014-12-01

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  1. Exciting baryons: Now and in the future

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    2012-04-01

    This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.

  2. Two-photon excitation fluorescence microscopy.

    PubMed

    So, P T; Dong, C Y; Masters, B R; Berland, K M

    2000-01-01

    Two-photon fluorescence microscopy is one of the most important recent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast images and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine.

  3. Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus

    PubMed Central

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T.; Baker, Kenneth B.; Machado, Andre G.

    2015-01-01

    Background Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. Objective To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Methods Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. Results ICMS-evoked MEPs were reduced in stroke (n=10) relative to naïve (n=12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22–58%, while in the stroke group, MEPs were enhanced by 9–41% compared to OFF DBS conditions. Conclusions Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. PMID:26215752

  4. Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction.

    PubMed

    Santini, Edwin; Sepulveda-Orengo, Marian; Porter, James T

    2012-08-01

    There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K(+) channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K(+) channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders.

  5. Frequency domain response of a parametrically excited riser under random wave forces

    NASA Astrophysics Data System (ADS)

    Lei, Song; Zhang, Wen-Shou; Lin, Jia-Hao; Yue, Qian-Jin; Kennedy, D.; Williams, F. W.

    2014-01-01

    Floating Production, Drilling, Storage and Offloading units represent a new technology with a promising future in the offshore oil industry. An important role is played by risers, which are installed between the subsea wellhead and the Tension Leg Deck located in the middle of the moon-pool in the hull. The inevitable heave motion of the floating hull causes a time-varying axial tension in the riser. This time dependent tension may have an undesirable influence on the lateral deflection response of the riser, with random wave forces in the frequency domain. To investigate this effect, a riser is modeled as a Bernoulli-Euler beam. The axial tension is expressed as a static part, along with a harmonic dynamic part. By linearizing the wave drag force, the riser's lateral deflection is obtained through a partial differential equation containing a time-dependent coefficient. Applying the Galerkin method, the equation is reduced to an ordinary differential equation that can be solved using the pseudo-excitation method in the frequency domain. Moreover, the Floquet-Liapunov theorem is used to estimate the stability of the vibration system in the space of parametric excitation. Finally, stability charts are obtained for some numerical examples, the correctness of the proposed method is verified by comparing with Monte-Carlo simulation and the influence of the parametric excitation on the frequency domain responses of the riser is discussed.

  6. Lateral shear-moraines and lateral marginal-moraines of palaeo-ice streams

    NASA Astrophysics Data System (ADS)

    Batchelor, C. L.; Dowdeswell, J. A.

    2016-11-01

    An understanding of the nature of sedimentation at ice-stream lateral margins is important in reconstructing the dynamics of former ice sheets and modelling the mechanisms by which sediment is transported beneath contemporary ice streams. Theories of the formation of ice-stream lateral moraines (ISLMs) have hitherto been based on a relatively limited number of terrestrial and marine examples. Here, an inventory of ISLMs is compiled from available studies, together with independent analysis of seismic-reflection and bathymetric datasets. The locations and dimensions of 70 ISLMs, alongside a synthesis of their key architectural and geomorphic characteristics, are presented. Two different types of ISLMs are identified. Type 1 ISLMs are up to 3.5 km wide and 60 m thick. They maintain a constant width, thickness and cross-sectional shape along their length. Type 1 ISLMs are interpreted and referred to as ice-stream lateral shear-moraines that form subglacially in the shear zone between ice streams and slower-flowing regions of an ice sheet. In contrast, Type 2 ISLMs are up to 50 km wide and 300 m thick. They are only identified close to the shelf break in the marine environment. Type 2 ISLMs exhibit an increase in width and thickness along their length and their distal slopes become steeper in a seaward direction. They contain internal dipping reflections that indicate sediment progradation away from the former ice stream. Type 2 ISLMs are interpreted and referred to as ice-stream lateral marginal-moraines that were formed at the lateral boundary between ice streams and seafloor terrain that was free of grounded ice. We suggest that, using bathymetric images and acoustic profiles, it is possible to differentiate between ice-stream lateral shear-moraines and lateral marginal-moraines in the geological record. This distinction is important for understanding the mechanisms of sediment transfer beneath ice streams and for making inferences about the conditions that existed

  7. Neural transduction in Xenopus laevis lateral line system.

    PubMed

    Strelioff, D; Honrubia, V

    1978-03-01

    1. The process of neural excitation in hair cell systems was studied in an in vitro preparation of the Xenopus laevis (African clawed toad) lateral line organ. A specially designed stimulus chamber was used to apply accurately controlled pressure, water movement, or electrical stimuli, and to record the neural responses of the two afferent fibers innervating each organ or stitch. The objective of the study was to determine the characteristics of the neural responses to these stimuli, and thus gain insight into the transduction process. 2. A sustained deflection of the hair cell cilia due to a constant flow of water past the capula resulted in a maintained change in the mean firing rate (MFR) of the afferent fibers. The data also demonstrated that the neural response was proportional to the velocity of the water flow and indicated that both deflection and movement of the cilia were the effective physiological stimuli for this hair cell system. 3. The preparations responded to sinusoidal water movements (past the capula) over the entire frequency range of the stimulus chamber, 0.1-130 Hz, and were most sensitive between 10 and 40 Hz. The variation of the MFR and the percent modulation indicated that the average dynamic range of each organ was 23.5 dB. 4. The thresholds, if any, for sustained pressure changes and for sinusoidal pressure variations in the absence of water movements were very high. Due to the limitations of the stimulus chamber it was not possible to generate pressure stimuli of sufficient magnitude to elicit a neural response without also generating suprathreshold water-movement stimuli. Sustained pressures had no detectable effect on the neural response to water-movement stimuli. 5. The preparations were very sensitive to electrical potentials applied across the toad skin on which the hair cells were located. Potentials which made the ciliated surfaces of the hair cells positive with respect to their bases increased the MFR of the fibers, whereas

  8. Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow

    NASA Astrophysics Data System (ADS)

    Carapella, G.; Sabatino, P.; Gombos, M.

    2017-02-01

    We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.

  9. Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes.

    PubMed

    Gillis, J Andrew; Modrell, Melinda S; Northcutt, R Glenn; Catania, Kenneth C; Luer, Carl A; Baker, Clare V H

    2012-09-01

    Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electroreceptors. This calls into question the homology of electroreceptors and ampullary organs in the two lineages of jawed vertebrates. Here, we test the hypothesis that lateral line placodes form electroreceptors in cartilaginous fishes by undertaking the first long-term in vivo fate-mapping study in any cartilaginous fish. Using DiI tracing for up to 70 days in the little skate, Leucoraja erinacea, we show that lateral line placodes form both ampullary electroreceptors and mechanosensory neuromasts. These data confirm the homology of electroreceptors and ampullary organs in cartilaginous and non-teleost bony fishes, and indicate that jawed vertebrates primitively possessed a lateral line placode-derived system of electrosensory ampullary organs and mechanosensory neuromasts.

  10. Lateral epicondylitis and beyond: imaging of lateral elbow pain with clinical-radiologic correlation.

    PubMed

    Kotnis, Nikhil A; Chiavaras, Mary M; Harish, Srinivasan

    2012-04-01

    The diagnosis of lateral epicondylitis is often straightforward and can be made on the basis of clinical findings. However, radiological assessment is valuable where the clinical picture is less clear or where symptoms are refractory to treatment. Demographics, aspects of clinical history, or certain physical signs may suggest an alternate diagnosis. Knowledge of the typical clinical presentation and imaging findings of lateral epicondylitis, in addition to other potential causes of lateral elbow pain, is necessary. These include entrapment of the posterior interosseous and lateral antebrachial cutaneous nerves, posterolateral rotatory instability, posterolateral plica syndrome, Panner's disease, osteochondritis dissecans of the capitellum, radiocapitellar overload syndrome, occult fractures and chondral-osseous impaction injuries, and radiocapitellar arthritis. Knowledge of these potential masquerades of lateral epicondylitis and their characteristic clinical and imaging features is essential for accurate diagnosis. The goal of this review is to provide an approach to the imaging of lateral elbow pain, discussing the relevant anatomy, various causes, and discriminating factors, which will allow for an accurate diagnosis.

  11. Relaxation channels of multi-photon excited xenon clusters

    SciTech Connect

    Serdobintsev, P. Yu.; Melnikov, A. S.; Rakcheeva, L. P. Murashov, S. V.; Khodorkovskii, M. A.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  12. Relaxation channels of multi-photon excited xenon clusters.

    PubMed

    Serdobintsev, P Yu; Rakcheeva, L P; Murashov, S V; Melnikov, A S; Lyubchik, S; Timofeev, N A; Pastor, A A; Khodorkovskii, M A

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  13. Relaxation channels of multi-photon excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Rakcheeva, L. P.; Murashov, S. V.; Melnikov, A. S.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.; Khodorkovskii, M. A.

    2015-09-01

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  14. Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit

    PubMed Central

    Weisz, Catherine J.C.; Rubio, Maria E.; Givens, Richard S.

    2016-01-01

    Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic “doublet” postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. SIGNIFICANCE STATEMENT In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important

  15. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  16. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  17. [How to understand the excessive lateral rectus muscle recession].

    PubMed

    Kang, Xiaoli; Wei, Yan

    2014-07-01

    Surgical treatments of intermittent exotropia include symmetric bilateral lateral rectus recession, symmetric bilateral medial rectus resection, asymmetric monocular lateral rectus recession and/or medial rectus resection, in which lateral rectus recession is the most common method. The maximum amount of lateral rectus recession, however, is still controversial. Bilateral lateral rectus recession 7-8 mm for 35(Δ)-40(Δ) exotropia and unilateral lateral rectus recession and medial rectus resection for exotropia larger than 40(Δ) are suggested by most doctor usually. But some other doctors advocated augmented bilateral lateral rectus recession (9-14 mm ) for exotropia larger than 50(Δ) or augmented unilateral lateral rectus recession for moderate angle exotropia (30(Δ)-35(Δ)), which brought confusion in practical clinical work. In this paper, we'll focus on the amount of lateral rectus recession, and discuss several common issues related to augmented lateral rectus recession, in order to provide references for the majority of clinicians.

  18. The CLAS Excited Baryon Program at JLab

    SciTech Connect

    Crede, Volker

    2007-10-26

    Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.

  19. The CLAS Excited Baryon Program at Jlab

    SciTech Connect

    Volker Crede

    2007-10-01

    Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.

  20. Excitation of atmospheric oscillations by volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Kanamori, Hiroo; Mori, Jim; Harkrider, David G.

    1994-11-01

    We investigated the mechanism of atmospheric oscillations with periods of about 300 s which were observed for the 1991 Pinatubo and the 1982 El Chichon eruptions. Two distinct spectral peaks, at T = 270 and 230 s for the Pinatubo eruption and at T = 195 and 266 s for the El Chichon eruptions, have been reported. We found similar oscillations for the 1980 Mount St. Helens and the 1883 Krakatoa eruptions. To explain these observations, we investigated excitation problems for two types of idealized sources, 'mass injection' and 'energy injection' sources, placed in an isothermal atmosphere. In general, two modes of oscillations, 'acoustic' and 'gravity' modes, can be excited. For realistic atmospheric parameters, the acoustic and gravity modes have a period of 275 and 304 s, respectively. For a realistic time history of eruption, atmospheric oscillations with an amplitude of 50 to 100 Pa (0.5 to 1 mbar) can be excited by an energy injection source with a total energy of 10(exp 17) J. This result is consistent with the observations and provides a physical basis for interpretation of atmospheric oscillations excited by volcanic eruptions.

  1. On the excitation of Goodwin's oscillations

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2014-11-01

    We consider the necessary condition for excitation of long-periodic Goodwin's oscillations and short-periodic sawtooth oscillations in the Goodwin model with fixed delay in the induced investment. Also, using the method of equivalent linearization we evaluate the amplitude of steady-state oscillation.

  2. Coherent Rydberg Excitation in Thermal Microcells

    NASA Astrophysics Data System (ADS)

    Loew, Robert

    2011-05-01

    In order to create quantum devices based on the Rydberg blockade mechanism, it is necessary to have a confinement of the excitation volume to less than the blockade radius in a frozen gas of atoms; i.e. the excitation times need to be shorter than the timescales of the respective dephasing mechanisms. While ultracold gases seem to be the obvious choice, our approach utilizes thermal atomic vapor in small glass cells which offer multiple advantages like good optical access and scalability. Such a system can be realized by confining the atoms to geometries in the micron regime. Decoherence effects like resonant interactions of the Rydberg atoms with polaritonic excitations in the glass have been studied and can be minimized by the appropriate choice of Rydberg states. Using a bandwidth-limited pulsed laser system for the Rydberg excitation we observe coherent Rabi oscillations on the nanosecond timescale. In collaboration with Renate Daschner, Harald Kuebler, Bernhard Huber, Thomas Baluktsian, Andreas Koelle, James Shaffer, and Tilman Pfau.

  3. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research.

  4. Supersolitons: Solitonic Excitations in Atomic Soliton Chains

    SciTech Connect

    Novoa, David; Michinel, Humberto; Perez-Garcia, Victor M.

    2008-10-03

    We show that, by tuning interactions in nonintegrable vector nonlinear Schroedinger equations modeling Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic particlelike collisions between solitons. This would allow one to construct a Newton's cradle with solitons and supersolitons: localized collective excitations in solitary-wave chains.

  5. New Logic Circuit with DC Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  6. Residual Excitation and Ego-Defensive Attributions.

    ERIC Educational Resources Information Center

    Gollwitzer, Peter M.; Earle, Walter B.

    It has been suggested that egotistical attributions for success and failure are mediated by the affective reactions resulting from achievement outcomes. To establish the motivational impact of failure-related affect on subsequent ego-defensive attributions, an excitation transfer paradigm was used to manipulate the negative feelings elicited by…

  7. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  8. Dipolar excitation in the third stability region.

    PubMed

    Konenkov, Nikolai V; Chernyak, Eugenii Ya; Stepanov, Vladimir A

    2016-01-01

    Dipole resonant excitation of ions creates instability bands which follow iso-β lines where β is the characteristic exponent (stability parameter). Instability bands are exited most effectively on the fundamental frequency π= βΩ/2. Here π is the angle resonance frequency of the dipolar voltage applied to x or y pair rods of the analyzer, and Ω is the angle frequency of the main drive voltage. Our goal is to study the mass peak shape in the third stability region with dipolar resonance excitation of the instability band with respect to the resonance frequency π and the dipolar potential amplitude. Numerical integration of the ion motion equations with a given ion source emittance is used to investigate peak shapes and ion transmission. We show that it is possible to vary the resolution power at any part of the third stability region. A change of the dipolar potential phase leads to a periodical variation of the resolution with period π.The most effective dipolar excitation in the y direction is along βy near the stability boundary. The mass peak shape is calculated also for a quadrupole with round rods. The best peak shape (small tails and high resolution) takes place for the rod set with r/r0=1.130. Dipolar excitation increases the transmission by approximately 5-10% at a given resolution.

  9. Multipurpose exciter with low phase noise

    NASA Technical Reports Server (NTRS)

    Conroy, B.; Le, D.

    1989-01-01

    Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.

  10. Contour Line Portraits: Excited about Artistic Abilities

    ERIC Educational Resources Information Center

    Neal, Kari Gertz

    2012-01-01

    In this article, the author describes a self-portrait project that encouraged students, boosted their self-confidence, and got them excited about their artistic abilities--while producing amazing results. This lesson effectively develops artistic ability by compelling students to see that drawing is quite simply breaking down objects into the…

  11. Contextual fear conditioning depresses infralimbic excitability.

    PubMed

    Soler-Cedeño, Omar; Cruz, Emmanuel; Criado-Marrero, Marangelie; Porter, James T

    2016-04-01

    Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear.

  12. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  13. Magnetic Excitations from Stripes in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-03-01

    While it is generally believed that antiferromagnetic spin excitations play a significant role in the pairing mechanism of copper-oxide superconductors [1], the nature of the magnetic excitations themselves remains a matter of controversy. Recent measurements of the dispersion of spin excitations in superconducting YBa_2Cu_3O_6+x (YBCO) have attracted much attention. Here we present the results of comprehensive inelastic neutron scattering measurements of the momentum- and energy-dependent spectra of the magnetic fluctuations in La_0.875Ba_0.125CuO_4, which exhibits inhomogeneous, charge-stripe order. We will also point out universalities and differences in the magnetic excitation spectra compared to related charge-stripe ordered compounds and high-temperature superconductors, including La_2-xSr_xNiO4 and YBCO. JMT, HW, GDG and GX are supported by U.S. Department of Energy contract # DE-AC02-98CH1088 [1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).

  14. Ekectron-Impact Excitation of C+

    NASA Astrophysics Data System (ADS)

    Pearce, A. J.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.

    2015-05-01

    Electron-impact excitation cross sections are calculated for ground and excited states of C+ using the R-matrix with pseudo-states method. We used the configurations 1s2 2s2 nl (3 s <= nl <= 12 g) , 1s2 2 s 2 pnl (2 p <= nl <= 12 g) , 1s2 2p2 nl (2 p <= nl <= 12 g) , 1s2 2 s 3s2 , and 1s2 2 s 3d2 , resulting in 890 LS terms and 2048 LSJ levels. Excitation cross sections for the 1s2 2s2 2 p2 P -->4 P,2 D,2 S transitions are in good agreement with experiment. Combined with previous calculations for C and Cq+ (q = 2- 5), sufficient excitation, ionization, and recombination atomic data is now available to generate high quality collisional-radiative coefficients for the entire C isonuclear sequence. Work supported in part by grants from NASA, NSF, and DOE.

  15. Synthesis of laughter by modifying excitation characteristics.

    PubMed

    Thati, Sathya Adithya; Kumar K, Sudheer; Yegnanarayana, B

    2013-05-01

    In this paper, a method to synthesize laughter by modifying the excitation source information is presented. The excitation source information is derived by extracting epoch locations and instantaneous fundamental frequency using zero frequency filtering approach. The zero frequency filtering approach is modified to capture the rapidly varying instantaneous fundamental frequency in natural laugh signals. The nature of variation of excitation features in natural laughter is examined to determine the features to be incorporated in the synthesis of a laugh signal. Features such as pitch period and strength of excitation are modified in the utterance of vowel /a/ or /i/ to generate the laughter signal. Frication is also incorporated wherever appropriate. Laugh signal is generated by varying parameters at both call level and bout level. Experiments are conducted to determine the significance of different features in the perception of laughter. Subjective evaluation is performed to determine the level of acceptance and quality of synthesis of the synthesized laughter signal for different choices of parameter values and for different input types.

  16. Excitation system for rotating synchronous machines

    DOEpatents

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  17. An Artificial Ising System with Phononic Excitations

    NASA Astrophysics Data System (ADS)

    Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul

    Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.

  18. Ionic electrostatic excitations along biological membranes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2011-02-01

    A theoretical analysis of ionic electrostatic excitations of a charged biological membrane is presented within the framework of the fluid theory for surface ions inside and outside the cell, in conjunction with the Poisson's equation. General expressions of dispersion relations are obtained for electrostatic oscillations of intrinsic cellular with different shapes and symmetries.

  19. Extracting excited mesons from the finite volume

    SciTech Connect

    Doring, Michael

    2014-12-01

    As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.

  20. Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas.

    PubMed

    Aouani, Heykel; Hostein, Richard; Mahboub, Oussama; Devaux, Eloïse; Rigneault, Hervé; Ebbesen, Thomas W; Wenger, Jérôme

    2012-07-30

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas.

  1. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  2. Excitation mechanism of non-migrating tides

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki

    2017-04-01

    Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.

  3. Self-excitation of single nanomechanical pillars

    NASA Astrophysics Data System (ADS)

    Kim, Hyun S.; Qin, Hua; Blick, Robert H.

    2010-03-01

    Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.

  4. Cascadable excitability in optically injected microdisks

    NASA Astrophysics Data System (ADS)

    Van Vaerenbergh, Thomas; Alexander, Koen; Fiers, Martin; Mechet, Pauline; Dambre, Joni; Bienstman, Peter

    2014-05-01

    All-optical spiking neural networks would allow high speed parallelized processing of time-encoded information, using the same energy efficient computational principles as our brain. As the neurons in these networks need to be able to process pulse trains, they should be excitable. Using simulations, we demonstrate Class 1 excitability in optically injected microdisk lasers, and propose a cascadable optical spiking neuron design. The neuron has a clear threshold and an integrating behavior. In addition, we show that the optical phase of the input pulses can be used to create inhibitory, as well as excitatory perturbations. Furthermore, we incorporate our optical neuron design in a topology that allows a disk to react on excitations from other disks. Phase tuning of the intermediate connections allows to control the disk response. Additionally, we investigate the sensitivity of the disk circuit to deviations in driving current and locking signal wavelength detuning. Using state-of-the-art fabrication techniques for microdisk laser, the standard deviation of the lasing wavelength is still about one order of magnitude too large. Finally, as the dynamical behavior of the microdisks is identical to the behavior in Semiconductor Ring Lasers (SRL), we compare the excitability mechanism due to optically injection with the previously proposed excitability due to asymmetry in the intermodal coupling in SRLs, as the latter mechanism can also be induced in disks due to, e.g., asymmetry in the external reaction. In both cases, the symmetry between the two counter-propagating modes of the cavity needs to be broken to prevent switching to the other mode, and allow the system to relax to its initial state after a perturbation. However, the asymmetry due to optical injection results in an integrating spiking neuron, whereas the asymmetry in the intermodal coupling is known to result in a resonating spiking neuron.

  5. Early Adolescent Affect Predicts Later Life Outcomes

    PubMed Central

    Kansky, Jessica; Allen, Joseph P.; Diener, Ed

    2016-01-01

    Background Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. Methods To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as a predictor of relationship, adjustment, self worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilized multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Results Early adolescent positive affect predicted less relationship problems (less self-reported and partner-reported conflict, greater friendship attachment as rated by close peers), healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. Conclusions The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. PMID:27075545

  6. Responsiveness-to-Intervention: A Decade Later

    PubMed Central

    Fuchs, Lynn S.; Vaughn, Sharon

    2012-01-01

    In this introduction to this special issue, “A Decade Later,” we provide an overview of the accomplishments as well as the persistent questions surrounding RTI. We organize this discussion within 3 categories: assessment, instruction, and policy. Within each of these sections, we also highlight how the articles in the present special issue expand upon the key issues. Developed initially for the early grades (kindergarten through third grade) and primarily in the area of reading, many-although not all-of these issues speak to the expansion of RTI to address a broader set of academic content areas and the full range of grade levels. PMID:22539056

  7. Laterality of sudden sensorineural hearing loss.

    PubMed

    Reiss, Michael; Reiss, Gilfe

    2014-08-01

    It is known that sudden sensorineural hearing loss and other otoneurologic diseases, such as tinnitus or Ménière disease, occur more frequently in the left ear than in the right. We studied lateralization of sudden deafness in 489 patients treated at Radebeul Hospital from January 2004 to December 2009. The male-to-female ratio was 1:1.24; we found a predominance of the left side only in female patients. The cause for this predominance is unclear. The slight asymmetry might indicate a greater vulnerability of the left inner ear in women, suggesting hormonal factors in the genesis of sudden deafness.

  8. Pemphigus vulgaris and amyotrophic lateral sclerosis

    PubMed Central

    Mokhtari, Fatemeh; Matin, Marzieh; Rajati, Fatemeh

    2016-01-01

    Pemphigus vulgaris (PV) is an autoimmune bullous and erosive mucocutaneous disease. Rarely, it occurs in patients with other autoimmune disease. The relation between PV and neurological disorders is unclear and needs to be more studied. Here, we report a case of amyotrophic lateral sclerosis (ALS), followed by dermatologic involvement. Histopathological evidence and direct immunofluorescence are consistent with PV. Systemic corticosteroid and azathioprine were effective in the treatment of mucocutaneous lesions. PV seems to be accidentally associated with ALS. Expression of major histocompatibility complex Class II in autoimmune disease and production of autoantibodies have been proposed to describe the association of PV with ALS. PMID:28163728

  9. Lateral elbow tendinopathy: Evidence of physiotherapy management

    PubMed Central

    Dimitrios, Stasinopoulos

    2016-01-01

    Lateral elbow tendinopathy (LET) is a common musculoskeletal/sports injury. A plethora of physiotherapy techniques has been proposed in the management of LET. The exercise programme is the most common treatment in the management of LET. The optimal protocol of exercise programme is still unknown. The effectiveness of the exercise programme is low when it is applied as monotherapy. Therefore, exercise programme is combined with other physiotherapy modalities such as soft tissue techniques, external support, acupuncture, manual therapy and electrotherapy, in the treatment of LET. Future research is needed to determine which treatment strategy combined with exercise programme will provide the best results in LET rehabilitation. PMID:27622145

  10. The changing scene of amyotrophic lateral sclerosis.

    PubMed

    Robberecht, Wim; Philips, Thomas

    2013-04-01

    Several recent breakthroughs have provided notable insights into the pathogenesis of amyotrophic lateral sclerosis (ALS), with some even shifting our thinking about this neurodegenerative disease and raising the question as to whether this disorder is a proteinopathy, a ribonucleopathy or both. In addition, these breakthroughs have revealed mechanistic links between ALS and frontotemporal dementia, as well as between ALS and other neurodegenerative diseases, such as the cerebellar atrophies, myotonic dystrophy and inclusion body myositis. Here, we summarize the new findings in ALS research, discuss what they have taught us about this disease and examine issues that are still outstanding.

  11. Towards reproducible, scalable lateral molecular electronic devices

    SciTech Connect

    Durkan, Colm Zhang, Qian

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  12. Psychotherapists and the clergy: Fifty years later.

    PubMed

    Spiegelman, J M

    1984-03-01

    Jung's two powerful articles on psychotherapy and the clergy, written in 1928 and 1932. are looked at from the vantage point of fifty years later and the author's experience in conducting analysis with many people from both vocations. He notes that relatively few people achieve the kind of integration of the ego that Jung writes about-an essentially religious experience-wherein the center of their existence now gravitates about the Self. Yet Jung's work and views have had a profound effect on spiritually inclined people of all ages. The predictions of Jung's articles, regarding therapy, the dissemination of pyschology to the masses, and other issues are examined.

  13. Quantifying disease progression in amyotrophic lateral sclerosis.

    PubMed

    Simon, Neil G; Turner, Martin R; Vucic, Steve; Al-Chalabi, Ammar; Shefner, Jeremy; Lomen-Hoerth, Catherine; Kiernan, Matthew C

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic.

  14. [Electrical excitability of the apical dendrites of mammalian cortical pyramidal neurons].

    PubMed

    Fan, Shih-Fang

    2012-12-25

    The electrical excitability of the dendrites of the cortical neurons was first studied on the apical dendrites of the pyramidal neurons. Professor ZHANG Xiang-Tong (H-T Chang) made important contributions in the fifties of last century on this topic. Through numerous studies later on, it has been established that the electrical excitability of dendrites of different types of neurons, even different dendrites in the same neuron is different. For the apical dendrites of the cortical pyramidal neurons, neither a single nor a train of repetitive action potentials with constant frequency can reach its terminal portion. However, some of the burst repetitive responses with non-constant frequency of the apical dendrite elicited by direct current injected into the soma may reach the terminal portion. This may be due to: (1) the calcium ion concentration in the apical dendrite is increased by the burst activities, which, in turn, increases the electrical excitability of the apical dendrite and /or (2) some retrograde collaterals of axon of the activated soma reach the apical dendrite and release neurotransmitter glutamate, which changes the properties of the voltage-gated ion channels in the apical dendrite. Low electrical excitability of the apical dendrites seems to be essential for the processing of numerous income signals to the terminal portion of the apical dendrites.

  15. First-Principles Investigation of Electronic Excitation Dynamics in Water under Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle; Kanai, Yosuke

    2015-03-01

    A predictive and quantitative understanding of electronic excitation dynamics in water under proton irradiation is of great importance in many technological areas ranging from utilizing proton beam therapy to preventing nuclear reactor damages. Despite its importance, an atomistic description of the excitation mechanism has yet to be fully understood. Identifying how a high-energy proton dissipates its kinetic energy into the electronic excitation is crucial for predicting atomistic damages, later resulting in the formation of different chemical species. In this work, we use our new, large-scale first-principles Ehrenfest dynamics method based on real-time time-dependent density functional theory to simulate the electronic response of bulk water to a fast-moving proton. In particular, we will discuss the topological nature of the electronic excitation as a function of the proton velocity. We will employ maximally-localized functions to bridge our quantitative findings from first-principles simulations to a conceptual understanding in the field of water radiolysis.

  16. Optical near-field excitations on plasmonic nanoparticle-based structures.

    PubMed

    Foteinopoulou, S; Vigneron, J P; Vandenbem, C

    2007-04-02

    We investigate optical excitations on single silver nanospheres and nanosphere composites with the Finite Difference Time Domain (FDTD) method. Our objective is to achieve polarization control of the enhanced local field, pertinent to SERS applications. We employ dimer and quadrumer structures, which can display broadband and highly confined near-field-intensity enhancement comparable to or exceeding the resonant value of smaller sized isolated spheres. Our results demonstrate that the polarization of the enhanced field can be controlled by the orientation of the multimers in respect to the illumination, rather than the illumination itself. In particular, we report cases where the enhanced field shares the same polarization with the exciting field, and cases where it is predominantly perpendicular to the source field. We call the later phenomenon depolarized enhancement. Furthermore, we study a realizable nanolens based on a tapered self-similar silver nanosphere array. The time evolution of the fields in such structures show conversion of a diffraction limited Gaussian beam to a focused spot, through sequential coupling of the nano-array spheres' Mie-plasmons. For a longitudinally excited nanolens design we observed the formation of an isolated focus with size about one tenth the vacuum wavelength. We believe such nanolens will aid scanning near-field optical microscopy (SNOM) detection and the excitation of surface plasmon based guiding devices.

  17. Tailored Excitation for Frequency Response Measurement Applied to the X-43A Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2007-01-01

    An important aspect of any flight research project is assessing aircraft stability and flight control performance. In some programs this assessment is accomplished through the estimation of the in-flight vehicle frequency response. This estimation has traditionally been a lengthy task requiring separate swept sine inputs for each control axis at a constant flight condition. Hypersonic vehicles spend little time at any specific flight condition while they are decelerating. Accordingly, it is difficult to use traditional methods to calculate the vehicle frequency response and stability margins for this class of vehicle. A technique has been previously developed to significantly reduce the duration of the excitation input by tailoring the input to excite only the frequency range of interest. Reductions in test time were achieved by simultaneously applying tailored excitation signals to multiple control loops, allowing a quick estimate of the frequency response of a particular aircraft. This report discusses the flight results obtained from applying a tailored excitation input to the X-43A longitudinal and lateral-directional control loops during the second and third flights. The frequency responses and stability margins obtained from flight data are compared with preflight predictions.

  18. Recovery of motor neuron excitability after facial nerve impairment in rats.

    PubMed

    Ohki, Masafumi; Takeuchi, Naonobu

    2014-05-07

    Multiple studies have demonstrated alterations in excitability in the central nervous system after peripheral nerve injury. However, there are few reports on changes in the central nervous system after peripheral facial nerve injury. Our objective was to determine the excitability changes that occur in the facial nucleus after facial nerve impairment. The excitability changes in the facial nucleus were investigated by assessing two types of compound muscle action potentials (M and F waves) in the orbicularis oculi muscles, evoked by electrical stimulation of the zygomatic branch of the facial nerve. In rats, M and F waves were measured in the orbicularis oculi muscles before and every week up to 8 weeks after the application of nerve compression under anesthesia. M and F waves disappeared after nerve compression, only to reappear 2 weeks later, although M-wave amplitude was decreased and the latencies of both waves were delayed. Thereafter, these waves recovered gradually. During the recovery period, the F/M wave amplitude ratio, which is an indicator of facial nucleus excitability, significantly increased on the impaired side but not on the intact side. This increase was most prominent within 3 weeks; thereafter, the ratio gradually decreased and reached the levels recorded before facial nerve impairment by 7 weeks. Facial nerve impairment leads to hyperexcitability of the facial nucleus during the recovery period.

  19. The influence of the contact zone on the excitation of wheel/rail noise

    NASA Astrophysics Data System (ADS)

    Thompson, D. J.

    2003-10-01

    Rolling noise is excited by surface roughness at the wheel/rail contact. The contact patch is known to attenuate the excitation at wavelengths that are short in comparison with its length. A distributed point-reacting spring (DPRS) model is used with measured roughness data to determine the contact filter effect, and this result is compared with analytical predictions. It is found that the analytical model gives an attenuation that is too large at short wavelengths but is usable for wavelengths down to somewhat smaller than the length of the contact patch. Additionally, variations in the detailed geometry of the profile can cause the contact point on the wheel and rail to oscillate laterally. This introduces an oscillating moment that can induce additional vibration and noise. The DPRS model and rolling noise prediction model are both extended and used together to allow an estimate of the contribution to the radiated noise. It is found that, while the direct roughness excitation is still more important, the moment excitation can be significant, particularly for conforming profiles.

  20. The role of the lateral habenula in punishment.

    PubMed

    Jean-Richard Dit Bressel, Philip; McNally, Gavan P

    2014-01-01

    The lateral habenula (LHb) is a small epithalamic structure that projects via the fasciculus retroflexus to the midbrain. The LHb is known to modulate midbrain dopamine (DA) neurons, including inhibition of ventral tegmental area (VTA) neurons via glutamatergic excitation of the GABAergic rostromedial tegmental nucleus (RMTg). A variety of lines of evidence show activity in LHb and the LHb-RMTg pathway is correlated with, and is sufficient to support, punishment learning. However, it is not immediately clear whether LHb is necessary for punishment. Here we used a within-subjects punishment task to assess the role of LHb in the acquisition and expression of punishment as well as in aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of an AMPA receptor antagonist (NBQX) into LHb had no effect on the acquisition or expression of this punishment, or on aversive choice, but did increase locomotion. Infusion of the sodium channel blocker bupivacaine likewise had no effect on expression of punishment. However, infusion of the calcium channel blocker mibefradil did affect expression of punishment by significantly decreasing the latency with which rats responded on the punished lever and significantly increasing unpunished lever-pressing. Taken together, these findings indicate that the LHb plays a limited role in punishment, influencing only latency to respond. This role is linked to calcium channel permeability and not AMPA receptor or sodium channel permeability.

  1. Amplitude and phase variations of Earth's Chandler wobble under continual excitation

    NASA Astrophysics Data System (ADS)

    Chao, Benjamin F.; Chung, Wei-Yung

    2012-12-01

    We demonstrate a simple physical explanation for the cause of the well-known but so-far baffling behavior of the Chandler wobble during ˜1925 when it reached a near-zero amplitude and underwent a concurrent large phase jump. We do so by numerical Monte-Carlo simulations, designed based on simple physical reasoning, of the statistical behavior of the Earth's Chandler wobble under continual excitation. Rather than subscribing to the view that something extraordinary or anomalous had occurred to the Earth system sometime during the later half of the 1920s, we assert the scenario that the Chandler wobble excitation during that time happened to oppose and cancel the Chandler motion momentarily before starting anew the motion that became unrelated to its immediate past, hence manifesting as an apparent phase jump in the time series. The seemingly peculiar event was simply fortuitous by chance.

  2. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  3. Amyotrophic lateral sclerosis: one or multiple causes?

    PubMed Central

    Bastos, Aline Furtado; Orsini, Marco; Machado, Dionis; Mello, Mariana Pimentel; Nader, Sergio; Silva, Júlio Guilherme; da Silva Catharino, Antonio M.; de Freitas, Marcos R.G.; Pereira, Alessandra; Pessoa, Luciane Lacerda; Sztajnbok, Flavio R.; Leite, Marco Araújo; Nascimento, Osvaldo J.M.; Bastos, Victor Hugo

    2011-01-01

    The Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease in the adulthood, and it is characterized by rapid and progressive compromise of the upper and lower motor neurons. The majority of the cases of ALS are classified as sporadic and, until now, a specific cause for these cases still is unknown. To present the different hypotheses on the etiology of ALS. It was carried out a search in the databases: Bireme, Scielo and Pubmed, in the period of 1987 to 2011, using the following keywords: Amyotrophic lateral sclerosis, motor neuron disease, etiology, causes and epidemiology and its similar in Portuguese and Spanish. It did not have consensus as regards the etiology of ALS. Researches demonstrates evidences as regards intoxication by heavy metals, environmental and occupational causes, genetic mutations (superoxide dismutase 1), certain viral infections and the accomplishment of vigorous physical activity for the development of the disease. There is still no consensus regarding the involved factors in the etiology of ALS. In this way, new research about these etiologies are necessary, for a better approach of the patients, promoting preventive programs for the disease and improving the quality of life of the patients. PMID:21785676

  4. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  5. Lateral epicondylalgia: midlife crisis of a tendon.

    PubMed

    Luk, James K H; Tsang, Raymond C C; Leung, H B

    2014-04-01

    The pathogenesis and management of lateral epicondylalgia, or tennis elbow, a common ailment affecting middle-aged subjects of both genders continue to provoke controversy. Currently it is thought to be due to local tendon pathology, pain system changes, and motor system impairment. Its diagnosis is usually clinical, based on a classical history, as well as symptoms and signs. In selected cases, additional imaging (X-rays, ultrasound, and magnetic resonance imaging) can help to confirm the diagnosis. Different treatment modalities have been described, including the use of orthotics, non-steroidal anti-inflammatory drugs, steroid injections, topical glyceryl trinitrate, exercise therapy, manual therapy, ultrasound therapy, laser therapy, extracorporeal shockwave therapy, acupuncture, taping, platelet-rich plasma injections, hyaluronan gel injections, botulinum toxin injections, and surgery. Nevertheless, evidence to select the best treatment is lacking and the choice of therapy depends on the experience of the management team, availability of the equipment and expertise, and patient response. This article provides a snapshot of current medical practice for lateral epicondylalgia management.

  6. Dual-domain lateral shearing interferometer

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2004-03-16

    The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.

  7. Lateral regulation of synaptic transmission by astrocytes.

    PubMed

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons.

  8. Lateral vision in horses: a behavioral investigation.

    PubMed

    Hanggi, Evelyn B; Ingersoll, Jerry F

    2012-09-01

    This study investigated lateral vision in horses (Equus caballus) for the first time from a behavioral point of view. Three horses were tested using a novel experimental design to determine the range of their lateral and caudolateral vision with respect to stimulus detection and discrimination. Real-life stimuli were presented along a curvilinear wall in one of four different positions (A, B, C, D) and one of two height locations (Top, Bottom) on both sides of the horse. To test for stimulus detection, the correct stimulus was paired against a control; for stimulus discrimination, the correct stimulus was paired against another object. To indicate that the correct stimulus was detected or discriminated, the horses pushed one of two paddles. All horses scored significantly above chance on stimulus detection trials regardless of stimulus position or location. They also accurately discriminated between stimuli when objects appeared in positions A, B, and C for the top or bottom locations; however, they failed to discriminate these stimuli at position D. This study supports physiological descriptions of the equine eye and provides new behavioral data showing that horses can detect the appearance of objects within an almost fully encompassing circle and are able to identify objects within most but not all of their panoramic field of view.

  9. ERAMOSA controls lateral branching in snapdragon

    PubMed Central

    Mizzotti, Chiara; Galliani, Bianca M.; Dreni, Ludovico; Sommer, Hans; Bombarely, Aureliano; Masiero, Simona

    2017-01-01

    Plant forms display a wide variety of architectures, depending on the number of lateral branches, internode elongation and phyllotaxy. These are in turn determined by the number, the position and the fate of the Axillary Meristems (AMs). Mutants that affect AM determination during the vegetative phase have been isolated in several model plants. Among these genes, the GRAS transcription factor LATERAL SUPPRESSOR (Ls) plays a pivotal role in AM determination during the vegetative phase. Hereby we characterize the phylogenetic orthologue of Ls in Antirrhinum, ERAMOSA (ERA). Our data supported ERA control of AM formation during both the vegetative and the reproductive phase in snapdragon. A phylogenetic analysis combined with an analysis of the synteny of Ls in several species strongly supported the hypothesis that ERA is a phylogenetic orthologue of Ls, although it plays a broader role. During the reproductive phase ERA promotes the establishment of the stem niche at the bract axis but, after the reproductive transition, it is antagonized by the MADS box transcription factor SQUAMOSA (SQUA). Surprisingly double mutant era squa plants display a squa phenotype developing axillary meristems, which can eventually turn into inflorescences or flowers. PMID:28145519

  10. Lateral Gene Transfer from the Dead

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Lartillot, Nicolas; Daubin, Vincent

    2013-01-01

    In phylogenetic studies, the evolution of molecular sequences is assumed to have taken place along the phylogeny traced by the ancestors of extant species. In the presence of lateral gene transfer, however, this may not be the case, because the species lineage from which a gene was transferred may have gone extinct or not have been sampled. Because it is not feasible to specify or reconstruct the complete phylogeny of all species, we must describe the evolution of genes outside the represented phylogeny by modeling the speciation dynamics that gave rise to the complete phylogeny. We demonstrate that if the number of sampled species is small compared with the total number of existing species, the overwhelming majority of gene transfers involve speciation to and evolution along extinct or unsampled lineages. We show that the evolution of genes along extinct or unsampled lineages can to good approximation be treated as those of independently evolving lineages described by a few global parameters. Using this result, we derive an algorithm to calculate the probability of a gene tree and recover the maximum-likelihood reconciliation given the phylogeny of the sampled species. Examining 473 near-universal gene families from 36 cyanobacteria, we find that nearly a third of transfer events (28%) appear to have topological signatures of evolution along extinct species, but only approximately 6% of transfers trace their ancestry to before the common ancestor of the sampled cyanobacteria. [Gene tree reconciliation; lateral gene transfer; macroevolution; phylogeny.] PMID:23355531

  11. Field dependence, laterality and the EEG.

    PubMed

    O'Connor, K P; Shaw, J C

    1978-03-01

    There is evidence that an individual's 'cognitive style' is related to lateralization of function in the brain, and that this in turn is associated with characteristic EEG coherence spectra. We tested the hypothesis that field dependence (a measure of cognitive organization) and hand preference (a measure of functional organisation) relate to EEG coherence measures in a specific way. The predicted associations were based on the proposal that right preferent individuals have a more specific, and left preferents a more diffuse, system of functional units in the cortex. The association between alpha band resting EEG coherence (sampled on two occasions for both hemispheres from 12 right and 12 left preferent individuals), field dependence (Nyborg's criterion of frame dependence on a rod and frame test), and laterality scores (questionnaire and manual performance), was measured by Kendall's coefficient of concordance (W). Significant associations support the proposed model except for coherence within the left preferents' right hemisphere. It is argued that the right hemisphere is more specifically organised in strong sinistrals than the general model would predict. These and other results support the use of EEC coherence measures in the study of cerebral functional organisation.

  12. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  13. Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters.

    PubMed

    Closser, Kristina D; Ge, Qinghui; Mao, Yuezhi; Shao, Yihan; Head-Gordon, Martin

    2015-12-08

    We develop a local excited-state method, based on the configuration interaction singles (CIS) wave function, for large atomic and molecular clusters. This method exploits the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits the total number of excitations, and results in formal scaling with the third power of the system size for computing the full spectrum of ALMO-CIS excited states. The derivation of the equations and design of the algorithm are discussed in detail, with particular emphasis on the computational scaling. Clusters containing ∼500 atoms were used in evaluating the scaling, which agrees with the theoretical predictions, and the accuracy of the method is evaluated with respect to standard CIS. A pioneering application to the size dependence of the helium cluster spectrum is also presented for clusters of 25-231 atoms, the largest of which results in the computation of 2310 excited states per sampled cluster geometry.

  14. Large somatic synapses on neurons in the ventral lateral lemniscus work in pairs.

    PubMed

    Berger, Christina; Meyer, Elisabeth M M; Ammer, Julian J; Felmy, Felix

    2014-02-26

    In the auditory system, large somatic synapses convey strong excitation that supports temporally precise information transfer. The information transfer of such synapses has predominantly been investigated in the endbulbs of Held in the anterior ventral cochlear nucleus and the calyx of Held in the medial nucleus of the trapezoid body. These large synapses either work as relays or integrate over a small number of inputs to excite the postsynaptic neuron beyond action potential (AP) threshold. In the monaural system, another large somatic synapse targets neurons in the ventral nucleus of the lateral lemniscus (VNLL). Here, we comparatively analyze the mechanisms of synaptic information transfer in endbulbs in the VNLL and the calyx of Held in juvenile Mongolian gerbils. We find that endbulbs in the VNLL are functionally surface-scaled versions of the calyx of Held with respect to vesicle availability, release efficacy, and synaptic peak currents. This functional scaling is achieved by different calcium current kinetics that compensate for the smaller AP in VNLL endbulbs. However, the average postsynaptic current in the VNLL fails to elicit APs in its target neurons, even though equal current suffices to generate APs in neurons postsynaptic to the calyx of Held. In the VNLL, a postsynaptic A-type outward current reduces excitability and prevents AP generation upon a single presynaptic input. Instead, coincidence detection of inputs from two converging endbulbs is ideal to reliably trigger APs. Thus, even large endbulbs do not guarantee one-to-one AP transfer. Instead, information flow appears regulated by circuit requirements.

  15. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  16. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  17. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  18. Small Amplitude Dynamics of Nonhomogeneous Magnetization Distributions: The Excitation Spectrum of Stripe Domains

    NASA Astrophysics Data System (ADS)

    Ebels, Ursula; Buda, Liliana D.; Ounadjela, Kamel; Wigen, Phillip E.

    The general purpose of this review is to introduce to the dynamics of small amplitude excitations of nonhomogeneous magnetization distributions. This is in contrast to the dynamics of the magnetization reversal process, which corresponds to large amplitude perturbations, discussed in other contributions of this book. Small amplitude oscillations can be studied by ferromagnetic resonance or Brillouin light scattering. The latter technique isused to investigate the excitation spectrum in laterally constrained structures.This review introduces ferromagnetic resonance and focuses on the role of the pumping field orientation. Upon varying the pumping field orientation, fundamental modes can be selectively excited, giving, in particular, access to regions of varying magnetic orientation. This is demonstrated for the excitation spectrum of magnetic domains and domain walls of the stripe domain structure in metallic thin films. These stripe domains can be considered laterally constrained magnetic units 40-100 nm wide, separated by domain walls.Such experiments provide information on the domain and domain wall structure and in principle yield the internal fields and the coupling fields of the domains, as well as the wall mass and the stabilizing forces of the domain walls. The wall mass itself is a dynamic parameter which intervenes upon wall acceleration but is of less importance when considering steady-state wall propagation in the magnetization reversal process. However, the wall mass depends sensitively on the spin configuration inside the wall, and therefore resonance experiments can provide insight into the structure of the domain wall. The wall structure, on the other hand, plays an important role in spin-polarized transport experiments, investigating the contribution of a domain wall to the resistance [1] or the transfer of momentum from the conduction electrons to the wall [2,3].

  19. Hemispheric differences in corticospinal excitability and in transcallosal inhibition in relation to degree of handedness.

    PubMed

    Davidson, Travis; Tremblay, François

    2013-01-01

    In this study, we examined hemispheric differences in corticospinal excitability and in transcallosal inhibition in a selected group of young adults (n = 34) grouped into three handedness categories (RH: strongly right-handed, n = 17; LH: strongly left-handed, n = 10; MH: mixed-handed, n = 7) based on laterality quotients (LQ) derived from the Edinburgh Handedness Inventory. Performance measures were also used to derive a laterality index reflecting right-left asymmetries in manual dexterity (Dextli) and in finger tapping speed (Speedli). Corticospinal excitability was assessed in each hemisphere by means of transcranial magnetic stimulation (TMS) using the first dorsal interosseus as the target muscle. TMS measures consisted of resting motor threshold (rMT), motor evoked potential (MEP) recruitment curve (RC) and the contralateral silent period (cSP) with the accompanying MEP facilitation. Hemispheric interactions were assessed by means of the ipsilateral silent period (iSP) to determine the onset latency and the duration of transcallosal inhibition (i.e., LTI and DTI). Analysis of hemispheric variations in measures of corticospinal excitability revealed no major asymmetries in relation to degrees of laterality or handedness, with the exception of a rightward increase in rMTs in the LH group. Similarly, no clear asymmetries were found when looking at hemispheric variations in measures of transcallosal inhibition. However, a large group effect was detected for LTI measures, which were found to be significantly shorter in the MH group than in either the LH or RH group. MH participants also tended to show longer DTI than the other participants. Further inspection of overall variations in LTI and DTI measures as a function of LQs revealed that both variables followed a non-linear relationship, which was best described by a 2(nd) order polynomial function. Overall, these findings provide converging evidence for a link between mixed-handedness and more efficient

  20. Excitation, detection, and electrostatic manipulation of terahertz-frequency range plasmons in a two-dimensional electron system

    PubMed Central

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Muchenje, Wilson; Rosamond, Mark C.; Chen, Li; Linfield, Edmund H.; Davies, A. Giles; Cunningham, John E.

    2015-01-01

    Terahertz frequency time-domain spectroscopy employing free-space radiation has frequently been used to probe the elementary excitations of low-dimensional systems. The diffraction limit, however, prevents its use for the in-plane study of individual laterally-defined nanostructures. Here, we demonstrate a planar terahertz frequency plasmonic circuit in which photoconductive material is monolithically integrated with a two-dimensional electron system. Plasmons with a broad spectral range (up to ~ 400 GHz) are excited by injecting picosecond-duration pulses, generated and detected by a photoconductive semiconductor, into a high mobility two-dimensional electron system. Using voltage modulation of a Schottky gate overlying the two-dimensional electron system, we form a tuneable plasmonic cavity, and observe electrostatic manipulation of the plasmon resonances. Our technique offers a direct route to access the picosecond dynamics of confined electron transport in a broad range of lateral nanostructures. PMID:26487263