NASA Astrophysics Data System (ADS)
Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco
2013-05-01
The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
49 CFR 572.199 - Pelvis iliac.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Pelvis iliac. 572.199 Section 572.199... Dummy, Small Adult Female § 572.199 Pelvis iliac. (a) The iliac is part of the lower torso assembly... assembled dummy (drawing 180-0000). The dummy is equipped with a laterally oriented pelvis accelerometer as...
49 CFR 572.199 - Pelvis iliac.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Pelvis iliac. 572.199 Section 572.199... Dummy, Small Adult Female § 572.199 Pelvis iliac. (a) The iliac is part of the lower torso assembly... assembled dummy (drawing 180-0000). The dummy is equipped with a laterally oriented pelvis accelerometer as...
49 CFR 572.199 - Pelvis iliac.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Pelvis iliac. 572.199 Section 572.199... Dummy, Small Adult Female § 572.199 Pelvis iliac. (a) The iliac is part of the lower torso assembly... assembled dummy (drawing 180-0000). The dummy is equipped with a laterally oriented pelvis accelerometer as...
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
A low-noise MEMS accelerometer for unattended ground sensor applications
NASA Astrophysics Data System (ADS)
Speller, Kevin E.; Yu, Duli
2004-09-01
A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.
Farahmand, Farid; Khadivi, Kevin O.; Rodrigues, Joel J. P. C.
2009-01-01
The utility of a novel, high-precision, non-intrusive, wireless, accelerometer-based patient orientation monitoring system (APOMS) in determining orientation change in patients undergoing radiation treatment is reported here. Using this system a small wireless accelerometer sensor is placed on a patient’s skin, broadcasting its orientation to the receiving station connected to a PC in the control area. A threshold-based algorithm is developed to identify the exact amount of the patient’s head orientation change. Through real-time measurements, an audible alarm can alert the radiation therapist if the user-defined orientation threshold is violated. Our results indicate that, in spite of its low-cost and simplicity, the APOMS is highly sensitive and offers accurate measurements. Furthermore, the APOMS is patient friendly, vendor neutral, and requires minimal user training. The versatile architecture of the APOMS makes it potentially suitable for variety of applications, including study of correlation between external and internal markers during Image-Guided Radiation Therapy (IGRT), with no major changes in hardware setup or algorithm. PMID:22423196
A biomimetic accelerometer inspired by the cricket's clavate hair
Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.
2014-01-01
Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115
Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.
Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan
2017-01-01
The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.
In vitro attenuation of impact shock in equine digits.
Lanovaz, J L; Clayton, H M; Watson, L G
1998-09-01
This study was designed to test the impact characteristics of the equine digit in vitro with the objective of providing a better understanding of the role of the digital structures in the attenuation of impact shock. Uni-axial accelerometers were mounted on cadaver digits on the distolateral hoof wall, the proximolateral hoof wall, the dorsal surface of the second phalanx, and the mid-lateral first phalanx. The hoof-mounted accelerometers were aligned with the hoof tubules while the bone-mounted accelerometers were oriented along the longitudinal axis of the bone. Each digit was mounted in a test apparatus designed to simulate impact of the hoof with the ground during locomotion. The digits were subjected to 3 impact trials against a barrier at each of 3 vertical impact velocities that simulated a forward trotting velocity in the range of 2.67 to 4.46 m/s. The impact deceleration tended to increase with impact velocity. Attenuation of the impact shock by the digital tissues resulted in a reduction in impact decleration in the more proximal measuring locations. The interphalangeal joints appeared to play a larger role in amplitude attenuation than the hoof wall or the soft tissue structures within the hoof wall. The signal frequency data showed that the soft tissues within the hoof acted as a 'lowpass' filter, attenuating the higher deceleration frequencies. The hoof wall and the interphalangeal joints showed little frequency attenuation.
Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition
Durmaz Incel, Ozlem
2015-01-01
Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution. PMID:26445046
Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition.
Incel, Ozlem Durmaz
2015-10-05
Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution.
Development of the German A-4 guidance and control system, 1939 - 1945: A memoir
NASA Technical Reports Server (NTRS)
Steinhoff, E. A.
1977-01-01
The development by 1943 of a fully inertial navigational system for the German A-4 (V-2) missile is detailed. This flight control system used a triple-axis stabilized platform with two longitudinal accelerometers and one lateral accelerometer.
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
Simultaneous processing of photographic and accelerator array data from sled impact experiment
NASA Astrophysics Data System (ADS)
Ash, M. E.
1982-12-01
A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.
Optimal accelerometer placement on a robot arm for pose estimation
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.
2017-05-01
The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.
Mobile Romberg test assessment (mRomberg).
Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio I
2014-09-12
The diagnosis of frailty is based on physical impairments and clinicians have indicated that early detection is one of the most effective methods for reducing the severity of physical frailty. Maybe, an alternative to the classical diagnosis could be the instrumentalization of classical functional testing, as Romberg test or Timed Get Up and Go Test. The aim of this study was (I) to measure and describe the magnitude of accelerometry values in the Romberg test in two groups of frail and non-frail elderly people through instrumentation with the iPhone 4®, (II) to analyse the performances and differences between the study groups, and (III) to analyse the performances and differences within study groups to characterise accelerometer responses to increasingly difficult challenges to balance. This is a cross-sectional study of 18 subjects over 70 years old, 9 frail subjects and 9 non-frail subjects. The non-parametric Mann-Whitney U test was used for between-group comparisons in means values derived from different tasks. The Wilcoxon Signed-Rank test was used to analyse differences between different variants of the test in both independent study groups. The highest difference between groups was found in the accelerometer values with eyes closed and feet parallel: maximum peak acceleration in the lateral axis (p < 0.01), minimum peak acceleration in the lateral axis (p < 0.01) and minimum peak acceleration from the resultant vector (p < 0.01). Subjects with eyes open and feet parallel, greatest differences found between the groups were in the maximum peak acceleration in the lateral axis (p < 0.01), minimum peak acceleration in the lateral axis (p < 0.01) and minimum peak acceleration from the resultant vector (p < 0.001). With eyes closed and feet in tandem, the greatest differences found between the groups were in the minimum peak acceleration in the lateral axis (p < 0.01). The accelerometer fitted in the iPhone 4® is able to study and analyse the kinematics of the Romberg test between frail and non-frail elderly people. In addition, the results indicate that the accelerometry values also were significantly different between the frail and non-frail groups, and that values from the accelerometer accelerometer increased as the test was made more complicated.
Detection of falls using accelerometers and mobile phone technology.
Lee, Raymond Y W; Carlisle, Alison J
2011-11-01
to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.
Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
Liu, Kun; Liu, Tao; Shibata, Kyoko; Inoue, Yoshio; Zheng, Rencheng
2009-12-11
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2 degrees of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4 degrees and 4.9 degrees during normal gait that had a 45 degrees flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.
NASA Astrophysics Data System (ADS)
Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md
2017-12-01
An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.
An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.
Bailey, Christopher A; Costigan, Patrick A
2015-12-01
The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.
Hesketh, Kathryn R; Evenson, Kelly R; Stroo, Marissa; Clancy, Shayna M; Østbye, Truls; Benjamin-Neelon, Sara E
2018-06-01
Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation) between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. We recruited women during pregnancy ( n = 100; 2014-2015), asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2), Trimester 3 (T3), and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day) at T2, T3, and postpartum. Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84). Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women.
The method of attachment influences accelerometer-based activity data in dogs.
Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M
2017-02-10
Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful tools to objectively assess physical activity in dogs, care must be taken when choosing a method to attach the device. The attachment of the activity monitor to the collar should utilize a second, dedicated collar that is not used for leash attachment and the attachment method should remain consistent throughout a study period.
Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C
2017-06-14
A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Implantable biaxial piezoresistive accelerometer for sensorimotor control.
Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E
2004-01-01
This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.
Swarm- Validation of Star Tracker and Accelerometer Data
NASA Astrophysics Data System (ADS)
Schack, Peter; Schlicht, Anja; Pail, Roland; Gruber, Thomas
2016-08-01
The ESA Swarm mission is designed to advance studies in the field of magnetosphere, thermosphere and gravity field. To be fortunate on this task precise knowledge of the orientation of the Swarm satellites is required together with knowledge about external forces acting on the satellites. The key sensors providing this information are the star trackers and the accelerometers. Based on star tracker studies conducted by the Denmark Technical University (DTU), we found interesting patterns in the interboresight angles on all three satellites, which are partly induced by temperature alterations. Additionally, structures of horizontal stripes seem to be caused by the unique distribution of observed stars on the charge-coupled device of the star trackers. Our accelerometer analyses focus on spikes and pulses in the observations. Those short term events on Swarm might originate from electrical processes introduced by sunlight illuminating the nadir foil. Comparisons to GOCE and GRACE are included.
Travel behavior of blind individuals before and after receiving orientation and mobility training.
DOT National Transportation Integrated Search
2016-09-08
In this pilot study, we devised, tested, and refined a protocol for evaluating the travel behavior of blind individuals. Preliminary analyses of our pilot study data suggest that our new method involving Global Positioning Systems (GPS), acceleromete...
Haptic seat for fuel economy feedback
Bobbitt, III, John Thomas
2016-08-30
A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.
Foot side detection from lower lumbar spine acceleration.
Ben Mansour, Khaireddine; Rezzoug, Nasser; Gorce, Philippe
2015-09-01
The purpose of this paper is to present a reliable algorithm to discriminate between left/right foot contact using an accelerometer located over the lower lumbar spine. With the given accelerometer frame orientation, the side detection algorithm, based on the sign of the derivative of the sinusoidal shape obtained from the filtered mediolateral (ML) acceleration, showed 100% correct side detection for all subjects at all walking velocities. From the obtained results, it is concluded that in healthy subjects, the side of subsequent foot contact can be reliably obtained from the ML acceleration pattern of the lower lumbar spine. Copyright © 2015. Published by Elsevier B.V.
Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W
2017-05-01
A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r 2 > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-08-14
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-01-01
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203
Lateral stability and control derivatives extracted from space shuttle Challenger flight data
NASA Technical Reports Server (NTRS)
Schiess, James R.
1988-01-01
Flight data taken from six flights of the Space Transportation System shuttle Challenger (STS-6, 7, 8, 11, 13 and 17) during atmospheric entry are analyzed to determine the shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The vehicle stability and control surface effectiveness are compared across the flights and to preflight predicted values.
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1986-01-01
Flight data taken from the first five flights (STS-2, 3, 4, 5 and 9) of the Space Transportation System Shuttle Columbia during entry are analyzed to determine the Shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The estimated parameters are compared across the five flights and to preflight predicted values.
Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer
Boerema, Simone T.; van Velsen, Lex; Schaake, Leendert; Tönis, Thijs M.; Hermens, Hermie J.
2014-01-01
Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant's waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body. PMID:24553085
Decelerations of Parachute Opening Shock in Skydivers.
Gladh, Kristofer; Lo Martire, Riccardo; Äng, Björn O; Lindholm, Peter; Nilsson, Jenny; Westman, Anton
2017-02-01
High prevalence of neck pain among skydivers is related to parachute opening shock (POS) exposure, but few investigations of POS deceleration have been made. Existing data incorporate equipment movements, limiting its representability of skydiver deceleration. This study aims to describe POS decelerations and compare human- with equipment-attached data. Wearing two triaxial accelerometers placed on the skydiver (neck-sensor) and equipment (rig-sensor), 20 participants made 2 skydives each. Due to technical issues, data from 35 skydives made by 19 participants were collected. Missing data were replaced using data substitution techniques. Acceleration axes were defined as posterior to anterior (+ax), lateral right (+ay), and caudal to cranial (+az). Deceleration magnitude [amax (G)] and jerks (G · s-1) during POS were analyzed. Two distinct phases related to skydiver positioning and acceleration direction were observed: 1) the x-phase (characterized by -ax, rotating the skydiver); and 2) the z-phase (characterized by +az, skydiver vertically oriented). Compared to the rig-sensor, the neck-sensor yielded lower amax (3.16 G vs. 6.96 G) and jerk (56.3 G · s-1 vs. 149.0 G · s-1) during the x-phase, and lower jerk (27.7 G · s-1 vs. 54.5 G · s-1) during the z-phase. The identified phases during POS should be considered in future neck pain preventive strategies. Accelerometer data differed, suggesting human-placed accelerometry to be more valid for measuring human acceleration.Gladh K, Lo Martire R, Äng BO, Lindholm P, Nilsson J, Westman A. Decelerations of parachute opening shock in skydivers. Aerosp Med Hum Perform. 2017; 88(2):121-127.
Wang, Chao; Chen, Peijie; Zhuang, Jie
2013-12-01
The psychometric profiles of the widely used International Physical Activity Questionnaire-Short Form (IPAQ-SF) in Chinese youth have not been reported. The purpose of this study was to examine the validity and reliability of the IPAQ-SF using a sample of Chinese youth. One thousand and twenty-one youth (M(age) = 14.26 +/- 1.63 years, 52.8% boys) from 11 cities in China wore accelerometers for 7 consecutive days and completed the IPAQ-SF on the 8th day to recall their physical activity (PA) during accelerometer-wearing days. A subsample of 92 youth (M(age) = 15.90 +/- 1.35 years, 46.7% boys) completed the IPAQ-SF again a week later to recall their PA during accelerometer-wearing days. Differences in PA estimated by the IPAQ-SF and accelerometer were examined by paired-sample t test. Spearman correlation coefficients were used to examine the correlation between the IPAQ-SF and accelerometer. Test-retest reliability of the IPAQ-SF was determined by the intraclass correlation coefficient (ICC). Compared with accelerometer, the IPAQ-SF overestimated sedentary time, moderate PA (MPA), vigorous PA (VPA), and moderate-to-vigorous PA (MVPA). Correlations between PA (total PA, MPA, VPA, and MVPA) and sedentary time measured by 2 instruments ranged from "none" to "low" (p = .08-.31). Test-retest ICC of the IPAQ-SF ranged from "moderate" to "high" (ICC = .43-.83), except for sitting in boys (ICC = .06), sitting for the whole sample (ICC = .32), and VPA in girls (ICC = .35). The IPAQ-SF was not a valid instrument for measuring PA and sedentary behavior in Chinese youth.
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
Elhakeem, Ahmed; Hannam, Kimberly; Deere, Kevin C; Hartley, April; Clark, Emma M; Moss, Charlotte; Edwards, Mark H; Dennison, Elaine; Gaysin, Tim; Kuh, Diana; Wong, Andrew; Fox, Kenneth R; Cooper, Cyrus; Cooper, Rachel; Tobias, Jon H
2017-12-01
High impact physical activity (PA) is thought to benefit bone. We examined associations of lifetime walking and weight bearing exercise with accelerometer-measured high impact and overall PA in later life. Data were from 848 participants (66.2% female, mean age = 72.4 years) from the Cohort for Skeletal Health in Bristol and Avon, Hertfordshire Cohort Study and MRC National Survey of Health and Development. Acceleration peaks from seven-day hip-worn accelerometer recordings were used to derive counts of high impact and overall PA. Walking and weight bearing exercise up to age 18, between 18-29, 30-49 and since age 50 were recalled using questionnaires. Responses in each age category were dichotomised and cumulative scores derived. Linear regression was used for analysis. Greater lifetime walking was related to higher overall, but not high impact PA, whereas greater lifetime weight bearing exercise was related to higher overall and high impact PA. For example, fully-adjusted differences in log-overall and log-high impact PA respectively for highest versus lowest lifetime scores were: walking [0.224 (0.087, 0.362) and 0.239 (- 0.058, 0.536)], and weight bearing exercise [0.754 (0.432, 1.076) and 0.587 (0.270, 0.904)]. For both walking and weight bearing exercise, associations were strongest in the 'since age 50' category. Those reporting the most walking and weight bearing exercise since age 50 had highest overall and high impact PA, e.g. fully-adjusted difference in log-high impact PA versus least walking and weight bearing exercise = 0.588 (0.226, 0.951). Promoting walking and weight bearing exercise from midlife may help increase potentially osteogenic PA levels in later life.
Non-GPS full position and angular orientation onboard sensors for moving and stationary platforms
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.
2016-05-01
Angular orientation of both mobile and stationary objects continues to be an ongoing topic of interest for guidance and control as well as for non-GPS based solutions for geolocations of assets in any environment. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable solution for many applications, particularly for gun-fired munitions and for all-weather and all environment scenarios. A robust onboard full angular orientation sensor solution, based on a scanning polarized reference source and a polarized geometrical cavity orientation sensor, is presented. The full position of the object, in the reference source coordinate system, is determined by combining range data obtained using established time-of-flight techniques, with the angular orientation information.
Sensing power transfer between the human body and the environment.
Veltink, Peter H; Kortier, Henk; Schepers, H Martin
2009-06-01
The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the objective of the current paper to present a concept for estimating power transfer between the human body and the environment during free motions and using sensors at the interface, not requiring measurement systems in the environment, and to experimentally demonstrate this principle. Mass and spring loads were moved by hand over a fixed height difference via varying free movement trajectories. Kinematic and kinetic quantities were measured in the handle between the hand and the load. 3-D force and moments were measured using a 6 DOF force/moment sensor module, 3-D movement was measured using 3-D accelerometers and angular velocity sensors. The orientation was estimated from the angular velocity, using the initial orientation as a begin condition. The accelerometer signals were expressed in global coordinates using this orientation information. Velocity was estimated by integrating acceleration in global coordinates, obtained by adding gravitational acceleration to the accelerometer signals. Zero start and end velocities were used as begin and end conditions. Power was calculated as the sum of the inner products of velocity and force and of angular velocity and moment, and work was estimated by integrating power over time. The estimated performed work was compared to the potential energy difference corresponding to the change in height of the loads and appeared to be accurate within 4% for varying movements with net displacements and varying loads (mass and spring). The principle of estimating power transfer demonstrated in this paper can be used in future interfaces between the human body and the environment instrumented with body-mounted miniature 3-D force and acceleration sensors.
49 CFR 213.345 - Vehicle qualification testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a lateral accelerometer mounted on the car floor, shall be limited to no greater than 0.3g single...) shall be limited to no greater than 0.604, where L may not exceed 0.3g and V may not exceed 0.55g. (c...
49 CFR 213.345 - Vehicle qualification testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a lateral accelerometer mounted on the car floor, shall be limited to no greater than 0.3g single...) shall be limited to no greater than 0.604, where L may not exceed 0.3g and V may not exceed 0.55g. (c...
Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis
NASA Technical Reports Server (NTRS)
Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)
2003-01-01
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Accuracy of piezoelectric pedometer and accelerometer step counts.
Cruz, Joana; Brooks, Dina; Marques, Alda
2017-04-01
This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.
Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test.
Doheny, Emer P; Walsh, Cathal; Foran, Timothy; Greene, Barry R; Fan, Chie Wei; Cunningham, Clodagh; Kenny, Rose Anne
2013-09-01
The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate falls risk estimate. 39 older adults, 19 with a history of falls, performed four repetitions of the FTSS in their homes. A tri-axial accelerometer was attached to the lateral thigh and used to identify each sit-stand-sit phase and sit-stand and stand-sit transitions. A second tri-axial accelerometer, attached to the sternum, captured torso acceleration. The mean and variation of the root-mean-squared amplitude, jerk and spectral edge frequency of the acceleration during each section of the assessment were examined. The test-retest reliability of each feature was examined using intra-class correlation analysis, ICC(2,k). A model was developed to classify participants according to falls status. Only features with ICC>0.7 were considered during feature selection. Sequential forward feature selection within leave-one-out cross-validation resulted in a model including four reliable accelerometer-derived features, providing 74.4% classification accuracy, 80.0% specificity and 68.7% sensitivity. An alternative model using FTSS time alone resulted in significantly reduced classification performance. Results suggest that the described methodology could provide a robust and accurate falls risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.
Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis
NASA Astrophysics Data System (ADS)
Mullen, J.; Hangarter, R.
Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.
Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.
2014-01-01
Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925
Nang, Ei Ei Khaing; Gitau Ngunjiri, Susan Ayuko; Wu, Yi; Salim, Agus; Tai, E Shyong; Lee, Jeannette; Van Dam, Rob M
2011-10-13
Physical activity patterns of a population remain mostly assessed by the questionnaires. However, few physical activity questionnaires have been validated in Asian populations. We previously utilized a combination of different questionnaires to assess leisure time, transportation, occupational and household physical activity in the Singapore Prospective Study Program (SP2). The International Physical Activity Questionnaire (IPAQ) has been developed for a similar purpose. In this study, we compared estimates from these two questionnaires with an objective measure of physical activity in a multi-ethnic Asian population. Physical activity was measured in 152 Chinese, Malay and Asian Indian adults using an accelerometer over five consecutive days, including a weekend. Participants completed both the physical activity questionnaire in SP2 (SP2PAQ) and IPAQ long form. 43 subjects underwent a second set of measurements on average 6 months later to assess reproducibility of the questionnaires and the accelerometer measurements. Spearman correlations were used to evaluate validity and reproducibility and correlations for validity were corrected for within-person variation of accelerometer measurements. Agreement between the questionnaires and the accelerometer measurements was also evaluated using Bland Altman plots. The corrected correlation with accelerometer estimates of energy expenditure from physical activity was better for the SP2PAQ (vigorous activity: r = 0.73; moderate activity: r = 0.27) than for the IPAQ (vigorous activity: r = 0.31; moderate activity: r = 0.15). For moderate activity, the corrected correlation between SP2PAQ and the accelerometer was higher for Chinese (r = 0.38) and Malays (r = 0.57) than for Indians (r = -0.09). Both questionnaires overestimated energy expenditure from physical activity to a greater extent at higher levels of physical activity than at lower levels of physical activity. The reproducibility for moderate activity (accelerometer: r = 0.68; IPAQ: r = 0.58; SP2PAQ: r = 0.55) and vigorous activity (accelerometer: 0.52; IPAQ: r = 0.38; SP2PAQ: r = 0.75) was moderate to high for all instruments. The agreement between IPAQ and accelerometer measurements of energy expenditure from physical activity was poor in our Asian study population. The SP2PAQ showed good validity and reproducibility for vigorous activity, but performed less well for moderate activity particularly in Indians. Further effort is needed to develop questionnaires that better capture moderate activity in Asian populations.
ERIC Educational Resources Information Center
Ilyes, Mark A.; Ortman-Link, Whitney
2009-01-01
Our school recently acquired Vernier's Wireless Dynamics Sensor System (WDSS). The WDSS consists of a three-axis accelerometer, altimeter, and force sensor that has the ability to remotely collect data for later transfer to a computer. While our primary purpose for acquiring the WDSS was to enhance our amusement park physics experiments, we…
A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.
Validation of cardiac accelerometer sensor measurements.
Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik
2009-12-01
In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.
A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique
Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong
2017-01-01
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936
Superconducting six-axis accelerometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1990-01-01
A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.
Peak impact accelerations during track and treadmill running.
Bigelow, Erin M R; Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P
2013-10-01
To determine whether peak vertical and horizontal impact accelerations were different while running on a track or on a treadmill, 12 healthy subjects (average age 32.8 ± 9.8 y), were fitted with a novel, wireless accelerometer capable of recording triaxial acceleration over time. The accelerometer was attached to a custom-made acrylic plate and secured at the level of the L5 vertebra via a tight fitting triathlon belt. Each subject ran 4 miles on a synthetic, indoor track at a self-selected pace and accelerations were recorded on three perpendicular axes. Seven days later, the subjects ran 4 miles on a treadmill set at the individual runner's average pace on the track and the peak vertical and horizontal impact magnitudes between the track and treadmill were compared. There was no difference (P = .52) in the average peak vertical impact accelerations between the track and treadmill over the 4 mile run. However, peak horizontal impact accelerations were greater (P = .0012) on the track when compared with the treadmill. This study demonstrated the feasibility for long-term impact accelerations monitoring using a novel wireless accelerometer.
Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications
NASA Technical Reports Server (NTRS)
DeAnna, Russell G.
1998-01-01
A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.
Matthews, Les; Fortier, Normand
2013-01-01
The present study was designed to investigate body position changes resulting from wearing a Rematee Bumper Belt (Rematee, Canada) during sleep. The majority of obstructive sleep apnea (OSA) patients will experience up to two times as many apneas and hypopneas while supine relative to lateral or prone body positions during sleep. It has been suggested that a positional therapy device could reduce the number of apneas and hypopneas in such patients. The present study was conducted to determine whether the Rematee Bumper Belt positional therapy device could prevent healthy subjects from sleeping in the supine position. Test subjects wore the belt for one to two nights. Each belt was equipped with an accelerometer that was used to measure the orientation of the belt relative to the horizontal plane. The results suggest that the belt creates an exclusion zone approximately 80° wide centred near the supine orientation, where subjects are effectively prevented to enter. Results of the present preliminary study suggests that the Rematee Bumper Belt positional therapy device is effective at limiting healthy subjects from sleeping in a supine position. The device appears to be most effective between 150° and 230°. A device with this capability may provide an inexpensive and potentially effective alternative treatment option for patients with OSA. This device has the capacity for reducing snoring and the apnea-hypopnea index in individuals with positional OSA. PMID:26078596
Inertial and time-of-arrival ranging sensor fusion.
Vasilyev, Paul; Pearson, Sean; El-Gohary, Mahmoud; Aboy, Mateo; McNames, James
2017-05-01
Wearable devices with embedded kinematic sensors including triaxial accelerometers, gyroscopes, and magnetometers are becoming widely used in applications for tracking human movement in domains that include sports, motion gaming, medicine, and wellness. The kinematic sensors can be used to estimate orientation, but can only estimate changes in position over short periods of time. We developed a prototype sensor that includes ultra wideband ranging sensors and kinematic sensors to determine the feasibility of fusing the two sensor technologies to estimate both orientation and position. We used a state space model and applied the unscented Kalman filter to fuse the sensor information. Our results demonstrate that it is possible to estimate orientation and position with less error than is possible with either sensor technology alone. In our experiment we obtained a position root mean square error of 5.2cm and orientation error of 4.8° over a 15min recording. Copyright © 2017 Elsevier B.V. All rights reserved.
LeMoyne, Robert; Mastroianni, Timothy
2015-01-01
Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.
Instrument Records And Plays Back Acceleration Signals
NASA Technical Reports Server (NTRS)
Bozeman, Richard J.
1994-01-01
Small, battery-powered, hand-held instrument feeds power to accelerometer and records time-varying component of output for 15 seconds in analog form. No power needed to maintain content of memory; memory chip removed after recording and stored indefinitely. Recorded signal plays back at any time up to several years later. Principal advantages: compactness, portability, and low cost.
Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi
2018-05-10
Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.
Hinkley, Trina; Timperio, Anna; Salmon, Jo; Hesketh, Kylie
2017-04-01
Little is known about the associations of preschoolers' health behaviors with their later psychosocial wellbeing. This study investigates the association of 3- to 5-year-old children's physical activity and electronic media use with their later social-emotional skills (6-8 years). Data were collected in 2008-2009 and 2011-2012 for the Healthy Active Preschool and Primary Years (HAPPY) Study in metropolitan Melbourne. Participants were a random subsample (n = 108) of the 567 children at follow-up. Physical activity was objectively measured using ActiGraph GT1M accelerometers; electronic media use (television viewing, sedentary electronic games and active electronic games) was parent proxy-reported. Social and emotional skills were child-reported using the Bar-On Emotional Quotient Inventory-Youth Version. Regression analyses controlled for sex, clustering by center of recruitment, and accelerometer wear time (for physical activity analyses). Sedentary electronic games were positively associated with intrapersonal and stress management skills and total emotional quotient. Computer/internet use was inversely associated with interpersonal, and positively associated with stress management, skills. Findings suggest that physical activity is not associated with children's psychosocial health while some types of electronic media use are. Future research should investigate the contexts in which preschoolers participate in these behaviors and potential causal mechanisms of associations.
Acoustic Sensing of Ocean Turbulence
1991-12-01
quantities and of fast varying quantities, requiring high spatial resolution, fast response sensors and stable observation platforms. A classical approach to...with this type of sensor . Moum et.al. [Ref.l0] performed upper ocean observations with this instrument where they were able to 60 characterize the fine...platform orientation using the 3 axis accelerometer as tiltmeters . E. NON-ACOUSTIC DATA The non-acoustic channels on the CDV package are: 3 component
NASA Technical Reports Server (NTRS)
Martin, J. J.; Holt, J. B.
2000-01-01
This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.
NASA Astrophysics Data System (ADS)
Martín-González, Fidel; Martín-Velazquez, Silvia; Rodrigez-Pascua, Miguel Angel; Pérez-López, Raul; Silva, Pablo
2014-05-01
The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects", EAE's, and its orientation (e.g. displaced masonry blocks, conjugated fractures, fallen and oriented columns, impact marks, dipping broken corners, etc.) (Rodriguez-Pascua et al., 2011; Giner-Robles et al., 2012). Its main contribution is that it focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. Therefore, this orientations and instrumental data can be correlated with historical earthquakes. In 2011 an earthquake of magnitude Mw 5.2 took place in Lorca (SE Spain) (9 casualties and 460 million Euros in reparations). The study of the EAE's was carried out through the whole city (Giner-Robles et al., 2012). The present study aimed to a.- validate the EAE's methodology using it only in a small place, specifically the cemetery of San Clemente in Lorca, and b.- constraining the range of orientation for each EAE's. This cemetery has been selected because these damage orientation data can be correlated with instrumental information available, and also because this place has: a.- wide variety of architectural styles (neogothic, neobaroque, neoarabian), b.- its Cultural Interest (BIC), and c.- different building materials (brick, limestone, marble). The procedure involved two main phases: a.- inventory and identification of damage (EAE's) by pictures, and b.- analysis of the damage orientations. The orientation was calculated for each EAE's and plotted in maps. Results are NW-SE damage orientation. This orientation is consistent with that recorded in the accelerometer of Lorca (N160°E) and with that obtained from the analysis of EAE's for the whole town of Lorca (N130°E) (Giner-Robles et al., 2012). Due to the existence of an accelerometer, we know the orientation of the peak ground acceleration and we have been able to constrain the ranges of orientation for each EAE's. The orientation of the damage is not usually recorded after an earthquake; however, it can provide information on seismic source in historical earthquakes. References Giner-Robles, J. L., Perez-Lopez, R., Silva Barroso, P., Rodriguez-Pascua, M. A., Martin-Gonzalez, F. and Cabanas, L. 2012. Analisis estructural de danos orientados en el terremoto de Lorca del 11 de mayo de 2011. Aplicaciones en arqueosismologia. Boletín Geológico y Minero, 123 (4): 503-513 Rodriguez-Pascua, M.A., Perez-Lopez, R., Silva, P.G., Giner- Robles, J.L., Garduno-Monroy, V.H. and Reicherter, K. 2011. A Comprehensive Classification of Earthquake Archaeological Effects (EAE) for Archaeoseismology. Quaternary International, 242, 20-30.
Interactive Design and Development of Real Arm Movements for Application in Rehabilitation
NASA Astrophysics Data System (ADS)
Rosman, Rafidah; Hadi, Muhammad Zaidan Abdul; Abu Bakar, Nurulliyana
2018-03-01
An interactive real arm movements for application in rehabilitation is designed and developed. The aim is to encourage hand paralysis patients performing their physical therapy by introducing games application in replacing conventional hand therapy module and methods. In this project, the accelerometer is used for tracking the orientation of the arm. As the arm moves, the values from x, y and z axis from the accelerometer changes and are being read by the Analog Inputs of the Arduino Board. After being read by the Analog Inputs of the Arduino Board, the 3D model moves as well. Solidworks software was used to modeled the hand in which the data is then transferred to Matlab/Simulink using SimMechanicalLink from Mathworks. Lastly, the sensor glove was programmed to work as a controller of games application in hand rehabilitation thus makes it an enjoyable therapy process.
Großekathöfer, Ulf; Manyakov, Nikolay V.; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S.
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier. PMID:28261082
Großekathöfer, Ulf; Manyakov, Nikolay V; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.
Objectively Measured Physical Activity and Cognitive Function in Older Adults.
Zhu, Wenfei; Wadley, Virginia G; Howard, Virginia J; Hutto, Brent; Blair, Steven N; Hooker, Steven P
2017-01-01
Emerging evidence suggests physical activity (PA) is associated with cognitive function. To overcome limitations of self-report PA measures, this study investigated the association of accelerometer-measured PA with incident cognitive impairment and longitudinal cognition among older adults. Participants were recruited from the cohort study Reasons for Geographic and Racial Differences in Stroke in the United States. Accelerometers provided PA measures, including the percentage of total accelerometer wearing time spent in moderate-to-vigorous-intensity PA (MVPA%), light-intensity PA, and sedentary time for four to seven consecutive days at baseline. Cognitive impairment was defined by the Six-Item Screener. Letter fluency, animal fluency, word list learning, and Montreal Cognitive Assessment (orientation and recall) were conducted to assess executive function and memory. Participants (N = 6452, 69.7 ± 8.5 yr, 55.3% women, 30.5% Black) with usable accelerometer and cognition measures spent extremely limited time in MVPA (1.5% ± 1.9% of accelerometer wearing time). During an average of 3 yr of follow-up, 346 cases of incident cognitive impairment were observed. After adjustments, participants in higher MVPA% quartiles had a lower risk of cognitive impairment (i.e., quartile 2: odds ratio = 0.64, 95% confidence interval = 0.48-0.84) and better maintenance in executive function (≥0.03 z-score units) and memory (≥0.12 z-score units) compared with quartile 1 (P < 0.05). Stratified analyses showed the same association among White adults, but higher MVPA% was associated with better maintenance of only memory among Black adults. No significance was found for light-intensity PA or sedentary time. There was a dose-response relationship between MVPA% and cognitive function in older adults, with higher levels associated with a 36% or lower risk of cognitive impairment and better maintenance of memory and executive function over time, particularly in White adults.
ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, T. K.; Marcum, W. R.; Latimer, G. D.
2016-06-01
Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at amore » series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.« less
Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C
2015-08-01
Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.
NASA Technical Reports Server (NTRS)
Liu, Shih-Ching
1994-01-01
The goal of this research was to determine kinematic parameters of the lower limbs of a subject pedaling a bicycle. An existing measurement system was used as the basis to develop the model to determine position and acceleration of the limbs. The system consists of an ergometer instrumented to provide position of the pedal (foot), accelerometers to be attached to the lower limbs to measure accelerations, a recorder used for filtering, and a computer instrumented with an A/D board and a decoder board. The system is designed to read and record data from accelerometers and encoders. Software has been developed for data collection, analysis and presentation. Based on the measurement system, a two dimensional analytical model has been developed to determine configuration (position, orientation) and kinematics (velocities, accelerations). The model has been implemented in software and verified by simulation. An error analysis to determine the system's accuracy shows that the expected error is well within the specifications of practical applications. When the physical hardware is completed, NASA researchers hope to use the system developed to determine forces exerted by muscles and forces at articulations. This data will be useful in the development of countermeasures to minimize bone loss experienced by astronauts in microgravity conditions.
Note: "Lock-in accelerometry" to follow sink dynamics in shaken granular matter.
Sánchez-Colina, G; Alonso-Llanes, L; Martínez, E; Batista-Leyva, A J; Clement, C; Fliedner, C; Toussaint, R; Altshuler, E
2014-12-01
Understanding the penetration dynamics of intruders in granular beds is relevant not only for fundamental physics, but also for geophysical processes and construction on sediments or granular soils in areas potentially affected by earthquakes. While the penetration of intruders in two dimensional (2D) laboratory granular beds can be followed using video recording, this is useless in three dimensional (3D) beds of non-transparent materials such as common sand. Here, we propose a method to quantify the sink dynamics of an intruder into laterally shaken granular beds based on the temporal correlations between the signals from a reference accelerometer fixed to the shaken granular bed, and a probe accelerometer deployed inside the intruder. Due to its analogy with the working principle of a lock-in amplifier, we call this technique lock-in accelerometry.
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
A wing-assisted running robot and implications for avian flight evolution.
Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S
2011-12-01
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.
Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis
NASA Astrophysics Data System (ADS)
Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.
Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices
Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser
2012-01-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.
Three-component borehole wall-locking seismic detector
Owen, Thomas E.
1994-01-01
A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki
2013-01-01
The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.
Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity
Chavane, Frédéric; Sharon, Dahlia; Jancke, Dirk; Marre, Olivier; Frégnac, Yves; Grinvald, Amiram
2011-01-01
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread. PMID:21629708
Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
NASA Astrophysics Data System (ADS)
H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub
2016-05-01
The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
Comprehensive Testing of ASL-Owned Accelerometers
NASA Astrophysics Data System (ADS)
Evans, J. R.; Hutt, C. R.; Ringler, A. T.; de la Torre, T.
2011-12-01
The Albuquerque Seismological Laboratory (ASL) of the U.S. Geological Survey (USGS) has undertaken detailed testing of several commercial, off-the-shelf accelerometers to characterize production-standard examples of each instrument. The models tested are the Geotech PA-23, Guralp CMG-5TC, Kinemetrics ES-T (Episensor), Nanometrics Titan (sensor only), and RefTek RT-147-01/3. All are ±4 g accelerometers excepting the CMG-5TC at ±2 g (self noise could be depressed relative to 4-g variant). For dynamic tests, all were recorded on Quanterra Q330 (24-bit) or Q330HR (26-bit) recorders; for static tests high-precision multimeters were used (generally Agilent 3458A 81/2-digit or 34401A 61/2-digit). We also used a translational shake table (Anorad LW10-18-P-E-A-A-B-0) to input controlled test motions. We performed the tests described by Hutt et al. (2010; U.S. Geol. Surv. Open File Rep., 2009-1295, http://pubs.usgs.gov/of/2009/1295/) for these strong-motion sensors (Section 7, Recommended Testing for Strong Motion Acceleration Sensors). These recommended tests result from a public/private effort called "GST2" (the second Guidelines for Seismometer Testing workshop) and represent a consensus of experts in government, academia, and industry (a secondary goal of this work is vetting the tests in this consensus document). The recommended accelerometer tests are: 7.1 Power Demand (Start-up and Steady-State) 7.2 Static Sensitivity, Offset, and Linearity 7.3 Frequency Response and Bandwidth 7.4 Clip Level 7.5 Self Noise and Operating Range 7.6 Distortion 7.7 Orientation (Case to Actual) and Orthogonally 7.8 Translational Cross-Axis Sensitivity 7.9 Temperature Effects (Sensitivity and Offset) 7.10 Power Supply Voltage and Voltage-Noise Effects (Offset and Sensitivity) 7.11 Double Integration (Band-Limited Displacement Square Wave) To the degree the tests and analyses have progressed at this writing, the results are generally good but have revealed a number of issues needing attention. A complete set of test results will be provided at the conference. For example, median self noise of all units is within ANSS guidelines but some are as quiet as ~12 dB below the guidelines, while sensitivities of all but one (malfunctioning) channel are within the 1% guideline, and the orientations of axes relative to instrument cases are nearly all within the 1° guideline. (Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.)
Kuhlmann, Levin; Vidyasagar, Trichur R.
2011-01-01
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414
MovAid- a novel device for advanced rehabilitation monitoring.
Gupta, Prashant; Verma, Piyush; Gupta, Rakesh; Verma, Bhawna
2015-08-01
The present article introduces a new device "MovAid" which helps to measure and monitor rehabilitation. It has two main components- "MovAid device" and the "MovAid Smart Phone Application". The device connects wirelessly to the MovAid smart phone application via Bluetooth. It has electronic sensors to measure three important parameters of the patient- Angle of Joint Bent, Lift from the ground and Orientation of the limb. A mono-axis flex sensor to measure the degree of joint bent and a 3-axis accelerometer and gyroscope to measure the orientation of the limb and lift from the ground have been used. MovAid system bridges the gap between caretakers and patients, empowering both in ways never thought of before, by providing detailed and accurate data on every move.
No Evidence of Reciprocal Associations between Daily Sleep and Physical Activity.
Mitchell, Jonathan A; Godbole, Suneeta; Moran, Kevin; Murray, Kate; James, Peter; Laden, Francine; Hipp, J Aaron; Kerr, Jacqueline; Glanz, Karen
2016-10-01
This study aimed to determine whether physical activity patterns are associated with sleep later at night and if nighttime sleep is associated with physical activity patterns the next day among adult women. Women (N = 353) living throughout the United States wore a wrist and a hip accelerometer for 7 d. Total sleep time (TST, hours per night) and sleep efficiency (SE, %) were estimated from the wrist accelerometer, and moderate to vigorous physical activity (MVPA, >1040 counts per minute, h·d) and sedentary behavior (SB, <100 counts per minute, h·d) were estimated from the hip accelerometer. Mixed-effects models adjusted for age, race, body mass index, education, employment, marital status, health status, and hip accelerometer wear time were used to analyze the data. Follow-up analyses using quantile regression were used to investigate associations among women with below average TST and MVPA and above average SB. The average age of our sample was 55.5 yr (SD = 10.2 yr). The majority of participants were White (79%) and married (72%), and half were employed full time (49%). The participants spent on average 8.9 and 1.1 h·d in SB and MVPA, respectively, and 6.8 h per night asleep. No associations were observed between MVPA and SB with nighttime TST or SE. There were no associations between nighttime TST and SE with MVPA or SB the next day. The findings were the same in the quantile regression analyses. In free-living adult women, accelerometry-estimated nighttime sleep and physical activity patterns were not associated with one another. On the basis of our observational study involving a sample of adult women, higher physical activity will not necessarily improve sleep at night on a day-to-day basis (and vice versa).
Lateralization of magnetic compass orientation in a migratory bird
NASA Astrophysics Data System (ADS)
Wiltschko, Wolfgang; Traudt, Joachim; Güntürkün, Onur; Prior, Helmut; Wiltschko, Roswitha
2002-10-01
Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.
Burkhart, Timothy A; Brydges, Evan; Stefanczyk, Jennifer; Andrews, David M
2017-04-01
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10cm above surface, velocity 1m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Papaioannou, Athanasios; Bebetsos, Evaggelos; Theodorakis, Yannis; Christodoulidis, Triantafyllos; Kouli, Olga
2006-04-01
Little information exists about the causal relationships of sport and exercise participation with goal orientations, perceived athletic competence and intrinsic motivation in physical education. A longitudinal study was conducted involving 882 Greek students who completed questionnaires on three occasions: 3 - 5 weeks into the academic year, 3 - 6 weeks before the end of the academic year, and 7 months later. The data were analysed using structural equation models, controlling for age. Task orientation and intrinsic motivation in physical education at the beginning of the academic year predicted sport and exercise participation 7 and 14 months later. Perceived athletic competence both at the beginning and end of the academic year predicted sport and exercise participation 7 and 14 months later, while ego orientation did not predict sport and exercise involvement at either time. Previous sport and exercise participation had positive effects on task orientation and perceived athletic competence 3 - 6 weeks before the end of the academic year and predicted all cognitive-affective constructs 7 months later. These results imply that the cultivation of task orientation, intrinsic motivation in physical education and perceived athletic competence will help to promote sport and exercise participation in adolescence.
Densities inferred from ESA's Venus Express aerobraking campaign at 130 km altitude
NASA Astrophysics Data System (ADS)
Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan; Williams, Adam; Mueller-Wodarg, Ingo
2015-04-01
In June-July 2014, ESA performed a planned aerobraking campaign with Venus Express to measure neutral densities above 130 km in Venus' atmosphere by means of the engineering accelerometers. To that purpose, the orbit perigee was lowered to approximately 130 km in order to enhance the atmospheric drag effect to the highest tolerable levels for the spacecraft; the accelerometer resolution and precision were not sufficient at higher altitudes. This campaign was requested as part of the Venus Express Atmospheric Drag Experiment (VExADE). A total of 18 orbits (i.e. days) were processed using the attitude quaternions to correctly orient the spacecraft bus and solar arrays in inertial space, which is necessary to accurately compute the exposed surface in the ram direction. The accelerometer data provide good measurements approximately from 130-140 km altitude; the length of the profiles is about 85 seconds, and they are on the early morning side (LST=4.5) at high northern latitude (70°N-82°N). The densities are a factor 2-3 larger than Hedin's VTS-3 thermosphere model, which is consistent with earlier results obtained via classical precise orbit determination at higher altitudes. Wavelike structures with amplitudes of 20% and more are detected, with wavelengths of about 100-500 km. We cannot entirely rule out that these waves are caused by the spacecraft or due to some unknown instrumental effect, but we estimate this probability to be very low.
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
Calibration of context-specific survey items to assess youth physical activity behaviour.
Saint-Maurice, Pedro F; Welk, Gregory J; Bartee, R Todd; Heelan, Kate
2017-05-01
This study tests calibration models to re-scale context-specific physical activity (PA) items to accelerometer-derived PA. A total of 195 4th-12th grades children wore an Actigraph monitor and completed the Physical Activity Questionnaire (PAQ) one week later. The relative time spent in moderate-to-vigorous PA (MVPA % ) obtained from the Actigraph at recess, PE, lunch, after-school, evening and weekend was matched with a respective item score obtained from the PAQ's. Item scores from 145 participants were calibrated against objective MVPA % using multiple linear regression with age, and sex as additional predictors. Predicted minutes of MVPA for school, out-of-school and total week were tested in the remaining sample (n = 50) using equivalence testing. The results showed that PAQ β-weights ranged from 0.06 (lunch) to 4.94 (PE) MVPA % (P < 0.05) and models root mean square error ranged from 4.2% (evening) to 20.2% (recess). When applied to an independent sample, differences between PAQ and accelerometer MVPA at school and out-of-school ranged from -15.6 to +3.8 min and the PAQ was within 10-15% of accelerometer measured activity. This study demonstrated that context-specific items can be calibrated to predict minutes of MVPA in groups of youth during in- and out-of-school periods.
Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jackson, Kurt (Technical Monitor)
2002-01-01
Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).
Validity and reliability of the G-Cog device for kinematic measurements.
Chiementin, X; Crequy, S; Bertucci, W
2013-11-01
The aim of this study was to test the validity and the reliability of the G-Cog which is a new BMX powermeter allowing for the measurements of the acceleration on X-Y-Z axis (250 Hz) at the BMX rear wheel. These measurements allow computing lateral, angular, linear acceleration, angular, linear velocity and the distance. Mechanical measurements at submaximal intensities in standardized laboratory conditions and during maximal exercises in the field conditions were performed to analyse the reliability of the G-Cog accelerometers. The performances were evaluated in comparison with an industrial accelerometer and with 2 powermeters, the SRM and PowerTap. Our results in laboratory conditions show that the G-Cog measurements have low value of variation coefficient (CV=2.35%). These results suggest that the G-cog accelerometers measurements are reproducible. The ratio limits of agreement of the rear hub angular velocity differences between the SRM and the G-Cog were 1.010 × ÷ 1.024 (95%CI=0.986-1.034) and between PowerTap and G-Cog were 0.993 × ÷ 1.019 (95%CI=0.974-1.012). In conclusion, our results suggest that the G-Cog angular velocity measurements are valid and reliable compared with SRM and PowerTap and could be used to analyse the kinematics during BMX actual conditions. © Georg Thieme Verlag KG Stuttgart · New York.
2013-09-30
funded tags have been used on a variety of projects: western gray whales in Russia, Pacific Coast Feeding Group (PCFG) gray whales, and sperm whales...provide an accurate, long duration, depiction of underwater dive behavior and especially to examine sperm whale foraging behavior. The data will be...an acoustic dosimeter. Eleven GPS/TDR tags containing three axis accelerometers were deployed on sperm whales in the Gulf of Mexico in July/Aug
On the applicability of integrated circuit technology to general aviation orientation estimation
NASA Technical Reports Server (NTRS)
Debra, D. B.; Tashker, M. G.
1976-01-01
The criteria of the significant value of the panel instruments used in general aviation were examined and kinematic equations were added for comparison. An instrument survey was performed to establish the present state of the art in linear and angular accelerometers, pressure transducers, and magnetometers. A very preliminary evaluation was done of the computers available for data evaluation and estimator mechanization. The mathematical model of a light twin aircraft employed in the evaluation was documented, the results of the sensor survey and the results of the design studies were presented.
Phase Space Dissimilarity Measures for Structural Health Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E
A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placementmore » sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.« less
Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests
Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan
2016-01-01
This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184
Surgery clerkship orientation: evaluating temporal changes in student orientation needs.
O'Neill, Conor; Moore, Jesse; Callas, Peter
2016-08-01
Surgery clerkship students at our institution receive a standardized orientation covering objectives, requirements, grading, and expectations. Limited data exist regarding the student perceptions of this approach. Surveys were provided to students to rate the importance of orientation topics and their satisfaction with topic conclusion. Scores between student groupings over the clerkship year were analyzed with Student t tests and analysis of variance with Scheffe adjustments. Significant differences in the mean importance rating between topics exists (P < .0001) as well as among satisfaction scores for topics (P < .0005). Early clerkship students value course expectations higher than later students (P = .03). Early clerkship students want more time devoted to hospital tours and expectations compared with later students (31% vs 8%). Orientation needs for students change over the clerkship year. Beginning students prefer basic direction for time spent on the ward. Later students prefer information regarding shelf preparation. Surgery course directors can adapt the orientation based on the experience of clerkship students. Copyright © 2016 Elsevier Inc. All rights reserved.
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Li, Kin-Kit; Ng, Lorna; Cheng, Sheung-Tak; Fung, Helene H
2017-06-01
It has been suggested that gain-framed messages are more effective than loss-framed messages in promoting low-risk health behaviors such as physical activity. Because of a heightened health concern and possible medical complications, older adults with type 2 diabetes (T2D) may consider physical activity to be risky. This study examined whether a reverse message-framing effect would be found among older adults with T2D. The participants included 211 sedentary and older adults with T2D recruited from an outpatient clinic. The participants were randomly assigned to receive either gain-framed or loss-framed messages and wore an accelerometer to monitor their physical activity for 2 weeks. The participants who received loss-framed messages were more physically active than those who received gain-framed messages (β = 0.13, p = .033). This loss-frame advantage might be attributable to the heightened perceived risks among older outpatients with T2D and the temporarily activated prevention-focused orientation in a clinical setting.
Using external sensors in solution of SLAM task
NASA Astrophysics Data System (ADS)
Provkov, V. S.; Starodubtsev, I. S.
2018-05-01
This article describes the algorithms of spatial orientation of SLAM, PTAM and their positive and negative sides. Based on the SLAM method, a method that uses an RGBD camera and additional sensors was developed: an accelerometer, a gyroscope, and a magnetometer. The investigated orientation methods have their advantages when moving along a straight trajectory or when rotating a moving platform. As a result of experiments and a weighted linear combination of the positions obtained from data of the RGBD camera and the nine-axis sensor, it became possible to improve the accuracy of the original algorithm even using a constant as a weight function. In the future, it is planned to develop an algorithm for the dynamic construction of a weight function, as a result of which an increase in the accuracy of the algorithm is expected.
Burles, Ford; Slone, Edward; Iaria, Giuseppe
2017-04-01
The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.
Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line
NASA Astrophysics Data System (ADS)
Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.
2017-10-01
With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.
Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.
Specific cross-gender behaviour in boyhood and later homosexual orientation.
Green, R; Roberts, C W; Williams, K; Goodman, M; Mixon, A
1987-07-01
Data from a group of males aged 13 to 23, who as children exhibited extensive cross-gender behaviour, was analysed. In boyhood they frequently played with dress-up dolls, role-played as females, dressed in girls' clothes, stated the wish to be girls, primarily had girls as friends, and avoided rough-and-tumble play. The majority of the group evolved a bisexual or homosexual orientation; two types of behaviour, boyhood doll play and female role-playing, were found to be associated with later homosexual orientation. The findings suggest developmental associations between specific types of boyhood cross-gender behaviour and the objects of later sexual arousal.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
Visual-Spatial Orienting in Autism.
ERIC Educational Resources Information Center
Wainwright, J. Ann; Bryson, Susan E.
1996-01-01
Visual-spatial orienting in 10 high-functioning adults with autism was examined. Compared to controls, subjects responded faster to central than to lateral stimuli, and showed a left visual field advantage for stimulus detection only when laterally presented. Abnormalities in attention shifting and coordination of attentional and motor systems are…
Prospective Relations between Social Comparison Orientation and Weight Loss Outcomes.
Arigo, Danielle; Butryn, Meghan L
2018-06-26
Maintenance of weight loss after behavioral intervention tends to be poor, and there is need for an improved understanding of factors that are associated with successful maintenance. Social comparison is known to be a powerful influence on treatment outcomes for group-based behavioral weight loss programs, but little is known about the role of individual differences in social comparison orientation (i.e., tendency to value comparison information) in this context. The goal of this study was to examine prospective relations between social comparison orientation and long-term weight loss outcomes (percent weight loss, aerobic-intensity physical activity) among participants in behavioral weight loss treatment. Participants (n = 161, M Age = 54, M BMI = 34.4░kg/m 2 ) completed a measure of social comparison orientation at pre-treatment baseline. Height and weight were measured in the research center and aerobic-intensity physical activity was assessed via accelerometer at baseline, mid- and end-of-treatment, and at 6 and 12 months post-treatment (representing maintenance). Multilevel models tested prospective relations between comparison orientation and treatment outcomes over time, with emphasis on differences during the post-treatment maintenance phase. Stronger (vs. weaker) general comparison orientation was associated with better maintenance of aerobic-intensity physical activity. However, stronger (vs. weaker) orientation toward comparisons with better-off others (i.e., upward comparison) was associated with less weight loss success during and after treatment. Social comparison orientation thus shows meaningful relations with long-term maintenance of key outcomes in group-based behavioral weight loss treatment, and warrants further investigation in this context.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng
2016-02-20
To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng
2016-01-01
To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination. PMID:26907294
An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes
Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin
2014-01-01
In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
Pelvic orientation for total hip arthroplasty in lateral decubitus: can it be accurately measured?
Sykes, Alice M; Hill, Janet C; Orr, John F; Gill, Harinderjit S; Salazar, Jose J; Humphreys, Lee D; Beverland, David E
2016-05-16
During total hip arthroplasty (THA), accurately predicting acetabular cup orientation remains a key challenge, in great part because of uncertainty about pelvic orientation. This pilot study aimed to develop and validate a technique to measure pelvic orientation; establish its accuracy in the location of anatomical landmarks and subsequently; investigate if limb movement during a simulated surgical procedure alters pelvic orientation. The developed technique measured 3-D orientation of an isolated Sawbone pelvis, it was then implemented to measure pelvic orientation in lateral decubitus with post-THA patients (n = 20) using a motion capture system. Orientation of the isolated Sawbone pelvis was accurately measured, demonstrated by high correlations with angular data from a coordinate measurement machine; R-squared values close to 1 for all pelvic axes. When applied to volunteer subjects, largest movements occurred about the longitudinal pelvic axis; internal and external pelvic rotation. Rotations about the anteroposterior axis, which directly affect inclination angles, showed >75% of participants had movement within ±5° of neutral, 0°. The technique accurately measured orientation of the isolated bony pelvis. This was not the case in a simulated theatre environment. Soft tissue landmarks were difficult to palpate repeatedly. These findings have direct clinical relevance, landmark registration in lateral decubitus is a potential source of error, contributing here to large ranges in measured movement. Surgeons must be aware that present techniques using bony landmarks to reference pelvic orientation for cup implantation, both computer-based and mechanical, may not be sufficiently accurate.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760
Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-03-16
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.
Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-01-01
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552
Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza
2018-02-27
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.
Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza
2018-01-01
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434
Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
Roetenberg, Daniel; Slycke, Per J; Veltink, Peter H
2007-05-01
This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom (DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation.
Dynamic performances analysis of a real vehicle driving
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Jamil, J. F.; Salim, M. A.
2015-12-01
Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1994-01-01
A complete description of an instrumented ergometer system, including the sensors, the data acquisition system, and the methodologies to calculate the kinematic parameters were initially developed at Tulane University. This work was continued by the PI at NASA Johnson Space Center, where a flight ergometer was instrumented and tested during a KC-135 Zero-Gravity flight. The sensors that form part of the system include EMG probes and accelerometers mounted on the subject using the ergometer, load cells to measure pedal forces, and encoders to measure position and orientation of the pedal (foot). Currently, data from the flight test is being analyzed and processed to calculate the kinematic parameters of the individual. The formulation developed during the initial months of the grant will be used for this purpose. The system's components are compact (all sensors are very small). A salient feature of the system and associated methodology to determine the kinematics is that although it uses accelerometers, position is not determined by integration. Position is determined by determining the angle of two frames of reference for which acceleration at one point is known in coordinates of both frames.
A combined vision-inertial fusion approach for 6-DoF object pose estimation
NASA Astrophysics Data System (ADS)
Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.
2015-02-01
The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Sapio, Vincent
2010-09-01
The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processingmore » techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.« less
Particle swarm optimization algorithm based low cost magnetometer calibration
NASA Astrophysics Data System (ADS)
Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.
2011-12-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments
Measuring acetabular component position on lateral radiographs - ischio-lateral method.
Pulos, Nicholas; Tiberi Iii, John V; Schmalzried, Thomas P
2011-01-01
The standard method for the evaluation of arthritis and postoperative assessment of arthroplasty treatment is observation and measurement from plain films, using the flm edge for orientation. A more recent employment of an anatomical landmark, the ischial tuberosity, has come into use as orientation for evaluation and is called the ischio-lateral method. In this study, the use of this method was evaluated as a first report to the literature on acetabular component measurement using a skeletal reference with lateral radiographs. Postoperative radiographs of 52 hips, with at least three true lateral radiographs taken at different time periods, were analyzed. Component position was measured with the historical method (using the flm edge for orientation) and with the new method using the ischio-lateral method. The mean standard deviation (SD) for the historical approach was 3.7° and for the ischio-lateral method, 2.2° (p < 0.001). With the historical method, 19 (36.5%) hips had a SD greater than ± 4°, compared to six hips (11.5%) with the ischio-lateral method. By using a skeletal reference, the ischio-lateral method provides a more consistent measurement of acetabular component position. The high intra-class correlation coefficients for both intra- and inter-observer reliability indicate that the angle measured with this simple method, which employs no further technology, increased time, or cost, is consistent and reproducible for multiple observers.
Design and implementation of a micromechanical silicon resonant accelerometer.
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-11-19
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro
2017-09-01
Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.
Inertial Motion Capture Costume Design Study
Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad
2017-01-01
The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337
Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850
Montoye, Alexander H K; Pivarnik, James M; Mudd, Lanay M; Biswas, Subir; Pfeiffer, Karin A
2016-01-01
Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks in SB. Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3-10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87-95% and 93-97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91-95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93-99% for SB and LPA but 67-84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Coupled with machine learning modeling, the thigh-worn accelerometer should be considered when objectively assessing PA and SB.
Compact Circuit Preprocesses Accelerometer Output
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.
Tool enables proper mating of accelerometer and cable connector
NASA Technical Reports Server (NTRS)
Steed, C. N.
1966-01-01
Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.
Self-noise models of five commercial strong-motion accelerometers
Ringler, Adam; Evans, John R.; Hutt, Charles R.
2015-01-01
To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.
Quasi-Static Calibration Method of a High-g Accelerometer
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-01-01
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743
New Matching Method for Accelerometers in Gravity Gradiometer
Wei, Hongwei; Wu, Meiping; Cao, Juliang
2017-01-01
The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584
On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers
NASA Astrophysics Data System (ADS)
Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia
2017-06-01
The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.
Launcher Dynamic Data Acquisition
2012-07-31
K PR Pressure PR Pressure PR Accelerometer PR Accelerometer PR Accelerometer PR Pressure PR Pressure IEPE Microphone IEPE ...transducers, displacement potentiometers, or Integrated Electronics Piezoelectric ( IEPE ) microphones and accelerometers. The characteristics of these...Engineering Units HCl hydrogen chloride HVAC heating ventilation and cooling Hz hertz IEC International Electrotechnical Commission IEPE
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-01-01
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978
Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, Joel M.; Sisson, James B.
2001-01-01
A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.
Calibration and comparison of accelerometer cut points in preschool children.
van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet
2011-06-01
The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.
Jotta, Bruno; Cavalcanti Garcia, Marco Antonio; Visintainer Pino, Alexandre; De Souza, Marcio Nogueira
2015-01-01
Lateral (X) and longitudinal (Y) mechanical oscillations of muscle fibers that take place during muscular contraction seem to contain information additionally to the myoelectric activity, which can contribute to the interpretation of some muscle gradation force mechanisms. However, no previous study was found that had investigated the relationship between the muscle force and features associated to the mechanomyographic (MMG) signal obtained by means of a biaxial accelerometer in three different muscles. Therefore, the aim of this study was to evaluate the relationship between the force output at different load levels (20% to 100%) of the maximum voluntary isometric contraction (%MVIC) and the two signals supplied by a biaxial accelerometer and, in addition, the so-called resultant (R) acceleration signal derived from the two signals mentioned previously. Twenty seven male volunteers participated in this study. The force output related to the right biceps brachii, soleus and gastrocnemius medialis muscles was studied by means of linear regression models fit to log-transformed of the root mean square (RMS) values of the MMG signals in X, Y, and R axes versus each %MVIC. The phase angle of R acceleration (PhaseR) and anthropometric data were also considered. The angular coefficient a and the antilog of y-intercept b from the log-transformed of MMG data values versus force output were able to distinguish partially motor unit strategies during isometric contractions in the three muscles studied. The findings suggest that biaxial accelerometer seems to be an interesting approach in the assessment of muscle contraction properties.
Assessment of Differing Definitions of Accelerometer Nonwear Time
ERIC Educational Resources Information Center
Evenson, Kelly R.; Terry, James W., Jr.
2009-01-01
Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…
O’Donnell, Matthew Brook; Strecher, Victor J.; Falk, Emily B.
2016-01-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants’ dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants’ level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication. PMID:28344683
Kang, Yoona; O'Donnell, Matthew Brook; Strecher, Victor J; Falk, Emily B
2017-04-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants' dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants' level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication.
A Self-Diagnostic System for the M6 Accelerometer
NASA Technical Reports Server (NTRS)
Flanagan, Patrick M.; Lekki, John
2001-01-01
The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.
Left and right brain-oriented hemisity subjects show opposite behavioral preferences.
Morton, Bruce E
2012-01-01
Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called "Hemisity," a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC) as revealed by a 3 min MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new. Right and left brain-oriented subjects selected opposite answers (p > 0.05) for 47 of the 107 "either-or," forced choice type preference questionnaire items. The resulting 30 hemisity subtype preference differences were present in several areas. These were: (1) in logical orientation, (2) in type of consciousness, (3) in fear level and sensitivity, (4) in social-professional orientation, and (5) in pair bonding-spousal dominance style. The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed 30 significant differences in their "either-or" type of behavioral preferences.
Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun
2016-01-01
Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383
Membrane Orientation and Lateral Diffusion of BODIPY-Cholesterol as a Function of Probe Structure
Solanko, Lukasz M.; Honigmann, Alf; Midtiby, Henrik Skov; Lund, Frederik W.; Brewer, Jonathan R.; Dekaris, Vjekoslav; Bittman, Robert; Eggeling, Christian; Wüstner, Daniel
2013-01-01
Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells. PMID:24209853
Dual Accelerometer Usage Strategy for Onboard Space Navigation
NASA Technical Reports Server (NTRS)
Zanetti, Renato; D'Souza, Chris
2012-01-01
This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
NASA Astrophysics Data System (ADS)
Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang
2016-08-01
There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.
Using tri-axial accelerometers to identify wild polar bear behaviors
Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.
2017-01-01
Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.
Comparison of Physical Activity Adult Questionnaire results with accelerometer data.
Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C
2015-07-01
Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.
Accelerometer-based measures in physical activity surveillance: current practices and issues.
Pedišić, Željko; Bauman, Adrian
2015-02-01
Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-04-23
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-01-01
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods. PMID:28441743
Alsubaie, Naif M; Youssef, Ahmed A; El-Sheimy, Naser
2017-09-30
This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution.
Alsubaie, Naif M.; Youssef, Ahmed A.; El-Sheimy, Naser
2017-01-01
This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution. PMID:28973958
Simultaneous, accurate measurement of the 3D position and orientation of single molecules
Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.
2012-01-01
Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640
Copper Nanowire Production for Interconnect Applications
NASA Technical Reports Server (NTRS)
Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)
2014-01-01
A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).
Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri
2015-01-01
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Self Diagnostic Accelerometer Testing on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.
A brief test of the Hewlett-Packard MEMS seismic accelerometer
Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.
2014-01-01
Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.
Vibration sensing in smart machine rotors using internal MEMS accelerometers
NASA Astrophysics Data System (ADS)
Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.
2016-09-01
This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.
Low phosphate alters lateral root setpoint angle and gravitropism.
Bai, Hanwen; Murali, Bhavna; Barber, Kevin; Wolverton, Chris
2013-01-01
Lateral roots, responsible for water and nutrient uptake, maintain nonvertical angles throughout development. Soil phosphate is one limiting nutrient for plant growth that is known to induce changes to root system architecture, such as increased lateral root formation. This study seeks to determine whether phosphate concentration affects lateral root orientation in addition to its previously described influences on root architecture. Images of intact Arabidopsis root systems were recorded for 24 h, and lateral root tip angles were measured for wild-type and mutant pgm-1 and pin3-1 roots on a full or low phosphate medium. Setpoint angles of unstimulated root systems were determined, as were gravitropic responses of lateral roots over time. The root system setpoint angles of wild-type and mutant pin3-1 roots showed a shift toward a more vertical orientation on low orthophosphate (Pi) medium. The gravitropic responses of both pgm-1 and pin3-1 roots on low Pi medium was elevated relative to control Pi medium. Mutations in two phosphate transporters with high levels of expression in the root showed a gravitropic response similar to wild-type roots grown on low Pi, supporting a role for Pi status in regulating lateral root gravitropism. Lateral root orientation and gravitropism are affected by Pi status and may provide an important additional parameter for describing root responses to low Pi. The data also support the conclusion that gravitropic setpoint angle reacts to nutrient status and is under dynamic regulation.
Prey-sensing and orientational behaviors of sand scorpions
NASA Astrophysics Data System (ADS)
Brownell, Philip
2000-03-01
Sand scorpions use exquisitely sensitive vibrational and chemosensory systems to locate prey and identify prospective mates active on the sand surface. Prey location is determined by input to a static array of 8 vibration-sensitive receptors, each responding as phase-locked accelerometers to compressional and surface waves conducted through sand. Angular orientation of the target is determined from passing surface (Rayleigh) waves, target distance possibly from the time delay between arrival of compressional and surface waves. For localization and identification of prospective mates, male scorpions use sexually dimorphic chemosensory appendages, the pectines, which are swept over a static stimulus field (chemical trail deposited on sand). These organs support a 2D array of closely-spaced (freq = 100/mm) sensilla containing more than 10^6 neurons, all projecting with great topographic precision to the central nervous system. Movement of this sensory array over a static stimulus field creates timing within the sensory signal. The potential importance of timing as a means of increasing sensitivity and selectivity of sensory response in two distinctly different modes is discussed.
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
Using the GOCE star trackers for validating the calibration of its accelerometers
NASA Astrophysics Data System (ADS)
Visser, P. N. A. M.
2017-12-01
A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2015-09-01
Responses of most neurons in the primary visual cortex of mammals are markedly selective for stimulus orientation and their orientation tuning does not vary with changes in stimulus contrast. The basis of such contrast invariance of orientation tuning has been shown to be the higher variability in the response for low-contrast stimuli. Neurons in the lateral geniculate nucleus (LGN), which provides the major visual input to the cortex, have also been shown to have higher variability in their response to low-contrast stimuli. Parallel studies have also long established mild degrees of orientation selectivity in LGN and retinal cells. In our study, we show that contrast invariance of orientation tuning is already present in the LGN. In addition, we show that the variability of spike responses of LGN neurons increases at lower stimulus contrasts, especially for non-preferred orientations. We suggest that such contrast- and orientation-sensitive variability not only explains the contrast invariance observed in the LGN but can also underlie the contrast-invariant orientation tuning seen at the level of the primary visual cortex. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2011-03-01
b b are additive accelerometer and gyro noises and w b abias and wbbbias are accelerometer bias and gyro bias noises. These will described in further...order accelerometer bias time constant and w b abias is the additive accelerometer bias noise, and ḃb = − 1 τb bb +wbbbias (2.43) where τb is the first
Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.
2010-01-01
Background European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system. PMID:20707905
Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure.
Solanko, Lukasz M; Honigmann, Alf; Midtiby, Henrik Skov; Lund, Frederik W; Brewer, Jonathan R; Dekaris, Vjekoslav; Bittman, Robert; Eggeling, Christian; Wüstner, Daniel
2013-11-05
Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Innerd, Paul; Harrison, Rory; Coulson, Morc
2018-04-23
Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.
NASA Astrophysics Data System (ADS)
Wilkinson, S. J.; Hukins, D. W. L.
1999-08-01
Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.
Can infants' orientation to social stimuli predict later joint attention skills?
Schietecatte, Inge; Roeyers, Herbert; Warreyn, Petra
2012-06-01
From the moment infants are born, they seem to prefer orienting to social stimuli, over objects and non-social stimuli. This preference lasts throughout adulthood and is believed to play a crucial role in social-communicative development. By following up a group of infants at the age of 6, 8, and 12 months, this study explored the role of social orienting in the early development of joint attention skills. The expected association between social orienting and joint attention was partially confirmed. Social orienting in real-life photographs of everyday situations was not related to later joint attention skills, however fixation to the eyes in a neutral face was related to response to joint attention skills, and fixation to the eyes in a dynamic video clip of a talking person was predictive of initiating joint attention skills. Several alternative interpretations of the results are discussed. ©2011 The British Psychological Society.
Comparison of self-reported versus accelerometer-measured physical activity.
Dyrstad, Sindre M; Hansen, Bjørge H; Holme, Ingar M; Anderssen, Sigmund A
2014-01-01
The International Physical Activity Questionnaire (IPAQ) is one of the most widely used questionnaires to assess physical activity (PA). Validation studies for the IPAQ have been executed, but still there is a need for studies comparing absolute values between IPAQ and accelerometer in large population studies. To compare PA and sedentary time from the self-administered, short version of the IPAQ with data from ActiGraph accelerometer in a large national sample. A total of 1751 adults (19-84 yr) wore an accelerometer (ActiGraph GT1M) for seven consecutive days and completed the IPAQ-Short Form. Sedentary time, total PA, and time spent in moderate to vigorous activity were compared in relation to sex, age, and education. Men and women reported, on average, 131 min·d (SE = 4 min·d) less sedentary time compared with the accelerometer measurements. The difference between self-reported and measured sedentary time and vigorous-intensity PA was greatest among men with a lower education level and for men 65 yr and older. Although men reported 47% more moderate to vigorous physical activity (MVPA) compared with women, there were no differences between sexes in accelerometer-determined MVPA. Accelerometer-determined moderate PA was reduced from 110 to 42 min·d (62%) when analyzed in blocks of 10 min (P < 0.0001) compared with 1-min blocks. The main correlation coefficients between self-reported variables and accelerometer measures of physical activity were between 0.20 and 0.46. The participants report through IPAQ-Short Form more vigorous PA and less sedentary time compared with the accelerometer. The difference between self-reported and accelerometer-measured MVPA increased with higher activity and intensity levels. Associations between the methods were affected by sex, age, and education, but not body mass index.
Predicting the performance and innovativeness of scientists and engineers.
Keller, Robert T
2012-01-01
A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.
Wearable Accelerometers in High Performance Jet Aircraft.
Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E
2016-02-01
Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.
Area-variable capacitive microaccelerometer with force-balancing electrodes
NASA Astrophysics Data System (ADS)
Ha, Byeoungju; Lee, Byeungleul; Sung, Sangkyung; Choi, Sangon; Shinn, Meenam; Oh, Yong-Soo; Song, Ci M.
1997-11-01
A surface micromachined accelerometer which senses an inertial motion with an area variation and a force balancing electrodes is developed. The grid-type planar mass of a 7 micrometers thick polysilicon is supported by four thin beams and suspended above a silicon substrate with a 1.5 micrometers air gap. The motion sensing electrodes are formed on the substrate. The sensor is designed as an interdigital rib structure that has a differential capacitor arrangement. The moveable electrodes are mounted on the mass and the pairs of the stationary electrodes are patterned on the substrate. In the accelerometer that has comb-type movable electrodes, the mechanical stress and the electrical pulling effects between a moveable electrodes and the fixed electrodes occur. However this grid-type structure can have a large area variation in a small area relatively without stress and pulling, high sensitivity can be achieved. In order to improve the dynamic rang and a linearity, a pair of comb shape force-balancing electrodes are implemented on both sides of the mass. The force-balancing electrodes are made of the same layer as the mass and anchored on a silicon substrate. When acceleration is applied in the lateral direction, the difference of capacitance results from the area variation between the two capacitors and is measured using a charge amplifier. As AC coupled complimentary pick- off signals are applied in paris of stationary electrodes, the undesirable effects due to temperature and electrical noise are reduced effectively. The accelerometer has a sensitivity of 28mV/g and a bandwidth of DC-120Hz. A resolution of 3mg and a non-linearity of 1.3 percent is achieved for a measurement range of +/- 9 g.
2014-06-01
Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a
NASA Astrophysics Data System (ADS)
Giannini, C.; Tapfer, L.; Zhuang, Y.; de Caro, L.; Marschner, T.; Stolz, W.
1997-02-01
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest <110> directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation. A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Strain System for the Motion Base Shuttle Mission Simulator
NASA Technical Reports Server (NTRS)
Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.
2010-01-01
The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.
ERIC Educational Resources Information Center
Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John
2010-01-01
An individual's motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this…
NASA Astrophysics Data System (ADS)
Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz
2016-04-01
The Precise Orbit Determination (POD) of the satellites of the Global Navigation Satellite Systems (GNSS) represents the basic prerequisite in order to provide refined ephemerides for their orbit, aimed at providing a precise and accurate positioning on the Earth. An important factor that impacts negatively in the POD of these satellites is the limited modeling of the accelerations produced by the non-gravitational accelerations. These, indeed, are subtle and generally complex to model properly, especially in the case of a complex in shape spacecraft, with solar panels and antennae for microwave link and the mutual shadowing effects among the many surfaces involved. We have to notice that their modeling has an important impact in the determination of a number of geophysical parameters of interest, such as stations coordinates, Earth's geocenter and orientation parameters. In the case of GNSS satellites, the main NGP acceleration is the one produced by the direct solar radiation pressure, with non-negligible contributions due to Earth's albedo, thermal effects and power radiated by the antennae. The models developed so far for these perturbative effects have shown many limits, as pointed out in the literature. Currently, the models developed for the NGPs are mainly based on empirical blind models (with the goal of absorb unknowns quantities) and more recently with the use of wing-box models, that try to provide a finite-elements approach to the modeling. The European Space Agency (ESA) - in the context of the development of the GALILEO constellation, and especially in view of the next generation of GALILEO spacecraft - besides being interested in possible improvements of the NGPs models, is also envisaging the use of an onboard accelerometer to directly measure them in order to improve the POD of each spacecraft of the constellation. We have been involved in this study by means of a proposal to ESA denominated GALileo and ACcelerometry (GALAC) led by the Space Research Centre (SRC) of the Polish Academy of Sciences (PAS) of Warsaw. The GALAC main objective is to provide the characteristics and performance of an onboard accelerometer able to improve the POD with respect to the current best results obtained through the modeling of the NGPs. The starting point of our activities has been the ISA accelerometer developed for the ESA BepiColombo mission to Mercury. We will present our results of a preparatory work for GALAC concerning a first characterization of the main NGPs acting on the GALILEO spacecraft of second generation, including their (main) spectral content. Such results are used to preliminary fix the accelerometer measurement band, its sensitivity and physical characteristics in order to fit with the GALILEO spacecraft environment.
Attitude Ground System (AGS) For The Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
The Magnetospheric Multiscale (MMS) mission is a Solar-Terrestrial Probe mission consisting of four identically instrumented spin-stabilized spacecraft flying in an adjustable pyramid-like formation around the Earth. The formation of the MMS spacecraft allows for three-dimensional study of the phenomenon of magnetic reconnection, which is the primary objective of the mission. The MMS spacecraft were launched early on March 13, 2015 GMT. Due to the challenging and very constricted attitude and orbit requirements for performing the science, as well as the need to maintain the spacecraft formation, multiple ground functionalities were designed to support the mission. These functionalities were incorporated into a ground system known as the Attitude Ground System (AGS). Various AGS configurations have been used widely to support a variety of three-axis-stabilized and spin-stabilized spacecraft missions within the NASA Goddard Space Flight Center (GSFC). The original MMS operational concept required the AGS to perform highly accurate predictions of the effects of environmental disturbances on the spacecraft orientation and to plan the attitude maneuvers necessary to stay within the science attitude tolerance. The orbit adjustment requirements for formation control drove the need also to perform calibrations that have never been done before in support of NASA GSFC missions. The MMS mission required support analysts to provide fast and accurately calibrated values of the inertia tensor, center of mass, and accelerometer bias for each MMS spacecraft. During early design of the AGS functionalities, a Kalman filter for estimating the attitude, body rates, center of mass, and accelerometer bias, using only star tracker and accelerometer measurements, was heavily analyzed. A set of six distinct filters was evaluated and considered for estimating the spacecraft attitude and body rates using star tracker data only. Four of the six filters are closely related and were compared during support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Space Technology-5 (ST-5) missions. These analyses exposed high dependency and sensitivity on the knowledge of the spacecraft inertia tensor for both body rates and accelerometer bias estimation. The conclusion of the analysis led to the design of an inertia tensor calibration technique using only star tracker data. The second most important result of the analysis was the design of two separate Kalman filters to estimate the spacecraft attitude and body rates and the accelerometer bias instead of a single combined filter. In this paper, the calibration results of the mass properties, as well as the performance of the spacecraft attitude and body rates filters using flight data are presented and compared against the mission requirements.
DOT National Transportation Integrated Search
1973-07-01
A miniature piezoresistive mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during a simulated vehicle crash. Corrections have been electronically applied to the rotational accelerometer to reduce i...
Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers
NASA Astrophysics Data System (ADS)
Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.
2018-04-01
Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.
Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993
NASA Technical Reports Server (NTRS)
Finley, Brian; Grodsinsky, Carlos; Delombard, Richard
1994-01-01
The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.
Systems and Methods for Determining Inertial Navigation System Faults
NASA Technical Reports Server (NTRS)
Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)
2017-01-01
An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus
Zhao, Xinyu; Chen, Hui; Liu, Xiaorong
2013-01-01
The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex. PMID:23904611
Do First and Later Borns Agree with Psychologists?
ERIC Educational Resources Information Center
Cohen, Diane
Research has found firstborns to be more ambitious, rule-oriented, authority-oriented, helpful, and responsible, and less oriented toward peers, their own needs, social activities, and group cooperation than are laterborns. To explore whether those occupying different birth order positions perceive themselves as psychologists have described them,…
Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth
2011-06-27
Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.
Dorst, J; Haag, A; Knake, S; Oertel, W H; Hamer, H M; Rosenow, F
2008-10-01
Functional transcranial Doppler sonography (fTCD) during word generation is well established for language lateralization. In this study, we evaluated a fTCD paradigm to reliably identify the non-dominant hemisphere. Twenty-nine right-handed healthy subjects (27.1+/-7.6 years) performed the 'cube perspective test' [Stumpf, H., & Fay, E. (1983). Schlauchfiguren: Ein Test zur Beurteilung des räumlichen Vorstellungsvermögens. Verlag für Psychologie Dr. C. J. Hogrefe, Göttingen, Toronto, Zürich] a spatial orientation task, while the cerebral blood flow velocity (CBFV) was simultaneously measured in both middle cerebral arteries (MCAs). In addition, the established word generation paradigm for language lateralization was performed. Subjects with atypical language representation were excluded. Data were analysed offline with the software Average, which performed a heart-cycle integration and a baseline-correction and calculated a lateralization index (LI) with its standard error of the mean increase in CBFV separately for both MCAs. Twenty-one of 29 subjects (72.4%) lateralized to the right hemisphere (chi2=5.828, p=0.016). The mean LI of the spatial orientation paradigm pointed to the right hemisphere (x =-1.9+/-3.2) and was different from the LI of word generation (x =3.9+/-2.2;p<0.001). There was no correlation between the LI of spatial orientation and word generation (R=0.095, p=0.624). Age of the subjects did not correlate with the LI during spatial orientation (p>0.05) but negatively with the LI during word generation (R=-0.468, p=0.010). The maximum increase of CBFV was greater in the spatial orientation (14.0%+/-3.6%) than in the word generation paradigm (9.4%+/-4.0%; p<0.001). In more than two thirds of the subjects with left-sided language dominance, the spatial orientation paradigm was able to identify the non-dominant hemisphere. The results suggest both paradigms to be independent of each other. The spatial orientation paradigm, therefore, appears to be a non-verbal fTCD paradigm with possible clinical relevance.
Display-And-Alarm Circuit For Accelerometer
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.
Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p < 0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p < 0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.
System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.
Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit
2015-01-01
The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264
Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho
2007-01-01
This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.
Drift Mode Accelerometry for Spaceborne Gravity Measurements
NASA Astrophysics Data System (ADS)
Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.
2014-12-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.
Can mobile phones used in strong motion seismology?
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; D'Anna, Giuseppe
2013-04-01
Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.
An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results
NASA Astrophysics Data System (ADS)
Alcik, H. A.; Tanircan, G.; Kaya, Y.
2015-12-01
Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to the moderate size earthquake activities in the Marmara Sea, Turkey.
Rectilinear accelerometer possesses self- calibration feature
NASA Technical Reports Server (NTRS)
Henderson, R. B.
1966-01-01
Rectilinear accelerometer operates from an ac source with a phase-sensitive ac voltage output proportional to the applied accelerations. The unit includes an independent circuit for self-test which provides a sensor output simulating an acceleration applied to the sensitive axis of the accelerometer.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1995-01-01
During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.
2011-01-01
Background Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58) with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women. PMID:21703033
Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L
2017-01-01
The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P < 0.05). Using adjusted thresholds increased MVPA durations, and reduced discrepancies between accelerometer and self-report measures for overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P < 0.05). Using accelerometer thresholds that represent equal EE rates across BMI categories reduced the discrepancies between durations of subjective and objective PA for overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-01
Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert
2016-05-01
Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.
Self-Esteem and Future Orientation Predict Adolescents' Risk Engagement
ERIC Educational Resources Information Center
Jackman, Danielle M.; MacPhee, David
2017-01-01
This study's purpose was to examine the relations among future orientation, self-esteem, and later adolescent risk behaviors, and to compare two mediational models involving self-esteem versus future orientation as mediators. An ethnically diverse sample of 12- to 14-year-olds (N = 862, 54% female, 53% ethnic minority) was assessed longitudinally.…
Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter
NASA Technical Reports Server (NTRS)
Jakab, I.; Bordas, A.
1974-01-01
After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.
Murphy, Susan L
2009-02-01
Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.
NASA Astrophysics Data System (ADS)
Del Gaudio, Vincenzo; Wasowski, Janusz
2016-04-01
In the last few decades, we have witnessed a growing awareness of the role of site dynamic response to seismic shaking in slope failures during earthquakes. Considering the time and costs involved in acquiring accelerometer data on landslide prone slopes, the analysis of ambient noise offers a profitable investigative alternative. Standard procedures of ambient noise analysis, according to the technique known as HVNR or Nakamura's method, were originally devised to interpret data under simple site conditions similar to 1D layering (flat horizontal layering infinitely extended). In such cases, conditions of site amplification, characterized by a strong impedance contrast between a soft surface layer and a stiff bedrock, result in a single pronounced isotropic maximum of spectral ratios between horizontal and vertical component of ambient noise. However, previous studies have shown that the dynamic response of slopes affected by landslides is rather complex, being characterized by multiple resonance peaks with directional variability, thus, the use of standard techniques can encounter difficulties in providing reliable information. A new approach of data analysis has recently been proposed to exploit the potential of information content of Rayleigh waves present in ambient noise, with regard to the identification of frequency and orientation of directional resonance. By exploiting ground motion ellipticity this approach can also provide information on vertical distribution of S-wave velocity, which controls site amplification factors. The method, based on the identification of Rayleigh wave packets from instantaneous polarization properties of ambient noise, was first tested using synthetic signals in order to optimize the data processing system. Then the improved processing scheme is adopted to re-process and re-interpret the ambient noise data acquired on landslide prone slopes around Caramanico Terme (central Italy), at sites monitored also with accelerometer stations. The comparison of ambient noise analysis results with the outcomes of accelerometer monitoring reveals potential and limits of the new method for the investigations on slope dynamic response.
Managing piezoelectric sensor jitter: kinematic position tracking applications
NASA Astrophysics Data System (ADS)
Khomo, Malome T.
2016-02-01
Piezo-acoustic distance tracking sensors have challenges of reporting true distance readings. Challenges include directional anisotropy signal loss in transmission power and in receiver sensitivity, distance-related attenuation of signal and the phase shifts that result in jittery values, some preceding, and others succeeding the expected distance readings. There also exist signal time losses arising from dead time associated with processor latency, with carrier signal pulse length and with voltage rise-time delays in pulse detection. Together these factors cause distance under-reporting, and more critically, makes each reported value uncertain, which is unacceptable in distance-critical applications. Piezo-inertial accelerometers have equivalent if not more severe challenges in tri-axial configurations, for instance where a rotational tilt may happen under linear accelerative force. In the absence of tensor component adaptation to change of orientation, signal is lost until the next axial sensor detects it. Study paper focusses on piezo-acoustic transducers UCD1007 and 400SR160 (40kHz), used in a face-to-face configuration over a 600mm range. Within that range 10 successive phase shift wave fronts were identified, but it took 15 reconstructed wave fronts to uniquely identify a continuous end-to-end jitter-free and slippage-free kinematic data stream from the jittery sensor data. The additional 5 degrees of freedom were consumed by the 5-stage filter applied. The technique has remarkable combinatorial and projective geometry implications for digital sensor design. It is possible for the procedure to be applicable in 3-axis accelerometers and adapted into firmware for truly kinematic device driver interfaces so long as the reporting rates are matched with the user interface refresh rates. It is shown that acoustic transducer sensors require phase loop locking for kinematic continuity whereas gravimetric accelerometers demand better measurement time consistence in sensor values for induced kinematic phase locking.
Oishi, Yoshihisa; Ohta, Hidenobu; Hirose, Takako; Nakaya, Sachiko; Tsuchiya, Keiji; Nakagawa, Machiko; Kusakawa, Isao; Sato, Toshihiro; Obonai, Toshimasa; Nishida, Hiroshi; Yoda, Hitoshi
2018-06-11
The purpose of this study was to determine the effects of body position (prone, supine and lateral) together with sleep status (wake and sleep) on the cardiorespiratory stability of near-term infants. A total of 53 infants (gestational age at birth 33.2 ± 3.5 weeks; birth weight 1,682 ± 521 g; gestational age at recording 38.6 ± 2.1 weeks; weight at recording: 2,273 ± 393 g) were monitored for 24 hours for clinically significant apnea (>15 seconds), bradycardia (<100 bpm), and oxygen desaturation (SpO 2 < 90%) in alternating body positions (prone, supine and lateral) by cardiorespiratory monitors and 3-orthogonal-axis accelerometers. Sleep status of the infants was also continuously monitored by actigraphs. No apnea was observed. During wake, severe bradycardia was most frequently observed in the lateral position while, during sleep, severe bradycardia was most frequently observed in the supine position. Desaturation was most frequently observed in the supine and lateral positions during both wake and sleep. Our study suggests that the cardiorespiratory stability of infants is significantly compromised by both body position and sleep status. During both wake and sleep, prone position induces the most stable cardiorespiratory functions of near-term infants.
C-arm rotation encoding with accelerometers.
Grzeda, Victor; Fichtinger, Gabor
2010-07-01
Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.
Drift mode accelerometry for spaceborne gravity measurements
NASA Astrophysics Data System (ADS)
Conklin, John W.
2015-11-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.
NASA Astrophysics Data System (ADS)
Jia, Jingqing; Feng, Shuo; Liu, Wei
2015-06-01
Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.
Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs
Valenti, Roberto G.; Dryanovski, Ivan; Xiao, Jizhong
2015-01-01
Orientation estimation using low cost sensors is an important task for Micro Aerial Vehicles (MAVs) in order to obtain a good feedback for the attitude controller. The challenges come from the low accuracy and noisy data of the MicroElectroMechanical System (MEMS) technology, which is the basis of modern, miniaturized inertial sensors. In this article, we describe a novel approach to obtain an estimation of the orientation in quaternion form from the observations of gravity and magnetic field. Our approach provides a quaternion estimation as the algebraic solution of a system from inertial/magnetic observations. We separate the problems of finding the “tilt” quaternion and the heading quaternion in two sub-parts of our system. This procedure is the key for avoiding the impact of the magnetic disturbances on the roll and pitch components of the orientation when the sensor is surrounded by unwanted magnetic flux. We demonstrate the validity of our method first analytically and then empirically using simulated data. We propose a novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings. The correction part of the filter is based on the method described above and works for both IMU (Inertial Measurement Unit) and MARG (Magnetic, Angular Rate, and Gravity) sensors. We evaluate the effectiveness of the filter and show that it significantly outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter. PMID:26258778
Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs.
Valenti, Roberto G; Dryanovski, Ivan; Xiao, Jizhong
2015-08-06
Orientation estimation using low cost sensors is an important task for Micro Aerial Vehicles (MAVs) in order to obtain a good feedback for the attitude controller. The challenges come from the low accuracy and noisy data of the MicroElectroMechanical System (MEMS) technology, which is the basis of modern, miniaturized inertial sensors. In this article, we describe a novel approach to obtain an estimation of the orientation in quaternion form from the observations of gravity and magnetic field. Our approach provides a quaternion estimation as the algebraic solution of a system from inertial/magnetic observations. We separate the problems of finding the "tilt" quaternion and the heading quaternion in two sub-parts of our system. This procedure is the key for avoiding the impact of the magnetic disturbances on the roll and pitch components of the orientation when the sensor is surrounded by unwanted magnetic flux. We demonstrate the validity of our method first analytically and then empirically using simulated data. We propose a novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings. The correction part of the filter is based on the method described above and works for both IMU (Inertial Measurement Unit) and MARG (Magnetic, Angular Rate, and Gravity) sensors. We evaluate the effectiveness of the filter and show that it significantly outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter.
Ohl, Xavier; Hagemeister, Nicola; Zhang, Cheng; Billuart, Fabien; Gagey, Olivier; Bureau, Nathalie J; Skalli, Wafa
2015-11-01
Alterations of the scapular kinematics in different pathologic conditions have been widely studied. However, results have shown considerable discrepancies concerning the direction and the amplitude of scapular movement. The lack of consistency in the literature probably has several explanations. The purpose of this study was to analyze scapular orientation with the arm at rest and with 90° lateral elevation in healthy and pathologic subjects by use of stereoradiographs. All participants (n = 65) underwent a clinical examination and magnetic resonance imaging of the shoulder to assess rotator cuff status. Participants were separated into 3 groups: healthy, rotator cuff tear (RCT), and RCT and subacromial impingement syndrome (RCT+ SIS). A 3-dimensional model of the scapula was fitted to each low-dose stereoradiograph acquired with the arm at rest and 90° arm elevation. Orientation of the scapula with the arm at rest was not significantly different between groups. During lateral elevation, scapular orientation was not significantly different between the healthy group and the RCT group. However, upward rotation was significantly reduced in the RCT + SIS group. Alterations of scapular kinematics in symptomatic subjects are multifactorial. We observed a link between clinically assessed subacromial impingement and scapular orientation during lateral elevation of the arm. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Developing a MATLAB(registered)-Based Tool for Visualization and Transformation
NASA Technical Reports Server (NTRS)
Anderton, Blake J.
2003-01-01
An important step in the structural design and development of spacecraft is the experimental identification of a structure s modal characteristics, such as its natural frequencies and modes of vibration. These characteristics are vital to developing a representative model of any given structure or analyzing the range of input frequencies that can be handled by a particular structure. When setting up such a representative model of a structure, careful measurements using precision equipment (such as accelerometers and instrumented hammers) must be made on many individual points of the structure in question. The coordinate location of each data point is used to construct a wireframe geometric model of the structure. Response measurements obtained from the accelerometers is used to generate the modal shapes of the particular structure. Graphically, this is displayed as a combination of the ways a structure will ideally respond to a specified force input. Two types of models of the tested structure are often used in modal analysis: an analytic model showing expected behavior of the structure, and an experimental model showing measured results due to observed phenomena. To evaluate the results from the experimental model, a comparison of analytic and experimental results must be made between the two models. However, comparisons between these two models become difficult when the two coordinate orientations differ in a manner such that results are displayed in an unclear fashion. Such a problem proposes the need for a tool that not only communicates a graphical image of a structure s wireframe geometry based on various measurement locations (called nodes), but also allows for a type of transformation of the image s coordinate geometry so that a model s coordinate orientation is made to match the orientation of another model. Such a tool should also be designed so that it is able to construct coordinate geometry based on many different listings of node locations and is able to transform the wireframe coordinate orientation to match almost any possible orientation (i.e. it should not be a problem specific application) if it is to be of much value in modal analysis. Also, since universal files are used to store modal parameters and wireframe geometry, the tool must be able to read and extract information from universal files and use these files to exchange model data.The purpose of this project is to develop such a tool as a computer graphical user interface (GUI) capable of performing the following tasks: 1) Browsing for a particular universal file within the computer directory and displaying the name of this file to the screen; 2) Plotting each of the nodes within the universal file in a useful, descriptive, and easily understood figure; 3) Reading the node numbers from the selected file and listing these node numbers to the user for selection in an easily accessible format; 4) Allowing for user selection of a new model orientation defined by three selected nodes; and 5) Allowing the user to specify a directory to which the transformed model s node locations will be saved, and saving the transformed node locations to the specified file.
NASA Technical Reports Server (NTRS)
Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew
2009-01-01
A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-08-23
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-01-01
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538
A review of micromachined thermal accelerometers
NASA Astrophysics Data System (ADS)
Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar
2017-12-01
A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.
Weikert, Madeline; Suh, Yoojin; Lane, Abbi; Sandroff, Brian; Dlugonski, Deirdre; Fernhall, Bo; Motl, Robert W
2012-06-01
Accelerometers are seemingly a criterion standard of real-life walking mobility and this is supported by assumptions and empirical data. This application would be strengthened by including objective measures of walking mobility along with a matched control sample for verifying specificity versus generality in accelerometer output. We compared associations among accelerometer output, walking mobility, and physical activity between persons with multiple sclerosis (MS) and controls without a neurological disorder. Sixty-six persons (33 MS, 33 matched controls) completed a battery of questionnaires, performed the six-minute walk (6MW) and timed-up-and-go (TUG), and wore an accelerometer for a 7-day period. After this period, participants completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ) and International Physical Activity Questionnaire (IPAQ). Accelerometer output was significantly correlated with only mobility measures (6MW, ρ=.78; TUG, ρ=-.68) in MS, whereas it correlated with both mobility (6MW, ρ=.58; TUG, ρ=-.49) and physical activity (GLTEQ, ρ=.56; IPAQ, ρ=.53) measures in controls. Regression analysis indicated that only 6MW explained variance in accelerometer output in MS (β=.65, R(2)=.43). These findings support the possibility that accelerometers primarily and specifically measure real-life walking mobility, not physical activity, in persons with MS. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Coker-Bolt, Patty; Downey, Ryan J; Connolly, Jacqueline; Hoover, Reagin; Shelton, Daniel; Seo, Na Jin
2017-01-01
The aim of this pilot study was to determine the feasibility and use accelerometers before, during, and after a camp-based constraint-induced movement therapy (CIMT) program for children with hemiplegic cerebral palsy. A pre-test post-test design was used for 12 children with CP (mean = 4.9 yrs) who completed a 30-hour camp-based CIMT program. The accelerometer data were collected using ActiGraph GT9X Link. Children wore accelerometers on both wrists one day before and after the camp and on the affected limb during each camp day. Three developmental assessments were administered pre-post CIMT program. Accelerometers were successfully worn before, during, and directly after the CIMT program to collect upper limb data. Affected upper limb accelerometer activity significantly increased during the CIMT camp compared to baseline (p< 0.05). Significant improvements were seen in all twelve children on all assessments of affected upper limb function (p< 0.05) measuring capacity and quality of affected upper limb functioning. Accelerometers can be worn during high intensity pediatric CIMT programs to collect data about affected upper limb function. Further study is required to determine the relationship between accelerometer data, measure of motor capacity, and real-world performance post-CIMT.
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill
2018-01-01
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill
2018-01-17
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
Single-Image Distance Measurement by a Smart Mobile Device.
Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling
2017-12-01
Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.
Aerodynamics in the amusement park: interpreting sensor data for acceleration and rotation
NASA Astrophysics Data System (ADS)
Löfstrand, Marcus; Pendrill, Ann-Marie
2016-09-01
The sky roller ride depends on interaction with the air to create a rolling motion. In this paper, we analyse forces, torque and angular velocities during different parts of the ride, combining a theoretical analysis, with photos, videos as well as with accelerometer and gyroscopic data, that may be collected e.g. with a smartphone. For interpreting the result, it must be taken into account that the sensors and their coordinate system rotate together with the rider. The sky roller offers many examples for physics education, from simple circular motion, to acceleration and rotation involving several axes, as well as the relation between wing orientation, torque and angular velocities and using barometer pressure to determine the elevation gain.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
Expert, Fabien; Ruffier, Franck
2015-02-26
Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.
CrowdMag - Crowdsourcing magnetic data
NASA Astrophysics Data System (ADS)
Nair, M. C.; Boneh, N.; Chulliat, A.
2014-12-01
In the CrowdMag project, we explore whether digital magnetometers built in modern mobile phones can be used as scientific instruments to measure Earth's magnetic field. Most modern mobile phones have digital magnetometers to orient themselves. A phone's magnetometer measures three components of the local magnetic field with a typical sensitivity of about 150 to 600 nanotesla (nT). By combining data from vector magnetometers and accelerometers, phone's orientation is determined. Using phone's Internet connection, magnetic data and location are sent to a central server. At the server, we check quality of the magnetic data from all users and make the data available to the public as aggregate maps. We have two long-term goals. 1) Develop near-real-time models of Earth's time changing magnetic field by reducing man-made noise from crowdsourced data and combining it with geomagnetic data from other sources. 2) Improving accuracy of magnetic navigation by mapping magnetic noise sources (for e.g. power transformer and iron pipes). Key challenges to this endeavor are the low sensitivity of the phone's magnetometer and the noisy environment within and surrounding the phone. URL : http://www.ngdc.noaa.gov/geomag/crowdmag.shtml
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)
2000-01-01
Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.
Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer
Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David
2007-01-01
Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937
De Meester, Femke; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Cardon, Greet
2014-03-19
Key life periods have been associated with changes in physical activity (PA). This study investigated (1) how PA changes when primary school children transfer to secondary school, (2) if school environmental characteristics differ between primary and secondary schools and (3) if changes in school environmental characteristics can predict changes in PA in Belgian schoolchildren. Moderating effects of gender and the baseline level of PA were investigated for the first and third research question. In total, 736 children (10-13 years) of the last year of primary school participated in the first phase of this longitudinal study. Two years later, 502 of these children (68.2%) agreed to participate in the second phase. Accelerometers, pedometers and the Flemish Physical Activity Questionnaire were used to measure PA. School environmental characteristics were reported by the school principals. Cross-classified regression models were conducted to analyze the data. Self-reported active transport to school and accelerometer weekday moderate to vigorous PA (MVPA) increased after the transition to secondary school while self-reported extracurricular PA and total PA decreased. Pedometer weekday step counts decreased, but this decrease was only apparent among those who achieved the PA guidelines in primary school.Secondary schools scored higher on the school environmental characteristics: provision of sports and PA during lunch break, active schoolyards and playgrounds and health education policy but lower on sports and PA after-school than primary schools. Changes in the school environmental characteristics: active commuting to school, active schoolyards and playgrounds and health education policy resulted in changes in self-reported extracurricular PA, total PA , pedometer/accelerometer determined step counts and accelerometer determined MVPA. Moderating effects were found for baseline PA and gender. PA changed after the transition to secondary school. In general, secondary schools seem more likely to foster strategies to promote PA during school hours than primary schools who seem more likely to foster strategies to promote PA after school. Changes in school environmental characteristics may contribute to changes in PA. Thus, if confirmed in future studies, efforts are needed to implement these components in schools as early as possible to positively affect the change in PA.
Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.
Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua
2015-04-13
Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.
2010-10-01
A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer.
Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea
2015-11-23
In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-16
To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Rhudy, Matthew B; Mahoney, Joseph M
2018-04-01
The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.
Wojdylo, Kamila; Karlsson, Wilhelm; Baumann, Nicola
2016-01-01
Background The theory of work craving defines workaholism as a pathological work addiction which comprises: (a) obsessive–compulsive desire to work, (b) anticipation of self-worth compensatory incentives from working, (c) anticipation of reduction of negative emotions or withdrawal symptoms from working, and (d) neurotic perfectionism. Research has shown that workaholism is associated with adverse health outcomes. However, the antecedents of workaholism and the causal direction of the relationship with health have been largely neglected. Aims In the present longitudinal study, we expect that work craving is predicted by deficits in emotional self-regulation (i.e., low action orientation) and mediates the relationship between self-regulation deficits and symptoms of psychological distress. We expected work craving to have an effect on later psychological distress symptoms, but not psychological distress symptoms to have an effect on later work craving. Methods In a sample of 170 German employees, a half-longitudinal design using two times of measurement was implemented to specify the paths of two different structural equation models of mediation: (a) action orientation to later work craving and work craving to later psychological distress, and alternatively, (b) the temporal order of action orientation to later distress and distress to later work craving. Results Our data indicated that work craving partially mediated the relationship between self-regulation deficits and psychological distress, but psychological distress symptoms were not found to increase later work craving. Conclusions The presented longitudinal study indicates important mechanisms of work craving, especially by highlighting the influence of self-regulation deficits on work craving and, in turn, psychological distress. PMID:28092192
Wojdylo, Kamila; Karlsson, Wilhelm; Baumann, Nicola
2016-03-01
Background The theory of work craving defines workaholism as a pathological work addiction which comprises: (a) obsessive-compulsive desire to work, (b) anticipation of self-worth compensatory incentives from working, (c) anticipation of reduction of negative emotions or withdrawal symptoms from working, and (d) neurotic perfectionism. Research has shown that workaholism is associated with adverse health outcomes. However, the antecedents of workaholism and the causal direction of the relationship with health have been largely neglected. Aims In the present longitudinal study, we expect that work craving is predicted by deficits in emotional self-regulation (i.e., low action orientation) and mediates the relationship between self-regulation deficits and symptoms of psychological distress. We expected work craving to have an effect on later psychological distress symptoms, but not psychological distress symptoms to have an effect on later work craving. Methods In a sample of 170 German employees, a half-longitudinal design using two times of measurement was implemented to specify the paths of two different structural equation models of mediation: (a) action orientation to later work craving and work craving to later psychological distress, and alternatively, (b) the temporal order of action orientation to later distress and distress to later work craving. Results Our data indicated that work craving partially mediated the relationship between self-regulation deficits and psychological distress, but psychological distress symptoms were not found to increase later work craving. Conclusions The presented longitudinal study indicates important mechanisms of work craving, especially by highlighting the influence of self-regulation deficits on work craving and, in turn, psychological distress.
Lateralization of Frequency-Specific Networks for Covert Spatial Attention to Auditory Stimuli
Thorpe, Samuel; D'Zmura, Michael
2011-01-01
We conducted a cued spatial attention experiment to investigate the time–frequency structure of human EEG induced by attentional orientation of an observer in external auditory space. Seven subjects participated in a task in which attention was cued to one of two spatial locations at left and right. Subjects were instructed to report the speech stimulus at the cued location and to ignore a simultaneous speech stream originating from the uncued location. EEG was recorded from the onset of the directional cue through the offset of the inter-stimulus interval (ISI), during which attention was directed toward the cued location. Using a wavelet spectrum, each frequency band was then normalized by the mean level of power observed in the early part of the cue interval to obtain a measure of induced power related to the deployment of attention. Topographies of band specific induced power during the cue and inter-stimulus intervals showed peaks over symmetric bilateral scalp areas. We used a bootstrap analysis of a lateralization measure defined for symmetric groups of channels in each band to identify specific lateralization events throughout the ISI. Our results suggest that the deployment and maintenance of spatially oriented attention throughout a period of 1,100 ms is marked by distinct episodes of reliable hemispheric lateralization ipsilateral to the direction in which attention is oriented. An early theta lateralization was evident over posterior parietal electrodes and was sustained throughout the ISI. In the alpha and mu bands punctuated episodes of parietal power lateralization were observed roughly 500 ms after attentional deployment, consistent with previous studies of visual attention. In the beta band these episodes show similar patterns of lateralization over frontal motor areas. These results indicate that spatial attention involves similar mechanisms in the auditory and visual modalities. PMID:21630112
Neural field model to reconcile structure with function in primary visual cortex.
Rankin, James; Chavane, Frédéric
2017-10-01
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems
NASA Astrophysics Data System (ADS)
Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem
2006-01-01
The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.
Radiology image orientation processing for workstation display
NASA Astrophysics Data System (ADS)
Chang, Chung-Fu; Hu, Kermit; Wilson, Dennis L.
1998-06-01
Radiology images are acquired electronically using phosphor plates that are read in Computed Radiology (CR) readers. An automated radiology image orientation processor (RIOP) for determining the orientation for chest images and for abdomen images has been devised. In addition, the chest images are differentiated as front (AP or PA) or side (Lateral). Using the processing scheme outlined, hospitals will improve the efficiency of quality assurance (QA) technicians who orient images and prepare the images for presentation to the radiologists.
Accelerometer telemetry system
NASA Technical Reports Server (NTRS)
Konigsberg, E. (Inventor)
1976-01-01
An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.
ERIC Educational Resources Information Center
Callaway, Andrew J.; Cobb, Jon E.
2012-01-01
Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…
ERIC Educational Resources Information Center
Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.
2009-01-01
Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E
2012-05-01
National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
McGarty, Arlene M; Penpraze, Victoria; Melville, Craig A
2014-05-01
Many methodological questions and issues surround the use of accelerometers as a measure of physical activity during field-based research. To ensure overall research quality and the accuracy of results, methodological decisions should be based on study research questions. This paper aims to systematically review accelerometer use during field-based research in children and adolescents with intellectual disabilities. Medline, Embase, Cochrane Library, Web of Knowledge, PsycINFO, PubMed, and a thesis database (up to May 2013) were searched to identify relevant articles. Articles which used accelerometry-based monitors, quantified activity levels, and included ambulatory children and adolescents (≤ 18 years) with intellectual disabilities were included. Based on best practice guidelines, a form was developed to extract data based on 17 research components of accelerometer use. The search identified 429 articles. Ten full-text articles met the criteria and were included in the review. Many shortcomings in accelerometer use were identified, with the percentage of review criteria met ranging from 12% to 47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. However, a lack of measurement research, e.g., calibration/validation, for children and adolescents with intellectual disabilities is limiting the ability of field-based researchers to make to the most appropriate accelerometer use decisions. The methods of accelerometer use employed can have significant effects on the quality and validity of results produced, which researchers should be more aware of. To allow informed use decisions, there should be a greater focus on measurement research related to children and adolescents with intellectual disabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar
2012-04-01
Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.
Validation of accelerometer wear and nonwear time classification algorithm.
Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S
2011-02-01
the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.
Roscoe, Clare M P; James, Rob S; Duncan, Michael J
2017-08-01
This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.
O'Neil, Margaret E; Fragala-Pinkham, Maria; Lennon, Nancy; George, Ameeka; Forman, Jeffrey; Trost, Stewart G
2016-01-01
Physical therapy for youth with cerebral palsy (CP) who are ambulatory includes interventions to increase functional mobility and participation in physical activity (PA). Thus, reliable and valid measures are needed to document PA in youth with CP. The purpose of this study was to evaluate the inter-instrument reliability and concurrent validity of 3 accelerometer-based motion sensors with indirect calorimetry as the criterion for measuring PA intensity in youth with CP. Fifty-seven youth with CP (mean age=12.5 years, SD=3.3; 51% female; 49.1% with spastic hemiplegia) participated. Inclusion criteria were: aged 6 to 20 years, ambulatory, Gross Motor Function Classification System (GMFCS) levels I through III, able to follow directions, and able to complete the full PA protocol. Protocol activities included standardized activity trials with increasing PA intensity (resting, writing, household chores, active video games, and walking at 3 self-selected speeds), as measured by weight-relative oxygen uptake (in mL/kg/min). During each trial, participants wore bilateral accelerometers on the upper arms, waist/hip, and ankle and a portable indirect calorimeter. Intraclass coefficient correlations (ICCs) were calculated to evaluate inter-instrument reliability (left-to-right accelerometer placement). Spearman correlations were used to examine concurrent validity between accelerometer output (activity and step counts) and indirect calorimetry. Friedman analyses of variance with post hoc pair-wise analyses were conducted to examine the validity of accelerometers to discriminate PA intensity across activity trials. All accelerometers exhibited excellent inter-instrument reliability (ICC=.94-.99) and good concurrent validity (rho=.70-.85). All accelerometers discriminated PA intensity across most activity trials. This PA protocol consisted of controlled activity trials. Accelerometers provide valid and reliable measures of PA intensity among youth with CP. © 2016 American Physical Therapy Association.
Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested
NASA Technical Reports Server (NTRS)
Okojie, Robert S.
2002-01-01
High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.
System for estimating fatigue damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng
In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual risermore » components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.« less
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
Laser Doppler vibrometry measurement of the mechanical myogram
NASA Astrophysics Data System (ADS)
Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.
2013-12-01
Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.
Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya
2016-01-01
C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213
Zaltsman, Julia B.; Heimel, J. Alexander
2015-01-01
Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN PMID:25717157
Yamato, Maya; Pyenson, Nicholas D.
2015-01-01
Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding. PMID:25760328
Nagy, Helga; Bencsik, Krisztina; Rajda, Cecília; Benedek, Krisztina; Janáky, Márta; Beniczky, Sándor; Kéri, Szabolcs; Vécsei, László
2007-06-01
Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.
Silicon microengineering for accelerometers
NASA Astrophysics Data System (ADS)
Satchell, D. W.
Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.
USDA-ARS?s Scientific Manuscript database
We know of no studies comparing parent-reported sleep with accelerometer-estimated sleep in their relation to paediatric adiposity. We examined: (i) the reliability of mother-reported sleep compared with accelerometer-estimated sleep; and (ii) the relationship between both sleep measures and child a...
Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.
Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas
2017-07-01
The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.
Barrett, Steve; Midgley, Adrian; Reeves, Matt; Joel, Tom; Franklin, Ed; Heyworth, Rob; Garrett, Andrew; Lovell, Ric
2016-10-01
The principle aim of the current study was to examine within-match patterns of locomotor efficiency in professional soccer, determined as the ratio between tri-axial accelerometer data (PlayerLoad™) and locomotor activities. Between match variability and determinants of PlayerLoad™ during match play were also assessed. A single cohort, observational study. Tri-axial accelerometer data (PlayerLoad™) was recorded during 86 competitive soccer matches in 63 English championship players (574 match observations). Accelerometer data accumulated (PlayerLoad Vector Magnitude [PLVM]) from the individual-component planes of PlayerLoad™ (anterior-posterior PlayerLoad™ [PLAP], medial-lateral PlayerLoad™ [PLML] and vertical PlayerLoad™ [PLV]), together with locomotor activity (Total Distance Covered [TDC]) were determined in 15-min segments. Locomotor efficiency was calculated using the ratio of PLVM and TDC (PlayerLoad™ per metre). The proportion of variance explaining the within-match trends in PLVM, PLAP, APML, APv, and TDC was determined owing to matches, individual players, and positional role. PLVM, PLAP, APML, APv and TDC reduced after the initial 15-min match period (p=0.001; η(2)=0.22-0.43, large effects). PL:TDC increased in the last 15min of each half (p=0.001; η(2)=0.25, large effect). The variance in PLVM during soccer match-play was explained by individual players (63.9%; p=0.001) and between-match variation (21.6%; p=0.001), but not positional role (14.1%; p=0.364). Locomotor efficiency is lower during the latter stages of each half of competitive soccer match-play, a trend synonymous with observations of increased injury incidence and fatigue in these periods. Locomotor efficiency may be a valuable metric to identify fatigue and heightened injury risk during soccer training and match-play. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Carter, Alex R; McAvoy, Mark P; Siegel, Joshua S; Hong, Xin; Astafiev, Serguei V; Rengachary, Jennifer; Zinn, Kristi; Metcalf, Nicholas V; Shulman, Gordon L; Corbetta, Maurizio
2017-03-01
Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, S.L.; Harben, P.E.
1997-01-07
The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less
Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav
2018-07-01
Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.
NASA Astrophysics Data System (ADS)
Lebat, V.; Foulon, B.; Christophe, B.
2013-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.
Wikstrom, Erik A; Hubbard-Turner, Tricia; McKeon, Patrick O
2013-06-01
Lateral ankle sprains are a common consequence of physical activity. If not managed appropriately, a cascade of negative alterations to both the joint structure and a person's movement patterns continue to stress the injured ligaments. These alterations result in an individual entering a continuum of disability as evidenced by the ~30 % of ankle sprains that develop into chronic ankle instability (CAI) and up to 78 % of CAI cases that develop into post-traumatic ankle osteoarthritis (OA). Despite this knowledge, no significant improvements in treatment efficacy have been made using traditional treatment paradigms. Therefore, the purpose of this review is to (1) provide an overview of the consequences associated with acute lateral ankle sprains, CAI and post-traumatic ankle OA; (2) introduce the patient-, clinician-, laboratory (PCL)-oriented) model that addresses the lateral ankle sprains and their consequences from a constraints perspective; and (3) introduce the dynamic systems theory as the framework to illustrate how multiple post-injury adaptations create a singular pathology that predisposes individuals with lateral ankle sprains to fall into a continuum of disability. The consequences associated with lateral ankle sprains, CAI and ankle OA are similar and encompass alterations to the structure of the ankle joint (e.g. ligament laxity, positional faults, etc.) and the sensorimotor function responsible for proper ankle joint function (e.g. postural control, gait, etc.). Further, the impairments have been quantified across a range of patient-oriented (e.g. self-report questionnaires), clinician-oriented (e.g. bedside measures of range of motion and postural control), and laboratory-oriented (e.g. arthrometry, gait analysis) outcome measures. The interaction of PCL-oriented outcomes is critically important for understanding the phenomenon of CAI across the continuum of disability. Through the integration of all three sources of evidence, we can clearly see that an ankle sprain is more than just a peripheral musculoskeletal pathology with only local consequences. The dynamic systems theory illustrates that the organization of human movement/function is shaped by the interaction of (1) organismic constraints (health of the person); (2) task constraints; and (3) environmental constraints. However, ankle sprains increase the organismic constraints (i.e. changes in joint structure and sensorimotor function) that significantly hinder an individual's function and may be the underlying cause for the continuum of disability associated with CAI. To treat and/or prevent an individual from entering the continuum of disability, greater protection of the ankle ligaments is needed immediately after injury. Subsequent rehabilitation should then focus on goal-oriented rehabilitation (i.e. quality of the movement pattern) rather that task-oriented rehabilitation (i.e. do these exercises). When evaluating patients with ankle inversion trauma and/or instability, it is imperative to remember that an ankle sprain is not simply a local joint injury; it can result in a constrained sensorimotor system that leads to a continuum of disability and life-long consequences such as high injury recurrence and decreased quality of life if not managed properly.
Colerick, E J
1985-01-01
Patterns of aging raise a number of important questions concerning the paths to successful adaptation. What gives some older individuals their staying power in the face of misfortune? What causes others to function less effectively when stressed, to resist change? Clearly, the margin of safety, the degree of elasticity and resilience varies across individuals in the later years. This study focuses on event histories and current behavior of 62 elderly men and women (Phase I) and reports by their confidants (N = 62; Phase II). A central proposition, that stamina in later life depends, in part, on the appraisal of previous events involving loss is investigated using a model that incorporates aspects of earlier life, cognitive appraisal and clinically judged dimensions of stamina in old age. Multivariate (particularly path analytic) techniques are used to test the links between variable foci. Results suggest that antecedents of stamina involve the interaction of social resources and cognitive orientations. Specifically, stamina in later life is contingent, for the most part, on a triumphant, positive outlook during periods of adversity. Elderly so oriented are also those with robust health histories and marked educational accomplishments. Conversely, persons who view situations involving loss as threatening, overwhelming and potentially defeating experience no such outcome; low levels of stamina mark their later years. Interestingly, quality childhood ties matter for stamina in old age only by increasing the likelihood of perceptions of a supportive environment during hard times. The findings corroborate the general pattern of research documenting the importance of cognitive orientations in adaptive processes.
Motives for volunteering are associated with mortality risk in older adults.
Konrath, Sara; Fuhrel-Forbis, Andrea; Lou, Alina; Brown, Stephanie
2012-01-01
The purpose of this study is to examine the effects of motives for volunteering on respondents' mortality risk 4 years later. Logistic regression analysis was used to examine whether motives for volunteering predicted later mortality risk, above and beyond volunteering itself, in older adults from the Wisconsin Longitudinal Study. Covariates included age, gender, socioeconomic variables, physical, mental, and cognitive health, health risk behaviors, personality traits, received social support, and actual volunteering behavior. Replicating prior work, respondents who volunteered were at lower risk for mortality 4 years later, especially those who volunteered more regularly and frequently. However, volunteering behavior was not always beneficially related to mortality risk: Those who volunteered for self-oriented reasons had a mortality risk similar to nonvolunteers. Those who volunteered for other-oriented reasons had a decreased mortality risk, even in adjusted models. This study adds to the existing literature on the powerful effects of social interactions on health and is the first study to our knowledge to examine the effect of motives on volunteers' subsequent mortality. Volunteers live longer than nonvolunteers, but this is only true if they volunteer for other-oriented reasons.
Focusing and alignment of erythrocytes in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2017-01-01
Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.
Kanakamedala, Ajay C; Burnham, Jeremy M; Pfeiffer, Thomas R; Herbst, Elmar; Kowalczuk, Marcin; Popchak, Adam; Irrgang, James; Fu, Freddie H; Musahl, Volker
2018-05-01
A deep lateral femoral notch (LFN) on lateral radiographs is indicative of ACL injury. Prior studies have suggested that a deep LFN may also be a sign of persistent rotatory instability and a concomitant lateral meniscus tear. Therefore, the purpose of this study was to evaluate the relationship between LFN depth and both quantitative measures of rotatory knee instability and the incidence of lateral meniscus tears. It was hypothesized that greater LFN depth would be correlated with increased rotatory instability, quantified by lateral compartment translation and tibial acceleration during a quantitative pivot shift test, and incidence of lateral meniscus tears. ACL-injured patients enrolled in a prospective ACL registry from 2014 to 2016 were analyzed. To limit confounders, patients were only included if they had primary ACL tears, no concurrent ligamentous or bony injuries requiring operative treatment, and no previous knee injuries or surgeries to either knee. Eighty-four patients were included in the final analysis. A standardized quantitative pivot shift test was performed pre-operatively under anesthesia in both knees, and rotatory instability, specifically lateral compartment translation and tibial acceleration, was quantified using tablet image analysis software and accelerometer sensors. Standard lateral radiographs and sagittal magnetic resonance images (MRI) of the injured knee were evaluated for LFN depth. There were no significant correlations between LFN depth on either imaging modality and ipsilateral lateral compartment translation or tibial acceleration during a quantitative pivot shift test or side-to-side differences in these measurements. Patients with lateral meniscus tears were found to have significantly greater LFN depths than those without on conventional radiograph and MRI (1.0 vs. 0.6 mm, p < 0.05; 1.2 vs. 0.8 mm, p < 0.05, respectively). There was no correlation between lateral femoral notch depth on conventional radiographs or MRI and quantitative measures of rotatory instability. Concomitant lateral meniscus injury was associated with significantly greater LFN depth. Based on these findings, LFN depth should not be used as an indicator of excessive rotatory instability, but may be an indicator of lateral meniscus injury in ACL-injured patients. Prognostic level IV.
Scott, Jill R.; Tremblay, Paul L.
2008-08-19
A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.
Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors
2011-09-01
Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic
Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data
Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana
2015-01-01
Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was stronger when physical activity was assessed by accelerometer compared with questionnaire, suggesting that physical activity might be more important for adiposity than previously estimated. PMID:25752539
Layne, Charles S; Parker, Nathan H; Soltero, Erica G; Rosales Chavez, José; O'Connor, Daniel P; Gallagher, Martina R; Lee, Rebecca E
2015-09-18
Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose-response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to the study of PA across different ethnicities with different PA habits. This systematic review examined the inclusion of published guidelines involving data collection, processing, and reporting among articles using accelerometers or pedometers in Hispanic or Latino populations. English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) articles published between 2000 and 2013 using accelerometers or pedometers to measure PA among Hispanics or Latinos were identified through systematic literature searches. Of the 253 abstracts which were initially reviewed, 57 met eligibility criteria (44 accelerometer, 13 pedometer). Articles were coded and reviewed to evaluate compliance with recommended guidelines (N = 20), and the percentage of accelerometer and pedometer articles following each guideline were computed and reported. On average, 57.1 % of accelerometer and 62.2 % of pedometer articles reported each recommended guideline for data collection. Device manufacturer and model were reported most frequently, and provision of instructions for device wear in Spanish was reported least frequently. On average, 29.6 % of accelerometer articles reported each guideline for data processing. Definitions of an acceptable day for inclusion in analyses were reported most frequently, and definitions of an acceptable hour for inclusion in analyses were reported least frequently. On average, 18.8 % of accelerometer and 85.7 % of pedometer articles included each guideline for data reporting. Accelerometer articles most frequently included average number of valid days and least frequently included percentage of wear time. Inclusion of standard collection and reporting procedures in studies using continuous monitoring devices in Hispanic or Latino population is generally low. Lack of reporting consistency in continuous monitoring studies limits researchers' ability to compare studies or draw meaningful conclusions concerning amounts, quality, and benefits of PA among Hispanic or Latino populations. Reporting data collection, computation, and decision-making standards should be required. Improved interpretability would allow practitioners and researchers to apply scientific findings to promote PA.
ERIC Educational Resources Information Center
Katz, Lilian G.
A study by Rebecca Marcon, published in a preceding issue of Early Childhood Research and Practice, examined the effects of various preschool models on later academic achievement and found that an academically oriented preschool model had negative effects in later school years. This document combines a commentary by Christopher J. Lonigan and…
Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary
Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen
2017-01-01
Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115
A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.
Yang, Ching-Han; Chang, Chin-Chun; Liang, Deron
2018-03-28
All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication-an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment-confirm the feasibility of this approach.
Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation
NASA Astrophysics Data System (ADS)
Bugayong, Albert; Ramos, Manuel, Jr.
2018-02-01
Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.
Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques
McCandless, Cyrus H.; Balaban, Carey D.
2010-01-01
The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys. This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based (‘strap-down’) inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural stability during locomotion. In particular, these signals may contribute to the range of affective and emotional responses that include panic associated with falling, malaise associated with motion sickness and mal-de-debarquement, and comorbid balance and anxiety disorders. PMID:20039027
Growth kinetics of disk-shaped copper islands in electrochemical deposition.
Guo, Lian; Zhang, Shouliang; Searson, Peter
2009-05-01
The ability to independently dictate the shape and crystal orientation of islands in electrocrystallization remains a significant challenge. The main reason for this is that the complex interplay between the substrate, nucleation, and surface chemistry is not fully understood. Here we report on the kinetics of island growth for copper on ruthenium oxide. The small nucleation overpotential leads to enhanced lateral growth and the formation of hexagonal disk-shaped islands. The amorphous substrate allows the nuclei to achieve the thermodynamically favorable orientation, i.e., a 111 surface normal. Island growth follows power law kinetics in both lateral and vertical directions. At shorter times, the two growth exponents are equal to 1/2 whereas at longer times lateral growth slows down while vertical growth speeds up. We propose a growth mechanism, wherein the lateral growth of disk-shaped islands is initiated by attachment of Cu adatoms on the ruthenium oxide surface onto the island periphery while vertical growth is initiated by two-dimensional nucleation on the top terrace and followed by lateral step propagation. These results indicate three criteria for enhanced lateral growth in electrodeposition: (i) a substrate that leads to a small nucleation overpotential, (ii) fast adatom surface diffusion on substrate to promote lateral growth, and (iii) preferential anion adsorption to stabilize the basal plane.
Wedderkopp, N; Kjaer, P; Hestbaek, L; Korsholm, L; Leboeuf-Yde, C
2009-02-01
The evidence on the impact of physical activity on back pain in children and adolescents has been contradicting. It has also been shown that the physical activity cannot accurately be estimated in children using questionnaires. The aim of this study was to establish if physical activity in childhood had any impact on back pain reporting in early adolescence (3 years later), using an objective instrumental measurement of physical activity. Prospective cohort study. Representative random sample of Danish children from the city of Odense sampled at age 9 years and followed-up at age 12 years. The 1-month period prevalence of back pain (neck pain, mid back pain, and low back pain) was established using a structured interview. Physical activity was assessed with the MTI-accelerometer. The accelerometer provides a minute-by-minute measure of the physical activity performed. An overall measure of physical activity and time spent in high activity were studied in relation to back pain using logistic regression. The analyses were performed on the total sample and then stratified on back pain (yes/no) at baseline. High physical activity (HPA) levels seem to protect against future low back pain and appear to actually "treat" and reduce the odds of future mid back pain. When comparing the least active children to the most active children, the least active had a multivariate odds ratio of 3.3 of getting low back pain and 2.7 of getting mid back pain 3 years later. When stratified on back pain at baseline, this effect on mid back pain was especially noticeable in children who had had mid back pain already at baseline, with an odds ratio of 7.2. HPA in childhood seems to protect against low back pain and mid back pain in early adolescence. Larger prospective studies with repetitive follow-ups and preferably intervention studies should be performed, to see if these findings can be reproduced.
Micromachined force-balance feedback accelerometer with optical displacement detection
Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert
2014-07-22
An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.
Hybridizing matter-wave and classical accelerometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lautier, J.; Volodimer, L.; Hardin, T.
2014-10-06
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomicmore » accelerometers, namely, the dead times between consecutive measurements.« less
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
Behavioral laterality of the brain: support for the binary construct of hemisity
Morton, Bruce E.
2013-01-01
Three terms define brain behavioral laterality: hemispheric dominance identifies the cerebral hemisphere producing one's first language. Hemispheric asymmetry locates the brain side of non-language skills. A third term is needed to describe a person's binary thinking, learning, and behaving styles. Since the 1950s split-brain studies, evidence has accumulated that individuals with right or left brain behavioral orientations (RPs or LPs) exist. Originally, hemisphericity sought, but failed, to confirm the existence of such individual differences, due to its assertion that each individual lay somewhere on a gradient between competing left and right brain extremes. Recently, hemisity, a more accurate behavioral laterality context, has emerged. It posits that one's behavioral laterality is binary: i.e., inherently either right or left brain-oriented. This insight enabled the quantitative determination of right or left behavioral laterality of thousands of subjects. MRI scans of right and left brain-oriented groups revealed two neuroanatomical differences. The first was an asymmetry of an executive element in the anterior cingulate cortex (ACC). This provided hemisity both a rationale and a primary standard. RPs and LPs gave opposite answers to many behavioral preference “either-or,” forced choice questions. This showed that several sex vs. hemisity traits are being conflated by society. Such was supported by the second neuroanatomical difference between the hemisity subtypes, that RPs of either sex had up to three times larger corpus callosi than LPs. Individuals of the same hemisity but opposite sex had more personality traits in common than those of the same sex but different hemisity. Although hemisity subtypes were equally represented in the general population, the process of higher education and career choice caused substantial hemisity sorting among the professions. Hemisity appears to be a valid and promising area for quantitative research of behavioral laterality. PMID:24101910
Investigation of Electrostatic Accelerometer in HUST for Space Science Missions
NASA Astrophysics Data System (ADS)
Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing
2014-05-01
High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.
Determination of shuttle orbiter center of gravity from flight measurements
NASA Technical Reports Server (NTRS)
Hinson, E. W.; Nicholson, J. Y.; Blanchard, R. C.
1991-01-01
Flight measurements of pitch, yaw, and roll rates and the resultant rotationally induced linear accelerations during three orbital maneuvers on Shuttle mission space transportation system (STS) 61-C were used to calculate the actual orbiter center-of-gravity location. The calculation technique reduces error due to lack of absolute calibration of the accelerometer measurements and compensates for accelerometer temperature bias and for the effects of gravity gradient. Accuracy of the technique was found to be limited by the nonrandom and asymmetrical distribution of orbiter structural vibration at the accelerometer mounting location. Fourier analysis of the vibration was performed to obtain the power spectral density profiles which show magnitudes in excess of 10(exp 4) ug (sup 2)/Hz for the actual vibration and over 500 ug (sup 2)/Hz for the filtered accelerometer measurements. The data from this analysis provide a characterization of the Shuttle acceleration environment which may be useful in future studies related to accelerometer system application and zero-g investigations or processes.
NASA Astrophysics Data System (ADS)
Guerrero, Hector
2010-05-01
In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.
MEMS SoC: observer-based coplanar gyro-free inertial measurement unit
NASA Astrophysics Data System (ADS)
Chen, Tsung-Lin; Park, Sungsu
2005-09-01
This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.
A microelectromechanical accelerometer fabricated using printed circuit processing techniques
NASA Astrophysics Data System (ADS)
Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.
2008-01-01
A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.
Pänkäälä, Mikko; Paasio, Ari
2014-01-01
Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563
Sabato, Alessandro; Feng, Maria Q.
2014-01-01
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003
Sabato, Alessandro; Feng, Maria Q
2014-09-05
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.
Accelerometer-based step initiation control for gait-assist neuroprostheses.
Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J
2016-01-01
Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.
Shadyab, Aladdin H.; Macera, Caroline A.; Shaffer, Richard A.; Jain, Sonia; Gallo, Linda C.; LaMonte, Michael J.; Reiner, Alexander P.; Kooperberg, Charles; Carty, Cara L.; Di, Chongzhi; Manini, Todd M.; Hou, Lifang; LaCroix, Andrea Z.
2017-01-01
Abstract Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012–2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women. PMID:28100466
Performance of several low-cost accelerometers
Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.
2014-01-01
Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.
Highly Portable, Sensor-Based System for Human Fall Monitoring.
Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie
2017-09-13
Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user's body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system.
Highly Portable, Sensor-Based System for Human Fall Monitoring
Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie
2017-01-01
Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user’s body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system. PMID:28902149
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
Lee, Paul H
2015-02-01
Accelerometers are gaining popularity for measuring physical activity, but there are many different ways to process accelerometer data. A sensitivity analysis was conducted to study the effect of varying accelerometer data processing protocols on estimating the association between PA level and socio-demographic characteristics using the National Health and Nutrition Examination Survey (NHANES) accelerometer data. The NHANES waves 2003-2004 and 2005-2006 accelerometer data (n=14,072) were used to investigate the effect of changing the accelerometer non-wearing time and valid day definitions on the demographic composition of the filtered datasets and the association between physical activity (PA) and socio-demographic characteristics (sex, age, race, educational level, marital status). Under different filtering rules (minimum number of valid day and definition of non-wear time), the demographic characteristics of the final sample varied. The proportion of participants aged 20-29 decreased from 18.9% to 15.8% when the minimum number of valid days required increased from 1 to 4 (p for trend<0.001), whereas that for aged ≥70 years increased from 18.9% to 20.6% (p for trend<0.001). Furthermore, with different filters, the effect of these demographic variables and PA varied, with some variables being significant under certain filtering rules but becoming insignificant under some other rules. The sensitivity analysis showed that the significance of the association between socio-demographic variables and PA could be varied with the definition of non-wearing time and minimum number of valid days. Copyright © 2014 Elsevier B.V. All rights reserved.
Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.
Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R
2017-09-01
To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.
The use of MP3 recorders to log data from equine hoof mounted accelerometers.
Parsons, K J; Wilson, A M
2006-11-01
MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
Manios, Y; Androutsos, O; Moschonis, G; Birbilis, M; Maragkopoulou, K; Giannopoulou, A; Argyri, E; Kourlaba, G
2013-10-01
The aim of this paper was to evaluate the criterion validity of the Physical Activity Questionnaire for Schoolchildren (PAQ-S). The current study is a subcohort of the Healthy Growth Study, a large-scale cross-sectional study. 202 schoolchildren aged 9-13 years from Greece completed the PAQ-S and wore an accelerometer for 4 consecutive days. Time spent moderate (MPA), moderate to vigorous (MVPA) and vigorous (VPA) physical activity was calculated based on PAQ-S and accelerometer data. The average time spent on MPA and MVPA as derived from PAQ-S and from accelerometers were significantly moderately correlated (r=0.462, P<0.001 and r=0.483, P<0.001, respectively). No significant correlation was detected between PAQ-S and accelerometer-measured time spent performing VPA (rho=0.150, P=0.057). Intraclass Correlation Coefficient (ICC) indicated a moderate agreement between PAQ-S and accelerometer in estimating MPA (ICC=0.592, P<0.001) and MVPA (ICC=0.581, P<0.001). Bland-Altman analysis revealed a small mean difference (the "bias"), between the two methods, in estimating MPA, although this difference was found to be significantly higher than zero ("bias"=27.4% of the accelerometer-measured mean score, P=0.006). On the other hand, Bland-Altman analysis revealed a large mean difference in estimating MVPA and VPA ("bias"=84.2% and 357% of the accelerometer-measured mean score for MVPA and VPA, respectively and P<0.001). The high correlation coefficient between the average and difference values between all physical activity scores derived from accelerometers and PAQ-S, indicate a systematic overestimation of physical activity time with increasing physical activity for PAQ-S. The validity of PAQ-S for the estimation of MPA and MVPA was found to be slightly similar self-reported measures for schoolchildren. Therefore, this questionnaire could be used as a tool for physical activity assessment in large population studies.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent
2013-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
Chouinard, Philippe A; Meena, Deiter K; Whitwell, Robert L; Hilchey, Matthew D; Goodale, Melvyn A
2017-05-01
We used TMS to assess the causal roles of the lateral occipital (LO) and caudal intraparietal sulcus (cIPS) areas in the perceptual discrimination of object features. All participants underwent fMRI to localize these areas using a protocol in which they passively viewed images of objects that varied in both form and orientation. fMRI identified six significant brain regions: LO, cIPS, and the fusiform gyrus, bilaterally. In a separate experimental session, we applied TMS to LO or cIPS while the same participants performed match-to-sample form or orientation discrimination tasks. Compared with sham stimulation, TMS to either the left or right LO increased RTs for form but not orientation discrimination, supporting a critical role for LO in form processing for perception- and judgment-based tasks. In contrast, we did not observe any effects when we applied TMS to cIPS. Thus, despite the clear functional evidence of engagement for both LO and cIPS during the passive viewing of objects in the fMRI experiment, the TMS experiment revealed that cIPS is not critical for making perceptual judgments about their form or orientation.
A Longitudinal Study of Adolescents' Future Orientation (Time Perspective).
ERIC Educational Resources Information Center
Trommsdorff, Gisela; And Others
1979-01-01
Vocational or college-bound students responded to four futures orientation variables (personality, physical well-being, family, and occupation) along several dimensions, including hopes and fears, locus of control, and optimism. The same students took the same survey two years later. Age, sex, and educational status differences were noted. (CP)
Hemispheric Differences in Attentional Orienting by Social Cues
ERIC Educational Resources Information Center
Greene, Deanna J.; Zaidel, Eran
2011-01-01
Research points to a right hemisphere bias for processing social stimuli. Hemispheric specialization for attention shifts cued by social stimuli, however, has been rarely studied. We examined the capacity of each hemisphere to orient attention in response to social and nonsocial cues using a lateralized spatial cueing paradigm. We compared the…
Sylvester, Chad M.; Hudziak, James J.; Gaffrey, Michael S.; Barch, Deanna M.; Luby, Joan L.
2015-01-01
Attention biases towards threatening and sad stimuli are associated with pediatric anxiety and depression, respectively. The basic cognitive mechanisms associated with attention biases in youth, however, remain unclear. Here, we tested the hypothesis that threat bias (selective attention for threatening versus neutral stimuli) but not sad bias relies on stimulus-driven attention. We collected measures of stimulus-driven attention, threat bias, sad bias, and current clinical symptoms in youth with a history of an anxiety disorder and/or depression (ANX/DEP; n=40) as well as healthy controls (HC; n=33). Stimulus-driven attention was measured with a non-emotional spatial orienting task, while threat bias and sad bias were measured at a short time interval (150 ms) with a spatial orienting task using emotional faces and at a longer time interval (500 ms) using a dot-probe task. In ANX/DEP but not HC, early attention bias towards threat was negatively correlated with later attention bias to threat, suggesting that early threat vigilance was associated with later threat avoidance. Across all subjects, stimulus-driven orienting was not correlated with early threat bias but was negatively correlated with later threat bias, indicating that rapid stimulus-driven orienting is linked to later threat avoidance. No parallel relationships were detected for sad bias. Current symptoms of depression but not anxiety were related to decreased stimulus-driven attention. Together, these results are consistent with the hypothesis that threat bias but not sad bias relies on stimulus-driven attention. These results inform the design of attention bias modification programs that aim to reverse threat biases and reduce symptoms associated with pediatric anxiety and depression. PMID:25702927
Sylvester, Chad M; Hudziak, James J; Gaffrey, Michael S; Barch, Deanna M; Luby, Joan L
2016-02-01
Attention biases towards threatening and sad stimuli are associated with pediatric anxiety and depression, respectively. The basic cognitive mechanisms associated with attention biases in youth, however, remain unclear. Here, we tested the hypothesis that threat bias (selective attention for threatening versus neutral stimuli) but not sad bias relies on stimulus-driven attention. We collected measures of stimulus-driven attention, threat bias, sad bias, and current clinical symptoms in youth with a history of an anxiety disorder and/or depression (ANX/DEP; n = 40) as well as healthy controls (HC; n = 33). Stimulus-driven attention was measured with a non-emotional spatial orienting task, while threat bias and sad bias were measured at a short time interval (150 ms) with a spatial orienting task using emotional faces and at a longer time interval (500 ms) using a dot-probe task. In ANX/DEP but not HC, early attention bias towards threat was negatively correlated with later attention bias to threat, suggesting that early threat vigilance was associated with later threat avoidance. Across all subjects, stimulus-driven orienting was not correlated with early threat bias but was negatively correlated with later threat bias, indicating that rapid stimulus-driven orienting is linked to later threat avoidance. No parallel relationships were detected for sad bias. Current symptoms of depression but not anxiety were related to decreased stimulus-driven attention. Together, these results are consistent with the hypothesis that threat bias but not sad bias relies on stimulus-driven attention. These results inform the design of attention bias modification programs that aim to reverse threat biases and reduce symptoms associated with pediatric anxiety and depression.
Meyberg, Susann; Sommer, Werner; Dimigen, Olaf
2017-05-01
Covert shifts of attention that follow the presentation of a cue are associated with lateralized components in the event-related potential (ERP): the "early directing attention negativity" (EDAN) and the "anterior directing attention negativity" (ADAN). Traditionally, these shifts are thought to take place while gaze is fixated and, thus, in the absence of saccades. However, microsaccades of small amplitude (<1°) occur frequently and involuntarily also during fixation and are closely correlated with spatial attention. To investigate potential links between microsaccades and lateralized ERP components, we simultaneously recorded eye movements and ERPs in a spatial cueing task. As a first major result, we show that both the posterior EDAN and the orientation of microsaccades align more strongly with the location of the task-relevant part of the cue stimulus than with the direction of the attention shift indicated by that cue. A coupling between microsaccades and EDAN was also present on the single-trial level: The EDAN was largest when microsaccades were oriented toward the relevant cue, but absent when microsaccades were oriented away from it, suggesting that EDAN and microsaccades are generated by the same neural network, which selects relevant stimuli and orients behavior toward them. As a second major result, we show that small corneoretinal artifacts from microsaccades, which fall below conventional EOG rejection thresholds, contaminate the measurement of the ADAN. After correcting the EEG for microsaccade-related artifacts with an optimized variant of independent component analysis, ADAN was abolished at frontal sites, but a genuine ADAN was still present at central sites. Thus, the combined measurement of microsaccades and lateralized ERPs sheds new light onto cue-elicited shifts of covert attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Different grades MEMS accelerometers error characteristics
NASA Astrophysics Data System (ADS)
Pachwicewicz, M.; Weremczuk, J.
2017-08-01
The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.
Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu
2015-01-01
Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing “Palm Downward” sign gestures from “Palm Inward” ones. Only the “Palm Inward” gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system. PMID:26389907
Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu
2015-09-15
Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system.
NASA Astrophysics Data System (ADS)
Zuwei, Zhang; Zhiyu, Wen; Jing, Hu
2012-04-01
The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.
Acceleration Recorder and Playback Module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-11-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-09-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Kushner, Laura K.; Drain, Bethany A.; Heineck, James T.; Durston, Donald A.
2017-01-01
Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test.
Prototyping Visual Database Interface by Object-Oriented Language
1988-06-01
approach is to use object-oriented programming. Object-oriented languages are characterized by three criteria [Ref. 4:p. 1.2.1]: - encapsulation of...made it a sub-class of our DMWindow.Cls, which is discussed later in this chapter. This extension to the application had to be intergrated with our... abnormal behaviors similar to Korth’s discussion of pitfalls in relational database designing. Even extensions like GEM [Ref. 8] that are powerful and
The transition from student to new registered nurse in professional practice.
Thomas, Cynthia M; Bertram, Evelyn; Allen, Roberta L
2012-01-01
This qualitative study presents the transition experience of new registered nurses during the first year of professional practice. Four themes emerged: feelings of frustration and being overwhelmed, preceptors, fear, and the orientation process. The orientation process, quality, competent preceptors, and reducing lateral violence are key strategies to successfully retain new nurses. Nurse educators have a crucial role during nurse orientation, training preceptors, and reducing violent behaviors in the workplace.
Quek, June; Brauer, Sandra G; Treleaven, Julia; Pua, Yong-Hao; Mentiplay, Benjamin; Clark, Ross Allan
2014-04-17
Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1-7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant's head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone.The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine.
2014-01-01
Background Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Findings Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1–7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant’s head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone. The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. Conclusion The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine. PMID:24742001
Campbell, Sean T; Reese, Keri A; Ross, Steven D; McGarry, Michelle H; Leba, Thu-Ba; Lee, Thay Q
2014-11-01
Lateral column lengthening (LCL) has been used for correction of flatfoot deformity. The purpose of this study was to determine the effect of LCL graft shape on tarsal bone position and talonavicular and subtalar joint pressure. A flatfoot model was created in 6 cadaveric specimens. Corrective LCL was performed using a rectangular graft or a trapezoidal graft with the broad surface oriented dorsally, laterally, or plantarly. Bony surface markers were digitized to calculate angular parameters used in the evaluation of flatfoot deformity. Contact pressure and area in the subtalar and talonavicular joints were also recorded. All measurements were carried out under multiple axial loads in the intact and flatfoot conditions, and following LCL with each graft shape. Flatfoot creation resulted in significant changes in arch collapse and forefoot abduction. LCL with a rectangular graft best corrected these parameters, while a laterally oriented trapezoidal graft provided some correction. Talonavicular contact pressure was unchanged after flatfoot creation, and was significantly less than intact after LCL. Subtalar contact pressure decreased in some conditions after flatfoot creation, and decreased further after LCL. LCL with a rectangular graft best restored tarsal bone orientation in a cadaveric flatfoot model. The decreases in talonavicular pressure likely represent redistribution of force from the medial to lateral foot. When performing LCL for flatfoot deformity, increased bone graft volume medially better restores tarsal bone position. One way of achieving this is through the use of a rectangular graft as opposed to a trapezoidal graft. © The Author(s) 2014.
Wearable knee health rehabilitation assessment using acoustical emissions
NASA Astrophysics Data System (ADS)
Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.
2017-02-01
We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.
Sarker, Hrishov; Anderson, Laura N; Borkhoff, Cornelia M; Abreo, Kathleen; Tremblay, Mark S; Lebovic, Gerald; Maguire, Jonathon L; Parkin, Patricia C; Birken, Catherine S
2015-11-30
It is unknown if young children's parent-reported physical activity and sedentary time are correlated with direct measures. The study objectives were to compare parent-reported physical and sedentary activity versus directly measured accelerometer data in early childhood. From 2013 to 2014, 117 healthy children less than 6 years of age were recruited to wear Actical accelerometers for 7 days. Accelerometer data and questionnaires were available on 87 children (74%). Average daily physical activity was defined as the sum of activity ≥100 counts per minute, and sedentary time as the sum of activity <100 counts per minute during waking hours. Parents reported daily physical activity (unstructured free play in and out of school, and organized activities) and selected sedentary behaviors (screen time, stroller time, time in motor vehicle). Spearman correlation coefficients and Bland-Altman plots were used to assess the validity of parent-reported measures compared to accelerometer data. Total physical activity was significantly greater when measured by accelerometer than parent-report; the median difference was 131 min/day (p < 0.001). Parent-reported child physical activity was weak to moderately correlated with directly measured total physical activity (r = 0.39, 95% CI 0.19, 0.56). The correlations between types of physical activity (unstructured free play in and outside of school/daycare, and organized structured activity) and accelerometer were r = 0.30 (95% CI 0.09, 0.49); r = 0.42 (95% CI 0.23, 0.58); r = 0.26 (95% CI 0.05, 0.46), respectively. There was no correlation between parent-reported and accelerometer-measured total sedentary time in children (r = 0.10, 95% CI -0.12, 0.33). When the results were stratified by age group (<18, 18-47, and 48-70 months of age) no statistically significant correlations were observed and some inverse associations were observed. The correlation between parent-report of young children's physical activity and accelerometer-measured activity was weak to moderate depending on type of activity and age group. Parent-report of children's sedentary time was not correlated with accelerometer-measured sedentary time. Additional validation studies are needed to determine if parent-reported measures of physical activity and sedentary time are valid among children less than 6 years of age and across these young age groups.
NASA Astrophysics Data System (ADS)
Olinde, L.; Johnson, J. P.
2013-12-01
By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the snowmelt hydrograph are modeled over the 11 kilometers of surveyed stream by utilizing 1m airborne LiDAR and HEC-GeoRAS. Cross-sectional HEC-RAS results are used to estimate the spatial distribution of longitudinal shear velocities over the observed discharges. At final accelerometer tracer positions, we analyze the HEC-RAS generated flow conditions for each disentrainment discharge magnitude. The techniques developed here have the potential to link individual grain characteristics during floods to a range of time and length scales.
Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C
2015-01-01
Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pumas based on training data from observations and measurements of captive puma behavior. We applied these models to accelerometer data collected from wild pumas and identified mobile and non-mobile behaviors in captive animals with an accuracy rate greater than 96%. Accuracy remained above 95% even after downsampling our accelerometer data to 16 Hz. We were further able to predict low-acceleration movement behavior (e.g. walking) and high-acceleration movement behavior (e.g. running) with 93.8% and 92% accuracy, respectively. We had difficulty predicting non-movement behaviors such as feeding and grooming due to the small size of our training dataset. Lastly, we used model-predicted and field-verified predation events to quantify acceleration characteristics of puma attacks on large prey. These results demonstrate that accelerometers are useful tools for classifying the behaviors of cryptic medium and large-sized terrestrial mammals in their natural habitats and can help scientists gain deeper insight into their fine-scale behavioral patterns. We also show how accelerometer measurements can provide novel insights on the energetics and predation behavior of wild animals. Lastly we discuss the conservation implications of identifying these behavioral patterns in free-ranging species as natural and anthropogenic landscape features influence animal energy allocation and habitat use.
Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films
NASA Astrophysics Data System (ADS)
Wang, Li-Peng
2001-12-01
In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.
Fiber Optic Laser Accelerometer
2007-11-06
embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by
Godfrey, A; Culhane, K M; Lyons, G M
2007-10-01
The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.
NASA Astrophysics Data System (ADS)
Iafolla, V.; Lucchesi, D.; Fiorenza, E.; Lefevre, C.; Lucente, M.; Magnafico, C.; Peron, R.; Santoli, F.; Nozzoli, S.; Argada, A.
2012-04-01
The Italian Spring Accelerometer (ISA) has been selected by ESA to fly onboard the Mercury Planetary Orbiter (MPO) of the BepiColombo space mission. Mercury's exploration represents one of the most important challenges of modern planetary sciences and the mission aims to reach a much better understanding of the internal structure and composition of the planet, which in turn are needed for a deeper comprehension of the formation of the terrestrial planets, hence of that of our solar system. Moreover, because of its proximity to the Sun, Mercury represents a unique opportunity to test Einstein's theory for the gravitational interaction with respect to other proposed theories of gravitation. The BepiColombo Radio Science Experiments (RSE) are devoted to reach the above ambitious goals and the measurements of the onboard accelerometer are necessary to remove (a posteriori) the very complex to model, strong and subtle, non-gravitational accelerations due to the very strong radiation environment around Mercury. We focus on the accelerometer characteristics and performance, on the functional tests that are necessary for its implementation onboard the MPO and in the procedures that are necessary for the reduction of the accelerometer measurements in order to be used in the context of the RSE. We finally introduce the description of the accelerometer proof-masses non linearities, their impact in the measurements and the way to handle such effects.
NASA Technical Reports Server (NTRS)
Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.
2015-01-01
The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-12-23
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.
Electret accelerometers: physics and dynamic characterization.
Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M
2011-06-01
Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America
Characterizing performance of ultra-sensitive accelerometers
NASA Technical Reports Server (NTRS)
Sebesta, Henry
1990-01-01
An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.
Oguma, Yuko; Osawa, Yusuke; Takayama, Michiyo; Abe, Yukiko; Tanaka, Shigeho; Lee, I-Min; Arai, Yasumichi
2017-04-01
To date, there is no physical activity (PA) questionnaire with convergent and construct validity for the oldest-old. The aim of the current study was to investigate the validity of questionnaire-assessed PA in comparison with objective measures determined by uniaxial and triaxial accelerometers and physical performance measures in the oldest-old. Participants were 155 elderly (mean age 90 years) who were examined at the university and agreed to wear an accelerometer for 7 days in the 3-year-follow-up survey of the Tokyo Oldest-Old Survey of Total Health. Fifty-nine participants wore a uniaxial and triaxial accelerometer simultaneously. Self-rated walking, exercise, and household PA were measured using a modified Zutphen PA Questionnaire (PAQ). Several physical performance tests were done, and the associations among PAQ, accelerometer-assessed PA, and physical performances were compared by Spearman's correlation coefficients. Significant, low to moderate correlations between PA measures were seen on questionnaire and accelerometer assessments (ρ = 0.19 to 0.34). Questionnaireassessed PA measure were correlated with a range of lower extremity performance (ρ = 0.21 to 0.29). This PAQ demonstrated convergent and construct validity. Our findings suggest that the PAQ can reasonably be used in this oldest-old population to rank their PA level.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-01-01
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534
Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.
Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian
2017-08-01
We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.
Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis.
Motl, R W; Goldman, M
2011-02-01
We examined the associations among physical activity, neurological disability, and cardiorespiratory fitness in two studies of individuals with multiple sclerosis (MS). Study 1 included 25 women with relapsing-remitting MS (RRMS) who undertook an incremental exercise test for measuring peak oxygen (VO₂(peak) ) consumption, wore an accelerometer during a 7-day period, and completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). Study 2 was a follow-up of Study 1 and included 24 women with RRMS who completed the self-reported Expanded Disability Status Scale (EDSS), undertook an incremental exercise test, wore an accelerometer during a 7-day period, and completed the GLTEQ. Study 1 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.69) and GLTEQ scores (pr = 0.63) even after controlling for age and MS duration. Study 2 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.50), GLTEQ scores (pr = 0.59), and EDSS scores (pr = -0.43) even after controlling for age and MS duration; there was a moderate partial correlation between accelerometer counts and EDSS scores (pr = -0.43). Multiple linear regression analysis indicated that both accelerometer counts (β = 0.32) and EDSS scores (β = -0.40) had statistically significant associations with VO₂(peak). The findings indicate that physical inactivity and neurological disability might represent independent risk factors for reduced levels of cardiorespiratory fitness in this population. © 2010 John Wiley & Sons A/S.
Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.
White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel
2008-08-01
To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.
Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling
NASA Technical Reports Server (NTRS)
Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.
2002-01-01
Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
Muscle architecture of the elongated nose in the Asian elephant (Elephas maximus).
Endo, H; Hayashi, Y; Komiya, T; Narushima, E; Sasaki, M
2001-05-01
The architecture of the M. caninus in the elongated nose was examined in the Asian elephant (Elephas maximus). The following complicated musculature of the M. caninus was observed in the proximal and distal regions of the nose: (1) Proximal region: In the superficial layer, the longitudinal bundles are confirmed in the dorsal part, and the obliquely-oriented ones in the ventral part. In the middle layer, some bundles run ventro-distally, while other ones represent longitudinally-oriented running. The deep layer consists of complicated architecture of many bundles. Some muscle bundles run medio-laterally, while the others extend proximo-distally in this space. (2) Distal region: In the dorsal part of the M. caninus, the bundles run at deep-superficial direction, while in the ventral part the bundles are longitudinally arranged. The bundles run at lateral direction near the septum of the nasal conduits. The N. facialis and N. infraorbitalis send many branches in the lateral area of the M. caninus in the trunk. This muscle architecture of multi-oriented bundles and well-developed innervation to them suggest that they enable the elongated nose to act as a refined manipulator in the Asian elephant.
Eberhart-Phillips, D.; Lisowski, M.
1990-01-01
In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30?? from N40??W, close to that predicted by plate motion for a transform boundary, to N73??W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38??0.01??rad/yr at N63??W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19??0.01??rad/yr at N44??W. The best fitting Garlock fault model had computed left-lateral slip rate of 11??2mm/yr below 10km. Buried left-lateral slip of 15??6mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. -from Authors
NASA Astrophysics Data System (ADS)
Ahmadi, Habiburrahman
Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.
NASA Astrophysics Data System (ADS)
Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian
2015-04-01
Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.
Gyroscope-reduced inertial navigation system for flight vehicle motion estimation
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiao, Lu
2017-01-01
In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.
Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas
2013-08-22
Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan
2016-10-01
Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.
Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.
2001-01-01
A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.
Making Decisions about Now and Later: Development of Future-Oriented Self-Control
ERIC Educational Resources Information Center
Garon, Nancy M.; Longard, Julie; Bryson, Susan E.; Moore, Chris
2012-01-01
This study explored factors underlying preschoolers' ability to make future-oriented choices. In a delay-of-gratification choice task, quantity and visibility of the reward was systematically varied. Participants included 90 typically developing children aged 2-4 years. Children made more choices to delay gratification as the quantity of the…
ERIC Educational Resources Information Center
Spronken-Smith, Rachel; Buissink-Smith, Nell; Bond, Carol; Grigg, Gabrielle
2015-01-01
In this article, we sought a relation between orientation to higher education and curricular experiences, and elucidated the nature of transformative curricular experiences. Twenty-four graduates from humanities and science degrees in the year 2000 were interviewed approximately five years later to obtain their retrospective views on the purpose…
The TRIPSE: A Process-Oriented Exam for Large Undergraduate Classes
ERIC Educational Resources Information Center
Nastos, Stash; Rangachari, P. K.
2013-01-01
The TRIPSE (tri-partite problem solving exercise), a process-oriented exam that mimics the scientific process, was used previously in small classes (15-25). Provided limited data, students frame explanations and design experimental tests that they later revise with additional information. Our 6-year experience using it with larger numbers…
ERIC Educational Resources Information Center
Lazarides, Rebecca; Rubach, Charlott
2017-01-01
This longitudinal study examined relationships between student-perceived teaching for meaning, support for autonomy, and competence in mathematic classrooms (Time 1), and students' achievement goal orientations and engagement in mathematics 6 months later (Time 2). We tested whether student-perceived instructional characteristics at Time 1…
Effects of Counselor Gender and Gender-Role Orientation on Client Career Choice Traditionality.
ERIC Educational Resources Information Center
Barak, Azy; And Others
1988-01-01
Male (N=120) and female (N=120) clients were counseled by male or female counselor classified as masculine, feminine, or androgynous in sex-role orientation. Clients' career choice traditionality was measured during counseling, following counseling, and with respect to clients' career six months later. Counselor gender and gender-role orientation…
Influence of gait mode and body orientation on following a walking avatar.
Meerhoff, L Rens A; de Poel, Harjo J; Jowett, Tim W D; Button, Chris
2017-08-01
Regulating distance with a moving object or person is a key component of human movement and of skillful interpersonal coordination. The current set of experiments aimed to assess the role of gait mode and body orientation on distance regulation using a cyclical locomotor tracking task in which participants followed a virtual leader. In the first experiment, participants moved in the backward-forward direction while the body orientation of the virtual leader was manipulated (i.e., facing towards, or away from the follower), hence imposing an incongruence in gait mode between leader and follower. Distance regulation was spatially less accurate when followers walked backwards. Additionally, a clear trade-off was found between spatial leader-follower accuracy and temporal synchrony. Any perceptual effects were overshadowed by the effect of one's gait mode. In the second experiment we examined lateral following. The results suggested that lateral following was also constrained strongly by perceptual information presented by the leader. Together, these findings demonstrated how locomotor tracking depends on gait mode, but also on the body orientation of whoever is being followed. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytochemical localization of calcium in cap cells of primary roots of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.
1986-01-01
The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.
Evaluation of trauma service orientation.
Schott, Eric
2010-02-01
Orientation of residents to clinical services may be criticized as cumbersome, dull, and simplytoo much information. With the mandated resident-hour restrictions, the question arose: Do residents perceive the orientation to our trauma service as worthwhile? Residents attend a standardized orientation lecture on the first day of the rotation. Three weeks later, an eight-item, five-point Likert-scale survey is distributed to assess the residents' perceptions of the value of the orientation. Responses to each item were examined. Fifty-four (92%) of the residents completed the questionnaire between September 2005 and August 2006. Most indicated that orientation was helpful (85%), the Trauma Resuscitation DVD was informative (82%), the review of procedures was helpful (82%), and the instructor's knowledge was adequate (94%). Most (92%) disagreed with the statement that orientation should not be offered. Careful attention to orientation content and format is important to the perception that the orientation is worthwhile.
In-flight estimation of center of gravity position using all-accelerometers.
Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad
2014-09-19
Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.
Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve
2012-01-01
Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.
Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics.
Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren
2010-01-01
The capacity to quantify and evaluate gait beyond the general confines of a clinical environment under effectively autonomous conditions may alleviate rampant strain on limited and highly specialized medical resources. An iPhone consists of a three dimensional accelerometer subsystem with highly robust and scalable software applications. With the synthesis of the integral iPhone features, an iPhone application, which constitutes a wireless accelerometer system for gait quantification and analysis, has been tested and evaluated in an autonomous environment. The acquired gait cycle data was transmitted wireless and through email for subsequent post-processing in a location remote to the location where the experiment was conducted. The iPhone application functioning as a wireless accelerometer for the acquisition of gait characteristics has demonstrated sufficient accuracy and consistency.
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.
2014-01-01
On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.
Accelerometer Measurements in the Amusement Park.
ERIC Educational Resources Information Center
Reno, Charles; Speers, Robert R.
1995-01-01
Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)
Current-oriented swimming by jellyfish and its role in bloom maintenance.
Fossette, Sabrina; Gleiss, Adrian Christopher; Chalumeau, Julien; Bastian, Thomas; Armstrong, Claire Denise; Vandenabeele, Sylvie; Karpytchev, Mikhail; Hays, Graeme Clive
2015-02-02
Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-10-01
were collected at 500 Hz. In addition, for the ST1 tests only, positional data were collected using the Optotrak at 200 Hz. Acceleration was measured...the accelerometer in order to characterize the skin-accelerometer system. Optotrak position data were measured during ST1 using markers on the spinous...particular, we have analyzed transmissibility at T3 and L4, corresponding to where the accelerometers were placed, and using the Optotrak data at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoning; Patton, Howard John; Chen, Ting
2016-03-25
This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.
Olivares-García, M R; Peñaloza-López, Y R; García-Pedroza, F; Jesús-Pérez, S; Uribe-Escamilla, R; Jiménez-de la Sancha, S
In this study, a new dichotic digit test in Spanish (NDDTS) was applied in order to identify auditory laterality. We also evaluated body laterality and spatial location using the Subirana test. Both the dichotic test and the Subirana test for body laterality and spatial location were applied in a group of 40 children with dyslexia and in a control group made up of 40 children who were paired according to age and gender. The results of the three evaluations were analysed using the SPSS 10 software application, with Pearson's chi-squared test. It was seen that 42.5% of the children in the group of dyslexics had mixed auditory laterality, compared to 7.5% in the control group (p < or = 0.05). Body laterality was mixed in 25% of dyslexic children and in 2.5% in the control group (p < or = 0.05) and there was 72.5% spatial disorientation in the group of dyslexics, whereas only 15% (p < or = 0.05) was found in the control group. The NDDTS proved to be a useful tool for demonstrating that mixed auditory laterality and auditory predominance of the left ear are linked to dyslexia. The results of this test exceed those obtained for body laterality. Spatial orientation is indeed altered in children with dyslexia. The importance of this finding makes it necessary to study the central auditory processes in all cases in order to define better rehabilitation strategies in Spanish-speaking children.
The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.
Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin
2016-02-16
Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.
A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers
NASA Technical Reports Server (NTRS)
Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.
1993-01-01
This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
In-Flight Estimation of Center of Gravity Position Using All-Accelerometers
Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad
2014-01-01
Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Physical activity correlates with neurological impairment and disability in multiple sclerosis.
Motl, Robert W; Snook, Erin M; Wynn, Daniel R; Vollmer, Timothy
2008-06-01
This study examined the correlation of physical activity with neurological impairment and disability in persons with multiple sclerosis (MS). Eighty individuals with MS wore an accelerometer for 7 days and completed the Symptom Inventory (SI), Performance Scales (PS), and Expanded Disability Status Scale. There were large negative correlations between the accelerometer and SI (r = -0.56; rho = -0.58) and Expanded Disability Status Scale (r = -0.60; rho = -0.69) and a moderate negative correlation between the accelerometer and PS (r = -0.39; rho = -0.48) indicating that physical activity was associated with reduced neurological impairment and disability. Such findings provide a preliminary basis for using an accelerometer and the SI and PS as outcome measures in large-scale prospective and experimental examinations of the effect of physical activity behavior on disability and dependence in MS.
NASA Astrophysics Data System (ADS)
Teves, André da Costa; Lima, Cícero Ribeiro de; Passaro, Angelo; Silva, Emílio Carlos Nelli
2017-03-01
Electrostatic or capacitive accelerometers are among the highest volume microelectromechanical systems (MEMS) products nowadays. The design of such devices is a complex task, since they depend on many performance requirements, which are often conflicting. Therefore, optimization techniques are often used in the design stage of these MEMS devices. Because of problems with reliability, the technology of MEMS is not yet well established. Thus, in this work, size optimization is combined with the reliability-based design optimization (RBDO) method to improve the performance of accelerometers. To account for uncertainties in the dimensions and material properties of these devices, the first order reliability method is applied to calculate the probabilities involved in the RBDO formulation. Practical examples of bulk-type capacitive accelerometer designs are presented and discussed to evaluate the potential of the implemented RBDO solver.
Terrestrial Applications of a Nano-g Accelerometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
1996-01-01
The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.
Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri
2018-02-13
To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Gatti, Anthony A; Stratford, Paul W; Brenneman, Elora C; Maly, Monica R
2016-01-01
Accelerometers provide a measure of step-count. Reliability and validity of step-count and pedal-revolution count measurements by the GT3X+ accelerometer, placed at different anatomical locations, is absent in the literature. The purpose of this study was to investigate the reliability and validity of step and pedal-revolution counts produced by the GT3X+ placed at different anatomical locations during running and bicycling. Twenty-two healthy adults (14 men and 8 women) completed running and bicycling activity bouts (5 minutes each) while wearing 6 accelerometers: 2 each at the waist, thigh and shank. Accelerometer and video data were collected during activity. Excellent reliability and validity were found for measurements taken from accelerometers mounted at the waist and shank during running (Reliability: intraclass correlation (ICC) ≥ 0.99; standard error of measurement (SEM) ≤1.0 steps; Pearson ≥ 0.99) and at the thigh and shank during bicycling (Reliability: ICC ≥ 0.99; SEM ≤1.0 revolutions; Pearson ≥ 0.99). Excellent reliability was found between measurements taken at the waist and shank during running (ICC ≥ 0.98; SEM ≤1.6 steps) and between measurements taken at the thigh and shank during bicycling (ICC ≥ 0.99; SEM ≤1.0 revolutions). These data suggest that the GT3X+ can be used for measuring step-count during running and pedal-revolution count during bicycling. Only shank placement is recommended for both activities.
García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J
2015-10-01
This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.
Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn
2017-01-01
Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).
Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.
Van Wieringen, Matt; Eklund, J
2008-01-01
Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.
Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.
Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara
2018-05-01
Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.
Behavioral laterality of the brain: support for the binary construct of hemisity.
Morton, Bruce E
2013-10-01
hemispheric dominance identifies the cerebral hemisphere producing one's first language. Hemispheric asymmetry locates the brain side of non-language skills. A third term is needed to describe a person's binary thinking, learning, and behaving styles. Since the 1950s split-brain studies, evidence has accumulated that individuals with right or left brain behavioral orientations (RPs or LPs) exist. Originally, hemisphericity sought, but failed, to confirm the existence of such individual differences, due to its assertion that each individual lay somewhere on a gradient between competing left and right brain extremes. Recently, hemisity, a more accurate behavioral laterality context, has emerged. It posits that one's behavioral laterality is binary: i.e., inherently either right or left brain-oriented. This insight enabled the quantitative determination of right or left behavioral laterality of thousands of subjects. MRI scans of right and left brain-oriented groups revealed two neuroanatomical differences. The first was an asymmetry of an executive element in the anterior cingulate cortex (ACC). This provided hemisity both a rationale and a primary standard. RPs and LPs gave opposite answers to many behavioral preference "either-or," forced choice questions. This showed that several sex vs. hemisity traits are being conflated by society. Such was supported by the second neuroanatomical difference between the hemisity subtypes, that RPs of either sex had up to three times larger corpus callosi than LPs. Individuals of the same hemisity but opposite sex had more personality traits in common than those of the same sex but different hemisity. Although hemisity subtypes were equally represented in the general population, the process of higher education and career choice caused substantial hemisity sorting among the professions. Hemisity appears to be a valid and promising area for quantitative research of behavioral laterality.
Early development of the circumferential axonal pathway in mouse and chick spinal cord.
Holley, J A
1982-03-10
The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.
NASA Astrophysics Data System (ADS)
Ohtsu, Masayasu
1991-04-01
An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.
Investigating Hemispheric Lateralization of Reflexive Attention to Gaze and Arrow Cues
ERIC Educational Resources Information Center
Marotta, Andrea; Lupianez, Juan; Casagrande, Maria
2012-01-01
Recent studies have demonstrated that central cues, such as eyes and arrows, reflexively trigger attentional shifts. However, it is not clear whether the attentional mechanisms induced by these two cues are similar or rather differ in some important way. We investigated hemispheric lateralization of the orienting effects induced by the two cue…
ERIC Educational Resources Information Center
Edward, Norrie; Middleton, June
2002-01-01
First-year engineering students at Robert Gordon University (Scotland) were presented with a task-oriented induction program. Students were divided into groups and assigned a facilitator, later personal tutor, to whom they could refer. Student reaction to the experience was very favorable. Effect on progression rates is yet to be determined. (AEF)
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
Camber Angle Inspection for Vehicle Wheel Alignments
Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan
2017-01-01
This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365
Determination of thermally induced effects and design guidelines of optomechanical accelerometers
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang
2017-11-01
Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang
2016-08-01
The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.
Increasing physician activity with treadmill desks.
Thompson, Warren G; Koepp, Gabriel A; Levine, James A
2014-01-01
Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Arnold, Daniel; Bentel, Katrin; Jäggi, Adrian
2017-04-01
The monthly global gravity field solutions derived using the measurements from the GRACE (Gravity Recovery and Climate Experiment) satellites have been continuously improved by the processing centers. One of the improvements in the processing method is a more detailed calibration of the on-board accelerometers in the GRACE satellites. The accelerometer data calibration is usually restricted to the scale factors and biases. It has been assumed that the three different axes are perfectly orthogonal in the GRACE science reference frame. Recently, it was shown by Klinger and Mayer-Gürr (2016) that a fully-populated scale matrix considering the non-orthogonality of the axes and the misalignment of the GRACE science reference frame and the GRACE accelerometer frame improves the quality of the C20 coefficient in the GRACE monthly gravity field solutions. We investigate the effect of the more detailed calibration of the GRACE accelerometer data on the C20 coefficient in the case of the AIUB (Astronomical Institute of the University of Bern) processing method using the Celestial Mechanics Approach. We also investigate the effect of the new calibration parameters on the stochastic parameters in the Celestial Mechanics Approach.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
The vertical accelerometer, a new instrument for air navigation
NASA Technical Reports Server (NTRS)
Laboccetta, Letterio
1923-01-01
This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.
Hybrid gravity survey to search for submarine ore deposit
NASA Astrophysics Data System (ADS)
Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.
2011-12-01
Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.
Induced and evoked neural correlates of orientation selectivity in human visual cortex.
Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D
2011-02-14
Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.
High-grade rotatory knee laxity may be predictable in ACL injuries.
Musahl, Volker; Burnham, Jeremy; Lian, Jayson; Popchak, Adam; Svantesson, Eleonor; Kuroda, Ryosuke; Zaffagnini, Stefano; Samuelsson, Kristian
2018-06-21
Lateral compartment acceleration and translation have been used to quantify rotatory knee laxity in the setting of anterior cruciate ligament (ACL) injury; however, their relationship remains elusive. The purpose of this study was to examine the correlation between lateral compartment acceleration and translation during pivot shift testing. It was hypothesized that a correlation would exist in ACL-injured and uninjured knees, irrespective of sex, but would be greatest in knees with combined ACL and lateral meniscus tear. Seventy-seven patients (34 females, 25.2 ± 9.0 years) undergoing primary single-bundle ACL reconstruction were prospectively enrolled in a 2-year study across four international centers. Patients underwent preoperative examination under anesthesia of the injured and uninjured knee using Image Analysis software and surface mounted accelerometer. A moderate correlation between lateral compartment acceleration and translation was observed in ACL-injured knees [ρ = 0.36, p < 0.05), but not in uninjured knees (ρ = 0.17, not significant (n.s.)]. A moderate correlation between acceleration and translation was demonstrated in ACL-injured knees with lateral meniscus tears (ρ = 0.53, p < 0.05), but not in knees with isolated ACL-injury (ρ = 0.32, n.s.), ACL and medial meniscus tears (ρ = 0.14, n.s.), or ACL and combined medial and lateral meniscus tears (ρ = 0.40, n.s.). A moderate correlation between acceleration and translation was seen in males (ρ = 0.51, p < 0.05), but not in females (ρ = 0.21, n.s.). Largest correlations were observed in males with ACL and lateral meniscus tears (ρ = 0.75, p < 0.05). Lateral compartment acceleration and translation were moderately correlated in ACL-injured knees, but largely correlated in males with combined ACL and lateral meniscus tears. ACL and lateral meniscus injury in males might, therefore, be suspected when both lateral compartment acceleration and translation are elevated. Surgeons should have a greater degree of suspicion for high-grade rotatory knee laxity in ACL-injured males with concomitant lateral meniscus tears. Future studies should investigate how these two distinct components of rotatory knee laxity-lateral compartment acceleration and translation-are correlated with patient outcomes and affected by ACL surgery. Prospective cohort study; Level of evidence II.
Analysis of pendulum period with an iPod touch/iPhone
NASA Astrophysics Data System (ADS)
Briggle, Justin
2013-05-01
We describe the use of Apple’s iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device’s three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment. Moreover, the principles described may be carried out with any number of smartphone devices containing an integrated accelerometer and paired with an appropriate application for collecting and sending accelerometer data as a comma-separated value file.
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
Verbestel, V; De Henauw, S; Barba, G; Eiben, G; Gallois, K; Hadjigeorgiou, C; Konstabel, K; Maes, L; Mårild, S; Molnár, D; Moreno, L A; Oja, L; Pitsiladis, Y; Ahrens, W; Pigeot, I; De Bourdeaudhuij, I
2015-12-01
This paper reports on the effectiveness of the prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) intervention on objectively measured physical activity (PA) and sedentary time (ST) in 2- to 9.9-year-old European boys and girls. The intervention was evaluated after 2 years through a non-randomized cluster-controlled trial in eight European countries (one control and one intervention community per country). All children in the intervention group received a culturally adapted childhood obesity prevention programme through the community, schools/kindergartens and family. A random sub-sample of children participating in the IDEFICS study wore an accelerometer at baseline and follow-up for at least 3 days (n = 9,184). Of this sample, 81% provided valid accelerometer data at baseline (n = 7,413; 51% boys; 6.21 ± 1.76 years; boys: 617 ± 170 cpm day(-1) ; girls 556 ± 156 cpm day(-1) ) and 3,010 children provided valid accelerometer data at baseline and during the follow-up survey 2 years later. In boys and girls, no significant differences in PA and ST were found between intervention and control groups over 2 years. Strong temporal effects were found in the total sample of boys and girls: the percentage of time spent in light PA per day decreased by 4 percentage points in both boys and girls between baseline and follow-up (both: p < 0.001), while time spent in ST per day increased by 4 percentage points in both sexes over time (both: p < 0.001). Percentage of time spent in moderate-to-vigorous PA per day remained stable over time in boys and girls. Despite the socio-ecological approach and implementation of a culturally adapted intervention in each country, no effects of the IDEFICS intervention were found on children's objectively measured PA and ST. Behavioural interventions for children may need to enhance specificity and intensity at the family level using other behaviour change techniques and more direct strategies to reach parents. © 2015 World Obesity.
The Community Seismic Network: Enabling Observations Through Citizen Science Participation
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.
2017-12-01
The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.
Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik
2011-01-01
In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent
2014-05-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.
Yeung, Joyce; Davies, Robin; Gao, Fang; Perkins, Gavin D
2014-04-01
This study aims to compare the effect of three CPR prompt and feedback devices on quality of chest compressions amongst healthcare providers. A single blinded, randomised controlled trial compared a pressure sensor/metronome device (CPREzy), an accelerometer device (Phillips Q-CPR) and simple metronome on the quality of chest compressions on a manikin by trained rescuers. The primary outcome was compression depth. Secondary outcomes were compression rate, proportion of chest compressions with inadequate depth, incomplete release and user satisfaction. The pressure sensor device improved compression depth (37.24-43.64 mm, p=0.02), the accelerometer device decreased chest compression depth (37.38-33.19 mm, p=0.04) whilst the metronome had no effect (39.88 mm vs. 40.64 mm, p=0.802). Compression rate fell with all devices (pressure sensor device 114.68-98.84 min(-1), p=0.001, accelerometer 112.04-102.92 min(-1), p=0.072 and metronome 108.24 min(-1) vs. 99.36 min(-1), p=0.009). The pressure sensor feedback device reduced the proportion of compressions with inadequate depth (0.52 vs. 0.24, p=0.013) whilst the accelerometer device and metronome did not have a statistically significant effect. Incomplete release of compressions was common, but unaffected by the CPR feedback devices. Users preferred the accelerometer and metronome devices over the pressure sensor device. A post hoc study showed that de-activating the voice prompt on the accelerometer device prevented the deterioration in compression quality seen in the main study. CPR feedback devices vary in their ability to improve performance. In this study the pressure sensor device improved compression depth, whilst the accelerometer device reduced it and metronome had no effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M
2016-01-01
To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh
2015-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.
NASA Astrophysics Data System (ADS)
Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.
2015-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.
A high and low noise model for strong motion accelerometers
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Cauzzi, C.; Olivieri, M.
2010-12-01
We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.
The modulation and demodulation module of a high resolution MOEMS accelerometer
NASA Astrophysics Data System (ADS)
Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi
2016-02-01
A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.
Introducing a modular activity monitoring system.
Reiss, Attila; Stricker, Didier
2011-01-01
In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-01-01
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers. PMID:26861343
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-02-06
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Quantifying functional mobility progress for chronic disease management.
Boyle, Justin; Karunanithi, Mohan; Wark, Tim; Chan, Wilbur; Colavitti, Christine
2006-01-01
A method for quantifying improvements in functional mobility is presented based on patient-worn accelerometer devices. For patients with cardiovascular, respiratory, or other chronic disease, increasing the amount of functional mobility is a large component of rehabilitation programs. We have conducted an observational trial on the use of accelerometers for quantifying mobility improvements in a small group of chronic disease patients (n=15, 48 - 86 yrs). Cognitive impairments precluded complex instrumentation of patients, and movement data was obtained from a single 2-axis accelerometer device worn at the hip. In our trial, movement data collected from accelerometer devices was classified into Lying vs Sitting/Standing vs Walking/Activity movements. This classification enabled the amount of walking to be quantified and graphically presented to clinicians and carers for feedback on exercise efficacy. Presenting long term trends in this data to patients also provides valuable feedback for self managed care and assisting with compliance.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
Park, Joo Hyun; Lee, Jae Yong; Lee, Eun Seong
2014-01-01
We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM. PMID:24940548
Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun
2015-01-01
Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.
Hsieh, Yuh-Jia; Darvann, Tron A; Hermann, Nuno V; Larsen, Per; Liao, Yu-Fang; Bjoern-Joergensen, Jens; Kreiborg, Sven
2016-02-01
The aims of this study were to (1) assess lateral facial morphology in children and adolescents with juvenile idiopathic arthritis and moderate to severe temporomandibular joint (TMJ) involvement, (2) compare the lateral facial morphology of these subjects with and without TMJ involvement using cephalograms and 3-dimensional (3D) facial photographs, and (3) compare and correlate the results of the 3D photographic and cephalometric analyses. Sixty patients with juvenile idiopathic arthritis were included and grouped as follows: group 1, juvenile idiopathic arthritis patients without TMJ involvement; group 2, juvenile idiopathic arthritis patients with moderate to severe unilateral TMJ involvement; and group 3, juvenile idiopathic arthritis patients with moderate to severe bilateral TMJ involvement. Lateral cephalograms were used to assess and compare lateral facial morphologies between the groups. Lateral projections of oriented 3D photographs were superimposed on the lateral cephalograms. The results of the lateral 3D photographic analysis were correlated with those of lateral cephalometric analysis. Group 3 showed the most severe growth disturbances, including more retrognathic mandible and retruded chin, steep occlusal and mandibular planes, and more hyperdivergent type (P <0.01). Group 2 showed similar growth disturbances, but to a lesser extent than did group 3. Photographic variables were significantly correlated with the soft tissue and skeletal variables of cephalograms (0.5 < r < 0.9; P <0.001). Subjects with juvenile idiopathic arthritis and unilateral or bilateral moderate to severe TMJ involvement had significant growth disturbances. Early intervention is recommended for these patients to prevent unfavorable facial development. Furthermore, with proper orientation, 3D photographs can be used as an alternative to conventional lateral cephalograms and 2-dimensional photographs. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bettanini, C.; Zaccariotto, M.; Angrilli, F.
2008-04-01
The Huygens Atmospheric Structure Instrument (HASI) [Fulchignoni, M., Ferri, F., Angrilli, F., Bar-Nun, A., Barucci, M.A., Bianchini, G., Borucki, W., Coradini, M., Coustenis, A., Falkner, P., Flamini, E., Grard, R., Hamelin, M., Harri, A.M., Leppelmaier, G.W., Lopez-Moreno, J.J., McDonnell, J.A.M., McKay, C.P., Neubauer, F.M., Pedersen, A., Piacardi, G., Pirronello, V., Schwingenschuh, K., Seiff, A., Svedhem, H., Vanzani, V., Zarnecki, J.C., 2002. The characterisation of Titan atmosphere physical properties. Space Sci. Rev. 104, 395-431] was a very complete instrument suite installed on board the Huygens probe, the planetary lander of the Cassini Huygens Mission to Saturn system, which successfully completed its mission in January 2005. HASI comprised a set of accelerometers, temperature sensors, pressure transducers and permittivity analysers aimed at the investigation of Titan atmosphere, which were fully operative during a several hour-long parachuted descent from an altitude of 157 km to planetary surface. Accelerometers were the only instruments activated earlier, just after Cassini separation, and recorded data during all the mission phases from atmospheric entry to landing, providing essential information for elaborating probe trajectory as well as Titan atmospheric profiles [G. Colombatti, et al. Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument, this same PSS issue]. Although not specifically designed for monitoring very fast dynamic events, HASI accelerometers have also recorded the trace of probe impact with the planetary surface, building up along with the data from Huygens Surface Science Package (SSP) instrument [ Zarnecki, J.C., Leese, M.R., Garry, J.R.C., Ghafoor, N.A.L., Hathi, B., 2002. Huygens Surface Science Package. Space Sci. Rev. 104, 593-611] the only set of direct measurements of the mechanical properties of the Titan soil. Though not considered secondary with respect to SSP data, HASI data provide peculiar information related to the dynamic response of the whole Huygens probe when impacting the surface, whereas the SSP data were collected mainly by sensors located on a small penetrometer below the main probe dome. Therefore, although having a sensibly lower sampling frequency, HASI Accelerometer Subsystem (ACC) data complete the information of SSP data in the study of impact deceleration profiles, which can provide key information for the estimation of the mechanical parameters of the soil and get an insight of its consistency and composition. In the analysis of Huygens mission data some unexpected features were present in the ACC data sets, so a dedicated study was needed to investigate the presence of dynamic interferences during an acquisition and correct the impact signature. The developed method is based on dynamic analysis of the impact through a three-dimensional finite-element dynamic model of the Huygens probe and the results lead to a corrected interpretation of accelerometer readings and provided an improved description of key aspects of the planetary landing. Although some aspects of probe's state after impact need some further analysis, as for final resting attitude which is to date not completely agreed on, this study disclosed that the probe experienced a vertical decelerating action which is compatible with two possible scenarios: the first one implies the penetration in a soft substrate material followed by a lateral bounce out of the generated hole and the second one suggests the displacement of pebbles from the surface into the soil. Numerical elaboration of impact data calculated a 12 cm penetration into the surface, which may have been experienced either by the lower dome of the probe or from pebbles that were situated under the dome when contacting the planet. In either case after a few seconds of motion the Huygens probe finally rested above Titan's surface with a negligible penetration. Since HASI piezo-accelerometer design was driven by the need of high full-scale values to monitor critical events during entry and descent phase, it was not possible to reconstruct horizontal motion after main deceleration phase without consistent uncertainties due to the poor overall accuracy in a low-acceleration range.
[Action-oriented versus state-oriented reactions to experimenter-induced failures].
Brunstein, J C
1989-01-01
The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.
NASA Astrophysics Data System (ADS)
Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.
2018-03-01
We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.
Atomic References for Measuring Small Accelerations
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2009-01-01
Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.
Rodríguez-Muñoz, Sheila; Corella, Cristina; Abarca-Sos, Alberto; Zaragoza, Javier
2017-12-01
Physical activity (PA) in university students has not been analyzed with specific questionnaires tailored to this population. Therefore, the purpose of this study was to analyze the validity of three PA questionnaires developed on other populations comparing with accelerometer values: counts and moderate to vigorous PA (MVPA) calculated with uniaxial and triaxial cut points. One hundred and forty-five university students (of whom, 92 women) from Spain wore an accelerometer GT3X or GTX+ to collect PA data of 7 full days. Three questionnaires, Physical Activity Questionnaire for Adults (PAQ-AD), Assessment of Physical Activity Questionnaire (APALQ), and the International Physical Activity Questionnaire Short Form (IPAQ-SF) were administrated jointly with the collection of accelerometer values. Finally, after the application of inclusion criteria, data from 95 participants (62 women) with a mean age of 21.96±2.33 years were analyzed to compare the instruments measures. The correlational analysis showed that PAQ-AD (0.44-0.56) and IPAQ-SF (0.26-0.69) questionnaires were significantly related to accelerometers scores: counts, uniaxial MVPA and triaxial MVPA. Conversely, APALQ displayed no significant relations for males with accelerometers scores for MVPA created with both cut points. PAQ-AD and IPAQ-SF questionnaires have shown adequate validity to use with Spanish university students. The use of counts to validate self-report data in order to reduce the variability display by MVPA created with different cut points is discussed. Finally, validated instruments to measure PA in university students will allow implementation of strategies for PA promotion based on reliable data.
Reliability and validity of gait analysis by android-based smartphone.
Nishiguchi, Shu; Yamada, Minoru; Nagai, Koutatsu; Mori, Shuhei; Kajiwara, Yuu; Sonoda, Takuya; Yoshimura, Kazuya; Yoshitomi, Hiroyuki; Ito, Hiromu; Okamoto, Kazuya; Ito, Tatsuaki; Muto, Shinyo; Ishihara, Tatsuya; Aoyama, Tomoki
2012-05-01
Smartphones are very common devices in daily life that have a built-in tri-axial accelerometer. Similar to previously developed accelerometers, smartphones can be used to assess gait patterns. However, few gait analyses have been performed using smartphones, and their reliability and validity have not been evaluated yet. The purpose of this study was to evaluate the reliability and validity of a smartphone accelerometer. Thirty healthy young adults participated in this study. They walked 20 m at their preferred speeds, and their trunk accelerations were measured using a smartphone and a tri-axial accelerometer that was secured over the L3 spinous process. We developed a gait analysis application and installed it in the smartphone to measure the acceleration. After signal processing, we calculated the gait parameters of each measurement terminal: peak frequency (PF), root mean square (RMS), autocorrelation peak (AC), and coefficient of variance (CV) of the acceleration peak intervals. Remarkable consistency was observed in the test-retest reliability of all the gait parameter results obtained by the smartphone (p<0.001). All the gait parameter results obtained by the smartphone showed statistically significant and considerable correlations with the same parameter results obtained by the tri-axial accelerometer (PF r=0.99, RMS r=0.89, AC r=0.85, CV r=0.82; p<0.01). Our study indicates that the smartphone with gait analysis application used in this study has the capacity to quantify gait parameters with a degree of accuracy that is comparable to that of the tri-axial accelerometer.
Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse
2015-04-01
The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.
Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry
O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte
2013-01-01
Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536
Can Infants' Orientation to Social Stimuli Predict Later Joint Attention Skills?
ERIC Educational Resources Information Center
Schietecatte, Inge; Roeyers, Herbert; Warreyn, Petra
2012-01-01
From the moment infants are born, they seem to prefer orienting to social stimuli, over objects and non-social stimuli. This preference lasts throughout adulthood and is believed to play a crucial role in social-communicative development. By following up a group of infants at the age of 6, 8, and 12 months, this study explored the role of social…
Architecting Service-Oriented Systems
2011-08-01
Abstract Service orientation is an approach to software systems development that has become a popular way to implement distributed, loosely coupled...runtime. The later you defer binding the more flexibility service providers and service consumers have to develop their software systems independently...Enterprise Service Bus An Enterprise Service Bus (ESB) is a software pattern that can be part of a SOA infrastructure and acts as an intermediary
Occupant Motion Sensors : Rotational Accelerometer Development
DOT National Transportation Integrated Search
1972-04-01
A miniature mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during vehicle crash or impact conditions. The device has been tested in the laboratory using a shake table and in the field using dummie...
In Search of Emerging Same-Sex Sexuality: Romantic Attractions at Age 13 Years.
Li, Gu; Hines, Melissa
2016-10-01
Sex-typed behavior in childhood is significantly related to sexual orientation in adulthood. In addition, same-sex attractions in early adolescence are more non-exclusive than in adulthood and can differ from later same-sex orientations. However, little research has focused on romantic attractions as they emerge during early adolescence. Drawing a sample from the Avon Longitudinal Study of Parents and Children (197 girls, 204 boys), the current study examined whether same-sex romantic attractions at age 13 years were exclusive, and whether they were predicted by sex-typed behavior at age 3.5 years. No young adolescents in this sample reported exclusive same-sex attractions, and increased same-sex attractions were not significantly related to reduced other-sex sexualities. Childhood sex-typed behavior did not significantly predict early same-sex attractions, suggesting that early same-sex attractions differ from later same-sex orientations. The current study highlights the importance of studying the development of sexuality beginning prior to adulthood.
Derlan, Chelsea L; Umaña-Taylor, Adriana J; Toomey, Russell B; Updegraff, Kimberly A; Jahromi, Laudan B
2015-01-01
The current study examined whether a match or mismatch between teen mothers' cultural orientation and the cultural context of the family (i.e., familial ethnic socialization) predicted mother-daughter everyday and coparenting conflict, and in turn, teen mothers' adjustment. Participants were 204 Mexican-origin teen mothers (M age = 16.81 years; SD = 1.00). Consistent with a person-environment fit perspective, findings indicated that a mismatch between teen mothers' cultural orientation (i.e., high mainstream cultural involvement) and the cultural context of the family (i.e., higher levels of familial ethnic socialization) predicted greater mother-daughter everyday conflict and coparenting conflict 1 year later. However, when there was a match (i.e., high levels of familial ethnic socialization for teen mothers with high Mexican orientation), familial ethnic socialization was not associated with mother-daughter conflict. In addition, mother-daughter conflict was positively associated with depressive symptoms and engagement in risky behaviors 1 year later among all teen mothers. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV.
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P
2015-01-16
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.
Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P.
2015-01-01
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time. PMID:25602263
Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis
NASA Astrophysics Data System (ADS)
Arendra, A.; Akhmad, S.
2018-01-01
This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly
WISDOM: wheelchair inertial sensors for displacement and orientation monitoring
NASA Astrophysics Data System (ADS)
Pansiot, J.; Zhang, Z.; Lo, B.; Yang, G. Z.
2011-10-01
Improved wheelchair design in recent years has significantly increased the mobility of people with disabilities, which has also enhanced the competitive advantage of wheelchair sports. For the latter, detailed assessment of biomechanical factors influencing individual performance and team tactics requires real-time wireless sensing and data modelling. In this paper, we propose the use of a miniaturized wireless wheel-mounted inertial sensor for wheelchair motion monitoring and tracking in an indoor sport environment. Based on a combined use of 3D microelectromechanical system (MEMS) gyroscopes and 2D MEMS accelerometers, the proposed system provides real-time velocity, heading, ground distance covered and motion trajectory of the wheelchair across the sports court. The proposed system offers a number of advantages compared to existing platforms in terms of size, weight and ease of installation. Beyond sport applications, it also has important applications for training and rehabilitation for people with disabilities.
Development of esMOCA RULA, Motion Capture Instrumentation for RULA Assessment
NASA Astrophysics Data System (ADS)
Akhmad, S.; Arendra, A.
2018-01-01
The purpose of this research is to build motion capture instrumentation using sensors fusion accelerometer and gyroscope to assist in RULA assessment. Data processing of sensor orientation is done in every sensor node by digital motion processor. Nine sensors are placed in the upper limb of operator subject. Development of kinematics model is done with Simmechanic Simulink. This kinematics model receives streaming data from sensors via wireless sensors network. The output of the kinematics model is the relative angular angle between upper limb members and visualized on the monitor. This angular information is compared to the look-up table of the RULA worksheet and gives the RULA score. The assessment result of the instrument is compared with the result of the assessment by rula assessors. To sum up, there is no significant difference of assessment by the instrument with an assessment by an assessor.
Planning Experiments for a Microgravity Environment
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1998-01-01
Prior to performing science experiments in a microgravity environment, scientists must understand and appreciate a variety of issues related to that environment. The microgravity conditions required for optimum performance of the experiment will help define an appropriate carrier, drop facility, sounding rocket, free-flyer, or manned orbiting spacecraft. Within a given carrier, such as the International Space Station, experiment sensitivity to vibrations and quasi-steady accelerations should also influence the location and orientation of the experiment apparatus; the flight attitude of the carrier (if selectable); and the scheduling of experiment operations in conjunction with other activities. If acceptable microgravity conditions are not expected from available carriers or experiment scheduling cannot avoid disruptive activities, then a vibration isolation system should be considered. In order to best interpret the experimental results, appropriate accelerometer data must be collected contemporaneously with the experimental data. All of this requires a good understanding of experiment sensitivity to the microgravity environment.
Fundamental movement skills and physical activity among children with and without cerebral palsy.
Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce; Masters, Rich S W
2012-01-01
Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This study examined the association of FMS proficiency with PA in a group of children with CP, and compared the data with a group of typically developing children. Five FMS (run, jump, kick, throw, catch) were tested using process- and product-oriented measures, and accelerometers were used to monitor PA over a 7-day period. The results showed that children with CP spent less time in moderate to vigorous physical activity (MVPA), but more time in sedentary behavior than typically developing children. FMS proficiency was negatively associated with sedentary time and positively associated with time spent in MVPA in both groups of children. Process-oriented FMS measures (movement patterns) were found to have a stronger influence on PA in children with CP than in typically developing children. The findings provide evidence that FMS proficiency facilitates activity accrual among children with CP, suggesting that rehabilitation and physical education programs that support FMS development may contribute to PA-related health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Handheld pose tracking using vision-inertial sensors with occlusion handling
NASA Astrophysics Data System (ADS)
Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried
2016-07-01
Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.
Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria
2014-10-09
Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.
Deng, Shiying; Vaughan, Phillip W.; Li, Jing
2009-01-01
The purpose of this study was to examine the relationships among Chinese American adolescents’ discrimination experiences, cultural orientations, and delinquent behaviors. Data were collected from three hundred and eleven Chinese American adolescents (58% girls) and their parents when the adolescents were 7th or 8th graders and again 4 years later. The data analyses demonstrated that adolescents’ perceptions of discrimination and victimization experiences were significantly related to their delinquent behaviors conditionally based upon their cultural orientation. Specifically, adolescents’ high Chinese cultural orientation amplified the negative impact of discriminatory experiences on delinquent behaviors whereas high Western cultural orientation protected them against that impact. The significance of both ethnic and mainstream cultural orientations for understanding ethnic minority adolescents’ adjustment and improving their adjustment outcomes is discussed. PMID:19834795
Miniature piezoelectric triaxial accelerometer measures cranial accelerations
NASA Technical Reports Server (NTRS)
Deboo, G. J.; Rogallo, V. L.
1966-01-01
Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.
Identifying walking trips from GPS and accelerometer data in adolescent females
Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie
2013-01-01
Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163
Application of a tri-axial accelerometer to estimate jump frequency in volleyball.
Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald
2015-03-01
Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S
2012-08-01
Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.
Fraser, Sarah J; Chapman, Justin J; Brown, Wendy J; Whiteford, Harvey A; Burton, Nicola W
2016-05-01
The aim of this study was to assess the feasibility of using questionnaires and accelerometers to measure physical activity and sedentary behavior among inpatient adults with mental illness. Participants completed a physical activity and sitting time questionnaire and wore an accelerometer for 7 consecutive days. Feasibility was assessed in terms of participant engagement, self-reported ease/ difficulty of completing study components, extreme self-report data values and adherence to accelerometer wear time criteria. Ease/difficulty ratings were examined by level of distress. 177 inpatients were invited to the study, 101 completed the questionnaires and 36 provided valid accelerometry data. Participants found it more difficult to complete sitting time and physical activity questionnaires than to wear the accelerometer during waking hours (z = 3.787, P < .001; z = 2.824, P = .005 respectively). No significant differences were found in ease/ difficulty ratings by level of distress for any of the study components. Extreme values for self-reported sitting time were identified in 27% of participants. Inpatient adults with mental illness can engage with self-report and objective methods of measuring physical activity and sedentary behavior. They were initially less willing to participate in objective measurement, which may however be more feasible than self-report measures.
Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).
NASA Astrophysics Data System (ADS)
Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.
The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).
Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.
Murray, Elizabeth; Bruno, Raimondo; Brown, John
2012-03-01
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.
Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf
2017-11-01
In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.
Object-oriented millisecond timers for the PC.
Hamm, J P
2001-11-01
Object-oriented programming provides a useful structure for designing reusable code. Accurate millisecond timing is essential for many areas of research. With this in mind, this paper provides a Turbo Pascal unit containing an object-oriented millisecond timer. This approach allows for multiple timers to be running independently. The timers may also be set at different levels of temporal precision, such as 10(-3) (milliseconds) or 10(-5) sec. The object also is able to store the time of a flagged event for later examination without interrupting the ongoing timing operation.
Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B
2013-10-01
A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.
Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography.
Dumas, R; Le Bras, A; Champain, N; Savidan, M; Mitton, D; Kalifa, G; Steib, J-P; de Guise, J A; Skalli, W
2004-06-01
The three dimensional (3D) reconstruction of the spine can be obtained by stereoradiographic techniques. To be safely used on a routine clinics basis, stereoradiography must provide both accurate vertebral shape and coherent position. Although the accuracy of the reconstructed morphology of the vertebrae is well documented, only few authors studied the accuracy of the vertebral orientation. Therefore, this paper focuses on the evaluation of the orientation accuracy of the reconstructed vertebrae (obtained by non-stereo corresponding point technique) considering either a 178 point vertebral model or a 6 point vertebral model (previously proposed in the literature). Five dried vertebrae were fixed on holders containing four markers each. The 3D reconstruction of both vertebrae and markers were obtained by stereoradiographic techniques. Using least square method matching from one position to another, the relative orientation was computed for the vertebral models (6 or 178 points) and the four markers. These vertebral and holder orientations were compared (considering the holder's one as reference). The repeatability of these relative orientations (vertebrae and holders) was also evaluated. The mean (RMS) orientation error of 178 point vertebral model was 0.6 degrees (0.8 degrees ), for lateral rotation, 0.7 degrees (1.0 degrees ) for sagittal rotation and 1.4 degrees (1.9 degrees ) for axial rotation. The intra-observer repeatability was 0.5 degrees (0.7 degrees ) for lateral rotation, 0.7 degrees (0.8 degrees ) for sagittal rotation and 0.9 degrees (1.2 degrees ) for axial rotation. The orientation was found more accurate and precise when using the 178 point vertebral model than when using the basic 6 point vertebral model. The relative orientation (in post-operative follow-up with respect to the pre-operative examination) of the vertebrae of one scoliotic patient was performed as an example of clinical application. The stereoradiographic method is a reliable 3D quantitative tool to assess the spine deformity, that can be used in clinics for the follow-up of scoliotic patients.
Physical Activity and Falls in Older Men: The Critical Role of Mobility Limitations
JEFFERIS, BARBARA J.; MEROM, DAFNA; SARTINI, CLAUDIO; WANNAMETHEE, S. GOYA; ASH, SARAH; LENNON, LUCY T.; ILIFFE, STEVE; KENDRICK, DENISE; WHINCUP, PETER H.
2015-01-01
ABSTRACT Background Physical activity (PA) has many health benefits but may increase falls risk among older adults. We study how objectively measured habitual daily PA is related to falls by exploring the modifying effect of mobility limitations and the mediating roles of fitness and lower-limb strength. Methods One thousand six hundred fifty-five (53%) of 3137 surviving participants (men age 71–91 yr) in an ongoing UK-population-based cohort study wore an ActiGraph GT3x accelerometer over the hip for 1 wk in 2010–2012 to measure PA (exposure) and reported demographic and health status, including mobility limitations. One year later, 825 men reported falls history (outcome). Results Seven hundred of 825 men had ≥600 min·d−1 of accelerometer wear for ≥3 d. Nineteen percent (n = 128) reported falls 1 yr later. Associations between PA and falls differed by presence of mobility limitations. Among 66% (n = 471) of men without mobility limitations, number of falls increased incrementally (for every 30 min of moderate to vigorous PA [MVPA]: incidence rate ratio [IRR], 1.50; 95% confidence interval [CI], 1.10–2.03, adjusted for falls risk factors). Step count was not related to number of falls below 9000 steps per day but was related to number of falls ≥9000 steps per day (for every additional 1000 steps per day: IRR, 1.59; 95% CI, 1.16–2.18). Among 33% (n = 229) of men with mobility limitations, falls risk declined with increasing activity (for every 1000 steps per day: IRR, 0.80; 95% CI, 0.70–0.91; for every 30 min of MVPA: IRR, 0.61; 95% CI, 0.42–0.89; for every additional 30 min of sedentary behavior ≥600 min·d−1: IRR, 1.22; 95% CI, 1.07–1.40). Conclusions Interventions to promote MVPA in older men should incorporate falls prevention strategies. Among adults with mobility limitations, trials should investigate whether increasing MVPA levels can reduce falls risk. PMID:25668406
Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J
2018-01-01
Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. Conclusions The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. PMID:29674309
Nembhard, Ingrid M.; Cherian, Praseetha; Bradley, Elizabeth H.
2015-01-01
This article examines the effect on quality improvement of two common but distinct approaches to organizational learning: importing best practices (an externally oriented approach rooted in learning by imitating others’ best practices) and internal creative problem solving (an internally oriented approach rooted in learning by experimenting with self-generated solutions). We propose that independent and interaction effects of these approaches depend on where organizations are in their improvement journey – initial push or later phase. We examine this contingency in hospitals focused on improving treatment time for patients with heart attacks. Our results show that importing best practices helps hospitals achieve initial phase but not later phase improvement. Once hospitals enter the later phase of their efforts, however, significant improvement requires creative problem solving as well. Together, our results suggest that importing best practices delivers greater short-term improvement, but continued improvement depends on creative problem solving. PMID:24876100
Orienting attention to locations in internal representations.
Griffin, Ivan C; Nobre, Anna C
2003-11-15
Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.
Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E
2012-10-01
Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.
Eggum, Natalie D.; Eisenberg, Nancy; Kao, Karen; Spinrad, Tracy L.; Bolnick, Rebecca; Hofer, Claire; Kupfer, Anne S.; Fabricius, William V.
2012-01-01
Data were collected when children were 42, 54, and 72 months of age (Ns=210, 191, and 172 for T1, T2, and T3, respectively). Children's emotion understanding (EU) and theory of mind (ToM) were examined as predictors of children's prosocial orientation within and across time. EU positively related to children's sympathy across 2.5 years, and T1 EU positively related to parent-reported prosocial orientation concurrently and across 1 year (T2). T2 ToM positively related to parents' reports of sympathy and prosocial orientation concurrently and 18 months later (T3); in contrast, T3 ToM did not relate to sympathy or prosocial orientation. T2 ToM accounted for marginally significant variance (p<0.058) in T3 mother-reported prosocial orientation over and above that accounted for by T2 prosocial orientation. Fostering the development of EU and ToM may contribute to children's prosocial orientation. PMID:22518196
Emergence of Orientation Selectivity in the Mammalian Visual Pathway
Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph
2013-01-01
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085
Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion
Yadav, Nagesh; Bleakley, Chris
2014-01-01
Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584
DOT National Transportation Integrated Search
1969-07-01
In this study, 24 anesthetized Savannah Baboons (Papio cynocephalus) restrained with a lap belt were subjected to a controlled series of lateral impacts at entrance velocities ranging from 36.4 ft./sec. (15g.) to 88.2 ft./ sec. (44g.) 1,200 g./sec. t...
A Competition Model of Exogenous Orienting in 3.5-Month-Old Infants.
ERIC Educational Resources Information Center
Dannemiller, James L.
1998-01-01
Four experiments examined exogenous orienting in 3.5-month-olds. Found that sensitivity to a small moving bar was lower when most of the red bars were in the visual field contra-lateral to this probe. The distribution of color within the visual field biased attention, making it either more or less likely that the infant detected a moving stimulus.…
Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.
Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint
2017-09-13
GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.