Science.gov

Sample records for latitude ionospheric effects

  1. Low-latitude ionospheric effects on SBAS

    NASA Astrophysics Data System (ADS)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  2. Effects of ionospheric disturbances on high latitude radio wave propagation

    NASA Astrophysics Data System (ADS)

    Larsen, T. R.

    The effects of anomalous high-latitude ionization on radio wave propagation are described for the main types of disturbances, that is, sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, and polar cap events. Examples of radio wave characteristics for such conditions are given for the frequencies between the very low (3-3000 Hz) and high (3-30 MHz) frequency domains.

  3. Ionospheric storm effects at subauroral latitudes - A case study

    NASA Technical Reports Server (NTRS)

    Proelss, G. W.; Brace, L. H.; Mayr, H. G.; Carignan, G. R.; Killeen, T. L.

    1991-01-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  4. Ionospheric storm effects at subauroral latitudes: A case study

    SciTech Connect

    Proelss, G.W. ); Brace, L.H.; Mayr, H.G. ); Carignan, G.R.; Killeen, T.L. ); Klobuchar, J.A. )

    1991-02-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  5. High Latitude Ionospheric Structures

    DTIC Science & Technology

    2006-06-01

    CADI are a mixture of ionograms and ‘fixed’ frequency. The fixed frequency is chosen so as to get continuous ionospheric echoes throughout the day...because of the very dynamic ionospheric behaviour at high latitudes. Ionograms (interleaved with the fixed frequency observations) are at less frequent...intervals, typically each minute. In general it is easier to identify structures on the fixed frequency recordings. Ionograms are mainly useful when

  6. Simulation of PPEF effects in dayside low-latitude ionosphere for the October 30, 2003, Superstorm

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Tsurutani, Bruce T.; Mannucci, Anthony J.; Saito, Akinori; Araki, Tohru; Anderson, David; Abdu, M.; Sobral, J. H. A.

    One of the important signatures during strong magnetic storms is prompt penetrating electric fields (PPEFs) into the ionosphere, which causes the dayside ionospheric superfountain (DIS). Interplanetary-ionosphere coupling for the October 30, 2003, superstorm is analyzed by using ACE and ground-based measurements. The relationships between the interplanetary magnetic field Bz component, ionospheric vertical velocities above Jicamarca, and horizontal magnetic field components measured at Huancayo are presented. DIS is associated with uplift, displacement, and enhancement of the equatorial ionospheric anomalies. We apply an extended SAMI-2 ionospheric model to simulate DIS effects above Jicamarca for this superstorm. An agreement between our results and observed ƒ0F2 during the main phase of the storm is reported. It is shown that the PPEF approach and corresponding modeling results capture the main physics of the dayside low-latitude ionospheric response during the first couple hours of the magnetic superstorm.

  7. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Blanc, M.; Richmond, A. D.

    2017-03-01

    The Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

  8. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Blanc, M.; Richmond, A. D.

    2016-12-01

    The Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

  9. IMF-By effect on the mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Jin, Hidekatsu

    The primary factor that controls ionospheric total electron content (TEC) variations is solar UV/EUV radiations through the ionization of the thermospheric neutral particles and through the modification of the thermosphere. Changes in temperature and composition of the neutral atmosphere and the atmospheric circulation greatly affect the ionospheric electron density. Because such a relationship between the solar spectral irradiance and the ionospheric TEC is highly complex, we applied an artificial neural network (ANN) technique that has a great capability of function approximation of complex systems to model solar irradiance effects on TEC. Three solar proxies, F_{10.7}, SOHO_SEM_{26-34} EUV emission index, and MgII_c-w-r were chosen as input parameters to the ANN-TEC model. Another channel of energy flow from the sun to the earth’s ionosphere is the solar wind. The am index and several solar wind magnetosphere coupling functions were chosen as additional inputs to the ANN to model the effects of magnetic disturbances. Somewhat minor but interesting effects on TEC variations emerged when the major effects of solar irradiance and magnetic disturbances were removed. We analyzed the time series of the residual error in TEC prediction by using a wavelet transformation, which revealed a periodic increase in error approximately every 27 days in the summer. Possible origins of the error are (1) insufficient modeling of the solar activity effect, (2) lunar tidal forcing, (3) coupling with planetary waves in the lower atmosphere, and (4) solar wind effects. Examinations refused the first three possibilities. We investigated solar wind parameters that are not concerned in geomagnetic disturbances. The 27-day periodic error during the summer disappeared when the IMF-By component and the solar wind velocity were included in the input space of the ANN. Possible explanation of the IMF-By effect is discussed in terms of changes in the thermospheric general circulation pattern.

  10. Effects of different convection models upon the high-latitude ionosphere

    SciTech Connect

    Rasmussen, C.E.; Schunk, R.W.; Sojka, J.J.

    1986-01-01

    It is well known that convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of plasma convection over the entire high latitude region. Two empirical models of plasma convection that have been proposed for use in studying the ionosphere are the Volland and Heelis models. Both of these models provide a similar description of two-celled ionospheric convection, but they differ in several ways, in particular, in the manner in which plasma flows over the central polar-cap and near the polar cap boundary. To obtain a better understanding of the way in which these two models affect the ionosphere, two separate runs of the high-latitude, time-dependent ionospheric model were made, with only the convection models distinguishing the two runs. It was found that the two models lead to differences in the ionosphere but often the differences are subtle and are swamped by universal time effects. The most notable differences are in predictions of the height of the F2 peak and in the ion temperature, particularly along the evening polar-cap boundary and in the cusp region. For these two parameters, the differences caused by the two different convection models dominate the universal time effects. One question that arises is whether one could examine measurements of plasma density and temperature and determine which of the two convection models most accurately represents actual ionospheric convection.

  11. HF Radar Observations of Space Weather Effects in the Low and Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Menk, F. W.

    2015-12-01

    The ionosphere is dynamically coupled to the magnetosphere and hence diurnal and seasonal processes in the ionosphere are strongly influenced by space weather effects. These may vary the electron density distribution and cause changes in the reflection and absorption of HF radio signals. Other consequences include the formation of enhanced convective flows and irregularity features which may contribute to Doppler clutter. While there has been much discussion on the ionospheric signatures of magnetic storms at high latitudes, this presentation focuses on effects detected using mid- and low-latitude HF radars which examine field lines mapping to the vicinity of the ring current. Characteristic features include travelling ionospheric disturbances, high velocity flows and sustained irregular and quasi-sinusoidal 5 - 20 mHz waves recorded near the plasmapause. Such observations provide new insight on complex M-I coupling dynamics.

  12. The High-Latitude Ionosphere and Its Effects on Radio Propagation

    NASA Astrophysics Data System (ADS)

    Moses, Ronald W., Jr.

    2004-05-01

    The ionosphere is indeed the place where Earth and space come together. Correspondingly, the ionosphere is subject to the details and complexities of both Earth and space. If one is to develop a logical understanding of even a limited portion of the ionosphere, that knowledge will be constructed on a foundation of many facts of nature. Awareness of those facts will in turn be supported by a vast historical array of scientific effort to ascertain the fundamentals of Earth and space that combine to form the ionosphere as we know it. Fortunately for us, R. D. Hunsucker and J. K. Hargreaves have written a book that goes from the Earth up and comes from the Sun down to arrive at a remarkably detailed physical description of the ionosphere and its impact on human activities, especially radio-frequency (RF) communications. The High-Latitude Ionosphere and its Effects on Radio Propagation is a bit of a misnomer, because the book covers many more topics than its title suggests. The authors set the stage by developing a detailed picture of the density, temperature, chemical, neutral, and charge states of the atmosphere-ionosphere system. Basic models of the ionization and recombination processes are presented with supporting mathematics and graphical examples. Concepts such as the Chapman production function are introduced and applied, whereby ionizing solar radiation produces electron-ion pairs. One can then grasp how the so-called D, E, and F layers of the ionosphere are related to the ionization of specific molecular species. Along the way, the authors are careful to introduce the extensive nomenclature of ionospheric descriptors. There is a comfortable relationship of prose, mathematics, and graphical material. Reading this book is a pleasure for the scientifically curious mind.

  13. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  14. Dynamical effects of substorms in the middle and lower latitude ionosphere. Ph.D. Thesis

    SciTech Connect

    Pi, Xiaoqing

    1995-01-01

    The Earth`s ionosphere, a region of the the upper atmosphere spanning altitudes from approximately 100 to 1000 km, contains a complex pattern of electron densities produced by solar emissions, atmospheric chemistry and dynamical processes. In this dissertation, a plasma disturbance effect is identified in long-term observations, characterized statistically, and analyzed using numerical modeling. Results drawn from the model are subjected to verification using a dedicated observational campaign. The distinctive feature treated is a pattern of diurnal double maxima (DDM) in total electron content (TEC) observations. The observed DDM events have a clear relationship with geomagnetic disturbances known as substorms. A time-dependent ionospheric model is used to simulate observed DDM events over a latitudinal range of +/- 38 deg. (dip latitude), and in two longitude sectors (75 deg. W and 7 deg. E). Modeling results show that TEC DDM patterns can be created by a combined effect of ionospheric F region plasma vertical drifts and highly altitude-dependent chemical loss mechanisms. Modeling studies explore two possible substorm-related dynamical sources for these perturbation: magnetospheric electric field penetration and overshielding effects, or traveling disturbances in the neutral atmosphere. Local time, latitudinal, and longitudinal characteristics of these dynamical perturbations are investigated in order to define global-scale signatures of the ionosphere`s response to substorms. An observational campaign was formulated and conducted to verify model predictions. The techniques included: magnetometer in the auroral zone for indications of substorm activity; incoherent scatter radars, from high to low latitudes near 75 deg. W longitude, to measure ionospheric electron densities, plasma drifts and meridional neutral winds; and all sky CCD cameras and a Fabry-Perot interferometer for 6300 A airglow and neutral winds at a sub-auroral site.

  15. The effects on the ionosphere of inertia in the high latitude neutral thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, Alan; Killeen, Timothy

    1993-01-01

    High-latitude ionospheric currents, plasma temperatures, densities, and composition are all affected by the time-dependent response of the neutral thermosphere to ion drag and Joule heating through a variety of complex feedback processes. These processes can best be studied numerically using the appropriate nonlinear numerical modeling techniques in conjunction with experimental case studies. In particular, the basic physics of these processes can be understood using a model, and these concepts can then be applied to more complex realistic situations by developing the appropriate simulations of real events. Finally, these model results can be compared with satellite-derived data from the thermosphere. We used numerical simulations from the National Center of Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) and data from the Dynamic Explorer 2 (DE 2) satellite to study the time-dependent effects of the inertia of the neutral thermosphere on ionospheric currents, plasma temperatures, densities, and composition. One particular case of these inertial effects is the so-called 'fly-wheel effect'. This effect occurs when the neutral gas, that has been spun-up by the large ionospheric winds associated with a geomagnetic storm, moves faster than the ions in the period after the end of the main phase of the storm. In these circumstances, the neutral gas can drag the ions along with them. It is this last effect, which is described in the next section, that we have studied under this grant.

  16. Effect of diffusion-thermal processes on the high-latitude topside ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Raitt, W. J.; Nagy, A. F.

    1978-01-01

    The extent to which diffusion-thermal heat flow affects H(+) temperatures in the high-latitude topside ionosphere is studied. Such a heat flow occurs whenever there are H(+)-O(+) relative drifts. From our study we have found that at high-latitudes, where H(+) flows up and out of the topside ionosphere, diffusion-thermal heat flow acts to reduce H(+) temperatures by 500-600 K at altitudes above about 900 km.

  17. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  18. High-latitude ionospheric drivers and their effects on wind patterns in the thermosphere

    NASA Astrophysics Data System (ADS)

    Liuzzo, L. R.; Ridley, A. J.; Perlongo, N. J.; Mitchell, E. J.; Conde, M.; Hampton, D. L.; Bristow, W. A.; Nicolls, M. J.

    2015-01-01

    Winds in the thermosphere are highly important for transporting mass, momentum, and energy over the globe. In the high-latitude region, observations show that ion and neutral motions are strongly coupled when the aurora is present but the coupling is less evident when there is no aurora. In this study, we investigate the ability of the Global Ionosphere-Thermosphere Model (GITM) to simulate the mesoscale wind structure over Alaska during a substorm. Thirteen distinct numerical simulations of a substorm event that occurred between 02:00 and 17:00 Universal Time on 24 November 2012 have been performed. Distinct drivers considered include the Weimer and SuperDARN potential patterns and the OVATION Prime and OVATION-SME auroral models. The effects of the boundary between the neutral wind dynamo calculation and the high-latitude imposed electric potential were also considered. Neutral wind velocities and thermospheric temperatures measured by the Scanning Doppler Imager instruments located at three locations in Alaska were compared to GITM simulation results, and electron densities within GITM were compared to data from the Poker Flat Incoherent Scatter Radar. It was found that the different drivers used between multiple simulations lead to various amounts of momentum coupling within the simulation, affecting the accuracy of the modeled neutral and ion flow patterns and the strength of electron precipitation at high latitudes. This affirms that better observations of auroral precipitation and electric fields are required to accurately understand and consistently reproduce the mesoscale neutral wind flow patterns and temperature structure in the high-latitude thermosphere.

  19. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. ); Slavin, J.A.; Wharton, L.E. )

    1993-05-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere.

  20. Effective recombination coefficients in the high-latitude lower ionosphere from solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Cherniakov, Sergey

    2016-07-01

    The photochemistry of processes in the lower ionosphere is rather difficult and up to the end is not developed: it is necessary to specify photochemical schemes, there is big uncertainty in coefficients of separate reactions and concentration of small neutral components. Therefore introduction of the effective coefficients determining the total speed of several reactions was widely adopted when modeling the lower ionosphere, especially the D-region. Experimental opportunities of obtaining of effective recombination coefficients are rather limited. One of the methods allows to define effective recombination coefficients is based on the phenomenon of a solar eclipse and the changes of electron concentration in the ionosphere connected with it. During a solar eclipse there is a short-term and controlled change of solar ionizing radiation intensity that allows to research photochemical processes at known input parameters. The time delay between the eclipse maximum (the sunlight minimum) and the electron concentration minimum at the chosen height during the "short night" is defined as the "sluggishness" [Appleton E.V., 1953] and "relaxation time" [Mitra A., 1974]. The received time delay from observations at the considered ionosphere height with the known electron concentration value gives possibility to calculate the effective recombination coefficient for this height. During solar eclipses on 1 August 2008, on 1 June 2011 and on 20 March 2015 at the partial reflection facility of the observatory "Tumanny" (69° N, 35.7 E) observations of the lower ionosphere behavior were made. On the basis of the obtained data the electron concentration profiles at the heights of the lower ionosphere were received. Calculation of relaxation times allowed to define effective recombination coefficients at some heights of D region of the ionosphere. Appleton, E. V. A note on the "sluggishness" of the ionosphere // J. Atmos. Terr. Phys. - 1953. - Vol. 3, N 5. - P. 282-284. Mitra, A. P

  1. Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm

    SciTech Connect

    Fesen, C.G. ); Crowley, G.; Roble, R.G. )

    1989-05-01

    This paper investigates the response of the equatorial ionosphere to the neutral atmosphere perturbations produced by the magnetic storm of March 22, 1979. A numerical model of the equatorial ionosphere is used to calculate the maximum electron densities and F layer heights associated with a storm-perturbed neutral atmosphere and circulation model. Possible electric field perturbations due to the storm are ignored. The neutral atmosphere and dynamics are simulated by the National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the storm day of March 22, 1979, and the preceding quiet day. The most striking feature of the TGCM storm day simulations is the presence of waves in the neutral composition, wind, and temperature fields which propagate from high latitudes to the equator. The TGCM-calculated fields for the two days are input into a low-latitude ionosphere model which calculates n{sub max} and h{sub max} between {plus minus}20{degree}dip latitude. The calculated nighttime 6300-{angstrom} airglow emission and the altitude profiles of electron concentration are also highly perturbed by the storm. Examination of ionosonde data for March 22, 1979, shows remarkable agreement between the measured and predicted changes in f{sub 0}F{sub 2} and h{sub max} near 140{degree}W. Poorer agreement near 70{degree}W may be due to the neglect of electric field perturbations and the approximations inherent in the modeling. The results of these simulations indicate that the major factor influencing the storm time ionospheric behavior in this case is the neutral wind.

  2. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick's Day storm

    NASA Astrophysics Data System (ADS)

    Kuai, Jiawei; Liu, Libo; Liu, Jing; Sripathi, S.; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Hu, Lianhuan

    2016-09-01

    The 2015 St. Patrick's Day geomagnetic storm with SYM-H value of -233 nT is an extreme space weather event in the current 24th solar cycle. In this work, we investigated the main mechanisms of the profound ionospheric disturbances over equatorial and low latitudes in the Asian-Australian sector and the American sector during this super storm event. The results reveal that the disturbed electric fields, which comprise penetration electric fields (PEFs) and disturbance dynamo electric fields (DDEFs), play a decisive role in the ionospheric storm effects in low latitude and equatorial regions. PEFs occur on 17 March in both the American sector and the Asian-Australian sector. The effects of DDEFs are also remarkable in the two longitudinal sectors. Both the DDEFs and PEFs show the notable local time dependence, which causes the sector differences in the characteristics of the disturbed electric fields. This differences would further lead to the sector differences in the low-latitude ionospheric response during this storm. The negative storm effects caused by the long-duration DDEFs are intense over the Asian-Australian sector, while the repeated elevations of hmF2 and the equatorial ionization anomaly intensifications caused by the multiple strong PEFs are more distinctive over the American sector. Especially, the storm time F3 layer features are caught on 17 March in the American equatorial region, proving the effects of the multiple strong eastward PEFs.

  3. Determination of a geomagnetic storm and substorm effects on the ionospheric variability from GPS observations at high latitudes

    NASA Astrophysics Data System (ADS)

    Gómez, Luis; Ignacio Sabbione, Juan; Andrea van Zele, María; Meza, Amalia; Brunini, Claudio

    2007-06-01

    The aim of this work is to characterize the ionospheric electron content variability during a standard and simple geomagnetic storm, and substorms during it. The analysis is based on tying the geomagnetic disturbances including the signatures of the current wedge formed during the substorm expansion phase, with the variability of ionospheric vertical total electron content (VTEC) in local time; for this reason the VTEC is computed for complete geographical longitude coverage at subauroral and auroral latitudes. The study is based on the geomagnetic storm befallen on April 6 and 7, 2000 (near the equinox) and the TEC are computed from global positioning system (GPS). The main results can be divided into three groups: (a) when the geomagnetic storm starts between pre-midnight and dawn, a minimum of VTEC is recorded, lasting all the long day (ionospheric storm negative phase); also the nighttime electron content may decrease below the corresponding for quiet days; but near the 60 of geomagnetic latitude the ionization polar tongue can be observed at noon, superimposed to the negative phase; (b) computed by GPS stations placed lower than 50, when the geomagnetic storm starts between dawn and noon the VTEC recorded a positive phase, but if it starts at noon a dusk effect is recorded; those located between 50 and 60 show a sudden increase and later sudden decrease to nocturnal values, (c) when the geomagnetic storm starts between afternoon and sunset, at stations located lower than 50 a dusk effect and an ionospheric negative phase during the next day are recorded, but if the GPS stations are located at higher latitude than 50 the VTEC representation shows the nocturnal end of the ionization polar tongue. Expansion phases of substorms are shown as small VTEC variations recorded for a short time: decreases if the substorm happens between dawn and midday; enhancements during the fall of the ionospheric positive phase. From the comparison with the results obtained by other

  4. The effects on the ionosphere of inertia in the high latitude neutral thermosphere. Final report, April 1989-April 1993

    SciTech Connect

    Burns, A.; Killeen, T.

    1993-02-01

    High-latitude ionospheric currents, plasma temperatures, densities, and composition are all affected by the time-dependent response of the neutral thermosphere to ion drag and Joule heating through a variety of complex feedback processes. These processes can best be studied numerically using the appropriate nonlinear numerical modeling techniques in conjunction with experimental case studies. In particular, the basic physics of these processes can be understood using a model, and these concepts can then be applied to more complex realistic situations by developing the appropriate simulations of real events. Finally, these model results can be compared with satellite-derived data from the thermosphere. We used numerical simulations from the National Center of Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) and data from the Dynamic Explorer 2 (DE 2) satellite to study the time-dependent effects of the inertia of the neutral thermosphere on ionospheric currents, plasma temperatures, densities, and composition. One particular case of these inertial effects is the so-called 'fly-wheel effect'. This effect occurs when the neutral gas, that has been spun-up by the large ionospheric winds associated with a geomagnetic storm, moves faster than the ions in the period after the end of the main phase of the storm. In these circumstances, the neutral gas can drag the ions along with them. It is this last effect, which is described in the next section, that has been studied under this grant.

  5. Effect of high-latitude ionospheric electric field variability on the estimate of magnetospheric energy and momentum inputs

    NASA Astrophysics Data System (ADS)

    Matsuo, T.; Richmond, A. D.

    2003-04-01

    One of the outstanding problems in modeling of the magnetosphere-ionosphere-thermosphere system is quantitative bias systematically seen in simulated thermosphere and ionosphere responses to magnetospheric forcing. This systematic bias is considered to be attributed to insufficient acceleration of high-latitude winds and insufficient Joule heating. In this study the effects of high-latitude ionospheric electric field variability on the estimation of ion-drag and Joule heating are investigated by incorporating the characteristics of electric field variability derived observations into the forcing of a thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM). First, the magnitude of the variability is quantified using the standard deviation as a summary measure of the deviations of the observations about the mean. The spatial distribution of the standard deviation over the area poleward of 45o magnetic latitude and its climatological behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) and the dipole tilt angle (season) are examined. In general, the magnitude of the standard deviation exceeds the strength of the mean electric field in most of the polar area, especially under northward IMF conditions. The analysis reveals that electric field variability varies with magnetic-latitude, magnetic-local-time, IMF, and season in a manner distinct from that of the climatological electric field. Second, we characterize dominant modes of high-latitude electric field variability as a set of two-dimensional empirical orthogonal functions (EOFs), based on a sequential non-linear regression analysis of the electric field derived from DE-2 plasma drift measurements. Together with the mean fields, 11 EOFs are capable of representing 68% of the squared electric field, leaving only a fairly random component as a residual. Third, the temporal coherence of electric field variability whose spatial coherence can be represented

  6. Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes

    SciTech Connect

    Batista, I.S.; De Paula, E.R.; Abdu, M.A.; Trivedi, N.B. ); Greenspan, M.E. )

    1991-08-01

    The great geomagnetic storm of March 13, 1989 caused severely anomalous behavior in the equatorial and low latitude ionosphere in the Brazilian longitude sector. The ionograms over Fortaleza indicated F region upward plasma drifts exceeding 200 m s{sup {minus}1} at 1,830 LT as compared to normal values of 40 m s{sup {minus}1} for this epoch. Large negative phases were observed in foF2 over Fortaleza and Cachoeira Paulista and in total electron content measured over Sao Jose dos Campos. The equatorial ionization anomaly was totally absent either because of its anomalous expansion to higher latitudes or because of inhibition of its development on the two nights following the storm. Many anomalous variations in F region peak density and height, occurring simultaneously with sharp variations on H component of magnetic field over Fortaleza and with auroral substorms, give strong evidence of penetration of magnetospheric electric fields to equatorial and low latitudes. Auroral type sporadic E and night E layers are observed after 1,830 LT over Cachoeira Paulista, the latter showing peak electron density of about 6 {times} 10{sup 4} el cm{sup {minus}3}, therefore comparable to the E layer peak density in the morning hours at that station. The Fortaleza ionograms show the presence of the F1 layer at night, a phenomenon that has never been observed over our two stations before. The role played by electric fields penetrating from high to low latitudes, particle precipitation, and composition changes in explaining the observations is discussed.

  7. Effects of high-latitude ionospheric electric field variability on the estimation of global thermospheric Joule heating

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoko

    One of the outstanding problems in modeling of the magnetosphere-ionosphere-thermosphere system is the quantitative bias systematically seen in simulated thermosphere and ionosphere responses to magnetospheric forcing. This systematic bias is considered to be attributed largely to insufficient Joule heating. In this study, effects of high-latitude ionospheric electric field variability on the estimation of Joule heating are investigated by incorporating the characteristics of electric field variability derived from observations into the forcing of a thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM). First, the magnitude of the variability is quantified as the sample standard deviation of plasma drift measurements from the Dynamics Explorer (DE-2) satellite. The spatial distribution of the standard deviation over the area poleward of 45° magnetic latitude and its climatological behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) and the dipole tilt angle (season) are examined. In general, the magnitude of the standard deviation exceeds the strength of the mean electric field in most of the polar area, especially under northward IMF conditions. The analysis reveals that electric field variability varies with magnetic-latitude, magnetic-local-time, IMF, and season in a manner distinct from that of the climatological electric field. Second, we characterize dominant modes of high-latitude electric field variability as a set of two-dimensional empirical orthogonal functions (EOFs), based on a sequential non-linear regression analysis of the electric field derived from DE-2 data. Together with the mean fields, 11 EOFs are capable of representing 68% of the squared electric field, leaving only a fairly random component as a residual. Third, the temporal coherence of electric field variability whose spatial coherence can be represented in the form of EOFs is estimated for the storm period of January 9

  8. Interplanetary causes of middle latitude ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Verkhoglyadova, Olga P.

    The solar and interplanetary causes of major middle latitude ionospheric disturbances are reviewed. Solar flare photons can cause abrupt (within ˜5 min), 30% increases in ionospheric total electron content, a feature that can last for tens of minutes to hours, depending on the altitude of concern. Fast interplanetary coronal mass ejection sheath fields and magnetic clouds can cause intense magnetic storms if the field in either region is intensely southward for several hours or more. If the field conditions in both regions are southward, "double storms" will occur. Multiple interplanetary fast forward shocks "pump up" the sheath magnetic field, leading to conditions that can lead to superstorms. Magnetic storm auroral precipitation and Joule heating cause pressure waves that propagate from subauroral latitudes to middle and equatorial latitudes. Shocks can create middle latitude dayside auroras as well as trigger nightside subauroral supersubstorms. Solar wind ram pressure increases after fast shocks can lead to the formation of new radiation belts under proper conditions. Prompt penetration electric fields can cause a dayside ionospheric superfountain, leading to plasma transport from the equatorial region to middle latitudes. The large amplitude Alfvén waves present in solar wind high-speed streams cause sporadic magnetic reconnection, plasma injections, and electromagnetic chorus wave generation. Energetic electrons interacting with chorus (and PC5) waves are accelerated to hundreds of keV up to MeV energies.

  9. Thermal imbalance and shock wave effects on low latitude ionosphere : asymmetric case of a total solar eclipse

    NASA Astrophysics Data System (ADS)

    Vila, P. M.; Fleury, R.; Le Roux, Y.; Kone, E.

    2003-04-01

    The total solar eclipse of June 21 2001 crossed Africa under favourablr conditions for observing distant effects on the ionosphere, especially IN equatorial and subtropical F layer magnetic tubes:1^o)magnetically quiet Solar and magnetospheric activity; 2^o) totality at the noon phase in the GMT meridians of observation; 3^o) totality path nearly parallel to the magnetic equator at about the 10^o south geographic. Two West African digital ionosondes recorded h'f profiles at 5 minute intervals at Korhogo (Ivory Coast, geogr lat. 9.5^oNorth, magn. lat. -2.5^o, where the eclipse occultation was 40%) and Dakar (Senegal, geogr. Latitude 15^oNorth, magn. latitude + 4.8^o, just outside the penumbra). The h'f ionograms have been inverted to trace fp(h,t) variations over both sites from 07 to 17 UT. these plots are completed by the TEC variations observed along the 8 GPS satelltite tracks over the Atlantic and African areas.The results approximate (3D, time)variations as follows : (I). At the mesoscale range from 5^o South to 25^o North latitudes, intense asymmetric cooling of the southern tropic zone around the local noon enhanced the normal southward cross-equator neutral wind; hence a strong southward plasma flow from the less eclipsed northern half of the intertropical ionospheric domain (from Dakar onwards to the 25^o North) to the southern half. The attenuated ionization depletion in the strongly eclipsed Southern crest area from 0^oto 10^o South. Also the GPS meridian segments of TEC records show counter-coupling between i) adiabatic cooling (Raghava Rao's Equatorial Temperature Anomaly), and ii) conjugate photoelectron heat deposition on the equatorial side of the southern F2 density crest. We thereby infer that in West Africa such unstable dynamics often distort crest evolution at post-noon hours, except around the magnetic equinoxes of May 21 and August 20. (II) Two gravity wave modes were identified after eclipse maximum phase on the F2 Korhogo ionogram peak

  10. Climatology of GNSS ionospheric scintillation at high latitudes

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  11. The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Deng, W.; Killeen, T. L.; Burns, A. G.; Roble, R. G.; Slavin, J. A.; Wharton, L. E.

    1993-01-01

    Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current

  12. Electrodynamics of ionospheric weather over low latitudes

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil Ali

    2016-12-01

    The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the

  13. Climatology of low latitude ionosphere under effect of varying solar flux during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Dashora, Nirvikar; Suresh, Sunanda

    2016-07-01

    The characteristics of quiet time equatorial and low latitude total electron content (TEC) over the Indian sector using GIM data (1998-2014) is obtained. For the first time the analysis is carried filtering out the solar flare and storm effects and time series of quiet time VTEC data from three locations namely dip equator and two low latitude conjugate locations in Indian sector are obtained. It is well known that a complex interplay among drivers of equatorial electrodynamics like Solar flux, dynamo electric field and meridional winds determine the daytime ionization and distribution in equatorial ionization anomaly zone. In this study, we have critically examined the role of varying solar flux and response of low latitude ionosphere with new and standardized definitions. The results are examined and interpreted in the context of large number of previous studies. The newly found features from this study are as follows. Marked difference in nature of equinoctial asymmetry is noted between solar cycle 23 and 24. Long absence of winter anomaly both during low and high solar activity (HSA) in LL (low latitude) regions is found. Climatology of the diurnal cycle is provided in four categories using new criteria for demarcation of solar activity levels. Highest correlation (~77%) between GIM ionospheric electron content (IEC) and PI (solar EUV proxy index) is noted over equator in contrast to previous studies. The minimum positive contribution of PI in variation of IEC requires minimum of 2 years of data and if more than 7-8 years of data is used, it saturates. RMS (root mean square) width of PI can be used to define the HSA. Strong QBO (quasi biennial oscillations) in IEC is noted in tune with the one in PI over both the LL location but QBO remains surprisingly subdued over equator. The semi-annual oscillations in GIM-IEC are found to be stronger at all locations during high solar activity and weaker between 2005 and 2011, whereas, the annual oscillations are found to

  14. Effect of high-latitude ionospheric convection on Sun-aligned polar caps

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.

    1994-01-01

    A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore

  15. Ionospheric mid-latitude response to solar wind discontinuities

    NASA Astrophysics Data System (ADS)

    Munteanu, Costel; Mosna, Zbysek; Kouba, Daniel; Echim, Marius

    2013-04-01

    We have compiled a database of 356 discontinuities detected by both the Advanced Composition Explorer ACE) and Cluster satellites in the solar wind between 2001-2012 and analyzed their ionospheric response. Each discontinuity of the data base is defined by a change of at least 5 nT in less than 5 min in one or more components of the interplanetary magnetic field (IMF). The discontinuities are observed in January-April every year, when Cluster enters the solar wind. The ionospheric effects of solar wind discontinuities are investigated by checking the variations of critical frequencies foF2, the heights of the F layer and the ionospheric plasma dynamics recorded using ground measurement with a time resolution of 15 minutes from mid-latitude digisondes located in Czech Republic. The time delay between solar wind input and the ionospheric response is analyzed using the characteristics and the shape of the ionograms. The geoeffectiveness of the solar wind discontinuities is expressed as correlation between key plasma parameters (e,g, the solar wind velocity, magnetic jump across the discontinuity) and the ionospheric variations. Solar cycle effects are also discussed.

  16. Equatorial and Low-Latitudes Ionospheric Reaction to Solar Flares

    NASA Astrophysics Data System (ADS)

    Nicoli Candido, C. M.; Becker-Guedes, F.; Paula, E. R.; Takahashi, H.

    2015-12-01

    Solar X-ray and extreme ultraviolet (EUV) photons are responsible for ionizing the terrestrial atmosphere and create the ionosphere. During solar flares, a fast increase in the electron density at different altitude regions takes place due to the abrupt enhance of the X-ray and EUV fluxes reaching Earth. With these changes in the ionosphere, radio communication and navigation can be drastically affected. The magnitudes of these Space Weather events can be related to the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth's atmosphere. Other aspects defining these changes in a particular region are the local time, the solar zenith angle, and the position of the flare in the solar disc for each event. In order to improve the understand of radio signal degradation and loss in the Brazilian sector due to solar abrupt electromagnetic emissions, total electron content (TEC) data obtained by a GPS network formed by tents of dual-frequency receivers spread all over Brazilian territory were analyzed. It was observed different ionospheric local changes during several X-ray events identified by GOES satellite regarding the 0.1-0.8 nm range, and some case studies were ponder for a more detailed analysis of these effects. Considering the results, we have made an estimation of the ionospheric disturbances range for a particular event with great chance to affect space based communications in the equatorial and low-latitude regions.

  17. Solar Flux Effect on the Reproducibility of Global/Local-Time Variations of Ion Density Structure at Low-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Su, Shin-Yi

    Longitudinal/seasonal (l/s) variations of ion density structures at the 600-km low-latitude ionosphere observed by ROCSAT-1 between two similar solar activity years of 2000 and 2002 are examined at four different local-time (LT) regions. The gross feature of l/s density structure is almost identical to each other at the four LT regions examined. A complete reproducibility of density structure can be assumed, including the shape of equatorial ionization anomaly (EIA), for identical solar flux input that also implicitly affect other atmospheric components such as the neutral O/N2 ratio and neutral wind variation. The fact that the solar variability effect is thought as the ultimate driver to shape the global ionospheric structure can be confirmed with the reproduction of ROCSAT observations with the simulation results of the TIEGCM model runs using the observed solar flux inputs for various seasons. However, the EIA crestto-valley ratio or no-valley signature in this background density structure can not be used to infer the post-sunset irregularity occurrence rates because the l/s variation of the magnetic declination effect that determines the post-sunset ionospheric conductivity for the ionospheric electrodynamics can not be readily obtained from this ionospheric background structure.

  18. Ionospheric studies using a low-latitude ionospheric model (LION-model) and ground-based ionosonde observations.

    NASA Astrophysics Data System (ADS)

    Pillat, V. G.; Bittencourt, J. A.; Fagundes, P. R.

    Ionospheric observations made with ionosondes of the type CADI at S a o Jos e dos Campos 23 2 o S 45 9 o W dip latitude 17 6 o S and at Palmas 10 2 S 48 2 W dip latitude 5 7 S Brazil under conditions of high and low solar activity are presented and compared with ionospheric results obtained from a realistic fully time-dependent Low-Latitude Ionosphere Model denominated LION model which simulates the dynamic behavior of the low-latitude ionosphere In the LION model the time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent coupled nonlinear system of continuity and momentum equations for the ions O O 2 NO N 2 and N taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation chemical and ionic production and loss reactions and plasma transport processes including the ionospheric effects of thermospheric neutral winds plasma diffusion and electromagnetic E x B plasma drift The Earth s magnetic field is represented by a tilted centered magnetic dipole This set of coupled nonlinear equations is solved along a given magnetic field line in a frame of reference moving vertically in the magnetic meridian plane with the electromagnetic plasma drift velocity The model results reproduce adequately the main characteristics and dynamic behavior of the low-latitude ionosphere under quiet

  19. Magnetic Field Measurement on the C/NOFS Satellite: Geomagnetic Storm Effects in the Low Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Le, Guan; Pfaff, Rob; Kepko, Larry; Rowland, Doug; Bromund, Ken; Freudenreich, Henry; Martin, Steve; Liebrecht, C.; Maus, S.

    2010-01-01

    The Vector Electric Field Investigation (VEFI) suite onboard the Communications/Navigation Outage Forecasting System (C/NOFS) spacecraft includes a sensitive fluxgate magnetometer to measure DC and ULF magnetic fields in the low latitude ionosphere. The instrument includes a DC vector measurement at 1 sample/sec with a range of +/- 45,000 nT whose primary objective is to provide direct measurements of both V x B and E x B that are more accurate than those obtained using a simple magnetic field model. These data can also be used for scientific research to provide information of large-scale ionospheric and magnetospheric current systems, which, when analyzed in conjunction with the C/NOFS DC electric field measurements, promise to advance our understanding of the electrodynamics of the low latitude ionosphere. In this study, we use the magnetic field data to study the temporal and local time variations of the ring currents during geomagnetic storms. We first compare the in situ measurements with the POMME (the POtsdam Magnetic Model of the Earth) model in order to provide an in-flight "calibration" of the data as well as compute magnetic field residuals essential for revealing large scale external current systems. We then compare the magnetic field residuals observed both during quiet times and during geomagnetic storms at the same geographic locations to deduce the magnetic field signatures of the ring current. As will be shown, the low inclination of the C/NOFS satellite provides a unique opportunity to study the evolution of the ring current as a function of local time, which is particularly insightful during periods of magnetic storms. This paper will present the initial results of this study.

  20. High-latitude E and F region ionospheric predictions

    NASA Technical Reports Server (NTRS)

    Hunsucker, R. D.; Allen, R.; Argo, P. E.; Babcock, R.; Bakshi, P.; Lund, D.; Matsushita, S.; Smith, G.; Shirochkov, A. V.; Wortham, G.

    1979-01-01

    The physical processes and morphology of the high latitude E and F layers are discussed. The existence and adequacy of models, and features to be included are examined, as well as reliability of ionospheric predictions.

  1. Alternative Coordinate Systems for High Latitude Ionospheric Plasma Studies.

    DTIC Science & Technology

    2014-09-26

    altitude nuclear tests were conducted at magnetic L-shells of ahout two or less, mid latitudes because of the location of CrOIls). The scope of current...AL-AIS 851 ALTERNATIVE COORDINATE SYSTEMS FOR HIGH LATITUDE IONOSPHERIC PLASMA STUDI.. U| MISSION RESEARCH CORP SANTA MARBARA CA D J MALOOF ET AL. IS...5 𔄁 r1 AD-A156 851 r DNA-TR-84-56 ALTERNATIVE COORDINATE SYSTEMS FOR HIGH LATITUDE IONOSPHERIC PLASMA STUDIES D.J. Maloof W.W. White Mission

  2. Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.

    1990-01-01

    The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.

  3. Monitoring and Forecasting Ionospheric Scintillation at High Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Jayachandran, P. T.; Chadwick, R.; Kelly, T.

    2013-12-01

    Ionospheric scintillation (rapid signal amplitude fading and phase fluctuation) poses a threat to reliable and safe operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation of GNSS signal severely degrades positional accuracy, causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, the scintillation is caused by ionospheric irregularities produced through coupling between solar wind plasma and the magnetosphere. Climatology of GPS scintillation at high latitudes in both hemispheres shows that phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. Solar wind disturbances, in particular the co-rotating interaction regions (CIR) on the leading edge of high-speed streams (HSS) and interplanetary coronal mass ejections (ICME), have been closely correlated with the occurrence of scintillation at high latitudes. These results demonstrated a technique of probabilistic forecast of high-latitude phase scintillation occurrence relative to arrival times of HSS and ICME. The Canadian High Arctic Ionospheric Network (CHAIN) has been monitoring GPS ionospheric scintillation and total electron content (TEC) since November 2007. One-minute amplitude and phase scintillation indices from L1 GPS signals and TEC from L1 and L2 GPS signals are computed from amplitude and phase data sampled at 50 Hz. Since 2012, significant expansion of CHAIN has begun with installation of new receivers, each capable of tracking up to 30 satellites including GLONASS and Galileo. The receivers log the raw phase and amplitude of the signal up to a 100-Hz rate for scintillation measurements. We briefly review observations of ionospheric scintillation and highlight new results from CHAIN, including the climatology of scintillation occurrence, collocation with aurora and HF radar backscatter, correlation with CIRs and ICMEs

  4. Latitudinal TEC gradients over polar ionosphere using high latitude GPS measurements

    NASA Astrophysics Data System (ADS)

    Shagimuratov, Irk; Cherniak, Iurii; Zakharenkova, Irina; Tepenitsyna, Nadezhda; Yakimova, Galina; Ephishov, I. I.

    The GPS observations of Greenland network were used to analyze the latitudinal variations of TEC at the high-latitudes ionosphere. This network provides unique opportunity to monitor TEC variability in polar ionosphere on a regular base. GPS stations are arranged along the latitude over the range 60-83°N (65°-87° Corrected Geomagnetic Latitude) near of 30°-40° longitudes. More than 20 GPS stations are located closely with one another along latitude. The distance between stations is about 1°-2°.Such spatial resolution provides the possibility to analyze the detailed structure of latitudinal TEC profiles. The standard procedure of processing GPS observations was used for TEC estimation. On this base it was obtained the diurnal TEC variations over all Greenland stations. The TEC data is used to form latitudinal profiles (TEC section) covered subauroral, auroral and polar ionosphere. In the report the observations of TEC for quiet and disturbed ionosphere during several geomagnetic storms occurred in September 2011 are presented. During quiet conditions in the night-time TEC profiles demonstrated invariable values about of 4-6 TECU in latitudinal region of 60°-75°N; then it presented THE increase towards the higher latitude and reached the value of 10 TECU near 80°N. The daytime profiles revealed TEC decrease toward high latitude in keeping with 0.8 TECU/degree. During storm the structure of latitudinal TEC profiles was essentially changed with agreement to the development of geomagnetic storm. The positive effect was observed at subauroral and auroral latitudes, negative effect was prevailed at the polar region. During the night time the ionospheric trough can be observed. In the report features of the behavior of latitudinal profiles at high-latitude ionosphere for September 2011 events were discussed.

  5. Statistical Characterization of Stormtime Ionospheric Redistribution At Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Erickson, P. J.; Foster, J. C.; Miskin, M. Z.; Beroz, F.; Rideout, W.

    2009-12-01

    During major geomagnetic disturbances, dramatic redistribution of ionospheric plasma can occur in the mid-latitude plasmasphere boundary layer, driven by a complex set of interlocked dynamics involving photoionization, magnetospheric influence, ionospheric feedback mechanisms, and the background magnetic field direction. Large amounts of ionospheric material are seen to stream from the dusk sector sunward to the polar cap cusp region, as mesoscale plumes of storm enhanced density (SED) move under the influence of the sub-auroral polarization stream (SAPS) electric field in regions magnetically linked to the region 2 currents associated with the asymmetric ring current. Studies over the last decade have shown that these several degree wide SAPS flow channels, with sunward fluxes delivering over 1E14 ions/m^2/sec to the noontime cusp, are the signatures of processes which can deplete an entire L shell of plasmaspheric material in one hours' time for particularly intense storms. Ground based ionospheric radar measurements of these features lend considerable insight into magnetosphere-ionosphere coupling processes and dynamics. We discuss a statistical study of SAPS/SED region sunward ionospheric flux in the dusk magnetic local time sector using a database of over 1000 Millstone Hill ionospheric radar scans during Kp >= 3 disturbances from 1979-2001. We highlight several persistent features of ionospheric F region velocity and SAPS ion flux magnitude. In particular, sunward F region ion flux is relatively insensitive to magnetic local time and the passage of the dusk solar terminator. Potential explanations focus on the interplay between poleward perpendicular electric field and ionospheric height-integrated Pedersen conductance in the E and F regions as the thermosphere and ionosphere change state from day to night.

  6. Ionosphere-Thermosphere Coupling in Jupiter's Low Latitudes

    NASA Astrophysics Data System (ADS)

    Stallard, T.; Melin, H.; Johnson, R.; O'Donoghue, J.; Moore, L.; Miller, S.; Tao, C.; Achilleos, N. A.; Smith, C.; Ray, L. C.; Yates, J. N.

    2015-12-01

    One of the leading problems in our understanding of Jupiter's atmosphere, known colloquially as the 'energy crisis', is that the upper atmosphere has global temperatures far in excess of that predicted by solar heating. Unlike the Earth, solar heating has only a small effect on the thermosphere, varying little in temperature with local time, and with equatorial neutrals co-rotating with the planet due to meridional advection. Within the auroral region, ionosphere-thermosphere coupling produces strong flows and results in huge Joule Heating from auroral currents. In this region, the temperature excess can be explained, but Jupiter's fast rotation means that Coriolis forces prevent energy in the poles from transferring equatorward, so there remains no explanation of why low latitudes are overheated by a factor of 3-5 over that predicted by solar heating alone.Despite this anomaly, although the past twenty years has seen a wealth of new data and results in Jupiter's auroral region, studies of the equatorial region have been somewhat limited. This lack of investigation comes partly from the apparent uniform nature of the equatorial region, and partly from the difficulty in observing this region. It is only in the past three years that observers begun to re-examine this region, revealing evidence of complex interactions between the thermosphere and ionosphere, including what appears to be thermospheric weather patterns at a fixed planetary longitudes, stable over two decades; perhaps caused by continuous flows from the auroral region. Here, we introduce our recent research, in order to compare and contrast what has been observed at Jupiter with the more well understood interactions between Earth's ionosphere and thermosphere. We hope that this will open a discussion between the communities that will improve our understanding of the underlying physical processes, as they occur at both planets.

  7. Attenuation of lightning-produced sferics in the Earth-ionosphere waveguide and low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Burkholder, Brian S.; Hutchins, Michael L.; McCarthy, Michael P.; Pfaff, Robert F.; Holzworth, Robert H.

    2013-06-01

    We compare radio atmospherics (sferics) detected by the World Wide Lightning Location Network (WWLLN) to very low frequency (VLF) whistler waves observed in the low-latitude ionosphere by the Vector Electric Field Instrument of the Communications/Navigation Outage Forecasting System (C/NOFS) satellite. We also model the propagation of these sferics through the Earth-ionosphere waveguide to the subsatellite point using the Long-Wavelength Propagation Capability software and compare this result to the same C/NOFS data set. This unprecedentedly expansive data set allows comparison to theory and prior observation of VLF radio wave propagation in the Earth-ionosphere waveguide and low-latitude ionosphere. We show that WWLLN and C/NOFS observe the well-known effect of variable attenuation with direction within the Earth-ionosphere waveguide. Propagation within the ionosphere is also examined, and a lack of attenuation above 400 km is observed. Finally, in comparison to recent works using Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) data by Fiser et al. and Chum et al., we find that C/NOFS successfully detects whistlers with comparable amplitudes at much greater distances, compared to those reported for DEMETER.

  8. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  9. The Low-latitude Ionospheric Sensor Network: The Initial Campaigns

    NASA Astrophysics Data System (ADS)

    Doherty, P. H.; Valladares, C. E.; Carrano, C.

    2009-05-01

    The Low-latitude Ionospheric Sensor Network (LISN) is a distributed observatory designed to provide regional coverage in South America and high-temporal resolution measurements to diagnose the initiation and development of plasma structures and the state and dynamics of the low latitude ionosphere. It combines inexpensive GPS receivers and state-of-the-art radars such as the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes and magnetometers. This paper describes the characteristics of the LISN distributed observatory and discusses the results of the first two campaigns. LISN will be comprised of nearly 70 GPS receivers with the capability to measure Total Electron Content (TEC), amplitude and phase scintillation and Traveling Ionospheric Disturbances (TIDs). LISN will also include 5 ionosondes able to measure nighttime E-region densities and 5 collocated magnetometers that will be placed along the same magnetic meridian. The first campaign was dedicated to detect medium-scale (~100 km) TIDs and was conducted at Huancayo, Peru in July 2008 using 3 GPS receivers spaced by 4-5 km arranged in a triangular configuration. TEC data corresponding to 3 consecutive days indicate that the TIDs phase velocity was close to 120 m/s and directed northward during the early evening hours. The second campaign was conducted in February 2009 using 3 GPS receivers installed near Ancon and coordinated with the VIPIR ionosonde running in an interferometer mode. We will discuss the implications of these new results within the frame of the current theories of plasma bubble onset.

  10. Mid-Latitude Dayside Ionospheric Response to Storm-Time Electric Fields

    NASA Astrophysics Data System (ADS)

    David, M.; Sojka, J. J.; Schunk, R. W.; Liemohn, M. W.

    2010-12-01

    One way in which a geomagnetic storm may impact the ionosphere is through an expansion of the magnetospheric electric field to mid-latitudes. This mechanism was explored in detail by Heelis et al [2009], where it was shown that an electric field with a magnitude of just 1 mV/m at mid-latitudes is sufficient to produce a large increase in TEC on the dayside. This effect is brought about by the lifting of the ionosphere as dayside plasma is transported poleward under the influence of the eastward component of the expanded electric field; the lifting occurs because of the inclination of the magnetic field lines. At the time the above-mentioned article was written, the authors lacked a physics-based modeling capability for the behavior of the storm-time electric field at mid-latitudes, so a simple modified form of the Volland 2-cell model was used. In the present work we use the University of Michigan’s Hot Electron and Ion Drift Integrator (HEIDI) electric field model, along with the Utah State University Time Dependent Ionospheric Model (TDIM). The HEIDI model provides electric potential distributions spanning the northern mid-latitudes with a cadence of 30 minutes; these are used to drive the TDIM in carrying out mid-latitude simulations. The results are compared with model runs for the quiet-time ionosphere, as well as observations from ionosondes and ground-based GPS TEC receivers. ----------------- Heelis, R. A., J. J. Sojka, M. David, and R. W. Schunk (2009), Storm time density enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res., 114, A03315, doi:10.1029/2008JA013690.

  11. Radar-satellite studies of the high-latitude ionosphere. Annual progress report no. 2, Aug 90-Aug 91

    SciTech Connect

    Foster, J.C.

    1991-10-09

    During the second year of this research program, work has continued on multi-instrument experiments investigating the effects of the large-scale convection electric field in the auroral and mid-latitude ionosphere. A radar-satellite study of electric field latitude structure during the February 8-9, 1986 great magnetic storm was completed and has provided an excellent example of the application of multi-instrument techniques to the investigation of magnetosphere-ionosphere coupling problems. Studies of the high-latitude boundary between auroral and polar cap latitudes have emphasized convection and ionospheric plasma structure near the dayside cusp and the transport of ionospheric plasma into the polar cap during storms. Mesoscale resolution electric field structure was addressed in a multi-instrument study involving the Canadian BARS radar facility and the Millstone Hill incoherent scatter radar.

  12. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Wang, Wenbin; Lei, Jiuhou; Burns, Alan; Zhang, Yongliang; Wan, Weixing; Liu, Libo; Hu, Lianhuan; Zhao, Biqiang; Schreiner, William S.

    2016-09-01

    In this paper, an ionospheric electron density reanalysis algorithm was used to generate global optimized electron density during the 17-18 March 2013 geomagnetic storm by assimilating 10 low Earth orbit satellites based and 450 ground global navigation satellite system receiver-based total electron content into a background ionospheric model. The reanalyzed electron density could identify the large-scale ionospheric features quite well during storm time, including the storm-enhanced density, the positive ionospheric storm effect during the initial and main phases, and the negative ionospheric storm effect during the recovery phase. The simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model can reproduce similar large-scale ionospheric disturbances as seen in the reanalysis results. Both the reanalysis and simulations show long-lasting (>17 h) daytime negative storm effect over the Asia sector as well as hemispheric asymmetry during the recovery phase. Detailed analysis of the Global Ultraviolet Imager-derived O/N2 ratio and model simulations indicate that the polar ward meridional wind disturbance, the downward E × B drift disturbance and O/N2 depletion might be responsible for the negative storm effect. The hemispheric asymmetry is mainly caused by the geomagnetic field line configuration, which could cause hemispheric asymmetry in the O/N2 depletion.

  13. Investigation of the Accuracy of Ionospheric Models at Mid-Latitudes: Examining Ionospheric Metrics

    NASA Astrophysics Data System (ADS)

    Eccles, V.; Sojka, J. J.; Gonzalez, S.; Fuller-Rowell, T. J.; Howsden, M.

    2004-12-01

    The electron density specification of the ionosphere is the key parameter supporting many operational products. To assess the accuracy of tools based on space weather models of the ionosphere one must know the accuracy of the underlining models. We are developing a software/database package to assess the accuracy of ionospheric models. The package will be placed at the Community Coordinated Modeling Center (CCMC). Initial focus is on the mid-latitude ionosphere as observed by the Arecibo Incoherent Scatter Radar (ISR). This ISR database has extensive ionospheric coverage over variability in solar cycle, season, local time, and geomagnetic activity. The assessments of models need to be based on careful constructed metric definitions to compare the model specifications with the ISR "ground truth." Our goals for the assessment tool are (1) to provide reliable, metric assessment of models for users represented by agencies of the Nation Space Weather Program and, (2) to provide the scientific community with an assessment of conditions when models are adequate and inadequate. The second implementation plan of the NSWP (2000) has established the priority of metrics and has specified these metrics. We begin with the NSWP ionospheric metrics as a reasonable starting place, but examine other strategies to assess ionosphere weather specifications through several new metric definitions for the F region. We present our initial studies on the weaknesses and benefits of several different metric definitions for F region profile accuracy. Three models will be use in the metric assessment (1) the physics-based Ionospheric Forecast Model (IFM), (2) the physics-based and Coupled Thermospheric-Ionospheric-Plasmasphere-electrodynamics Model (CTIPe), and (3) the empirical International Reference Model (IRI). Central to creating reliable metric results is the need to quantify the quality and accuracy of the "ground truth" ISR database. Metric issues associated with ISR operational modes

  14. Ionospheric vertical drift response at a mid-latitude station

    NASA Astrophysics Data System (ADS)

    Kouba, Daniel; Koucká Knížová, Petra

    2016-07-01

    Vertical plasma drift data measured at a mid-latitude ionospheric station Pruhonice (50.0 ° N, 14.6 ° E) were collected and analysed for the year 2006, a year of low solar and geomagnetic activity. Hence these data provide insight into the drift behaviour during quiet conditions. The following typical diurnal trend is evident: a significant decay to negative values (downward peak) at dawn; generally less pronounced downward peak at dusk hours. Magnitude of the downward drift varies during the year. Typically it reaches values about 20 ms-1 at dawn hours and 10 ms-1 at dusk hours. Maximum dawn magnitude of about 40 ms-1 has been detected in August. During daytime the vertical drifts increases from the initial small downward drifts to zero drift around noon and to small upward drifts in the afternoon. Night-time drift values display large variability around a near zero vertical drift average. There is a significant trend to larger downward drift values near dawn and a less pronounced decrease of the afternoon upward vertical drifts near sunset. Two regular downward peaks of the drift associated with the dawn and dusk are general characteristics of the analysed data throughout the year 2006. Their seasonal course corresponds to the seasonal course of the sunrise and sunset. The duration of prevailing negative drift velocities forming these peaks and thus the influence of the dawn/dusk on the drift velocity is mostly 1.5-3 h. The dawn effect on vertical drift tends to be larger than the effect of the dusk. The observed magnitude of the sunrise and sunset peaks show significant annual course. The highest variability of the magnitude is seen during winter. High variability is detected till March equinox and again after September equinox. Around solstice, both peaks reaches lowest values. After that, the magnitudes of the drift velocity increase smoothly till maxima in summer (August). The vertical drift velocity course is smooth between June solstice and September

  15. Mid-latitude VLF emissions observed in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Ondoh, T.; Murakami, T.

    1975-01-01

    Narrow-band VLF emissions observed on different days by Alouette-2 are described. It is found that narrow-band VLF hiss (3.5-7.0 kHz) occurs at midlatitudes (at 54 to 64 deg) in the topside ionosphere during both the geomagnetically disturbed and quiet periods, although the hiss region moves towards the auroral zone during the disturbed period. It is likely that the midlatitude hiss at around 5 kHz is the origin of the narrow-band hiss (5 plus or minus 1 kHz) often observed at ground stations at low latitudes, since no VLF emissions above 2 kHz appear in the auroral zone. The midlatitude VLF hiss observed in the topside ionosphere may be generated by the transverse (electron cyclotron) resonance instability in the magnetosphere.

  16. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  17. LION: A dynamic computer model for the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Bittencourt, J. A.; Pillat, V. G.; Fagundes, P. R.; Sahai, Y.; Pimenta, A. A.

    2007-11-01

    A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric) model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC) and generates color maps illustrating the typical behavior of the

  18. Study of the low latitude ionospheric turbulence observed by DEMETER

    NASA Astrophysics Data System (ADS)

    Li, F.; Lefeuvre, F.; Parrot, M.

    Following previous works from Molchanov et al 2002a 2002b 2004a 2004b and Hobara et al 2005 data bases dedicated to the systematic analysis of the power and spectral indices of the electric field have been elaborated Two data bases are considered one for the survey mode and the other for the burst mode For the survey mode estimations of the turbulence parameters are performed from the 8 first Fourier components of the averaged power spectra 0-150 Hz frequency band A single slope power law model f - alpha is assumed A quality factor allows to test that hypothesis For the burst mode the power spectra are derived from the waveforms One and two slope models are systematically tested Results are presented and the possibility to use these data bases for correlation with seismic activity is discussed Y Hobara F Lefeuvre M Parrot and O A Molchanov Low-latitude ionospheric turbulence observed by Aureol-3 satellite Annales Geophysicae 23 1259--1270 2005 Molchanov O A Hayakawa M Afonin V V Akentieva O A and Mareev E A Possible influence of seismicity by gravity waves on ionospheric equatorial anomaly from data of IK-24 satellite 1 Search for idea of seismo-ionosphere coupling Seismo Electromagnetics Lithosphere-Atmosphere-Ionosphere Coupling edited by Hayakawa M and Molchanov O A TERRAPUB Tokyo 275--285 2002a Molchanov O A Hayakawa M Afonin V V Akentieva O A Mareev E A and Trakhtengerts V Yu Possible influence of seismicity by gravity waves on ionospheric

  19. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  20. On plasma instabilities in the high-latitude ionospheric E region

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    The use of the Farley-Buneman instability in the high-latitude E region of the earth's ionosphere as a diagnostic tool for ionospheric and solar wind electric fields, and the effect of Farley-Buneman waves on cosmic radio noise events observed on riometers, are discussed. Data are analyzed and presented in support of the hypothesis, suggested by Olesen (1972), that the Slant E condition in polar cap ionograms is a manifestation of the Farley-Buneman instability in the E region. Detailed descriptions are given of the experimental apparatus employed in these investigations.

  1. The Low-latitude Ionospheric Sensor Network (LISN): Initial Measurements

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.

    2008-12-01

    This paper describes the characteristics and illustrates the early measurements of the first distributed observatory that is being installed in the South American region to study the low-latitude ionosphere and upper atmosphere. The LISN distributed observatory will be comprised of nearly 70 GPS receivers with the capability to measure Total Electron Content (TEC), amplitude and phase scintillation and Traveling Ionospheric Disturbances (TIDs). The network will include 5 ionosondes able to measure nighttime E-region densities and 5 collocated magnetometers that will be placed along the same magnetic meridian. This network of GPS receivers and ionospheric sensors span from north to south in the South American continent west of the 55o West meridian. In addition to introducing the present capabilities of the LISN network, this paper will present the results of the first LISN campaign dedicated to detect medium-scale (~100 km) TIDs that was conducted at Huancayo using 3 closely-spaced GPS receivers. This paper also presents initial calculations of the vertical drift velocity using 3 magnetometers, two of them placed off the equator in opposite hemispheres and a detailed description of the measurements of the first LISN ionosonde that is presently operating near the magnetic equator.

  2. Postmidnight ionospheric troughs in summer at high latitudes

    NASA Astrophysics Data System (ADS)

    Voiculescu, M.; Nygrén, T.; Aikio, A. T.; Vanhamäki, H.; Pierrard, V.

    2016-12-01

    In this article we identify possible mechanisms for the formation of postmidnight ionospheric troughs during summer, in sunlit plasma. Four events were identified in measurements of European Incoherent Scatter and ESR radars during CP3 experiments, when the ionosphere was scanned in a meridional plan. The spatial and temporal variation of plasma density, ion, and electron temperatures were analyzed for each of the four events. Super Dual Auroral Radar Network plasma velocity measurements were added, when these were available. For all high-latitude troughs the ion temperatures are high at density minima (within the trough), at places where the convection plasma velocity is eastward and high. There is no significant change in electron temperature inside the trough, regardless of its temporal evolution. We find that troughs in sunlit plasma form in two steps: the trough starts to form when energetic electron precipitation leads to faster recombination in the F region, and it deepens when entering a region with high eastward flow, producing frictional heating and further depleting the plasma. The high-latitude plasma convection plays an important role in formation and evolution of troughs in the postmidnight sector in sunlit plasma. During one event a second trough is identified at midlatitudes, with different characteristics, which is most likely produced by a rapid subauroral ion drift in the premidnight sector.

  3. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

    DTIC Science & Technology

    2014-09-23

    conduct simulations with a high- latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere (M-I) coupling processes...titlelScientific Studies of the High- Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model...totalminoritypostdocs] [bestaccomplishment] With only ground magnetometer measurements, our high- latitude data assimilation model can track the

  4. The character of drift spreading of artificial plasma clouds in the middle-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Blaunstein, N.

    1996-02-01

    Nonlinear equations describing the evolution of plasma clouds with real initial sizes, along and across the geomagnetic field B, which drift in the ionosphere in the presence of an ambient electric field and a neutral wind have been solved and analysed. An ionospheric model close to the real conditions of the middle-latitude ionosphere is introduced, taking into account the altitude dependence of the transport coefficients and background ionospheric plasma. The striation of the initial plasma cloud into a cluster of plasmoids, stretched along the field B, is obtained. The process of dispersive splitting of the initial plasma cloud can be understood in terms of gradient drift instability (GDI) as a most probable striation mechanism. The dependence of the characteristic time of dispersive splitting on the value of the ambient electric field, the initial plasma disturbance in the cloud and its initial sizes was investigated. The stretching criterion, necessary for the plasma cloud's striation is obtained. The possibility of the drift stabilization effect arising from azimuthal drift velocity shear, obtained by Drake et al. [1988], is examined for various parameters of the barium cloud and the background ionospheric conditions. A comparison with experimental data on the evolution of barium clouds in rocket experiments at the height of the lower ionosphere is made.

  5. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  6. Characteristics of the low latitude ionospheric storm in the East-Asian region

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wan, W.; Liu, L.

    2009-04-01

    First, an classification of ionospheric storm effects in the sub-equatorial ionization anomaly(SEIA) region at 120°E has been performed through the analysis of ionogram data at two ionosonde stations, Wuhan (114.4°, 30.5°) and Chung-Li (121.2°, 25°), and total electron content (TEC) derived from GPS network distributed around 120°E during the year 1999-2004. Three types of negative phase are identified. One is shown to be varied in phase of F-layer height variation and the other two out of phase. Two types of positive phase are also found. The mechanisms to cause these types of ionospheric effects has been considered to be related with storm meridional thermospheric wind including traveling atmosphere disturbance(TAD), electric fields and composition changes. Then based on the 50 years of ionosonde and 8 years of global ionospheric maps (GIMs) data, features of low latitude ionospheric storm were obtained. Results shows that positive phases during 18:00-2400 LT with its center near the 21:00 LT and 24:00-08:00 LT with its center near the sunrise time have predomination in controlling the storm behavior at low latitudes. It is shown that the distortion of EIA under the effects of the above factors have significant influence on the behavior of SEIA ionogram parameters.

  7. Global response of the low-latitude to midlatitude ionosphere due to the Bastille Day flare

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Warren, H. P.; Joyce, G.; Pi, X.; Iijima, B.; Coker, C.

    2005-08-01

    The first global simulation study and comparison to data of the ionospheric effects associated with the enhanced EUV irradiance of the Bastille Day flare are presented. This is done by incorporating a time-dependent EUV spectrum, based on data and hydrodynamic modeling, into the NRL ionosphere model SAMI3. The simulation results indicate that the total electron content (TEC) increases to over 7 TEC units in the daytime, low-latitude ionosphere. In addition, it is predicted that the maximum density in the F-layer (NmF2) increases by $\\lesssim$20% and that the height of the maximum electron density (HmF2) decreases by $\\lesssim$20%. These results are explained by the increased ionization at altitudes <400 km which increases TEC and NmF2 while decreasing HmF2. The results are in reasonably good agreement with data obtained from GPS satellites and the TOPEX satellite.

  8. Optimal interpolation analysis of high-latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction

    NASA Astrophysics Data System (ADS)

    McGranaghan, Ryan; Knipp, Delores J.; Matsuo, Tomoko; Cousins, Ellen

    2016-05-01

    We have developed a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions from Defense Meteorological Satellite Program particle data. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (modeled with empirical orthogonal functions) to infer complete distributions of the high-latitude ionospheric conductances. We demonstrate this technique for the 26 November through 2 December 2011 period and analyze a moderate geomagnetic storm event on 30 November 2011. Quantitatively and qualitatively, this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity. We provide initial evidence that auroral images from the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imager instrument can be used to further improve the OI conductance maps. Our OI conductance patterns allow assimilative mapping of ionospheric electrodynamics reconstructions driven separately by radar and satellite magnetometer observations to be in closer agreement than when other, commonly used, conductance models are applied. This work (1) supports better use of the diverse observations available for high-latitude ionospheric electrodynamics specification and (2) supports the Cousins et al. (2015b) assertion that more accurate models of the ionospheric conductance are needed to robustly assimilate ground- and space-based observations of ionospheric electrodynamics. We find that the OI conductance distributions better capture the dynamics and locations of discrete electron precipitation that modulate the coupling of the magnetosphere-ionosphere-thermosphere system.

  9. Solar activity dependence of low-and mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Wan, Weixing

    Solar activity dependence of low-and mid-latitude ionosphere is investigated using ionosonde and the ROCSAT-1 satellite (600 km) observations. The pattern in the solar activity varia-tion of the electron density shows significant local time, seasonal, latitudinal, and altitudinal dependences. Noontime NmF2 saturates with F107 in all seasons in low-latitude regions, while it saturates with F107 in equinoxes and local summer and linearly increases with F107 in local winter in mid-latitude regions. Nighttime NmF2 nearly increases with F107 linearly in equinox seasons and saturates with F107 in local summer, what is peculiar is that there is an amplifica-tion trend of nighttime NmF2 with F107 in local winter. We discussed the possible mechanisms which affect the solar activity variation trend of NmF2 and argued that the changes of neutral atmosphere and ionospheric dynamics are important for the solar activity variation trend of NmF2. Solar activity variations of the plasma density at 600 km present three kinds of patterns (linearity, amplification, and saturation), the pattern depends on local time, season, and lati-tude. That is different from the case at higher altitudes, e.g., 800 km, where the amplification trend prevails. In particular, saturation effect is found in the dip equator region at equinox sunset. Latitudinal distribution of the plasma density at 600 km also depends on local time, season, and solar activity level. Around sunset, a profound double-peak structure is found in the latitudinal distribution of the plasma density in solar maximum equinox and December solstice months. Solar activity dependence of the low-latitude topside ionosphere at 600 km is strongly related to the low-latitude dynamics processes.

  10. A mathematical model of the middle and high latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1988-01-01

    A time-dependent three-dimensional model of the middle and high latitude ionosphere is described. The density distributions of six ion species NO(+), O(2+), N(2+), O(+), N(+), He(+), and the electron and ion temperatures are obtained from a numerical solution of the appropriate continuity, momentum, and energy equations. The equations are solved as a function of height for an inclined magnetic field at E and F region altitudes. The three-dimensional nature of the model is obtained by following flux tubes of plasma as they convect or corotate through a moving neutral atmosphere. The model takes account of field-aligned diffusion, cross-field electrodynamic drifts, thermospheric winds, polar wind escape, energy-dependent chemical reactions, neutral composition changes, ion production due to solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow and local heating and cooling processes. The model also takes account of the offset between the geomagnetic and geographic poles.

  11. Large Scale High-Latitude Ionospheric Electrodynamic Fields and Currents

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2017-03-01

    This paper provides an overview as well as the application of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. AMIE synthesizes observations from various ground-based and space-born instruments to derive global patterns of ionospheric conductance, electric fields, ionospheric equivalent current, horizontal currents, field-aligned currents, and other related electrodynamic fields simultaneously. Examples are presented to illustrate the effects of the different data inputs on the AMIE outputs. The AMIE patterns derived from ground magnetometer data are generally similar to those derived from satellite magnetometer data. But ground magnetometer data yield a cross-polar potential drop that is about 15-45 % smaller than that derived from satellite magnetometer data. Ground magnetometers also grossly underestimate the magnetic perturbations in space when compared with the in situ satellite magnetometer data. However, when satellite magnetometer data are employed, AMIE is able to replicate the observed magnetic perturbations along the satellite tracks with a mean root-mean-square (RMS) error of 17-21 %. In addition to derive snapshots of ionospheric electrodynamic fields, the utility of AMIE can be easily expanded to obtain the average distributions of these fields along with their associated variability. Such information should be valuable to the analysis and interpretation of the Swarm observations.

  12. Plasma dynamics in Saturn's middle-latitude ionosphere and implications for magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Watanabe, Shigeto

    2016-08-01

    A multifluid model is used to investigate how Saturn's magnetosphere affects ionosphere. The model includes a magnetospheric plasma temperature of 2 eV as a boundary condition. The main results are: (1) H+ ions are accelerated along magnetic field lines by ambipolar electric fields and centrifugal force, and have an upward velocity of about 10 km/s at 8000 km; (2) the ionospheric plasma temperature is 10,000 K at 5000 km, and is significantly affected by magnetospheric heat flow at high altitudes; (3) modeled electron densities agree with densities from occultation observations if the maximum neutral temperature at a latitude of 54˚ is about 900 K or if electrons are heated near an altitude of 2500 km; (4) electron heating rates from photoelectrons (≈100 K/s) can also give agreement with observed electron densities when the maximum neutral temperature is lower than 700 K (note that Cassini observations give 520 K); and (5) the ion temperature is high at altitudes above 4000 km and is almost the same as the electron temperature. The ionospheric height-integrated Pedersen conductivity, which affects the magnetospheric plasma velocity, varies with local time with values between 0.4 and 10 S. We suggest that the sub-corotating ion velocity in the inner magnetosphere depends on the local time, because the conductivity generated by dust-plasma interactions in the inner magnetosphere is almost comparable to the ionospheric conductivity. This indicates that magnetosphere-ionosphere coupling is highly important in the Saturn system.

  13. High-Latitude Ionospheric Structuring at Kilometer Scales

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Datta-Barua, S.; Su, Y.; Deshpande, K.; Hampton, D.

    2014-12-01

    Ionospheric observations in the polar and auroral zones have been made regularly with radar chains and optical imaging at larger spatio-temporal cadence. However, the observation of kilometer scale variations at sub-second cadence has not been practically realizable until recently. Quantifying the irregularities at these sizes and scales is necessary for an understanding of the dynamics leading to fine scale phenomena in the high latitude environment. We present measurements of kilometer-scale plasma variations made at the northern auroral zone using an array of specialized Global Positioning System (GPS) receivers. These 6 CASES receivers (plus 1 from ASTRA, LLC) are sited at the Poker Flat Research Range, Alaska, and have been collecting data since late 2013. The array monitors for ionospheric scintillations, fluctuations in phase and amplitude of the GPS L-band signals received due to ionospheric variations. The array spans 2 km east-west and about 1 km north-south, with a variety of intermediate baseline lengths down to about 200 m. In addition to measuring amplitude and phase scintillation with the S4 and sigma_phi indices at 100-s cadence, these receivers also record 100 Hz raw power and phase measurements from GPS baseband signal processing. These low-rate data are publicly available for download through a web portal at http://apollo.tbc.iit.edu/~spaceweather/ with high rate available upon request. A detailed case study is presented from the December 8, 2013, 0300-0400 UT time period. During this period several interesting scintillation periods were observed. We use array cross-correlation processing methods to first estimate direct ground parameters of the array including a) estimate the 2D drift velocity on the ground; b) estimate a de-correlation (or turbulent) speed; and c) parameters of correlation elliptical coordinates (axial ratio and tilt angle). We then use these results and cross-correlation measurements to derive the ground 2D spatial spectrum of

  14. Structure of High Latitude Currents in Magnetosphere-Ionosphere Models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.

    2017-03-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  15. Ionospheric signatures of cusp latitude Pc 3 pulsations

    SciTech Connect

    Engebretson, M.J.; Anderson, B.J. ); Cahill, L.J. Jr. ); Arnoldy, R.L. ); Rosenberg, T.J. ); Carpenter, D.L. ); Gail, W.B. ); Eather, R.H. )

    1990-03-01

    The authors have compared search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica, during selected days in March and April 1986. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low interplanetary magnetic field (IMF) cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the daysie cusp/cleft region. Pulsations in auroral light a 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. When Pc 3 pulsations are present, they exhibit nearly identical frequencies, proportional to the magnitude of the IMF, in magnetometer, photometer, and ELF-VLF receiver signals at South Pole Station and in magnetometer signals at McMurdo. Singals from the 30-MHz riometer at South Pole are modulated in concert with the magnetic and optical variations during periods of broadband pulsation activity, but no riometer variations are noted during periods of narrow-band activity. Because riometers are sensitive to electrons of auroral energies (several keV and above), while the 427.8-nm photometer is sensitive to precipitation with much lower energies, they interpret these observatons as showing that precipitating magnetosheathlike electrons (with energies {le} 1 keV) at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. They suggest that these particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  16. Vertical coupling between troposphere and lower ionosphere by electric currents and fields at equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Tonev, P. T.; Velinov, P. I. Y.

    2016-04-01

    Thunderstorms play significant role in the upward electrical coupling between the troposphere and lower ionosphere by quasi-static (QS) electric fields generated by quiet conditions (by slow variations of electric charges), as well as during lightning discharges when they can be strong enough to produce in the nighttime lower ionosphere sprites. Changes are caused in lower ionosphere by the QS electric fields before a sprite-producing lightning discharge which can play role in formation of the stronger sprite-driving transient QS electric fields due to lightning. These changes include electron heating, modifications of conductivity and electron density, etc. We demonstrate that such changes depend on the geomagnetic latitude determining the magnetic field lines inclination, and thus, the anisotropic conductivity. Our previous results show that the QS electric fields in the lower ionosphere above equatorial thunderstorms are much bigger and have larger horizontal extension than those generated at high and middle altitudes by otherwise same conditions. Now we estimate by modeling the electric currents and fields generated in lower ionosphere above equatorial thunderstorms of different horizontal dimensions during quiet periods and of their self-consistent effects to conductivity whose modifications can play role in formation of post-lightning sprite-producing electric fields. Specific electric currents configurations and distributions of related electric fields are estimated first by ambient conductivity. Then, these are evaluated self-consistently with conductivity modification. The electric currents are re-oriented above ~85 km and flow in a narrow horizontal layer where they dense. Respectively, the electric fields and their effect on conductivity have much larger horizontal scale than at middle latitudes (few hundred of kilometers). Horizontally large sources, such as mesoscale convective structures, cause enhancements of electric fields and their effects. These

  17. The ionospheric storms in the American sector and their longitudinal dependence at the northern middle latitudes

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Xu, Liang; Xiong, Chao; Xu, Jisheng

    2017-01-01

    On the basis of the total electron content (TEC) observations from Madrigal database, we have made a statistical analysis of the ionospheric response during 217 geomagnetic storms from the year 2001 to 2015, including observations at 6 different latitude zones along one meridian in the American sector and 4 different longitudes at the middle latitude zone. Our results show that the ionospheric storm has prominent latitudinal dependence, with negative storm prevailing at high latitudes and positive storm at lower latitudes. The maximum ratio of positive to negative storms is observed at around 30°N magnetic latitude. The ionospheric response depends also on the phases of the storm. The occurrence of positive storm decreases during recovery phase when compared to that during main phase, while the negative storm presents opposite pattern. However, the occurrence of positive storm increases at equatorial and low latitudes during recovery phase. Additionally, during main phase, the occurrence of negative storm is higher at equatorial and low latitudes than that at middle latitudes. The local time dependences of the ionospheric storm onsets are quite different for different latitudes. The negative storm mainly occurs from post-middle night to morning hours and the positive storm mainly occurs during daytime at middle latitudes; while both the positive and negative storms mainly occur during nighttime at equatorial latitude. For all latitudes, the typical time delay between the main phase onset and the onset time of ionospheric negative storm is longer than 10 h, while it is shorter than 10 h for positive storm (expect at low and equatorial latitudes). We further check the longitudinal dependence of the ionospheric storm at middle latitude, and find that the occurrence of positive storm is higher in American and Asian sectors than that in European sector, and the non-significant storm is mostly observed in European sector. The 'forbidden time interval' of negative storm

  18. Effects of the 16 February 1980 solar eclipse on the composition of the low-latitude ionosphere as seen by Atmosphere Explorer E

    NASA Astrophysics Data System (ADS)

    West, K. H.; Goldsmith, G.; Campbell, D.; Zandstra, S.

    2008-12-01

    Solar eclipses are known to locally disrupt the transport, production, and loss mechanisms in the ionosphere. Ion composition, ion temperature, and neutral temperature data from the Atmosphere Explorer E spacecraft are examined for the total solar eclipse of 16 February 1980. The spacecraft transited twice across the dayside face of the Earth during the course of the eclipse, allowing for examination of eclipse effects to be made over a wide longitude and local time range and for examination of posteclipse recovery of the ionosphere. One orbit from 14 February, occurring over a longitude and local time range similar to that of the first eclipse orbit, is used as control data. The eclipse had a significant effect on the concentrations of both O+ and N+, which both dropped. The concentration of H+ seems to show an eclipse effect, but the concentrations are too low to draw definite conclusions. Signatures of charge exchange between H+ and neutral oxygen are seen in the data from the second eclipse orbit. The ion temperature drops by as much as 60 K. The neutral atmosphere shows no change in temperature during the course of the eclipse. The second eclipse orbit occurred closer to the path of the eclipse than did the first orbit, and the perturbations caused by the eclipse are greater in the second orbit. The control and second eclipse orbit data are compared to results from the International Reference Ionosphere 2000 model. The model results show good qualitative agreement with the ion concentration data.

  19. Climatological study of ionospheric irregularities over the European mid-latitude sector with GPS

    NASA Astrophysics Data System (ADS)

    Wautelet, Gilles; Warnant, René

    2014-03-01

    High-frequency variability of the ionosphere, or irregularities, constitutes the main threat for real-time precise positioning techniques based on Global Navigation Satellite Systems (GNSS) measurements. Indeed, during periods of enhanced ionospheric variability, GNSS users in the field—who cannot verify the integrity of their measurements—will experience positioning errors that can reach several decimeters, while the nominal accuracy of the technique is cm-level. In the frame of this paper, a climatological analysis of irregularities over the European mid-latitude region is presented. Based on a 10 years GPS dataset over Belgium, the work analyzes the occurrence rate (as a function of the solar cycle, season and local time) as well as the amplitude of ionospheric irregularities observed at a single GPS station. The study covers irregularities either due to space weather events (solar origin) or of terrestrial origin. If space weather irregularities are responsible for the largest effects in terms of ionospheric error, their occurrence rate highly depends on solar activity. Indeed, the occurrence rate of ionospheric irregularities is about 9 % during solar maximum, whereas it drops to about 0 % during medium or low solar activity periods. Medium-scale ionospheric disturbances (MSTIDs) occurring during daytime in autumn/winter are the most recurrent pattern of the time series, with yearly proportions slightly varying with the solar cycle and an amplitude of about 10 % of the TEC background. Another recurrent irregularity type, though less frequent than MSTIDs, is the noise-like variability in TEC observed during summer nighttime, under quiet geomagnetic conditions. These summer nighttime irregularities exhibit amplitudes ranging between 8 and 15 % of the TEC background.

  20. Simulation of the low latitude ionosphere response to disturbed winds and electric fields: Brazilian region

    NASA Astrophysics Data System (ADS)

    Batista, Inez S.; Souza, Jonas; Bailey, Graham; Bravo, Manuel

    2016-07-01

    Modeling the ionosphere during disturbed periods is one of the most challenging tasks due to the complexity of the phenomena that affect the electric fields and the thermosphere environment as whole. It is well known that depending on the direction of the interplanetary magnetic field disturbance electric fields (undershielding or overshielding) can penetrate from high to low latitudes causing significant disturbances in the electron density distribution and in the equatorial ionization anomaly (EIA) development. Besides that, the large amount of energy deposited in the polar region during disturbed periods will be responsible for the generation of disturbed winds that will flow towards the equator where they produce a disturbance dynamo which also affects the EIA density distribution. The TIDs and TADs are also sources of disturbances that propagate at high velocity reaching the equator 2-3 hours after the beginning of the magnetic storm. In this work we use the Sheffield University Plasmasphere-Ionosphere Model at INPE (SUPIM-INPE), to simulate the drastic effects that were observed at the low latitude ionosphere in the Brazilian region during a very intense magnetic storm event. A few models are tested for the disturbed electric field and wind. The simulation results showed that the observations are better explained when considering a traveling waveform disturbance propagating from north to south at a velocity equal to 200 m/s.

  1. Comparison of IRI model predictions with low latitude ionospheric observations

    NASA Astrophysics Data System (ADS)

    Bittencourt, J. A.; Chryssafidis, M.

    During a period of high solar activity (1979/1980), IRI-predicted electron density profiles were compared with measurements made at Fortaleza (Brazil), 2 degrees off the dip equator. A few discrepancies were found. They are attributed mainly to dynamical effects associated with low latitude E x B electromagnetic plasma drifts and thermospheric neutral winds that are not correctly reproduced in the CCIR numerical maps and in the IRI profile shapes as well. In particular, the dependence on the magnetic declination angle, which strongly affects the electrodynamical plasma motions at low latitudes, is not satisfactorily considered in the models.

  2. Ionosphere/thermosphere dynamics as deduced from meridional ionosonde chain at low latitudes

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Uemoto, Junpei; Tsugawa, Takuya; Hidekatsu, Jin; Kubota, Minoru; Saito, Susumu

    showed a quite large difference between the model and the measurements depending on the season and time. For nighttime, on the other hand, h'F is a good indicator of the ionospheric height near the magnetic equator and at low latitudes because the chemical process becomes less important. Vertical EXB drifts were evaluated from the height variation at the magnetic equator. By the assist of numerical modeling incorporating with the EXB drift, neutral wind effects during nighttime were examined more quantitatively and accurately. The results of the transequatorial wind effects were generally consistent with that obtained by the hmF2 analysis.

  3. Seasonal Variations of Mid-Latitude Ionospheric Trough Structure Observed with DEMETER and COSMIC

    NASA Astrophysics Data System (ADS)

    Matyjasiak, Barbara; Przepiórka, Dorota; Rothkaehl, Hanna

    2016-12-01

    The mid-latitude ionospheric trough is a depleted region of ionospheric plasma observed in the topside ionosphere. Its behavior can provide useful information about the magnetospheric dynamics, since its existence is sensitive to magnetospherically induced motions. Mid-latitude trough is mainly a night-time phenomenon. Both, its general features and detailed characteristics strongly depend on the level of geomagnetic disturbances, time of the day, season, and the solar cycle, among others. Although many studies provide basic information about general characteristics of the main ionospheric trough structure, an accurate prediction of the trough behavior in specific events is still understood poorly. The paper presents the mid-latitude trough characteristics with regard to the geomagnetic longitude and season during a solar activity minimum, as based on the DEMETER in situ satellite measurements and the data retrieved from FORMOSAT-3/COSMIC radio occultation measurements.

  4. Signature of ionospheric irregularities under different geophysical conditions on SBAS performance in the western African low-latitude region

    NASA Astrophysics Data System (ADS)

    Abe, Oladipo Emmanuel; Villamide, Xurxo Otero; Paparini, Claudia; Ngaya, Rodrigue Herbert; Radicella, Sandro M.; Nava, Bruno

    2017-01-01

    Rate of change of TEC (ROT) and its index (ROTI) are considered a good proxy to characterize the occurrence of ionospheric plasma irregularities like those observed after sunset at low latitudes. SBASs (satellite-based augmentation systems) are civil aviation systems that provide wide-area or regional improvement to single-frequency satellite navigation using GNSS (Global Navigation Satellite System) constellations. Plasma irregularities in the path of the GNSS signal after sunset cause severe phase fluctuations and loss of locks of the signals in GNSS receiver at low-latitude regions. ROTI is used in this paper to characterize plasma density ionospheric irregularities in central-western Africa under nominal and disturbed conditions and identified some days of irregularity inhibition. A specific low-latitude algorithm is used to emulate potential possible SBAS message using real GNSS data in the western African low-latitude region. The performance of a possible SBAS operation in the region under different ionospheric conditions is analysed. These conditions include effects of geomagnetic disturbed periods when SBAS performance appears to be enhanced due to ionospheric irregularity inhibition. The results of this paper could contribute to a feasibility assessment of a European Geostationary Navigation Overlay System-based SBAS in the sub-Saharan African region.

  5. TEC disturbances during major Sudden Stratospheric Warmings in the mid-latitude ionosphere.

    NASA Astrophysics Data System (ADS)

    Polyakova, Anna; Voeykov, Sergey; Chernigovskaya, Marina; Perevalova, Natalia

    Using total electron content (TEC) global ionospheric maps, dual-frequency GPS receivers TEC data and MLS (Microwave Limb Sounder, EOS Aura) atmospheric temperature data the ionospheric disturbances during the strong sudden stratospheric warmings (SSWs) of 2008/2009 and 2012/2013 winters are investigated in Russia's Asia region. It is established that during the SSW maximum the midday TEC decrease and the night/morning TEC increase compared to quiet days are observed in the mid-latitude ionosphere. As a result it caused the decrease of the diurnal TEC variations amplitude of about two times in comparison with the undisturbed level. The analysis of TEC deviations from the background level during the SSWs has shown that deviations dynamics vary depending on the observation point position. Negative deviations of TEC are registered in the ionosphere above the region of maximum stratosphere heating (the region of the stratospheric circulation change) as well as above the anticyclone. On the contrary, TEC values increase compared to the quiet day's values above the stratosphere cyclone. It is shown that during maximum phase of a warming, and within several days after it the amplification of wave TEC variations intensity with periods of up to 60 min is registered in ionosphere. The indicated effects may be attributed to the vertical transfer of molecular gas from a stratospheric heating region to the thermosphere as well as to the increase in activity of planetary and gravity waves which is usually observed during strong SSWs. The study is supported by the RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5), the RF President Grant No. MK-3771.2012.5 and RFBR Grant No. 12-05-00865_а.

  6. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  7. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.

    2016-04-01

    This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.

  8. What in situ measurements of thermal electrons tell us about electron heating in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Lessard, M.; Cohen, I. J.; Lynch, K. A.

    2012-12-01

    The transfer of energy from precipitating particles and incoming photons to ionospheric plasma is a key issue in the physics of the high-latitude ionosphere. However, in situ measurements of electron temperature in the ionosphere have historically been difficult to make. Over the past decade, we have flown several rockets equipped with an electron retarding potential analyzer (ERPA), an instrument designed to measure thermal electrons in the ionosphere. These missions include launches into the cusp (SERSIO, SCIFER-2) and nightside aurora (CASCADES-2, ACES, MICA). In the cusp, the soft electron precipitation which is found in regions of ion outflow leads to increases in electron temperature due to energy deposition in the E and lower F region. The electron temperature increase at sounding rocket altitudes (500--1500~km) is delayed by ˜100~s with respect to the precipitation. By contrast, the higher energy of precipitating electrons in the nightside aurora makes them less effective at heating ionospheric electrons at these altitudes, while in downward current regions ionospheric electrons are found to be cooler than in upward current regions. We discuss the implications of these results for the ionospheric ion outflow problem as well as future prospects for in situ electron temperature measurements.

  9. Equatorial ionosphere 'fountain- effect' above imminent earthquake epicenter

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Depueva, A. H.; Devi, M.

    2003-04-01

    Existence of lithosphere-ionosphere interaction is known for a long time, but it does not mean that the ionospheric morphology above areas of earthquakes preparation is investigated sufficiently well. It was shown that seismo-precursor variations of the atmosphere electricity cause appropriate electric field at the ionospheric heights, which being added to existing natural field may both increase or decrease its action on the ionospheric plasma characteristics: drifts, aeronomy, plasma chemistry, ion composition etc. Anomalous variations appear inside whole ionosphere volume from the lowest boundary of Earth's plasma shell (100 km) up to 1000km and higher. Under fortunate coincidence seismo-precursor electric field can generate natural ionosphere phenomena, 'fountain- effect', leading to Appleton anomaly in the equatorial ionosphere over future earthquake position. Our basic idea is to take into account dependence of the observable effects on a geographical position of the earthquake epicenter. As for low latitudes it is proved by specificity of formation and dynamics of equatorial ionosphere (seismogenic ""fountain" effect , first of all), and also by features of earth crust structure close to the equator (mainly meridionally alongated tectonic faults). Ionospheric effects of low-latitude earthquakes were not investigated separately so far though rather semo-active zones are located namely at low latitudes: India, Peru, Oceania. We used the data of topside sounding of ALOUETTE-1 and ISS-b satellites, and also data of ground-based vertical sounding stationary stations Kodaikanal, Huancayo, Djibouti etc. and records of the total electron content (TEC).

  10. The Low-latitude Ionospheric Sensor Network (LISN)

    NASA Astrophysics Data System (ADS)

    Valladares, Cesar

    This paper describes the characteristics and illustrates the early measurements of the first distributed observatory that is being installed in the South American region to study the lowlatitude ionosphere and upper atmosphere. The LISN distributed observatory will be comprised of nearly 70 GPS receivers with the capability to measure Total Electron Content (TEC), amplitude and phase scintillation and Traveling Ionospheric Disturbances (TIDs). The network will include 5 ionosondes able to measure nighttime E-region densities and 5 collocated magnetometers that will be placed along the same magnetic meridian. This network of GPS receivers and ionospheric sensors span from north to south in the South American continent and west of the 55o West meridian. They will complement each other to provide new, time continuous and spatially extended observations of the background ionosphere, its motion and the embedded structures over this large dynamic region. The LISN network is being complemented with a physics-based data-inversion that incorporates a ionosphere model and a field-line-integrated electric field model to provide a consistent representation of the ionospheric electron density, conductivities, E×B plasma drifts, and neutral winds. This new distributed observatory will bring the opportunity to understand the day-to-day variability and the stability of the lowlatitude ionosphere and to make forecasts on a regional basis. This paper describes the instrumentation, presents the first measurements and discusses the scientific benefits of the LISN network.

  11. Solar Transients Disturbing the Mid Latitude Ionosphere during the High Solar Activity

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shivangi; Khan, Parvaiz A.; Atulkar, Roshni; Malvi, Bhupendra; Mansoori, Azad Ahmad; Purohit, P. K.

    2016-10-01

    We investigate the effect of solar transients on the mid latitude ionosphere during the high solar activity period of solar cycle 23 i.e 2003 and 2004. A mid latitude station, Guangzhou (23.1N, 113.4E) was selected to carry out the investigation. The ionospheric behaviour at the selected station is characterized by considering the critical frequency of F2 layer (foF2) obtained by using the ground based Ionosonde observations. Then we selected two types of solar transients viz. solar flares and Coronal Mass Ejections (CMEs). To quantify the effect of solar flares we have considered the X-ray flux (1-8 Å) and EUV flux (26-34nm). Similarly to quantify the effect of CMEs, we have considered the geomagnetic storms, because during high solar activity the geomagnetic storms are caused by CMEs. From our analysis we conclude that during the geomagnetic storms the value of foF2 decreases as compared to quiet days thereby showing a negative effect. On the contrary we found that during solar flares there is sudden and intense increase in foF2. We also performed a correlation analysis to access the magnitude of association between changes in flux values and peak values of Dst during flares and storms with the corresponding changes and peak values of foF2. We found that a strong correlation exists between the enhancements/decrements in foF2 and enhancements in flux values and Dst. We conclude, while geomagnetic activity suppresses ionospheric activity the flares enhance the same.

  12. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  13. High-latitude ionospheric outflows characterized through analytic formulas

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.

    2008-12-01

    Recent advances involving multi-fluid treatments have begun to allow the prospect of global magnetospheric models to simulate the dynamics of multiple ion species, such as various ion species originating from sources in the solar wind and terrestrial ionosphere. Such opportunities for the dynamic treatment of ionospheric ions within the magnetosphere portend a need for realistic accessible methods of estimating ionospheric outflows as linked plasma sources for these global models. Toward this end, in this presentation, the results of numerous physics-based simulations of ionospheric plasma outflows under varied driving agents are distilled in terms of relatively compact analytic expressions. The simulations are conducted with the UT Arlington Dynamic Fluid (DyFK) ionospheric plasma transport code. These analytic expressions for O+ and H+ densities, temperatures and flow velocities are obtained at the 3 RE altitudes corresponding to typical inner boundary levels for certain current global magnetospheric models. These O+ and H+ parameters are expressed as functions of precipitation electron energy flux levels, characteristic energy levels of the precipitating electrons, the peak spectral wave densities for low-frequency electrostatic waves which transversely heat ionospheric ions, and solar zenith angle.

  14. Distinct responses of the low-latitude ionosphere to CME and HSSWS: The role of the IMF Bz oscillation frequency

    NASA Astrophysics Data System (ADS)

    Rodríguez-Zuluaga, J.; Radicella, S. M.; Nava, B.; Amory-Mazaudier, C.; Mora-Páez, H.; Alazo-Cuartas, K.

    2016-11-01

    In this work an attempt to identify the role of the interplanetary magnetic field (IMF) in the response of the ionosphere to different solar phenomena is presented. For this purpose, the day-to-day variability of the equatorial ionospheric anomaly (EIA) and the main ionospheric disturbances are analyzed during one coronal mass ejection (CME) and two high-speed solar wind streams (HSSWSs). The EIA parameters considered are the zonal electric field and both the strength and position of its northern crest. The disturbances being the prompt penetration of magnetospheric electric field (PPMEF) and disturbance dynamo electric field (DDEF) are studied using the magnetic response of their equivalent current systems. In accordance, ground-based Global Navigation Satellite Systems receivers and magnetometers at geomagnetic low latitudes in the American sector are used. During both phenomena, patterns of PPMEF related to fluctuations of the IMF are observed. Diurnal and semidiurnal magnetic oscillations are found to be likely related to DDEF. Comparisons among the EIA parameters and the DDEF magnetic response exhibit poor relation during the CME in contrast to good relation during the HSSWSs. It is concluded that the response of the low-latitude ionosphere to solar phenomena is largely determined through the oscillation frequency of the IMF Bz by affecting the generation of the PPMEF and DDEF differently. This is seen as an effect of how the energy from the solar wind is transferred into the magnetosphere-ionosphere system.

  15. High-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions

    NASA Astrophysics Data System (ADS)

    Lukianova, R. Yu.; Uvarov, V. M.; Coïsson, P.

    2017-01-01

    A numerical model is used to study systematically the evolution of large scale irregularities depending on the IMF Bz and By components, solar zenith angle (seasonal and daily variation), solar and geomagnetic activity. The model enables to reproduce the 3-D distribution of electron density over the high-latitude F region ionosphere in the altitude range between 130 and 640 km. Since the convection electric field driven by changes in solar wind conditions has an important effect on the high-latitude ionosphere, the rotation of the IMF vector in the Y-Z plane causes a significant redistribution of the ionospheric plasma. Under the southward IMF conditions the plasma density is enhanced over a large portion of the near-pole ionosphere as a tongue of ionization, while the northward IMF leads to a considerable depletion and occurrence of the polar hole. The IMF By polarity is crucial for the shift and extension of the tongue of ionization to the dusk or dawn side. Particle precipitation also plays a role through a localized increase of the electron density mostly within the auroral oval and more pronounced auroral peak. The solar zenith angle, especially its seasonal variation, is the strongest regular factor influencing the electron density magnitude and spatial distribution. In winter, when the polar ionosphere is in darkness, large variations associated with different solar wind condition are more prominent. The daily variation of the zenith angle considerably modifies the Ne within a particular pattern. At a given time, the combined action of the IMF, solar zenith angle, level of solar and geomagnetic activity produces a complicated ionospheric response which can be considered as a superposition of different effects. Quantitative estimates of the ionospheric response to each factor are presented.

  16. Time-dependent three-dimensional (latitude, longitude, altitude) response of the ionosphere to the 2009 SSW event

    NASA Astrophysics Data System (ADS)

    Azeem, S. I.; Crowley, G.; Reynolds, A.

    2013-12-01

    Recent studies have shown variations in the low and mid latitude ionosphere that are linked to Sudden Stratospheric Warming events. These studies suggest that during SSW events the equatorial electric fields vary in a quasi-deterministic way, producing vertical plasma drifts that deviate from climatological values more than expected. Although previous studies have provided important information on the ionospheric response to SSW events, they have been fairly localized. Therefore, broader observational capabilities and data are required that can unambiguously reveal the instantaneous global response of the ionosphere to SSW events. In this paper, we present four-dimensional (latitude, longitude, height and time) results of the Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm to describe a global view of the ionospheric response to the 2009 SSW event. We use the IDA4D to assimilate ionosondes, ground-based GPS TEC, DORIS, CHAMP and GRACE occultation measurements for several days in January 2009 during the SSW event. IDA4D results show that at the peak of the 2009 SSW event, TEC values in the low latitudes were elevated in the morning hours while they were suppressed in the evening sector. The effects of enhanced dynamo forcing during the January 2009 SSW were also captured by the IDA4D showing an increased separation of the Appleton Anomaly peaks. The IDA4D results will be discussed in the context of horizontal, vertical and temporal evolution of ionospheric disturbances associated with the 2009 SSW event. The evolution of longitudinal, local time, and height (where applicable) variations of various plasma parameters (such as Ne, TEC, NmF2, hmF2, foF2) through the full 2009 SSW cycle (including genesis, onset, and recovery) will be presented.

  17. Dynamics of the High-latitude Ionospheric Irregularities During the 2015 St. Patrick's Day Storm

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Redmon, R. J.; Andrzej, K.

    2015-12-01

    We presents results on the study of the high-latitude ionospheric irregularities observed in worldwide GPS data during the St. Patrick's Day geomagnetic storm (March 17, 2015). Multi-site GPS observations from more than 2500 ground-based GPS stations were used to analyze the dynamics of the ionospheric irregularities in the Northern and Southern Hemispheres. The most intense ionospheric irregularities lasted for more than 24 hours starting at 07 UT of March 17. This period correlates well with an increase of the auroral Hemispheric Power index. We find hemispheric asymmetries in the intensity and spatial structure of the ionospheric irregularities. Over North America the ionospheric irregularities zone expanded equatorward below ~45°N geographic latitude. Additionally, the strong mid and high latitude GPS phase irregularities in the auroral oval were found to be related to the formation of storm enhanced density, polar tongues of ionization and deepening of the main ionospheric trough through upper atmosphere ionization by energetic particle precipitations. Significant increases in the intensity of the irregularities within the polar cap region of both hemispheres were associated with the formation and evolution of the SED/TOI structures and polar patches.

  18. First results on climatological response of Indian low latitude ionosphere to geomagnetic storms during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Suresh, Sunanda; Dashora, Nirvikar

    2016-07-01

    For the first time, a climatological response of low latitude ionosphere to geomagnetic storms is presented using long term global ionospheric maps (GIM) data from June 1998 to June 2015 covering two solar cycles 23 and 24. The results are not only the first from Indian region but also the first around the globe to bring latitudinal character of daytime ionospheric storms with use of newly defined criteria. The results are presented for daytime forenoon and afternoon sectors under minor, moderate and major ionospheric storm categories based on minimum Dst index criterion. For the first time the effectiveness of storms is identified using monthly standard deviation as an indicator of the day-to-day variability in equatorial and low latitude ionosphere. Thus results on climatology are definitive and form a data base that would be comparable to statistical results from any other longitude and time. Seasonal statistics for total storms, effective positive and negative storms, and amplitude of mean seasonal perturbation in total electron content are obtained. Total and effective storms are found to be higher in solar cycle 23 than in 24 and only couple of effective storms occurred during low solar activity 2007-2009 that also in minor category. Afternoon sector is found to be favourable for occurrence of maximum number of effective positive storms. A latitudinal preference is found for a given storm to be effective in either time sectors. Equinoctial asymmetry in ionospheric response both in terms of occurrence and perturbation amplitude is found. September equinoxes are found to bear maximum total, effective positive and negative storms. Winters are found more prone to negative storms whereas summers have recorded minimum number of either of storms and minimum perturbation amplitudes.

  19. High-latitude ionospheric model - First step towards a predictive capability

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Raitt, W. J.; Sojka, J. J.

    1981-01-01

    In order to study the plasma density features associated with both weak and strong convection in the winter high-latitude F-region, a simple plasma convection model was combined with an ionospheric-atmospheric composition model. In a model calculation, a field tube of plasma is followed as it moves along a convection trajectory through a moving, neutral atmosphere. The altitude profiles of the ion densities are obtained by solving the appropriate continuity, momentum and energy equations, including many high-latitude processes. The result of following many such plasma field tubes is a time-dependent, three-dimensional ion density distribution for the ions NO(+), O2(+), O(+), N(+), and He(+). The high-latitude ionosphere is covered over one complete day above 42 deg N magnetic latitude, at altitudes of 160-800 km.

  20. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities and flow velocities vs. precipitation, wave-heating, and solar zenith angle effects

    NASA Astrophysics Data System (ADS)

    Horwitz, J. L.; Zeng, W.

    2007-12-01

    For many current global magnetospheric modeling efforts, it is highly desirable to try to incorporate realistic compact representations of the ionospheric outflow bulk parameters and their relationships to putative drivers. Recent satellite data analyses by Strangeway et al. [2005] and Zheng et al.[2005] have obtained formula fits for the measurement-based relationships of the outflow levels to parameterizations for electron precipitation and Poynting fluxes, which are expected to be among the principal drivers, or closely related to them, for the ionospheric outflows. In this presentation, we shall use the results of an extensive set of systematic simulation runs with our Dynamic Fluid Kinetic (DyFK) simulation code for ionospheric plasma field-aligned transport to obtain O+ and H+ densities and flow velocities at altitudes corresponding to typical inner boundary levels for prominent current global magnetospheric models which are moving toward multi-fluid treatments. These O+ and H+ densities and parallel flow velocities are parameterized versus precipitation electron energy flux levels, characteristic energy levels of the precipitating electron, the peak spectral wave densities for BBELF waves which transversely heat ionospheric ions, and solar zenith angle. Strangeway, R. J., R. E. Ergun, Y.-J. Su, C. W. Carlson, and R. C. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi:10.1029/2004JA010829, 2005. Zheng, Y., T. E. Moore, F. S. Mozer, C. T. Russell, and R. J. Strangeway, Polar study of ionospheric ion outflow versus energy input, J. Geophys. Res., 110, A07210, doi:10.1029/2004JA010995, 2005.

  1. Ionospheric Plasma Drift and Structure Studies at High and Mid- Latitudes. Volume 1

    DTIC Science & Technology

    1993-12-01

    oblique ionograms measured at Goose Bay for propagation path from Argentia to Goose Bay. On this day a trough developed and moved over both stations...1993). At high latitudes the magnetospheric solar wind induced electric fields map into the ionosphere along the open and dosed field lines driving the...and Winter velocities for these high latitude stations has not been investigated. The seasonal variation at first suggests that neutral winds may be

  2. Characterization of ionospheric variability in TEC using EOF and wavelets over low-latitude GNSS stations

    NASA Astrophysics Data System (ADS)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2016-06-01

    Investigation of ionospheric variability is essential for improving the daily ionospheric modeling and forecasting services of Global Navigation Satellite System (GNSS) applications. As India is a low-latitude region, more care has to be taken here to characterize the ionosphere due to irregularities and Equatorial Ionization Anomaly (EIA) conditions. Therefore, an appropriate method is required to diagnose the ionospheric variations during geomagnetic, solar and other disturbances. In this paper, the temporal ionospheric time delay variations were studied based on the Empirical Orthogonal Function (EOF) analysis and wavelet transforms (WT).These analyses were carried out with Total Electron Content (TEC) datasets obtained from three GNSS stations located in low-latitude regions. EOF analysis was performed on the TEC datasets, which were decomposed into a time series of orthogonal eigen values (or base functions) and associated coefficients. EOF base functions and their associated coefficients signify the hourly time variations and the day of the year variations. The results reveal that the first few EOFs represented the majority of TEC variability pertaining to the physical processes of the ionosphere. The accuracy of the EOF model was validated by the evaluation of observational TEC data with International Reference Ionosphere (IRI) 2012 models. The EOF model coefficients for each GNSS station showed a strong correlation with the IRI models and also described the correlation between the impacts of the level of geomagnetic activity on the ionosphere. The correlation coefficients for the first three EOFs were more than 0.95. The phase relationship of ionospheric TEC anomalies, with respect to the geomagnetic indices (Dst), were analyzed by wavelet transforms.

  3. Equatorial and low-latitude ionospheric response due to 2009 sudden stratospheric warming, South American sector.

    NASA Astrophysics Data System (ADS)

    Fagundes, Paulo Roberto; Gende, Mauricio; De Jesus, Rodolfo; Goncharenko, Larisa; Coster, Anthea; Kavutarapu, Venkatesh; De Abreu, Alessandro; Pillat, ValdirGil; Pezzopane, Michael

    The equatorial and low-latitude ionosphere/thermosphere system is permanently disturbed by waves (MSTIDs, tides, and planetary waves), which are generated in the lower atmosphere or in situ, as well as electric fields and TIDs produced by geomagnetic storm and UV, EUV, and X-ray solar radiation. Until recently it was thought, that during geomagnetic quiet conditions the equatorial and low-latitude F-layer was mainly perturbed by waves that were generated not far away from the observed location or electric fields generated by electroject. On the contrary during geomagnetic storms when the energy sources are in high latitudes the waves (TIDs) travel a very long distance from high latitude to equatorial region and electric fields can be mapped via magnetic field lines. However, recently an unexpected coupling between high latitude, -mid latitude, and -equatorial/low-latitude was discovered during sudden stratospheric warming (SSW). The exploration of all aspects involved in this process must be investigated in order to improve our knowledge about the Earth's atmosphere. This investigation, studies the consequences of the vertical coupling from lower to upper atmosphere during a major Northern Hemisphere sudden stratospheric warming, which took place in January 2009, on the equatorial and low-latitude ionosphere in the Southern Hemisphere. Using 16 ground-based GPS stations over the Brazilian sector, spanning from latitude 2.8N to 30.1S and longitude 62.0W to 37.7W, it was possible to notice that the ionosphere was disturbed by SSW from the Equator to low latitude. The TEC at all 16 stations was severely disturbed during several days after the SSW temperature peak.

  4. Goose Bay radar observations of earth-reflected atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Samson, J.C.

    1990-05-03

    An HF backscatter radar at Goose Bay, Labrador made it possible to observe irregularities in the distribution of ionospheric ionization at E and F region altitudes (100 - 600 km) in the high-latitude (65 - 85 deg Lambda) ionosphere. Recently it has been established that the passage of atmospheric gravity waves perturbs the ionosphere in ways that are readily detected in returns that reflect off the ionospheric layers. The particular strength of the technique lies in the nearly instantaneous measurement of gravity wave effects over large areas ( 1 million sq. km). With this information the propagation of gravity waves can be accurately modelled. Generally gravity waves are observed during daylight hours propagating away from the auroral electrojets. The propagation mode involves penetration of wave energy through the lower atmosphere and subsequent reflection by the earth's surface. The frequencies associated with the waves lie in the 0.4 - 0.6 mHz range and the wavelengths vary from 300 to 500 km. The excitation sources appear to lie in the vicinity of the high-latitude electrojets. In this paper we outline the analysis of gravity wave effects on HF propagation and present an example of a modelled gravity wave event.

  5. The domination of Saturn's low-latitude ionosphere by ring 'rain'.

    PubMed

    O'Donoghue, J; Stallard, T S; Melin, H; Jones, G H; Cowley, S W H; Miller, S; Baines, K H; Blake, J S D

    2013-04-11

    Saturn's ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the solar radiation should result in a weak planet-wide glow in the infrared, corresponding to the planet's uniform illumination by the Sun. The observed electron density of the low-latitude ionosphere, however, is lower and its temperature higher than predicted by models. A planet-to-ring magnetic connection has been previously suggested, in which an influx of water from the rings could explain the lower-than-expected electron densities in Saturn's atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from 25 to 60 degrees, that is superposed on the lower-latitude background glow, with peaks in emission that map along the planet's magnetic field lines to gaps in Saturn's rings. This pattern implies the transfer of charged species derived from water from the ring-plane to the ionosphere, an influx on a global scale, flooding between 30 to 43 per cent of the surface of Saturn's upper atmosphere. This ring 'rain' is important in modulating ionospheric emissions and suppressing electron densities.

  6. Investigation of Ionospheric Response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-06-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  7. Ion-neutral momentum coupling near discrete high-latitude ionospheric features

    NASA Technical Reports Server (NTRS)

    St-Maurice, J.-P.; Schunk, R. W.

    1981-01-01

    A two-dimensional numerical model is developed to study the momentum coupling between the ionosphere and neutral atmosphere in the vicinity of discrete high-latitude features, such as convection channels and plasma density troughs. Based on generalized magnetohydrodynamic equations the model takes account of global pressure gradients, viscous dissipation, ion drag, the Coriolis force, and electrodynamic drifts. Among the findings of an initial steady state investigation are the following: (1) in convection channels, significant shears and rotations of the thermospheric flow can occur below 200 km if a minimum in the electron density profile is present between the E and F regions; (2) in convection channels, the thermospheric wind decreases with height in the F region owing to the effects of horizontal viscosity; and (3) at low altitudes, the boundaries of convection channels may produce Ekman spirals.

  8. Short-term prediction of the foF2 critical frequency in the high latitude ionosphere for DIAS extending services

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna

    2013-04-01

    Ionospheric forecasting products and services for Europe are provided routinely by the European Digital upper Atmosphere Server, DIAS (http://dias.space.noa.gr). These include alerts and warnings for upcoming ionospheric storm time disturbances as well as single station and regional ionospheric forecasts up to 24 hours ahead for the middle latitude European region. However, in order to meet the users' requirements, it is planned within the Space Situational Awareness Programme of the European Space Agency the extension of the DIAS forecasting services to cover the whole European region, including Scandinavia. To this effect, the Solar Wind driven autoregression model for Ionospheric short-term Forecast (SWIF) will be applied. In the operational mode, SWIF combines historical and real-time ionospheric observations with solar wind parameters obtained in real time at L1 point from ACE spacecraft through the cooperation of an autoregression forecasting algorithm, namely TSAR with an empirical ionospheric storm time model, namely STIM that is triggered by solar wind disturbances detected by STIM's alert detection algorithm. The ionospheric storm time response is then empirically formulated taken into account the latitude and the local time of the observation point at the storm onset. SWIF's prediction efficiency was recently fully documented for the middle latitude ionosphere. As a first step towards the operational implementation of the SWIF for high latitude ionospheric forecasts, the work presented here includes the evaluation of the SWIF's performance over high latitude locations and under disturbed geophysical conditions based on historical data. For this purpose, all available high latitude foF2 observations obtained during a significant number of selected storm events occurred in the previous as well as the current solar cycle are analyzed in respect with the foF2 reference level and the model's predictions. The results verify the validity of STIM's storm alert

  9. Stormtime Ionospheric Irregularities in SAPS-Related Troughs: Causes of GPS Scintillations at Mid Latitudes

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Burke, W. J.; Basu, S.; Kintner, P. M.; Ledvina, B.

    2003-12-01

    Radio-wave scintillations are space weather effects caused by ionospheric plasma density irregularities. The subauroral ionosphere, at magnetic latitudes corresponding to the northeastern US, is generally free of such irregularities and consequently scintillations. Recently, Basu et al. [JGR, 106, 30389, 2001] and Ledvina et al. [GRL, 29, 10.1029/2002GL014770] reported observations of strong GPS phase and amplitude scintillations at 1.5 GHz at Hanscom AFB, MA and Ithaca, NY during the magnetic storms of 23 September, 1999 and 25 - 26 September, 2001, respectively. We report results of a survey of small-scale plasma density and electromagnetic oscillations detected by DMSP F13, 14, and 15 satellites while flying over the affected regions at altitude of 840 km. Langmuir probe data, sampled at a rate of 24 Hz, show that during the scintillation intervals the amplitudes of density oscillations in the frequency range of 3-10 Hz increased by a factor of 100. The enhanced fluctuations appeared at the poleward edges of large-scale density troughs, embedded within subauroral polarization streams. When Doppler-shifted from spacecraft frames of reference the oscillations correspond to irregularities with spatial scales of 2-0.7 km. Most likely these irregularities are responsible for radio-signal scintillations at frequencies near 1 GHz.

  10. Mid-latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Willis, E. M.; Parker, L. N.

    2014-12-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (~400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the ~30 degree to ~60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  11. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  12. Artificial periodic irregularities in the high-latitude ionosphere excited by the HAARP facility

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Milikh, G. M.; Siefring, C. L.; Bernhardt, P. A.; McCarrick, M.

    2016-07-01

    We present results of the new observations of artificial periodic irregularities (APIs) in the ionosphere using the High Frequency Active Auroral Research Program (HAARP) heating facility carried out in late May and early June 2014.The objective of this work is to detect API using high-latitude facility and analyze possible differences of the temporal and spatial variations of the API echoes in the high (HAARP) and middle (Sura) latitudes. Irregularities were created by the powerful wave of X mode and were sounded using the short probing pulses signals of X mode. API echoes were observed in the D, E, and F regions of the ionosphere. Amplitudes and characteristic times of the API echoes were measured. The API growth and decay times at HAARP (high latitudes) observed were similar to those at the Sura heating facility (midlatitudes).

  13. Theoretical scaling laws for the spectrum of density irregularities in the high- and low-latitude ionosphere

    SciTech Connect

    Keskinen, M.J.

    1990-05-03

    Constraints on and scaling laws associated with the spectrum of density irregularities in the high and low latitude ionosphere are derived using conservation laws implied by the fundamental nonlinear plasma fluid equations describing low frequency, long wavelength ionospheric plasma dynamics and structure. For the high latitude case we discuss the spectrum implied by interchange-like plasma instabilities and apply our results to convecting ionospheric plasma enhancements, blobs, patches, and polar cap arcs. For the low latitude ionosphere, we derive scaling laws for the density spectrum associated with the Rayleigh-Taylor instability and make applications to equatorial spread-F. For both the high and low latitude cases, we distinguish the spectral behavior to be expected in both the lower and upper ionosphere.

  14. Analysis of local ionospheric variability based on SVD and MDS at low-latitude GNSS stations

    NASA Astrophysics Data System (ADS)

    Dabbakuti, J. R. K. Kumar; Devanaboyina, Venkata Ratnam; Kanchumarthi, S. Ramesh

    2016-06-01

    Investigation of ionospheric anomalies during equatorial and low latitude is of major concern for modeling and global navigation satellite system (GNSS) applications. Total electron content (TEC) varies with the ionospheric conditions, which will lead to the errors in the global positioning system (GPS) measurements. It is therefore a method that is necessary to characterize the ionospheric anomalies for satellite-based navigation systems. In this study, characterization of ionospheric variations based on the singular value decomposition (SVD) and classical multidimensional scaling (MDS) methods was studied. The yearly and daily variations are decomposed from the GPS-TEC, international reference ionosphere (IRI) 2007 and IRI 2012 models TEC over the three low-latitude GNSS stations located at Koneru Lakshmaiah University (KLU-Guntur), Hyderabad and Bangalore, respectively. From the results, it is found that there is a strong correlation between GPS-TEC and IRI models. The correlation coefficient for the first three singular values is more than 0.86. From this, it is possible to reconstruct more than 85 % of the variability contained in global GPS-derived VTEC data (for year 2013) by using only the first three modes. The semiannual variation has maximum value during March-April and September-October and has minimum value during June-July. It is observed that the annual variations have maximum value in summer and minimum value in winter, and the amplitudes decrease with increasing latitude. Further, opposite latitudinal asymmetry among annual and semiannual variations for three GNSS stations is noticed. SVD and MDS methods clearly show time-varying characteristics and the absence of the winter anomaly at low-latitude GNSS stations.

  15. Ionospheric bubbles detection algorithms: Analysis in low latitudes

    NASA Astrophysics Data System (ADS)

    Magdaleno, S.; Cueto, M.; Herraiz, M.; Rodríguez-Caderot, G.; Sardón, E.; Rodríguez, I.

    2013-04-01

    Plasma depletions (or bubbles) are strong reductions in the ionospheric F-region plasma density due to the appearance of a Rayleigh-Taylor instability in the post-sunset, producing severe radio signal disruptions when crossing them. Most of the plasma depletions are confined on the Appleton Anomaly region, which also shows the presence of strong scintillations activity. Therefore, stations located in the vicinity of the geomagnetic equator are expected to be frequently affected by the presence of plasma depletions. This paper provides a comparison between the plasma depletion detection results achieved using two algorithms: one developed by the National Institute for Aerospace Technology and the University Complutense of Madrid and one developed by GMV. Six equatorial stations distributed all over the world and different solar activity and seasonal conditions have been selected to analyze the algorithms’ response to different plasma depletions characteristics. A regional behavior analysis of the plasma depletion occurrence and characteristics is also provided.

  16. Can the high latitude ionosphere support large field-aligned ion drifts?

    NASA Technical Reports Server (NTRS)

    Sica, R. J.; Schunk, R. W.; Rasmussen, C. E.

    1988-01-01

    A three-dimensional time-dependent model of the ionosphere is used to examine recent results on vertical drift velocities and electron densities in the high latitude ionosphere. Upper limits for the downward ion velocity were found to be smaller than those obtained from previous measurements. The downward force in the model was arbitrarily increased to try to account for the narrow electron density profiles. It is noted that if the common volume measurement is made in a region of O(+) precipitation then the line profile would not be Doppler shifted when viewed off-zenith, and small field-aligned velocities and narrow profile widths would result.

  17. Day-to-day changes in ionospheric electron content at low latitudes

    NASA Astrophysics Data System (ADS)

    Dabas, R. S.; Bhuyan, P. K.; Tyagi, T. R.; Bhardwaj, R. K.; Lal, J. B.

    1984-06-01

    For a number of years, the ionospheric electron content (IEC) over the Indian subcontinent has been determined on the basis of the Faraday rotation of satellite radio beacon transmissions. In these determinations, use was made of the orbiting satellites BE-B and BE-C, and, for a limited period, of the geostationary satellite ATS 6. A large variability in day-to-day values of IEC was reported, and it was tried to correlate this phenomenon with magnetic activity, solar flux, or the effect of neutral winds. Tyagi (1978) observed that the day-to-day changes in IEC occur in the form of single day abnormality, and alternate day abnormality. Long-term fluctuations were found with a periodicity of about 45 days. The present investigation is concerned with a more detailed study of the observed variations. An analysis is conducted of IEC data recorded during the low phase of the solar cycle, taking into account data from six low-latitude stations covering a latitude range from approximately 15.0 deg N to 30.0 deg N.

  18. Responses of the low-latitude ionosphere to very intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Sobral, J. H. A.; Abdu, M. A.; Yamashita, C. S.; Gonzalez, W. D.; de Gonzalez, A. C.; Batista, I. S.; Zamlutti, C. J.; Tsurutani, B. T.

    2001-01-01

    In this work, we investigate the ionospheric responses to exceptionally high-intensity and long-duration magnetic storms over Brazil. Disturbed ionospheric F-region vertical drifts and peak electron density changes observed at the equatorial station Fortaleza - Fz (/3°55'S /38°25'W /dip-3.5°) and the low-latitude station Cachoeira Paulista - CP /(22°41'S /45°00'W dip24°S), for three magnetospheric storm events that occurred in December 1980, April 1981 and September 1982, are analyzed. These storms had minimum Dst indexes /-240,-311 and /-289nT, respectively. The interplanetary magnetic field (Bz) data from the ISEE-3 satellite, the auroral activity index AE, and the ring current index Dst are used as indicators of the magnetospheric conditions. The ionospheric response features are analyzed using the F-layer critical parameters h'F, hpF2 and foF2, from ionograms obtained at Fz and CP. The Bz and the AE index variations were much higher than those in many previous studies. Therefore, many of the observations reported here either have not been observed or are not readily explained by current models for predicting the penetration//dynamo disturbance electric fields. The altitude of the nocturnal ionospheric F-layer at low latitudes may undergo significant variations during storm-time, caused by magnitude variations on the local zonal component of the F-region electric field intensity. During the period studied here, clear association of the F-layer rise (vertical velocity and altitude) and spread-F occurrence is observed. It is shown that the storm-time layer rise has a dominant role on the equatorial spread-F. An attempt is made to identify the origin of electric fields responsible for the disturbed F-layer alterations. The main conclusions of this study are that (a) some effects on the F-layer height and peak electron concentrations are consistent with model predictions. Some others are in discrepancy or have not been either predicted by model studies or

  19. Studies of the Origin and Evolution of Ionospheric Irregularities and Their Effects on AF Systems

    DTIC Science & Technology

    2008-06-30

    the preconditioning of the low-latitude ionosphere before the onset of plasma bubbles, comparing the statistics of zonal drifts as observed by...INTRODUCTION 1 2. IONSPHERIC EFFECTS DURING MAGNETIC STORMS 1 2.1. Mid-Latitude Plasma Structuring Observed During Large Magnetic Storms 1 2.2...Simultaneous Observations of Plasma Structuring at Equatorial and Mid-Latitudes 1 2.3. Equatorial Ionosphere Response to Penetration Electric Fields

  20. Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes

    NASA Astrophysics Data System (ADS)

    Baker, J. B. H.; Greenwald, R. A.; Ruohoniemi, J. M.; Oksavik, K.; Gjerloev, J. W.; Paxton, L. J.; Hairston, M. R.

    2007-01-01

    During geomagnetic storms the ability of the Super Dual Auroral Radar Network (SuperDARN) to measure ionospheric convection becomes limited when the radars suffer from absorption and the auroral disturbance expands equatorward of the radar sites. To overcome these shortcomings, it was decided to construct a SuperDARN radar at middle latitudes on the grounds of the NASA Wallops Flight Facility. This paper presents the first comprehensive analysis of Doppler measurements from the Wallops radar, which commenced operations in May 2005. Wallops measurements are compared with the Goose Bay radar during the onset of a geomagnetic storm on 31 August 2005: Goose Bay measured the onset of geomagnetic activity at high latitude while Wallops monitored the expansion of convection to middle latitudes. Average convection patterns binned by the Kp geomagnetic index are also presented. During weak-moderate geomagnetic activity (Kp ≤ 3) the Wallops radar observes ionospheric irregularities between 50° and 60° magnetic latitude drifting westward across much of the nightside. When these measurements are incorporated into the calculation of an average SuperDARN convection pattern, the streamlines of polar cap outflow on the nightside become kinked in a manner reminiscent of the Harang discontinuity. This morphology arises quite naturally when the two-cell convection at high latitudes merges with the prevailing westward convection at middle latitudes. During increased geomagnetic activity (Kp ≥ 3), Wallops is able to measure the expansion of auroral electric fields to middle latitudes and the average SuperDARN cross-polar cap potential is increased by 25%.

  1. Disappearance of afternoon overshoot of Te in low latitude topside ionosphere

    NASA Astrophysics Data System (ADS)

    Oyama, Koichiro; Liu, Jann-Yenq; Kodama, T.; Kamogawa, H.; Kakinami, Yoshihiro

    To study the effect of the earthquake on the ionosphere, we need to take 3 stages. We first need to grab general features of Te/Ne such as on local time, season, solar flux, latitude and longitude. After we understood features above, we have constructed Te/Ne model. Te behavior during geomagnetic disturbance has been studied by applying models. We found that both Te/Ne models are quite reasonable. Especially Te model shows that 50 degrees K deviation at night has geophysical meaning. Finally the third step is to try to find deviation of Te from the model value associated with earthquake. So far we have studied three earthquakes; those are: EQ1, which occurred on 22 November 1981 with magnitude of 6.6, depth of 37 km, and epicenter of 14.09N/ 124.35 E, EQ2. which occurred on 11January,1982 with magnitude of 7.4, depth of 45 km ,and epicenter of 13.75N/ 124.36E,and EQ3, which occurred on 24 January ,1982 with magnitude of 6.6, depth of 37 km, and epicenter of 14.09 N/124.35 E. We found that Te in the afternoon overshoot reduces prior to and after earthquake. Ionogram data which was obtained at Manila show the reduction of NmF2 as well as reduction of h'F in the afternoon, whilst Taipei ionogram shows a slight increase of nmF2 ,but no clear h‘F variation was not detected. The paper discuss the mechanism of Te reduction of afternoon overshoot. Combination of satellite data as well as ground-based data implies the existence of westward electric field. The westward electric field reduces the eastward electric field, which is generated by neutral wind (dynamo electric field). Accordingly crest of the equatorial ionization anomaly moves equator ward and at the same time Ne at the crest region reduces. The westward electric field becomes more dominant as the latitude increases, pushes ionospheric plasma down, and forms a high electron density region. This high-density region remains after later afternoon, than normal days. The photoelectrons which travel along magnetic

  2. LWS Investigation of Middle-Latitude Topside Ionospheric Vertical Electron-Density Profiles

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Grebowsky, J. M.; Webb, P. A.

    2005-05-01

    A Living With a Star (LWS) Targeted Research and Technology (TR&T) proposal has been selected to determine the dependence of the mid-latitude topside ionospheric electron-density (Ne) altitude distributions on long-term solar-cycle variations and short-term solar-wind and magnetic disturbances. The main focus is on Ne profiles from the height of the ionospheric Ne maximum to ~3,000 km as deduced from ISIS (International Satellites for Ionospheric Studies) topside-sounder data. These data, obtained over an 18-year time interval, can be used to investigate secular changes in the topside Ne profiles, which reflect altitude changes in plasma temperature and ion composition, over more than a solar cycle. In addition to providing average distributions the data, which extend from the O+ dominated high-altitude F region to the H+ dominated plasmasphere, provide a unique framework for delineating the altitude dependence of mid-latitude ionospheric structures associated with the plasmapause, plasmaspheric tails and Storm Enhanced Densities (SEDs). The approach used is to determine the locations of mid-latitude O+/H+ transition altitudes by fitting the topside Ne profiles with modeled H+ and O+ profiles that have the base electron temperature and temperature gradient at 400 km as variables. The investigation makes use of existing topside Ne profiles obtained from 1960's manual scaling of 35-mm film-format ionograms, available from ftp://nssdcftp.gsfc.nasa.gov/, and profiles deduced from digital topside ionograms available from http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html.

  3. Direct observational evidence for disturbance dynamo on the daytime low-latitude ionosphere: A case study based on the 28 June 2013 space weather event

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Shreedevi, P. R.; Choudhary, R. K.; Pant, Tarun Kumar; Chakrabarty, D.; Sunda, S.; Mukherjee, S.; Bhardwaj, Anil

    2016-10-01

    A case of the westward disturbance dynamo (DD) electric field, influencing the daytime equatorial and low-latitude ionosphere, during a geomagnetic storm that occurred on 28-29 June 2013 is presented. The GPS total electron content (TEC) observations from a network of stations in the Indian equatorial, low and middle latitude regions along with the radio beacon TEC, ionosonde, and magnetic field observations are used to study the storm time behavior of the ionosphere. Negative ionospheric storm effects were seen over the low and middle latitudes during the storm time due to the presence of a westward DD electric field. Observations show that the suppression of the equatorial ionization anomaly (EIA) from the morning hours itself on 29 June 2013 took place due to the prevailing westward DD electric field, providing evidence for the model calculations by Balan et al. (2013). Simulations using the GITM model also agree well with our results. The present study gains importance as the direct observational evidences for disturbance dynamo effects on the daytime low-latitude ionosphere and the EIA are sparse, as it has been difficult to delineate it from the compositional disturbances.

  4. Mid-latitude field-aligned ionospheric irregularities and its impact on GPS

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Afraimovich, Edward; Ishin, Artem; Tinin, Mikhail

    2010-05-01

    Strong scintillations of amplitude and phase of transionospheric radio signals occur due to signal scattering on intensive small scale irregularities. Scintillation can have an adverse effect on GPS signals and cause a GPS receiver to lose lock on the signal in some extreme cases. Although the plasma bubble is a common phenomenon and it has been studied for years, precise observed data of ionospheric scintillations and loss of lock to GPS receivers due to plasma bubble at mid-latitude are still limited. In most papers there are no data regarding the space geometry of field-aligned irregularities. For the first time, we propose a GPS method to detect mid-latitude field-aligned irregularities (FAIs) by line-of-sight angular scanning regarding the local magnetic field vector. We show that total GPS L2 phase slips over Japan during the recovery phase of the 12 February, 2000 geomagnetic storm (Ma and Maruyama, 2006, doi:10.1029/2006GL027512) were caused by GPS signal scattering on FAIs for the line-of-sight of both aligned to magnetic field line (the field of aligned scattering, FALS), and across it or at large angles to magnetic field line (the field of across scattering, FACS). Our FALS results confirm well with data of investigation of magnetic field orientation control of GPS occultation observations of equatorial scintillation during detailed LEO CHAMP, SAC-C and PICOSat measurements, realized by Anderson and Strauss (2005, doi:10.1029/2005GL023781). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors. The work was supported by the Fundamental Research Program of RAS Physical Science Department (Project IV.12 "Modern problems of radiophysics").

  5. Magnetically Conjugate Observations of the Low Latitude Ionosphere in Western South America

    NASA Astrophysics Data System (ADS)

    Hickey, D. A.; Martinis, C. R.; Baumgardner, J. L.; Milla, M. A.; Mendillo, M.; Meriwether, J. W.

    2015-12-01

    An all-sky imager (ASI) installed at Villa de Leyva, Colombia (5.6° N, 73.5° W, 16.3° mag lat) in October 2014 is used in conjunction with another ASI near the magnetically conjugate point at El Leoncito in Argentina (31.8° S, 69.3° W, -19.6° mag lat) to study irregularities and perturbations in the ionosphere. A third ASI in Jicamarca, Peru (11.95° S, 76.87° W, 0.1° mag lat) provides context for the structures generated near the magnetic equator on the west coast of South America. The region sampled by these instruments covers from ~40° S to ~15° N and from ~ 80° W to ~65° W . The Jicamarca Radio Observatory has radar systems and other instruments that measure the upper atmosphere which, combined with the ASIs, allow us to uniquely study equatorial and low latitude processes. The ASIs are able to detect airglow depletions at 630 nm associated with equatorial spread F (ESF) that can also observed with coherent radar scatter measurements at Jicamarca. Simultaneous conjugate observations of ESF are compared to see how the large-scale structures behave at these locations. The ASIs are also used to look for a signature of the midnight temperature maximum (MTM) that is seen as an increase in brightness propagating poleward. Radar and Fabry-Perot interferometer data is used to measure this increase in temperature and combining them with the ASI data we will be able to probe the extent of MTM effects and investigate how they vary with latitude in both hemispheres.

  6. Solar cosmic ray effects in the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Shirochkov, A. V.

    1989-01-01

    The polar cap absorption (PCA) events are the most remarkable geophysical phenomena in the high latitude ionosphere. Their effects are extended on the whole polar region in both hemispheres. The PCA events are caused by the intense fluxes of the solar cosmic rays (SCR) which are generated by the solar proton flares. Entering into the Earth's magnetosphere and ionosphere the SCR fluxes create excessive anomal ionization at the ionospheric heights of 50 to 100 km which exceeds usual undisturbed level of ionization in several orders of magnitude. The PCA events can be considered as catastrophic in relation to the polar ionosphere because all radio systems using ionospheric radio channels ceased to operate during these events. On the other hand the abnormally high level of ionization in the ionospheric D region during the PCA events create excellent opportunities to conduct fruitful aeronomical research for the lower ionosphere. Obvious scientific and practical importance of the PCA events leads to publishing of special PCA catalogues. The ionospheric effects caused by the SCR fluxes were profoundly described in the classical paper (Bailey, 1964). Nevertheless several aspects of this problem were not studied properly. An attempt is made to clarify these questions.

  7. GNSS ionospheric scintillation and TEC at high latitudes: INGV monitoring and studies

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; de Franceschi, G.; Spogli, L.; Romano, V.

    2009-12-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is monitoring the high latitude ionospheric irregularities causing GNSS signals corruption since 2003 when a GISTM receiver (GPS Ionospheric Scintillation and TEC Monitor) was deployed in Ny Alesund (Svalbard). Currently, INGV manages three GISTMs at Svalbard (two in Ny Alesund, another one in Longyearbyen) and two receivers in Antarctica at Concordia and Mario Zucchelli Stations. The GISTM receivers consist of NovAtel OEM4 dual-frequency receivers with special firmware specifically able to compute in near real time the amplitude and the phase scintillation from the GPS L1 frequency signals, and the ionospheric TEC (Total Electron Content) from the GPS L1 and L2 carrier phase signals. From this ground-based network, we are able to capture the dynamics of ionospheric plasma in a wide latitudinal range, from auroral to cusp/cap regions, considering the contribution of both hemispheres, in a bi-polar framework. The data collected are structured and archived in a dedicated database: www.eswua.ingv.it. The INGV activities in the field of the observation and the investigation of the ionospheric irregularities are included in several international collaborations addressing scientific issues as well as technological applications. This paper would like to give an overview of our recent activities about polar ionospheric imaging, scintillation climatology and scintillation mitigation matured also under the umbrella of the SCAR ICESTAR community and, currently, part of the initiatives of the SCAR Action Group “GPS Weather and Space Weather Forecast”chaired by INGV.

  8. Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE

    NASA Astrophysics Data System (ADS)

    Cousins, E. D. P.; Matsuo, Tomoko; Richmond, A. D.

    2015-07-01

    An assimilative procedure for mapping high-latitude ionospheric electrodynamics is developed for use with plasma drift observations from the Super Dural Auroral Radar Network (SuperDARN) and magnetic perturbation observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This procedure incorporates the observations and their errors, as well as two background models and their error covariances (estimated through empirical orthogonal function analysis) to infer complete distributions of electrostatic potential and vector magnetic potential in the high-latitude ionosphere. The assimilative technique also enables objective error analysis of the results. Various methods of specifying height-integrated ionospheric conductivity, which is required by the procedure, are implemented and evaluated quantitatively. The benefits of using both SuperDARN and AMPERE data to solve for both electrostatic and vector magnetic potentials, rather than using the data sets independently or solving for just electrostatic potential, are demonstrated. Specifically, solving for vector magnetic potential improves the specification of field-aligned currents (FACs), and using both data sets together improves the specification of features in regions lacking one type of data (SuperDARN or AMPERE). Additionally, using the data sets together results in a better correspondence between large-scale features in the electrostatic potential distribution and those in the FAC distribution, as compared to using SuperDARN data alone to infer electrostatic potential and AMPERE data alone to infer FACs. Finally, the estimated uncertainty in the results decreases by typically ˜20% when both data sets rather than just one are included.

  9. Spatial Distribution of Ionospheric Plasma and Field Structures in the High-Latitude F Region

    NASA Technical Reports Server (NTRS)

    Kivanc, O.; Heelis, R. A.

    1998-01-01

    Ion density and velocity measurements from the Dynamics Explorer 2 (DE 2) spacecraft are used to obtain the average magnetic local time versus invariant latitude distribution of irregularities in the high-latitude F region ionosphere. To study the small-scale structure and its relationship to background conditions in the ionosphere, we have formed a reduced database using 2-s (approx. = 16 km) segments of the ion density and velocity data. The background gradients associated with each 2-s segment and the spectral characteristics, such as power at 6 Hz (approx. = 1.3 km) and spectral index, are among the reduced parameters used in this study. The relationship between the observed plasma structure and its motion is complex and dependent on the externally applied fields as well as locally generated plasma structure. The evolution of plasma structures also depends critically on the conductivity of the underlying ionosphere. Observations indicate an enhancement of irregularity amplitudes in two spatially isolated regions in both the ion density and the velocity. Convective properties seem to play a more important role in winter hemisphere where smaller-scale structures are maintained outside the source regions. (Delta)V irregularity amplitudes are enhanced in the cusp and the polar cap during northward interplanetary magnetic field regardless of season. The power in (Delta)V is usually higher than that associated with local polarization electric fields, suggesting that the observed structure in (Delta)N/N is strongly influenced by (Delta)V structure applied to large density gradients.

  10. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2016-09-01

    Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with

  11. Modeling of ionospheric irregularities during geomagnetically disturbed conditions over African low-latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Habarulema, John Bosco; Jurua, Edward

    2016-10-01

    In this study, station-specific models of ionospheric irregularities over low-latitude African region during geomagnetically disturbed days (Dst≤-50 nT) have been developed. Global Navigation Satellite Systems (GNSS)-derived ionospheric total electron content (TEC) data during 1998-2014 were used. Ionospheric irregularities were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, day number of the year, auroral electrojet, and the disturbance storm time indices, while the output is the hourly median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models were validated with independent data over stations within 680 km radius. The models reproduced fairly well the inhibitions and the occurrences of ionospheric irregularities during geomagnetically disturbed days. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. During validations of the models, the percentages of the number of errors (difference between the observed and the modeled ROTI) <0.05 total electron content unit, 1TECU = 1016 el m-2 (TECU)/Min at all the stations were all >70% and the root-mean-square error were mostly < 0.1 TECU/Min. Furthermore, the correlation coefficients ranged from 0.47 to 0.76.

  12. Relationship of solar wind parameters to continuous, dayside, high latitude traveling ionospheric convection vortices

    SciTech Connect

    McHenry, M.A.; Clauer, C.R. ); Friis-Christensen, E. )

    1990-09-01

    In a companion paper the authors have shown that many continuous, dayside, high latitude magnetic pulsations are caused by steady, traveling ionospheric convection vortices (McHenry et al. this issue). A variety of evidence indicates that these vortices are the ionospheric signatures of the Kelvin-Helmholtz instability at the inner edge of the magnetospheric boundary layer. In this paper the authors present the results of a statistical study of the occurrence of these vortices and the upstream solar wind parameters observed by the IMP 8 spacecraft. Surveying fifty days of Greenland west coast chain magnetometer data indicates this class of pulsations is most likely to be detected post local noon and when the solar wind speed is low. However, it is possible that observational factors significantly affect the detection of the vortices. the slow solar wind might create large, slow moving traveling vortices of steady strength which are easiest to identify. Little correlation is found between the average IMF and the probability of detecting the vortices. They also find a strong correlation between the frequency of dayside pulsations and the solar wind speed. This suggests that many pulsations are caused by traveling ionospheric current systems that map to the vicinity of the flows in the magnetospheric boundary layer. Periods also exist when the IMF is variable and large pulsations with 5 to 20 min period exist. These pulsations are not caused by traveling ionospheric vortices but are likely to be the result of rapid variations of the large scale field-aligned cusp currents.

  13. A Unified Fluid Model for Low-latitude Ionosphere Turbulence Causes Radiowave Scintillations

    NASA Astrophysics Data System (ADS)

    Hassan, E.; Horton, W.

    2012-12-01

    Nonlinear dynamics of the low latitudes E-layer simulated with a systems of differential equations describing the neutral wind driven Farley-Buneman instability and the density-gradient-drift instability as rising bubbles and falling higher electron density spikes. The simulations extent earlier nonlinear studies by using empirical models for the atmosphere and ionosphere backgrounds to give realistic local time-altitude parameters within a Python wrapped F90 simulations. New equations that keep both the compressional and rotational ion flows that apply in the lower F layer are analyzed to describe plumes extending to the peak of the F layer. A ray-tracing technique is used to describe the small angle scattering at high frequency [Gigahertz] GNSS signals treated as rays in the turbulent ionospheric plasma.

  14. Topside ionospheric electron temperature and density along the Weddell Sea latitude

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chang, F. Y.; Oyama, K. I.; Kakinami, Y.; Yeh, H. C.; Yeh, T. L.; Jiang, S. B.; Parrot, M.

    2015-01-01

    has been well known that the ionospheric electron density Ne is greater in the summer nighttime than daytime around the Weddell Sea region, which is named Weddell Sea Anomaly (WSA). This paper for the first time reports unusual increases (decreases) of the daytime (nighttime) electron temperature Te at about 830 km altitude over the WSA latitudes probed by Tatiana-2 during December 2009 to January 2010. Concurrent measurements at 660-830 km altitude observed by Tatiana-2, Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER), and Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere and Climate (F3/C) reveal the anticorrelation between Te and Ne along the WSA latitudes in the daytime and nighttime. Based on F3/C Ne along the WSA latitudes observed at various local times, the associated Te values are computed. The Tatiana-2 and DEMETER observations as well as the computed results show that Te yield the maximum values over the WSA region during daytime and over the Indian and Atlantic Ocean area during nighttime. The maxima or minima in F3/C Ne and the computed Te reveal eastward phase shifts.

  15. A new methodology for the development of high-latitude ionospheric climatologies and empirical models

    NASA Astrophysics Data System (ADS)

    Chisham, G.

    2017-01-01

    Many empirical models and climatologies of high-latitude ionospheric processes, such as convection, have been developed over the last 40 years. One common feature in the development of these models is that measurements from different times are combined and averaged on fixed coordinate grids. This methodology ignores the reality that high-latitude ionospheric features are organized relative to the location of the ionospheric footprint of the boundary between open and closed geomagnetic field lines (OCB). This boundary is in continual motion, and the polar cap that it encloses is continually expanding and contracting in response to changes in the rates of magnetic reconnection at the Earth's magnetopause and in the magnetotail. As a consequence, models that are developed by combining and averaging data in fixed coordinate grids heavily smooth the variations that occur near the boundary location. Here we propose that the development of future models should consider the location of the OCB in order to more accurately model the variations in this region. We present a methodology which involves identifying the OCB from spacecraft auroral images and then organizing measurements in a grid where the bins are placed relative to the OCB location. We demonstrate the plausibility of this methodology using ionospheric vorticity measurements made by the Super Dual Auroral Radar Network radars and OCB measurements from the IMAGE spacecraft FUV auroral imagers. This demonstration shows that this new methodology results in sharpening and clarifying features of climatological maps near the OCB location. We discuss the potential impact of this methodology on space weather applications.

  16. Behavior of zonal ion drifts in low and middle latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Mohapatra, Sasmita

    The Earth's environment consists of a neutral and an ionized atmosphere. The neutral atmosphere can be divided by its temperature profile into the troposphere (0-12 km), the stratosphere (12-45 km), the mesosphere (45-85 km), the thermosphere (85-1000 km) and exosphere (>1000 km). The Earth's ionized atmosphere is typically divided by density and composition into the ionosphere (70-1000 km), the plasmasphere (1000 km to 4 Re for MLAT less than 60°), and the magnetosphere extending to nearly 8 Re on the dayside and to approximately 1000 Re on the nightside. The Earth's ionosphere does not get direct energy from the solar wind because it is shielded by its magnetic field. The region of geospace is dominated by Earth's magnetic field is called the magnetosphere and outermost edge of the magnetosphere, called the magnetopause is maintained by the charged particles from the solar wind flowing along the boundary. The largest energy transfer from the solar wind to the magnetosphere is driven by an electric field directed dawn to dusk. This limited study shows that during large magnetic storms, ion drifts driven by the magnetosphere penetrate to latitudes as low as the dip equator on the dusk side and extend a few degrees equatorward of the auroral zone on the dawn side. A description of the evolution of the auroral precipitation and the zonal ion drifts at high latitudes during times of extreme storm activity is produced by applying some quantitative definitions that allow us to identify the expansion and penetration of the high-latitude zonal ion drifts to middle and low latitudes in the ionosphere. Times are identified when ion drifts driven from the magnetosphere exist at latitudes inside the plasmasphere and when regions below the auroral zone may be influenced by a disturbance dynamo. The resolved boundaries in the ion drifts and the electron precipitation allow us to distinguish penetration events from sub-auroral polarization fields. This limited study also shows

  17. A Comprehensive Assessment of Radio Occultation Ionospheric Measurements at Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Keele, C.; Brum, C. G. M.; Rodrigues, F. S.; Aponte, N.; Sulzer, M. P.

    2015-12-01

    The GPS radio occultation (RO) has become a widely used technique for global measurements of the ionospheric electron density (Ne). To advance our understanding of the accuracy of the RO profiles at mid latitudes, we performed a comprehensive comparison of RO measurements made by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations of Ne profiles made by the Arecibo Observatory incoherent scatter radar (ISR). COSMIC is formed by six satellites in circular, 800 km altitude low-Earth orbit (LEO) at 72° inclination. The satellites orbit in their own plane, approximately 24° apart in ascending node. The satellites are equipped with dual-frequency GPS receivers capable of making measurements of the total electron content (TEC) along the signal path and, therefore, RO observations. The Arecibo ISR, located at(18.35°N, 66.75°W; ˜28.25°N dip latitude), operates at a frequency of 430 MHz with a maximum bandwidth of about 1 MHz. The large collecting area provided by the 300 m dish antenna combined with high peak power transmitters (2.0-2.5 MW) allows the radar to make accurate Ne measurements throughout the entire ionospheric F-region and topside heights. We analyzed 74 and 89 days of line feed and Gregorian data, respectively, collected between 2006 and 2014. There were 638 RO profiles measured within 10° of latitude and 20° of longitude from Arecibo Observatory and within ±10 minutes of the radar measurements. Preliminary analyses of the observations show patterns in the relationship between densities measured by the Arecibo ISR and densities estimated from the COSMIC ROs. We will present and discuss the behavior of the patterns. We will also present results of a numerical model representing the patterns and discuss the possibility of using this model to improve RO estimates of density profiles.

  18. First evidence of anisotropy of GPS phase slips caused by the mid-latitude field-aligned ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Ishin, A. B.; Tinin, M. V.; Yasyukevich, Yu. V.; Jin, S. G.

    2011-05-01

    The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.

  19. Theoretical study of the electron temperature in the high-latitude ionosphere for solar maximum and winter conditions

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.; Bowline, M. D.

    1986-01-01

    The T(e) variation in the high-latitude ionosphere at altitudes between 120 and 800 km has been modeled for solar maximum, winter solstice, and strong magnetic activity conditions. The calculated electron temperatures are consistent with the plasma densities and ion temperatures computed from a time-dependent ionospheric model. Heating rates for both solar EUV and auroral precipitation were included. In general, the predicted UT variation of the electron temperature that results from the displacement between the magnetic and geographic poles is only a few hundred degrees. However, in sunlit trough regions, T(e) hot spots develop, and these hot spots show a marked UT variation, by as much as 2500 K. The dominant parameter controlling the T(e) variation above 200 km is the magnetospheric heat flux into the ionosphere, which is essentially unknown. For realistic values of the magnetospheric heat flux, the maximum electron temperature ranges from 5000 to 10,000 K at 800 km. A magnetospheric heat flux is particularly effective in enhancing trough electron temperatures. In general, the electron heat flux at high altitudes is uniquely related to the electron temperature and gradient, except on auroral field lines where thermoelectric heat flow is important.

  20. First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kalishin, A. S.; Yeoman, T. K.; Häggström, I.

    2017-03-01

    We provide the first experimental evidence of the sensitivity of phenomena induced by extraordinary (X-mode) polarized HF high power radio waves to pump frequency stepping across the fifth electron gyro-harmonic (5fce) from below to above. The results were obtained at the EISCAT (European Incoherent Scatter Scientific Association) HF heater facility near Tromsø under effective radiated powers of 456-715 MW, when the HF pump wave was transmitted into the magnetic zenith. We have analyzed the behavior and intensities of various spectral lines in the narrowband stimulated electromagnetic emission (SEE) spectra observed far from the heater, HF-enhanced plasma and ion lines (HFPL and HFIL) from EISCAT UHF incoherent scatter radar spectra, and artificial field-aligned irregularities from CUTLASS (Co-operative UK Twin Located Auroral Sounding System) observations, depending on the frequency offset of the pump field relative to the 5fce. At pump frequencies below 5fce the narrowband SEE spectra exhibited very intense so-called stimulated ion Bernstein scatter (SIBS), accompanied by other spectral components, associated with stimulated Brillouin scatter (SBS), which are greatly suppressed and disappeared in the vicinity of 5fce and did not reappear at fH>5fce. As the pump frequency reached 5fce, the abrupt enhancements of the HFPL and HFIL power, the appearance of cascade lines in the plasma line spectra, and the onset of increasing CUTLASS backscatter power occurred. That is opposite to the ordinary mode (O-mode) effects in the vicinity of 5fce. The X-mode pumping at frequencies below and in the vicinity of the fifth electron gyro-harmonic clearly demonstrated an ascending altitude of generation of induced plasma and ion lines from the initial interaction height, whereas for O-mode heating the region of interaction descended. The observations are consistent with the coexistence of the electron acceleration along and across the geomagnetic field at fH<5fce, while only very

  1. Modelling the probability of ionospheric irregularity occurrence over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Jurua, Edward; Bosco Habarulema, John; Anguma Katrini, Simon

    2015-06-01

    This study presents models of geomagnetically quiet time probability of occurrence of ionospheric irregularities over the African low latitude region. GNSS-derived ionospheric total electron content data from Mbarara, Uganda (0.60°S, 30.74°E, geographic, 10.22°S, magnetic) and Libreville, Gabon (0.35°N, 9.68°E, geographic, 8.05°S, magnetic) during the period 2001-2012 were used. First, we established the rate of change of total electron content index (ROTI) value associated with background ionospheric irregularity over the region. This was done by analysing GNSS carrier-phases at L-band frequencies L1 and L2 with the aim of identifying cycle slip events associated with ionospheric irregularities. We identified at both stations a total of 699 events of cycle slips. The corresponding median ROTI value at the epochs of the cycle slip events was 0.54 TECU/min. The probability of occurrence of ionospheric irregularities associated with ROTI ≥ 0.5 TECU / min was then modelled by fitting cubic B-splines to the data. The aspects the model captured included diurnal, seasonal, and solar flux dependence patterns of the probability of occurrence of ionospheric irregularities. The model developed over Mbarara was validated with data over Mt. Baker, Uganda (0.35°N, 29.90°E, geographic, 9.25°S, magnetic), Kigali, Rwanda (1.94°S, 30.09°E, geographic, 11.62°S, magnetic), and Kampala, Uganda (0.34°N, 32.60°E, geographic, 9.29°S, magnetic). For the period validated at Mt. Baker (approximately, 137.64 km, north west), Kigali (approximately, 162.42 km, south west), and Kampala (approximately, 237.61 km, north east) the percentages of the number of errors (difference between the observed and the modelled probability of occurrence of ionospheric irregularity) less than 0.05 are 97.3, 89.4, and 81.3, respectively.

  2. The middle and high latitude winter ionosphere at the Ariel 4 satellite altitude

    NASA Technical Reports Server (NTRS)

    Tulunay, Y. K.; Grebowsky, J. M.

    1983-01-01

    The electron (0+) density variations over the northern and southern winter high latitude ionosphere are comprehensively analyzed using the technique of Brinton et al. (1978). Two-hour Magnetic Local Time (MLT) arithmetic means of electron densities are studied in terms of invariant magnetic latitude and in terms of magnetic activity as classified by the three-hour planetary magnetic activity index. It is found that the southern hemisphere densities are significantly lower than those in the northern hemisphere. Further, the maximum electron densities observed in the northern hemisphere are located in a MLT range symmetrical about the 14-02 MLT meridian, whereas in the southern hemisphere the maxima are observed about the noon midnight magnetic meridian. A deep localized ionization hole on the nightside of the polar cap is not observed although the polar cavity is apparent.

  3. Ionospheric frequency spread and its relationship with range spread in mid-latitude regions

    SciTech Connect

    Bowman, G.G. )

    1991-06-01

    The distinction between range spread and frequency spread as seen on mid-latitude ionograms is discussed. A classification of these two types of spread F is proposed in terms of different arrangements of the duplicate traces which provide the basic trace structures of mid-latitude spread F ionograms. Experimental results are presented to support the idea that frequency spread results from multiple ray paths (associated with a shallow ripple structure in the isoionic contours) close to the direction of the zenith position, so that each ray path has a range approximately equal to that of its neighbor. Furthermore, a horizontal gradient of maximum electron density is an additional requirement to create frequency spread. Atmospheric conditions (involving ionospheric F{sub 2} region heights and upper atmosphere neutral particle densities) which seem to favor the generation of frequency spread are discussed.

  4. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    NASA Astrophysics Data System (ADS)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  5. Ionosphere data assimilation capabilities for representing the high-latitude geomagnetic storm event in September 2011

    NASA Astrophysics Data System (ADS)

    Solomentsev, Dmitry; Jacobsen, Knut Stanley; Khattatov, Boris; Khattatov, Vyacheslav; Cherniak, Yakov; Titov, Anton

    2014-12-01

    Severe geomagnetic storms have a strong impact on space communication and satellite navigation systems. Forecasting the appearance of geomagnetically induced disturbances in the ionosphere is one of the urgent goals of the space weather community. The challenge is that the processes governing the distribution of the crucial ionospheric parameters have a rather poor quantitative description, and the models, built using the empirical parameterizations, have limited capabilities for operational purposes. On the other hand, data assimilation techniques are becoming more and more popular for nowcasting the state of the large-scale geophysical systems. We present an example of an ionospheric data assimilation system performance assessment during a strong geomagnetic event, which took place on 26 September 2011. The first-principle model has assimilated slant total electron content measurements from a dense network of ground stations, provided by the Norwegian Mapping Authority. The results have shown satisfactory agreement with independent data and demonstrate that the assimilation model is accurate to about 2-4 total electron content units and can be used for operational purposes in high-latitude regions. The operational system performance assessment is the subject of future work.

  6. Enhanced Airglow by High Frequency Electromagnetic Pumping of the Ionosphere at Auroral Latitudes

    NASA Astrophysics Data System (ADS)

    Leyser, T. B.; Gustavsson, B.; Brändström, B. U. E.; Steen, E.; Honary, F.; Rietveld, M. T.; Aso, T.; Ejiri, M.

    2000-10-01

    A powerful high frequency electromagnetic pump wave transmitted into the ionosphere from the ground may enhance the background airglow. The airglow enhancement is due to an increase in the number of electrons having energies which are an order of magnitude higher than the thermal energy in the ionospheric plasma. The energetic electrons collisionally excite, for example, the meta-stable O(1D) state in atomic oxygen, which radiates at 630 nm as the excited oxygen atom relaxes to its ground state. Airglow enhancement is used to study, for example, the dissipation of the pump-driven plasma turbulence by electron energization. We present experimental results of pumping the ionospheric F region with the EISCAT-Heating facility at auroral latitudes in Norway and detection of the airglow with the multi-station Auroral Large Imaging System (ALIS) in northern Sweden. The experimental results also include simultaneous measurements of background plasma parameter values with the EISCAT-UHF incoherent scatter radar. The multi-station imaging technique enables for the first time tomography-like inversion to estimate the spatial extent of the pumped airglow cloud. Further, the airglow enhancement is correlated with large pump-induced electron temperature enhancements of up to 250

  7. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    NASA Astrophysics Data System (ADS)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  8. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  9. TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination

    NASA Astrophysics Data System (ADS)

    Xu, J. S.; Li, X. J.; Liu, Y. W.; Jing, M.

    2014-09-01

    Based on measurements of ground-based GPS station network, differences of the mid-latitude ionospheric TEC in the east and west sides of North America, South America and Oceania have been analyzed in this paper. Results show that for nearly all seasons from 2001 to 2010 and in both sides of the longitudes with zero declination, there exist systematic differences for the mid-latitude ionospheric TEC in the regions mentioned above and the features of these differences markedly depend upon the local time but less depend upon seasons and the level of solar activity. Theory analysis shows that the longitude variations of both declination and zonal thermospheric winds are one of important factors to cause differences of the mid-latitude ionospheric TEC in both sides of the longitudes with zero declination.

  10. High-order ionospheric effects on electron density estimation from Fengyun-3C GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Li, Junhai; Jin, Shuanggen

    2017-03-01

    GPS radio occultation can estimate ionospheric electron density and total electron content (TEC) with high spatial resolution, e.g., China's recent Fengyun-3C GPS radio occultation. However, high-order ionospheric delays are normally ignored. In this paper, the high-order ionospheric effects on electron density estimation from the Fengyun-3C GPS radio occultation data are estimated and investigated using the NeQuick2 ionosphere model and the IGRF12 (International Geomagnetic Reference Field, 12th generation) geomagnetic model. Results show that the high-order ionospheric delays have large effects on electron density estimation with up to 800 el cm-3, which should be corrected in high-precision ionospheric density estimation and applications. The second-order ionospheric effects are more significant, particularly at 250-300 km, while third-order ionospheric effects are much smaller. Furthermore, the high-order ionospheric effects are related to the location, the local time, the radio occultation azimuth and the solar activity. The large high-order ionospheric effects are found in the low-latitude area and in the daytime as well as during strong solar activities. The second-order ionospheric effects have a maximum positive value when the radio occultation azimuth is around 0-20°, and a maximum negative value when the radio occultation azimuth is around -180 to -160°. Moreover, the geomagnetic storm also affects the high-order ionospheric delay, which should be carefully corrected.

  11. Magnetic field fluctuations observed by the Swarm constellation in the nighttime mid-latitude topside ionosphere

    NASA Astrophysics Data System (ADS)

    Park, J.; Luhr, H.; Kervalishvili, G.; Rauberg, J.; Michaelis, I.; Stolle, C.; Kwak, Y. S.

    2015-12-01

    Using single-satellite observations on Low-Earth-Orbits (LEO), some previous studies suggested that electric and magnetic field fluctuations observed in the nighttime mid-latitude ionosphere originate from medium-scale traveling ionospheric disturbances (MSTIDs). With the inherently 1-dimensional sampling, however, those studies could not confirm whether (1) the electric and magnetic field fluctuations are spatial structures rather than temporal variations, and (2) horizontal shapes of the field fluctuation regions generally have mirror symmetry with respect to the magnetic equator, just as MSTIDs do. In this presentation we analyze magnetic field data sampled by three identical Swarm satellites. The results support the idea of a close connection between mid-latitude magnetic fluctuations (MMFs) and MSTIDs in the nighttime sector. Combined with the relationship between MMFs and MSTIDs, the MMF climatology can be used for extending that of MSTIDs, which has been poorly investigated over oceans. In addition, we have conducted a scale size analysis and found that coherence lengths of MMFs are typically shorter than 150 km. We also discuss the possibility that the MMF regions are aligned with the background magnetic field.

  12. Probabilistic Forecasting of Ionospheric Scintillation and GNSS Receiver Signal Tracking Performance at High Latitudes

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Sreeja, V.; Aquino, M.; Jayachandran, P. T.

    2012-12-01

    At high latitudes, phase scintillation occurs predominantly on the dayside in the ionospheric footprint of magnetospheric cusp and in the nightside auroral oval. A new technique of probabilistic forecast of phase scintillation occurrence relative to arrival time of high-speed solar wind (HSSW) from coronal holes and interplanetary coronal mass ejections (ICMEs) has recently been proposed [Prikryl et al., 2012]. Cumulative probability distribution functions for the phase scintillation occurrence that are obtained can be specified for low and high (below- and above-median) values of various solar wind plasma parameters. Recent advances in solar wind modeling of HSSW and ICMEs combined with the probabilistic forecasting of scintillation will lead to improved operational space weather forecasting applications. Scintillation forecasting and mitigation techniques need to be developed to avoid potential costly failures of Global Navigation Satellite Systems (GNSS)-based technology in the near future, in particular during the upcoming solar maximum. GNSS receiver tracking performance during severe scintillation conditions can be assessed by the analysis of receiver phase lock loop (PLL) jitter variance. Tracking jitter variance maps [Sreeja et al, 2011] offer a potentially useful tool to provide users with expected tracking conditions, if based on scintillation prediction as proposed above. Scintillation indices are obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN). Combined with high rate amplitude and phase data they can be used as input to receiver tracking models to develop scintillation mitigation techniques. References Prikryl, P., P. T. Jayachandran, S. C. Mushini, and I. G. Richardson (2012), Towards the Probabilistic Forecasting of High-Latitude GPS Phase Scintillation, Space Weather, doi:10.1029/2012SW000800, in press. Sreeja, V., M. Aquino, and Z. G. Elmas (2011), Impact of ionospheric scintillation on GNSS receiver

  13. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  14. Modelling of ionospheric irregularities during geomagnetic storms over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick

    2016-07-01

    In this study, empirical models of occurrence of ionospheric irregularities over low latitude African region during geomagnetic storms have been developed. The geomagnetic storms considered consisted of Dst ≤ -50 nT. GNSS-derived ionospheric Total Electron Content (TEC) data over Libreville, Gabon (NKLG) (0.35° N, 9.68° E, geographic, 8.05° S, magnetic) and Malindi, Kenya (MAL2) (2.99° S, 40.19° E, geographic, 12.42° S, magnetic) during 2000 - 2014 were used. Ionospheric irregularities at scale- lengths of a few kilometers and ˜400 m were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, Auroral Electrojet index, day of the year, and the Dst index, while the output is the median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models using data over NKLG and MAL2 were validated with independent data over stations within 510 km and 680 km radius, respectively. The models captured the enhancements and inhibitions of the occurrence of the ionospheric irregularities during the storm period. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. The correlation coefficients for the validations were statistically significant and ranged from 0.58 - 0.73, while the percentage of the variance in the observed data explained by the modelled data ranged from 34 - 53.

  15. Modelled ionospheric Te profiles at mid-latitudes for possible IRI application

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Schunk, R. W.; Bowline, M. D.

    The electron temperature (Te) variation in the midlatitude ionosphere at altitudes between 120-800 km has been modeled for various seasonal and solar-cycle conditions. The calculated electron temperatures are consistent with plasma densities and ion temperatures computed from a time-dependent ionospheric model. The Te distribution can be represented by a subset of standard Te profiles. Te above 200 km is controlled by the magnetospheric heat flux into the ionosphere. For realistic values of the magnetospheric heat flux, the maximum electron temperature ranges from 3000 to 10,000 K at 800 km. The effect of increasing the heat flux is to increase the topside temperature but retain the profile shape. Hence, given a topside Te observation and selection of an appropriate profile shape, the entire Te distribution can be computed.

  16. Saturn ionosphere - Theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Waite, J. H.

    1981-08-01

    Voyager 1 high latitude and Pioneer 11 equatorial ionospheric structure indicate a solar EUV-controlled ionosphere with a possible molecular ion in the topside. Vibrationally excited H2 in the high latitudes may be an important loss mechanism. Dynamical effects are expected to be important for determining the peak density and its location.

  17. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge

    NASA Astrophysics Data System (ADS)

    Fedorov, E.; Mazur, N.; Pilipenko, V.; Baddeley, L.

    2016-11-01

    The ionospheric Alfvén resonator (IAR) and fast magnetosonic (FMS) waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to several Hz, are characteristic features of the upper ionosphere. Their role in the electromagnetic impulsive coupling between atmospheric discharge processes and the ionosphere can be elucidated with a proper model. The presented model is based on numerical solution of coupled wave equations for electromagnetic modes in the ionosphere and atmosphere in a realistic ionosphere modeled with the use of IRI (International Reference Ionosphere) vertical profiles. The geomagnetic field is supposed to be nearly vertical, so the model can be formally applied to high latitudes, though the main features of ground ULF structure will be qualitatively similar at middle latitudes as well. The modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. Using the model, the spatial structure, frequency spectra, and polarization parameters have been calculated at various distances from a vertical dipole. In the lightning proximity (about several hundred kilometer) only the lowest IAR harmonics are revealed in the radial magnetic component spectra. At distances >800 km the multiband spectral structure is formed predominantly by harmonics of FMS waveguide modes. The model predictions do not contradict the results of search coil magnetometer observations on Svalbard; however, the model validation demands more dedicated experimental studies.

  18. DMSP F8 observations of the mid-latitude and low-latitude topside ionosphere near solar minimum

    SciTech Connect

    Greenspan, M.E.; Hughes, W.J. |; Burke, W.J.; Rich, F.J.; Heelis, R.A.

    1994-03-01

    The retarding potential analyzer on the DMSP F8 satellite measured ion density, composition, temperature, and ram flow velocity at 840-km altitude near the dawn and dusk meridians close to solar minimum. Nine days of data were selected for study to represent the summer and winter solstices and the autumnal equinox under quiet, moderately active, and disturbed geomagnetic conditions. The observations revealed extensive regions of light-ion dominance along both the dawn and dusk legs of the DMSP F8 orbit. These regions showed seasonal, longitudinal, and geomagnetic control, with light ions commonly predominating in places where the subsatellite ionosphere was relatively cold. Field-aligned plasma flows also were detected. In the morning, ions flowed toward the equator from both sides. In the evening, DMSP F8 detected flows that either diverged away from the equator or were directed toward the northern hemisphere. The effects of diurnal variations in plasma pressure gradients in the ionosphere and plasmasphere, momentum coupling between neutral winds and ions at the feet of field lines, and E {times} B drifts qualitatively explain most features of these composition and velocity measurements. 23 refs., 5 figs., 2 tabs.

  19. Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Gedam, S. S.; Rajaram, G.; Sripathi, S.; Bhaskar, A.

    2015-12-01

    The annular solar eclipse of 15 January 2010 over southern India was studied with a multi-instrument network consisting of magnetometer, ionosonde and GPS receivers. The presence of a counter electrojet (weakened or westward zonal electric field) during the eclipse and adjacent days suggests the strong gravitational tidal effect associated with the exceptional Sun-Moon-Earth alignment around the eclipse day. With a strong backup of magnetometer recordings on the day of eclipse, its adjacent days and the normal electrojet day, it is argued that the regular eastward electric field for the whole day at the equator was not just weakened, but actually was flipped for several hours by the influence of enhanced lunar tides. The effect of flipping the electric field was clearly seen in the equatorial ionosonde data and through the large array of GPS receivers that produced the total electron content (TEC) data. The main impact of flipping the electric field was poor feeding of equatorial ionization anomaly (EIA) due to the severely weakened fountain effect on the eclipse day, with the regular anomaly crest shifting towards the equator. The equatorial ionosonde profile was also showing an enhanced F2 region peak in spite of a reduced vertical TEC. While the plasma density depletion at the lower F region altitude over the equator was due to the temporary lack of photo-ionization, the reductions in high altitude plasma density beyond the equator were caused by the electrodynamics taking place around the eclipse. The important finding of this analysis is that the electrodynamical consequences on the low latitude ionosphere were mainly due to the combination of eclipse and lunar tides which were far more significant and influenced the EIA density rather than eclipse alone. Based on these findings, it is argued that the prevailing lunar tidal impact also needs to be taken into account while seeking to understand the electrodynamical impact of the solar eclipse on the low

  20. Characteristic features of topside ionograms in the high-latitude ionosphere.

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Danilkin, Nick; Tsybulya, Konstantin; Zhuravliov, Sergey

    Topside ionograms display a multitude of specific features in the high-latitude regions. In this report we present an analysis of these features based upon topside ionograms of the Kosmos-1809 satellite taken in May-June 1987. These ionograms were received onboard icebreaker Sibir during a polar expedition in this time. Since the ionograms were downlinked directly in the time of sounding, they were not strongly curtailed to fit the limited onboard memory and thus were much more informative. Acquiring the data in such way allowed us to see little-studied and even unknown ionogram features. Among them we note traces of a characteristic form which were interpreted earlier as signal reflections from almost vertical walls with increased electron density. Such structures are typical for the auroral oval ionosphere. To interpret this features we used a technique of ray trajectory synthesis. We present a sequence of ionograms with all phases of closing to, flying through and away from a higher-density wall. Quite often one find on the polar ionograms broad-band noise signals in different frequency ranges. On the ionograms they are seen as frequency-limited vertical columns from the very top of the ionogram to its bottom. Low-frequency noise (0.3-0.8 MHz) appear during auroral oval fly-throughs and are interpreted as a result of auroral kilometric radiation (AKR). Narrow bands on the magnetic gyrofrequency and upper hybrid frequency could be understood as an ionospheric plasma resonance response near the radiating antenna. Also, there are strong noises in the 3-5 MHz which we were not able to interpret. During some sounding sessions the transmitter was turned off so it was possible to record only natural and artificial noises and separate them from the ionospheric sounding responses.

  1. A study of the daytime E-F sub 1 region ionosphere at mid-latitudes

    SciTech Connect

    Buonsanto, M.J. )

    1990-06-01

    A photochemical equilibrium daytime model is used to study the ionosphere between 110 and 180 km at mid-latitudes. The model includes the latest photoionization and photoabsorption cross sections, extreme untraviolet (EUV) fluxes in 37 wavelength bands, and all reactions believed to be important in this region. Model results are compared with (1) noon-time E layer critical frequency (foE) at Boulder and Wallops Island over a full solar cycle; (2) Millstone Hill incoherent scatter radar observations of electron density at 180 km (N{sub 180}) for a wide variety of seasons and solar geophysical conditions; (3) selected Millstone Hill incoherent scatter profiles of electron density between 110 and 180 km which included E-F{sub 1} valley minima; and (4) the ratio of the molecular ion concentration to the total ion concentration at 180 km for noon throughout the solar cycle as given by both the IRI-86 ion composition model and the semiempirical ion composition model of Oliver. Best agreement between the photochemical model documented in this paper and the observations and ion composition models is generally obtained if (1) the EUV fluxes in the photochemical model are increased by 25-30% above values derived from published reference spectra; (2) neutral densities used in the photochemical model are decreased by 25% below those given by MSIS-86 at equinox, with larger decreases in winter, and smaller or no decreases in summer. The results show that this region of the ionosphere can be modeled with reasonable success given the current state of knowledge. Modeling this region of the ionosphere is important for resolving ambiguities in true height analysis of ionograms and reduction of incoherent scatter spectra. Improved modeling requires more accurate values of aeronomical parameters, i.e., ionizing fluxes, cross sections, reaction rates, composition and temperature.

  2. Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.; Pacheco, E.

    2014-12-01

    LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.

  3. Storm-time ionization enhancements at the topside low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Dmitriev, A.; Yeh, H.-C.

    2008-05-01

    Ion density enhancements at the topside low-latitude ionosphere during a Bastille storm on 15-16 July 2000 and Halloween storms on 29-31 October 2003 were studied using data from ROCSAT-1/IPEI experiment. Prominent ion density enhancements demonstrate similar temporal dynamics both in the sunlit and in the nightside hemispheres. The ion density increases dramatically (up to two orders of magnitude) during the main phase of the geomagnetic storms and reaches peak values at the storm maximum. The density enhancements are mostly localized in the region of a South Atlantic Anomaly (SAA), which is characterized by very intense fluxes of energetic particles. The dynamics of near-Earth radiation was studied using SAMPEX/LEICA data on >0.6 MeV electrons and >0.8 MeV protons at around 600 km altitude. During the magnetic storms the energetic particle fluxes in the SAA region and in its vicinity increase more than three orders of magnitude. The location of increased fluxes overlaps well with the regions of ion density enhancements. Two mechanisms were considered to be responsible for the generation of storm-time ion density enhancements: prompt penetration of the interplanetary electric field and abundant ionization of the ionosphere by enhanced precipitation of energetic particles from the radiation belt.

  4. Ground-satellite conjugate observations of low-latitude travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ceren Moral, Aysegul; Shiokawa, Kazuo; Otsuka, Yuichi; Suzuki, Shin; Liu, Huixin; Yatini, Clara

    2016-07-01

    Equatorial travelling ionospheric disturbances (TIDs) are studied by using three CHAMP satellite overpasses on ground-based 630-nm airglow images. The airglow images are obtained from Kototabang (KTB), Indonesia (geographic coordinates: 0.2S, 100.3E, geomagnetic latitude: 10.6S). From 7-year data from October 2002 to October 2009, April 30, 2006 (event 1), September 28, 2006 (event 2) and April 12, 2004 (event 3) are the only TID events found in both ground and satellite measurements. They show southward-moving structures in 630-nm airglow images. The events 1 and 2 are single pulse with horizontal scales of ~500-1000 km and event 3 show three wave fronts with horizontal scale sizes of 500-700 km. For events 1 and 3, the neutral density in CHAMP shows out-of-phase variations with the airglow intensity, while event 2 is in-phase. For event 1, the relation between electron density and airglow intensity is out of phase, while relationships of event 2 and 3 are unclear. These unclear relationships suggest that ionospheric plasma variation is not the cause of the TIDs. In the case if gravity waves in the thermosphere is the source of the observed TIDs, in-phase and out-of-phase relationships of neutral density and airglow intensity can be explained by different vertical wavelengths of the gravity wave. We estimate possible vertical wavelengths for those events using observed wave parameters and modeled neutral winds.

  5. A simultaneous study of ionospheric parameters derived from FORMOSAT-3/COSMIC, GRACE, and CHAMP missions over middle, low, and equatorial latitudes: Comparison with ionosonde data

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke

    2014-09-01

    Accurate ionospheric modeling efforts are partly restricted by lack of enough reliable ground-based data and the inability to validate the existing space-based data. In this article, we present a first time comprehensive reliability and validation check of ionospheric data derived using the GPS Radio Occultation (RO) Technique (from three separate missions: FORMOSAT-3/COSMIC, GRACE, and CHAMP) by comparing RO data with ionosonde data for low-latitude, equatorial, and midlatitude stations, simultaneously. This paper discusses two main objectives: (a) Determination of the appropriate spatial resolutions for effective RO and ionosonde data comparisons and (b) Estimating the accuracy of the ionospheric parameters derived from RO missions with respect to ionosonde data within the African sector. For the first time, ionospheric parameters retrieved from RO data have been compared (in details) to ionosonde data over the African sector, specifically for the South African midlatitude stations Grahamstown, GR13L (33.3°S, 26.5°E), and Madimbo, MU12K (22.4°S, 30.9°E). For the equatorial and low-latitude regions, data for Fortaleza FZA0M (3.8°S, 38°W), Brazil, and Ascension Islands AS00Q (7.9°S, 14.4°W) was analyzed. A simple but important method to determine the latitudinal and longitudinal range to be used in comparison with ionosonde data has been established. Based on statistical analysis, it is found that 4.5°×4.5°, 3°×3°, and 4°×4° are the approximate suitable spatial resolutions in both latitude and longitude spaces over an ionosonde station for effective comparisons for midlatitude, low-latitude, and equatorial regions, respectively. Appropriate spatial coverage for effective comparisons vary with region and therefore a constant assumption should not be applied on regional/global basis especially if the studies/investigations or modeling extends from middle to low/equatorial latitude zones. For the three latitude regions, COSMIC overestimates the

  6. Characteristics of High-latitude and Equatorial Ionospheric Scintillation of GNSS Signals

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Jiao, Y.

    2014-12-01

    In this paper, several years of multi-constellation global navigation satellite scintillation data collected at Alaska, Peru, and Ascension Island are analyzed to characterize scintillation features observed at high latitude and equatorial locations during the current solar maximum. Recognizing that strong scintillation data are often lost due to the lack of robustness in conventional GPS receivers used for ionosphere scintillation monitoring (ISM), an autonomous event driven scintillation data collection system using software-defined raw RF sampling devices have been developed deployed at a number of strategically selected high latitude and equatorial locations since 2009. This unique scintillation data recording system is triggered by indicators computed from a continuously operating ISM receiver and the raw RF data is post processed using advanced receiver signal processing algorithms designed to minimize carrier phase cycle slips and loss of lock of signals during strong scintillations. Based on scintillation events extracted from the raw data, several statistical distributions are established to characterize the intensity, duration and occurrence frequency of scintillation. Results confirm that scintillation at low latitudes is generally more intense and longer lasting, while high-latitude scintillation is milder and usually dominated by phase fluctuations. Results also reveal the impacts of solar activity, geomagnetic activity and seasons on scintillation in different areas. Combining measurements from a co-located geo-magnetometer and corresponding global geomagnetic activities, qualitative and quantitative correlations between scintillation and both local and global geomagnetic activities have been obtained. Results show that in Alaska, the occurrence frequency and intensity of scintillation, especially phase fluctuations, have strong correlations with geomagnetic field intensity disturbances, while in equatorial stations, the correlation is not obvious.

  7. Inverse procedure for high-latitude ionospheric electrodynamics: Analysis of satellite-borne magnetometer data

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoko; Knipp, Delores J.; Richmond, Arthur D.; Kilcommons, Liam; Anderson, Brian J.

    2015-06-01

    This paper presents an analysis of data from the magnetometers on board the Defense Meteorological Satellite Program (DMSP) F-15, F-16, F-17, and F-18 satellites and the Iridium satellite constellation, using an inverse procedure for high-latitude ionospheric electrodynamics, during the period of 29-30 May 2010. The Iridium magnetometer data are made available through the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. The method presented here is built upon the assimilative mapping of ionospheric electrodynamics procedure but with a more complete treatment of the prior model uncertainty to facilitate an optimal inference of complete polar maps of electrodynamic variables from irregularly distributed observational data. The procedure can provide an objective measure of uncertainty associated with the analysis. The cross-validation analysis, in which the DMSP data are used as independent validation data sets, suggests that the procedure yields the spatial prediction of DMSP perturbation magnetic fields from AMPERE data alone with a median discrepancy of 30-50 nT. Discrepancies larger than 100 nT are seen in about 20% of total samples, whose location and magnitude are generally consistent with the previously identified discrepancy between DMSP and AMPERE data sets. Resulting field-aligned current (FAC) patterns exhibit more distinct spatial patterns without spurious high-frequency oscillatory features in comparison to the FAC products provided by AMPERE. Maps of the toroidal magnetic potential and FAC estimated from both AMPERE and DMSP data under four distinctive interplanetary magnetic field (IMF) conditions during a magnetic cloud event demonstrate the IMF control of high-latitude electrodynamics and the opportunity for future scientific investigation.

  8. High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick's Day storm

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2016-07-01

    We present an analysis of ionospheric irregularities at high latitudes during the 2015 St. Patrick's Day storm. Our study used measurements from ~2700 ground-based GPS stations and GPS receivers onboard five low earth orbit (LEO) satellites—Swarm A, B and C, GRACE and TerraSAR-X—that had close orbit altitudes of ~500 km, and the Swarm in situ plasma densities. An analysis of the rate of TEC index (ROTI) derived from LEO-GPS data, together with Swarm in situ plasma probe data, allowed us to examine the topside ionospheric irregularities and to compare them to the main ionospheric storm effects observed in ground-based GPS data. We observed strong ionospheric irregularities in the topside ionosphere during the storm's main phase that were associated with storm-enhanced density (SED) formation at mid-latitudes and further evolution of the SED plume to the polar tongue of ionization (TOI). Daily ROTI maps derived from ground-based and LEO-GPS measurements show the pattern of irregularities oriented in the local noon-midnight direction, which is a signature of SED/TOI development across the polar cap region. Analysis of the Swarm in situ plasma measurements revealed that, during the storm's main phase, all events with extremely enhanced plasma densities (>106 el/cm3) in the polar cap were observed in the Southern Hemisphere. When Swarm satellites crossed these enhancements, degradation of GPS performance was observed, with a sudden decrease in the number of GPS satellites tracked. Our findings indicate that polar patches and TOI structures in the topside ionosphere were predominantly observed in the Southern Hemisphere, which had much higher plasma densities than the Northern Hemisphere, where SED/TOI structures have already been reported earlier. LEO-GPS data (ROTI and topside TEC) were consistent with these results.

  9. Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Samson, J.C.; Greenwald, R.A.; Ruohoniemi, J.M.; Frey, A.; Baker, K.B. )

    1990-06-01

    In the late fall and early winter, The Johns Hopkins University HF radar at Goose Bay, Labrador, observes the effects of atmospheric gravity waves on radar transmissions that are obliquely reflected from the ionosphere and subsequently backscattered from the Earth's surface. The waves exist under a wide variety of geomagnetic conditions; however, they are particularly noticeable under quiet conditions (O {le} Kp {le} 1 +). The clearest signatures of the waves are spatially localized enhancements in the backscattered power and quasi-periodic fluctuations in the backscatter powers, Doppler velocities, and reflection heights. The waves are generally observed during daylight hours and propagate equatorward from regions of high-latitude ionospheric backscatter that are located near the ionospheric convection reversal boundary. The gravity waves appear to be generated just equatorward of the dayside flow-reversal boundary in the vicinity of the auroral electrojet at altitudes of 115 to 135 km and propagate approximately perpendicular to the boundary along azimuths ranging from 156{degree} to 180{degree}. The waves propagate obliquely downward through the lower atmosphere until they are reflected by the Earth's surface back into the upper atmosphere. The frequencies associated with these gravity waves cover the range of 0.3 to 0.6 mHz, with wavelengths of 300 to 500 km, and with average phase velocities of 110 to 180 m/s. The maximum phase speeds are 270 to 300 m/s, which is slightly less than the speed of sound in the lower atmosphere. Poleward-propagating gravity waves are sometimes observed under disturbed conditions when the polar cap and convection reversal boundary have expanded equatorward.

  10. Observations of very-high-latitude ionospheric irregularities with the Goose Bay HF (high frequency) radar

    SciTech Connect

    Greenwald, R.A.; Baker, K.B.

    1985-06-07

    The Goose Bay HF radar is a sophisticated instrument capable of providing detailed information on very-high-latitude E- and F-region ionospheric electron-density irregularities which act as a source of clutter on OTH radar systems. Through the use of two parallel phased-array antennas, this instrument is able to image the location of these irregularities within a three-dimensional volume covering much of northeastern Canada and Greenland. It is also capable of following the temporal variability of these irregularities as well as determining unambiguously the Doppler shift and broadening of radar signals scattered by them. This paper presents initial results with a single phased-array antenna, which represent typical examples of the spatial intensity distribution of these irregularities at different local times. Examples are presented of Doppler spectra of the irregularities at different local times. Data of this type are of appreciable value in ascertaining the techniques that must be utilized to improve clutter mitigation on high-latitude radar systems.

  11. Structure of high latitude currents in global magnetospheric-ionospheric models

    USGS Publications Warehouse

    Wiltberger, M; Rigler, E. J.; Merkin, V; Lyon, J. G

    2016-01-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  12. C/NOFS Measurements of Stormtime Magnetic Perturbations in the Low-latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Le, Guan; Burke, William J.; Pfaff, Robert F.; Freudenreich, Henry; Maus, Stefan; Luehr, Hermann

    2012-01-01

    The Vector Electric Field Investigation suite on the C/NOFS satellite includes a fluxgate magnetometer to monitor the Earth's magnetic fields in the low-latitude ionosphere. Measurements yield full magnetic vectors every second over the range of +/- 45,000 nT with a one-bit resolution of 1.37 nT (16 bit AID) in each component. The sensor's primary responsibility is to support calculations of both VxB and ExB with greater accuracy than can be obtained using standard magnetic field models. The data also contain information about large-scale current systems, that, when analyzed in conjunction with electric field measurements, promise to significantly expand understanding of equatorial electrodynamics. We first compare in situ measurements with the POMME (POtsdam Magnetic Model of the Earth) model to establish in-flight sensor "calibrations" and to compute magnetic residuals. At low latitudes the residuals are predominately products of the stormtime ring current. Since C/NOFS provides a complete coverage of all local times every 97 minutes, magnetic field data allow studies of the temporal evolution and local-time variations of stormtime ring current. The analysis demonstrates the feasibility of using instrumented spacecraft in low-inclination orbits to extract a timely proxy for the provisional Dst index and to specify the ring current's evolution.

  13. C/NOFS Measurements of Magnetic Perturbations in the Low-Latitude Ionosphere During Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Le, Guan; Burke, William J.; Pfaff, Robert F.; Freudenreich, Henry; Maus, Stefan; Luhr, Hermann

    2011-01-01

    The Vector Electric Field Investigation suite on the C/NOFS satellite includes a fluxgate magnetometer to monitor the Earth s magnetic fields in the low-latitude ionosphere. Measurements yield full magnetic vectors every second over the range of +/-45,000 nT with a one-bit resolution of 1.37 nT (16 bit A/D) in each component. The sensor s primary responsibility is to support calculations of both V x B and E x B with greater accuracy than can be obtained using standard magnetic field models. The data also contain information about large-scale current systems that, when analyzed in conjunction with electric field measurements, promise to significantly expand understanding of equatorial electrodynamics. We first compare in situ measurements with the POMME (Potsdam Magnetic Model of the Earth) model to establish in-flight sensor "calibrations" and to compute magnetic residuals. At low latitudes the residuals are predominately products of the storm time ring current. Since C/NOFS provides a complete coverage of all local times every 97 min, magnetic field data allow studies of the temporal evolution and local time variations of storm time ring current. The analysis demonstrates the feasibility of using instrumented spacecraft in low-inclination orbits to extract a timely proxy for the provisional Dst index and to specify the ring current s evolution.

  14. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  15. Isis 1 observations of the high-latitude ionosphere during a geomagnetic storm.

    NASA Technical Reports Server (NTRS)

    Whitteker, J. H.; Hartz, T. R.; Brace, L. H.; Burrows, J. R.; Heikkila, W. J.; Sagalyn, R. C.; Thomas, D. M.

    1972-01-01

    The Isis 1 satellite has made measurements of several ionospheric and related parameters, and the results of the various measurements have been compared in detail for two north transpolar passes during the geomagnetic storm of February 3, 1969. Simultaneous measurements were made of local electron and ion densities and temperatures, electron density between the satellite and the peak of the F layer, radio noise, and particle fluxes over a wide energy range extending down to 10 eV. Several features of the ionosphere (in particular, enhancements of radio noise, scale height, and plasma temperatures) appear to be due to soft-particle (100 eV to 1 keV) precipitation, which is related to magnetospheric structure as delineated by the observation of more energetic particles. The magnetosheath particles precipitating on the dayside of the polar cap are particularly effective.

  16. First Results on the Variability of Mid- and High-Latitude Ionospheric Electric Fields at 1- Second Time Scales

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.

    2007-12-01

    The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.

  17. Ionospheric Response to the 2009 Sudden Stratospheric Warming over the Equatorial, Low- and Mid-Latitudes in American Sector.

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Goncharenko, L. P.; de Abreu, A. J.; Gende, M.; de Jesus, R.; Pezzopane, M.; Kavutarapu, V.; Coster, A. J.; Pillat, V. G.

    2014-12-01

    The equatorial and low-latitude ionosphere/thermosphere system is predominantly disturbed by waves (MSTIDs, tides, and planetary waves), which are generated in the lower atmosphere or in-situ, as well as electric fields and TIDs produced by geomagnetic storm and UV, EUV, and X-ray solar radiation. For many years, it was thought that, during geomagnetic quiet conditions, the equatorial and low-latitude F-layer was mainly perturbed by waves that were generated not far away from the observed location or electric fields generated by the Equatorial Electroject (EEJ). On the contrary, during geomagnetic storms when the energy sources are in high latitudes the waves (TIDs) travel a very long distance from high latitude to equatorial region and electric fields can be mapped via magnetic field lines. However, in the recent times an unexpected coupling between high latitude, mid- latitude, and equatorial/low latitudes was discovered during sudden stratospheric warming (SSW) events. All aspects involved in this process must be explored in order to improve our knowledge about the Earth´s atmosphere. The present study investigates the consequences of vertical coupling from lower to the upper atmosphere in the equatorial and low-latitude ionosphere in Southern Hemisphere during a major SSW event, which took place during January-February 2009 in the Northern Hemisphere. Using seventeen ground-based dual-frequency GPS stations and two ionosonde stations spanning from latitude 2.8oN to 53.8oS and from longitude 36.7oW to 67.8oW over the South American sector, it has been observed that the ionosphere was significantly disturbed by the SSW event from Equator to the mid-latitudes. Using one GPS station located in mid-latitude (South America sector) it is reported for the first time that the mid-latitude in southern hemisphere (American Sector) was disturbed by the SSW event in the Northern hemisphere. The VTEC at all 17 GPS and two ionosonde stations show significant deviations

  18. Coupling the Solar-Wind/IMF to the Ionosphere through the High Latitude Cusps

    NASA Technical Reports Server (NTRS)

    Maynard, Nelson C.

    2003-01-01

    Magnetic merging is a primary means for coupling energy from the solar wind into the magnetosphere-ionosphere system. The location and nature of the process remain as open questions. By correlating measurements form diverse locations and using large-scale MHD models to put the measurements in context, it is possible to constrain out interpretations of the global and meso-scale dynamics of magnetic merging. Recent evidence demonstrates that merging often occurs at high latitudes in the vicinity of the cusps. The location is in part controlled by the clock angle in the interplanetary magnetic field (IMF) Y-Z plane. In fact, B(sub Y) bifurcated the cusp relative to source regions. The newly opened field lines may couple to the ionosphere at MLT locations of as much as 3 hr away from local noon. On the other side of noon the cusp may be connected to merging sites in the opposite hemisphere. In face, the small convection cell is generally driven by opposite hemisphere merging. B(sub X) controls the timing of the interaction and merging sites in each hemisphere, which may respond to planar features in the IMF at different times. Correlation times are variable and are controlled by the dynamics of the tilt of the interplanetary electric field phase plane. The orientation of the phase plane may change significantly on time scales of tens of minutes. Merging is temporally variable and may be occurring at multiple sites simultaneously. Accelerated electrons from the merging process excite optical signatures at the foot of the newly opened field lines. All-sky photometer observations of 557.7 nm emissions in the cusp region provide a "television picture" of the merging process and may be used to infer the temporal and spatial variability of merging, tied to variations in the IMF.

  19. Near-Simultaneous POLAR and DMSP Measurements of Topside Ionospheric Up and Down Flows at High Latitudes

    NASA Technical Reports Server (NTRS)

    Zeng, W.; Horwitz, J. L.; Stevenson, B. A.; Wu, X.; Su, Y.-J.; Craven, Paul D.; Rich, F. J.; Moore, Thomas E.

    2000-01-01

    We will present what we believe to be the first reported observations of up- and downflows of topside ionospheric thermal plasmas from multiple near-simultaneous tracks through the high-latitude topside ionosphere. From several Southern polar passes, it has been possible to construct plots of field-aligned flows of 0+ observed by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft near 5000 km altitude together with vertical ion flow observations from one or more DMSP spacecraft near 800 km altitude. These observations provide a glimpse of the wide-spread upward and downward ionospheric ion flows over the broad polar region along multiple distinct satellite tracks. For the instances where DMSP and POLAR cross nearly the same field lines at the 800 and 5000 kin altitudes, we will show ion parameter measurements at these to altitudes in comparison to Dynamic Fluid-Kinetic(DyFK) transport simulations of anticipated altitude profiles of these parameters.

  20. Geomagnetic Dependence of Medium Scale Traveling Ionospheric Disturbances (MSTIDs) Observed by Mid- and High- Latitude SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J.; Miller, E.; West, M.; Bristow, W. A.

    2013-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min. They are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars for many years, and have typically been attributed to auroral sources propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. The goal of this study is to see if high- and mid- latitude MSTIDs share the same source region. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. A case study using MSTIDs observed at the high latitude Goose Bay Radar (GBR) and the midlatitude Blackstone Radar (BKS) suggest that the auroral source is more likely for GBR than for BKS. BKS radar data from June 2010 - June 2011 were searched for signatures of MSTIDs. Statistics of propagation direction and wavelength for each event are used to suggest MSTID sources. Results show that MSTIDs are observed at BKS primarily in the fall/winter months, which is consistent with previously published results for high latitude stations. Distributions of MSTID occurrence organized by geomagnetic parameters Kp, SYM-H, and AE are presented to investigate MSTID dependence on geomagnetic activity at BKS. No correlation is found between these parameters and midlatitude MSTID occurrence, which suggests that high- and mid-latitude MSTIDs have different sources.

  1. Investigating Changes in the High-Latitude Topside Ionosphere During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Fainberg, Joseph; Benson, Robert F.; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Fung, Shing; Bilitza, Dieter

    2009-01-01

    A search was conducted to locate periods of nearly simultaneous solar-wind and high latitude topside-ionospheric data during magnetic storms. The focus was on the 20-yr interval from 1965 to 1985 when both solar-wind and Alouette/ISIS topside-sounder data are potentially available. The search yielded 125 large magnetic storms (minimum Dst less than 100) and 280 moderate magnetic storms (minimum Dst between -60 and -100). Solar wind data were available for most, but not all, of these storms. A search of the available high-latitude topside electron-density Ne(h) profiles available from the National Space Science Data Center (NSSDC), both from manual inspection of 35-mm film ionograms in the 1960s and more recent auto-processing of ISIS-2 topside digital ionograms using the TOPIST software, during 9-day intervals associated with the 125 large magnetic storm minimum Dst times yielded the following results: 31 intervals had 10 or more manual-scaled profiles (21 intervals had more than 100 profiles and 5 of these had more than 1,000 profiles), and 34 intervals had 10 or more TOPIST profiles (2 intervals had more than 100 profiles). In addition, a search of the available Alouette-2, ISIS-1 and ISIS-2 digital ionograms during the above periods has yielded encouraging initial results in that many ISIS-1 ionograms were found for the early time intervals. Future work will include the search for 35-mm film ionograms during selected intervals. This presentation will illustrate the results of this investigation to date.

  2. Investigating Changes in the High-Latitude Topside Ionosphere During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Benson, R. F.; Osherovich, V. A.; Truhlik, V.; Wang, Y.; Fung, S. F.; Bilitza, D.

    2009-12-01

    A search was conducted to locate periods of nearly simultaneous solar-wind and high-latitude topside-ionospheric data during magnetic storms. The focus was on the 20-yr interval from 1965 to 1985 when both solar-wind and Alouette/ISIS topside-sounder data are potentially available. The search yielded 125 large magnetic storms (minimum Dst < -100) and 280 moderate magnetic storms (minimum Dst between -60 and -100). Solar-wind data were available for most, but not all, of these storms. A search of the available high-latitude topside electron-density Ne(h) profiles available from the National Space Science Data Center (NSSDC), both from manual inspection of 35-mm film ionograms in the 1960s and more recent auto-processing of ISIS-2 topside digital ionograms using the TOPIST software, during 9-day intervals associated with the 125 large magnetic storm minimum Dst times yielded the following results: 31 intervals had 10 or more manual-scaled profiles (21 intervals had more than 100 profiles and 5 of these had more than 1,000 profiles), and 34 intervals had 10 or more TOPIST profiles (2 intervals had more than 100 profiles). In addition, a search of the available Alouette-2, ISIS-1 and ISIS-2 digital ionograms during the above periods has yielded encouraging initial results in that many ISIS-1 ionograms were found for the early time intervals. Future work will include the search for 35-mm film ionograms during selected intervals. This presentation will illustrate the results of this investigation to date.

  3. Ionospheric plasma drift and structure studies at high and mid-latitudes. Volume 1. Final report, October 1990-October 1993

    SciTech Connect

    Reinisch, B.W.; Scali, J.L.; Dozois, C.; Crowley, G.

    1993-12-01

    Ground-based observations of the high latitude ionosphere with Digisonde sounders at Quaanaaq, Sondrestrom, Goose Bay, Argentina and Millstone Hill provide a description of the patch structure and the convection pattern in the polar cap. Correlation analysis of observed F-region plasma drifts with the orientation of the interplanetary magnetic field (measured by IMP8) lead to a new technique of deducing the signs of Bz and By from the measured drifts. Real time calculation of the plasma drift was successfully introduced at one of the Digisonde stations (Sondrestrom) providing the possibility of determining the IMF components in real time. Analysis of mid-latitude trough observation shows large westward velocities in the trough region. Digisonde data from Quaanaaq and DMSP F8 and F9 satellite data showed the development of the ionospheric polar hole.

  4. HILAT a multi-experiment satellite addressing the dynamics of irregularity formation in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Fremouw, E. J.

    A combined beacon, in-situ, and optical satellite mission is being prepared for definitive investigation of the formation, development, and decay of plasma-density irregularities in the high-latitude ionosphere. The satellite, named HILAT (P83-1), will carry a VHF-UHF-L-Band coherent beacon for scintillation and TEC measurements, three payloads for in-situ and ionospheric/magnetospheric coupling observations, and a vacuum-ultraviolet imager for meso-scale recording of dayside and nightside auroras and emissions from the F layer. Observations are planned at northern latitudes ranging from the plasmapause to the pole, employing beacon receiving stations which also will decode telemetry from the other payloads. Launch is planned for the boreal summer of 1983.

  5. Relation of anomalous F region radar echoes in the high-latitude ionosphere to auroral precipitation

    NASA Astrophysics Data System (ADS)

    Dahlgren, Hanna; Schlatter, Nicola M.; Ivchenko, Nickolay; Roth, Lorenz; Karlsson, Alexander

    2017-03-01

    Non-thermal echoes in incoherent scatter radar observations are occasionally seen in the high-latitude ionosphere. Such anomalous echoes are a manifestation of plasma instabilities on spatial scales matching the radar wavelength. Here we investigate the occurrence of a class of spatially localized anomalous echoes with an enhanced zero Doppler frequency feature and their relation to auroral particle precipitation. The ionization profile of the E region is used to parametrize the precipitation, with nmE and hmE being the E region peak electron density and the altitude of the peak, respectively. We find the occurrence rate of the echoes to generally increase with nmE and decrease with hmE, thereby indicating a correlation between the echoes and high-energy flux precipitation of particles with a high characteristic energy. The highest occurrence rate of > 20 % is found for hmE = 109 km and nmE = 1011. 9 m-3, averaged over the radar observation volume.

  6. New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2003-07-01

    A new theoretical model of the Earth’s low- and mid-latitude ionosphere and plasmasphere has been developed. The new model uses a new method in ionospheric and plasmaspheric simulations which is a combination of the Eulerian and Lagrangian approaches in model simulations. The electron and ion continuity and energy equations are solved in a Lagrangian frame of reference which moves with an individual parcel of plasma with the local plasma drift velocity perpendicular to the magnetic and electric fields. As a result, only the time-dependent, one-dimension electron and ion continuity and energy equations are solved in this Lagrangian frame of reference. The new method makes use of an Eulerian computational grid which is fixed in space co-ordinates and chooses the set of the plasma parcels at every time step, so that all the plasma parcels arrive at points which are located between grid lines of the regularly spaced Eulerian computational grid at the next time step. The solution values of electron and ion densities Ne and Ni and temperatures Te and Ti at the Eulerian computational grid are obtained by interpolation. Equations which determine the trajectory of the ionospheric plasma perpendicular to magnetic field lines and take into account that magnetic field lines are frozen in the ionospheric plasma are derived and included in the new model. We have presented a comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2 which were observed at the anomaly crest and close to the geomagnetic equator simultaneously by the Huancayo, Chiclayo, Talara, Bogota, Panama, and Puerto Rico ionospheric sounders during the 7 October 1957 geomagnetically quiet time period at solar maximum. The model calculations show that there is a need to revise the model local time dependence of the equatorial upward E × B drift velocity given by Scherliess and Fejer (1999) at solar maximum during quiet daytime equinox conditions. Uncertainties in the calculated Ni , Ne , Te , and Ti

  7. The Upgraded European Digital Upper Atmosphere Server: new DIAS products for the high latitude ionosphere, the topside ionosphere and the plasmasphere

    NASA Astrophysics Data System (ADS)

    Belehaki, Anna; Kutiev, Ivan; Zolesi, Bruno; Tsagouri, Ioanna; Dialetis, Dimitris; Marinov, Pencho; Fidanova, Stefka; Cander, Lili; Pietrella, Marco; Tziotziou, Kostas; Lykiardopoulos, Angelos

    2013-04-01

    -time by the DIAS Digisondes. To further improve its accuracy, we adjust the modeled TEC parameter with the GNSS-TEC parameter calculated at the Digisondes location. This adjustment forces the model to correctly reproduce the topside scale height, even in cases when the scale height at hmF2 is not available. This adjustment is very important for the application of TaD in an operational environment. The second group of new products consists of long term prediction and of nowcasting maps of the foF2 parameter that cover the whole European region - including Scandinavia. Long term prediction maps have been extended to 80 deg N applying the CCIR coefficients for the region above 65 deg N, while from 32 to 60 deg N we continue to apply SIRM (Simplified Ionospheric Regional Model), as in the case of middle latitude maps that are released routinely by the DIAS system. Between 60 and 65 deg N there is a buffer zone where an interpolation routine is applied. Nowcasting maps are based on the SIRMUP (SIRM updated in real-time) concept, however, a different effective sunspot number (Reff) is estimated for each latitudinal zone, from which a synthetic Reff is calculated.

  8. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Häggström, I.; Ivanova, I. M.

    2013-12-01

    We presented experimental results of strong plasma modifications induced by X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. The experiments were conducted in 2009-2011 using the EISCAT Heating facility, UHF incoherent scatter radar and the EISCAT ionosonde at Tromsø, Norway; and the CUTLASS SuperDARN HF coherent radar at Hankasalmi, Finland. The results showed that the X-mode HF pump wave can generate strong small-scale artificial field aligned irregularities (AFAIs) in the F region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 9-15 m, were excited when the heater frequency (fH) was above the ordinary-mode critical frequency (foF2) by 0.1-1.2 MHz. It was found that the X-mode AFAIs appeared between 10 s and 4 min after the heater is turned on. Their decay time varied over a wide range between 3 min and 30 min. The excitation of X-mode AFAIs was accompanied by electron temperature (Te) enhancements and an increase in the electron density (Ne) depending on the effective radiated power (ERP). Under ERPs of about 75-180 MW the Te enhances up to 50% above the background level and an increase in Ne of up to 30% were observed. Dramatic changes in the Te and Ne behavior occurred at effective radiated powers of about 370-840 MW, when the Ne and Te values increased up to 100% above the background ones. It was found that AFAIs, Ne and Te enhancements occurred, when the extraordinary-mode critical frequency (fxF2) lied in the frequency range fH-fce/2≤fxF2≤fH+fce/2, where fce is the electron gyrofrequency. The strong Ne enhancements were observed only in the magnetic field-aligned direction in a wide altitude range up to the upper limit of the UHF radar measurements. In addition, the maximum value of Ne is about 50 km higher than the Te enhancement peak. Such electron density enhancements (artificial ducts) cannot be explained by

  9. A study of high-latitude E-field patterns using simple models with day-night ionospheric conductivity gradient

    NASA Astrophysics Data System (ADS)

    Shen, C.-S.; Go, Y.-M.; Zi, M.-Y.

    1986-01-01

    Simple models with the effect of the day-night ionospheric conductivity gradient are used to discuss the high-latitude convective electric field pattern. The exponential functions exp(-x/L) is used to express the day-night variation in conductivity. Three types of models are used in this work: (1) the electropotential distribution is a sine function at the polar cap boundary if the effects of region-2 field-aligned current and the conductivities enhancement within the auroral zone are neglected; (2) with two regions of field-aligned currents, and without conductivity enhancement in the auroral zone; and (3) both the two regions of field-aligned currents and the enhancement of conductivity within the auroral zone are taken into account. The comparison between the different models helps in understanding the convective pattern under different geomagnetic conditions. It also shows the combined effects of the field-aligned currents and the variation of the conductivities (both the day-night gradient and the enhancement within the auroral zone).

  10. Investigation of the morphology and Wait's parameter variations of the low-latitude D region ionosphere using the multiple harmonics of tweeks

    NASA Astrophysics Data System (ADS)

    Tan, Le Minh

    2016-06-01

    Recording the tweeks with a maximum up to eight harmonics using the receiver installed at Tay Nguyen University (12.65° N, 108.02° E) during 2013-2014, we investigated the morphology of the nighttime D-region ionosphere. Tweeks were recorded on 5 quiet nights per month. The results show that the mean reflection height in 2014 (Rz = 79.3) is lower by 3.3 km than that in 2013 (Rz = 64.9). The reflection height at low latitudes is higher than that at high latitudes. The mean reference height h‧ in 2013 is higher about 0.9 km than that in 2014 and the mean sharpness factor β in 2013 is higher by 0.07 km-1 than that in 2014. The short-term variation of reflection heights for tweeks with harmonics m = 1-3 and sunspot number have the negative correlation coefficients. However, the correlations between them are not clear. On some nights, from 19:00-21:00 LT, the reflection height temporal variability shows a moderate to strong negative correlation with the tweek occurrence. This suggests that the reflection height variation may be caused by QE fields generated by lightning discharges. The variations of tweek reflection heights observed during 2013-2014, at low latitudes could be significantly caused by the ionization effect by Lyman- α and Lyman- β coming from geocorona, variation of neutral density, particle precipitations, and by direct energy coupling between lightning and lower ionosphere.

  11. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  12. Daytime ion and electron temperatures in the topside ionosphere at middle latitudes

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Te; Heelis, Roderick A.

    2017-02-01

    In the topside ionosphere during the daytime, the thermal electrons are directly heated by photoelectron fluxes from the local and conjugate hemispheres. The heat is lost primarily through conduction to the regions below where collisions with the ions provide the cooling. Ions are heated by collisions with both the electrons and ions and are cooled primarily by conduction to lower altitudes where the heat is lost to collisions with the neutral gas. Here we examine the effects of ion composition on the ion and electron temperatures in the midlatitude topside ionosphere during daytime using data from the Defense Meteorological Satellite Program F15 satellite in 2004-2006. The variations of electron and ion temperature with plasma density and composition indicate how the heat is exchanged between the different constituent ions and the role played by the solar zenith angle and the solar ionizing flux (F10.7). The observations show that the daytime temperature difference between the O+ and electron is smallest when the fractional contribution of H+ is the highest. In such an environment the electrons transfer heat to the H+ then to the O+ through ion-ion collisions.

  13. Local climatological modeling of ionospheric irregularities detected by GPS in the mid-latitude region

    NASA Astrophysics Data System (ADS)

    Wautelet, G.; Warnant, R.

    2012-11-01

    Global Positioning System, or GPS, plays an important role in everyday life. More particularly, precise positioning applications constitute a continuously growing sector whose surveyors, civil engineers and more recently farmers represent the principal users. Ionospheric irregularities are considered as the main threat for those applications as their occurrence and their effects on positioning are generally unknown or unmodeled. This paper aims at setting up a local climatological model of such irregularities which can be used as a forecasting tool. The model is based upon a time series of GPS-derived ionospheric irregularities in Belgium covering 10 years of data (period 2002-2011). Our climatological model is twofold: its first component describes the daily variability and is derived from a principal component analysis (PCA) which allows us to retrieve the main patterns of the time series. With the use of low order polynomial and harmonic functions, the second component describes the influence of solar cycle and seasons on irregularity occurrence. Moreover, a statistical autoregressive formulation adapts the model to current conditions. Model validation covers both low and active solar activity periods (years 2008 and 2011) and shows that model accuracy varies with solar conditions and season: values are lower during winter and active solar activity periods, where modeling error can reach up to 60% of the observed value. During summer, model performance is clearly improved, with relative errors generally smaller than 20% for periods of low but also active solar activity.

  14. In situ Electric Field Observations of Schumann Resonances in the Low Latitude Ionosphere and Their Implications for Tropospheric-Ionospheric Electromagnetic Coupling Mechanisms

    NASA Astrophysics Data System (ADS)

    Simoes, F.; Pfaff, R. F.; Freudenreich, H.; Bromund, K. R.; Martin, S. C.

    2010-12-01

    The Communications/Navigation Outage Forecasting System (C/NOFS) satellite investigates the electrodynamics of the low latitude ionosphere using a low inclination (13 degree) orbit with perigee and apogee of 401 and 867 km, respectively. The satellite is equipped with a three-axis double probe electric field detector, which provides continuous DC and AC electric field measurements. Among the most intriguing data acquired thus far, the electric field probe on C/NOFS unexpectedly detected Schumann resonances in the nightside ionosphere on a number of orbits within the satellite altitude sampling region. The Schumann resonance data are generally very low amplitude (~ 1 µV/m) signatures with a distinct spectral structure that corresponds precisely to the frequency modes predicted by the Schumman resonance waveguide cavity response; up to 10 ten peaks have been observed. These observations suggest major implications for Extremely Low Frequency (ELF) electromagnetic wave propagation in the earth’s ionosphere, namely the global electric circuit, lightning detection, and cavity leakage mechanisms. These findings provide a fresh approach to the study of tropospheric-space weather coupling mechanisms and transient luminous events, imply the need for a significant revision of the “standard” ELF wave propagation model, and offer a new, remote sensing technique for the investigation of planetary atmospheric electricity.

  15. Reaction of the high-latitude lower ionosphere to solar proton events from observations in the ELF range

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Larchenko, A. V.; Pil'gaev, S. V.; Fedorenko, Yu. V.

    2017-01-01

    The reaction of the lower ionosphere to the solar proton events that occurred in 2011-2012 is studied in this paper based on the results of measurements of the propagation velocity and the E z / H τ ratio of the low-frequency electromagnetic pulses (atmospherics) in the ELF range at the high-latitude observatories Lovozero and Barentsburg. With numerical modeling methods, it is shown that horizontal local irregularities of the lower ionosphere conductivity profile could be a cause of the splashes in the E z / H τ ratio observed in the experiment during the solar proton event of March 7, 2012, which was a unique event in both the proton flux value and energy.

  16. Alfvenic, feedback-unstable magnetosphere-ionosphere interactions at high and middle latitudes

    NASA Astrophysics Data System (ADS)

    Streltsov, Anatoly

    We present results from a study of small-scale, intense electromagnetic fields and currents (Alfvén waves) registered in the magnetosphere on auroral and subauroral magnetic field lines. e Observations from satellites show that these waves carry significant energy fluxes and are frequently associated with electron precipitation, ion outflow, and density cavities, which features suggest that they play an important role in the redistribution and energization of the magnetosphere-ionosphere plasma in the auroral and subauroral zone. This study focusses on the ionospheric feedback mechanism (IFM) as the primary mechanism responsible for the generation and intensification of small-scale Alfvén waves. The basic idea of IFM is that the e magnetic field-aligned current, carried by the wave, interacts with the ionosphere and changes the ionospheric conductivity, and variations in the conductivity feed back on the structure and amplitude of the current. In this paper we present examples of how the ionospheric feedback mechanism generate small-scale waves in the presence of the magnetospheric resonance cavities on closed and open magnetic field lines. We also demonstrate how the ionospheric feedback mechanism can generate Alfvén waves when no resonance cavity is presented. In this case the e waves can propagate from the ionosphere to the high altitude magnetosphere, where they can explain observations of small-scale, localized electromagnetic waves with frequencies of 20-50 mHz recorded by Polar and Cluster satellites.

  17. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  18. Local and Global Studies of Ion Outflow From the High Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Petersen, W. K.

    1997-01-01

    Ion outflow from the ionosphere plays a fundamental but poorly defined role in magnetospheric processes. The purpose of the research is to better understand the mass coupling between the Earth's ionosphere and Magnetosphere. The work performed under this grant falls in three areas: (1) event studies using archived data from the DE-1/2 satellites; (2) investigations using Data from the ISTP satellites; and (3) work supporting a Space Physics Educational Outreach (SPEO) grant supplement.

  19. Determination by ray-tracing of the regions where mid-latitude whistlers exit from the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Strangeways, H. J.

    1981-03-01

    The size and position of the regions in the bottomside ionosphere through which downcoming whistlers emerge are estimated using ray-tracing calculations in both summer day and winter night models of the magnetospheric plasma. Consideration is given to the trapping of upgoing whistler-mode waves through both the base and the side of ducts. It is found that for downcoming rays which were trapped in the duct in the summer day model, the limited range of wave-normal angles which can be transmitted from the lower ionosphere to free space below causes the size of the exit point to be considerably smaller than the region of incidence. The exit point is found to be approximately 100 km in size, which agrees with ground-based observations of fairly narrow trace whistlers. For rays trapped in the duct in the winter night model, it is found that the size of the exit point is more nearly the same as the range of final latitudes of the downcoming rays in the lower ionosphere.

  20. An additional layer in the low-latitude ionosphere in Indian longitudes: Total electron content observations and modeling

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Balan, N.; Ravindran, Sudha; Pant, Tarun Kumar; Devasia, C. V.; Sreelatha, P.; Sridharan, R.; Bailey, G. J.

    2007-06-01

    The paper presents the observations and modeling of an additional layer in the low-latitude ionosphere in Indian longitudes. The signatures of the additional layer are observed as ledges or humps between the equatorial ionization anomaly trough and crest (EIA) in the latitudinal profiles of total electron content (TEC), measured using a single ground-based beacon receiver located at Trivandrum (8.5°N, 77°E, dip 0.5°N) in India. The ground-based ionograms also show the presence of the so-called F3 layer for a short duration corresponding to these signatures, and the layer is found to drift upward to the topside ionosphere. The study provides first observational evidence that the so-called "humps" in the latitudinal variation of TEC are nothing but the upward propagating F3 layer. This conclusion is supported by theoretical modeling using the Sheffield University Plasmasphere Ionosphere Model. It is shown that upward ExB drift and strong equatorward neutral wind (perturbed by atmospheric waves) can produce the humps in the latitudinal variation of TEC through the reduction in the downward diffusion of ionization along geomagnetic field lines. The model results also show that the F3 layer drifts to the topside and forms topside ledges.

  1. Climatology of high-latitude ionospheric scintillation based on 38.2 MHz IRIS riometer measurements in Northern Finland

    NASA Astrophysics Data System (ADS)

    Szponarski, P.; Honary, F.; McKay-Bukowski, D.

    2015-12-01

    Dynamic electron density irregularities, ranging in scale sizes from hundreds of kilometres to a few centimetres, cause scintillation of radio-waves propagating through the ionosphere. They can significantly reduce performance of GNSS (Global Navigation Satellite System) receivers and other positioning systems of varying frequencies. The high latitude ionosphere becomes very disturbed during geomagnetic storms due to auroral precipitation and motion of polar patches. While the scintillation topic is researched heavily at GPS frequencies, relatively little work has been done at MHz frequencies. A rather unconventional approach has been taken, by using data from the IRIS riometer (Imaging Riometer for Ionospheric Studies), based in Kilspisjärvi, Finland (69.05° N 20.79° E). By observing the strong and homogeneous radio source Cassiopeia A, passing through multiple narrow beams, amplitude scintillations can be observed. The continuous dataset of approximately 14 years (1995 - 2009) was used to create climatological scintillation trends, presenting diurnal, seasonal and yearly variations of amplitude scintillation index, S­­­­4. The correlation between S4 index and geomagnetic indices (Kp, AE) was investigated and linear relationships were found.

  2. A study of 3D structure of nighttime electron density enhancement in the mid-latitude ionosphere by GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C.; Saito, A.

    2011-12-01

    The mid-latitude summer nighttime anomaly (MSNA) is a feature that the nighttime electron density larger than that in the daytime mid-latitude ionosphere. This anomaly was first detected in the southern hemisphere five decades ago and observed in the northern hemisphere recently by ionosondes and satellites. Previous studies presented the electron density structure of MSNA by using COSMIC occultation data and found that MSNA is clearly seen around 300 km altitude during local summer. However, due to lack of observation, the day-to-day variation of MSNA was not investigated. A GPS tomography method by SPEL of Kyoto University using the total electron content (TEC) data measured by the ground-based GPS receiver network is employed in this study. The wide coverage and continuous observation of GPS receivers are suitable for investigating the spatial and day-to-day variations of ionospheric electron densities. The algorithm of the GPS tomography developed by SPEL of Kyoto University use a constraint condition that the gradient of election density tends to be smooth in the horizontal direction and steep in the vicinity of the F2 peak, instead of inputting the initial conditions. Therefore, the algorithm is independent of any ionospheric and plasmaspheric electron density distribution models. The dense ground-based GPS receiver network around European region is used to study the three dimensional (3D) structure of MSNA with GPS tomography. Results show that the MSNA usually appear around the geomagnetic mid-latitude region during local summer nighttime. The feature of MSNA is most obvious at the ionospheric F2-peak altitudes. The result also shows a day-to-day variation in the formation of MSNA, in terms of the occurrence time, intensity, and spatial extent. The tomographic results are compared with the ionosondes, satellites, and radar measurements. A theoretical model simulation, SAMI2, is also used to further discuss the mechanism of MSNA. The comparison with other

  3. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  4. Considerations of variations in ionospheric field effects in mapping equatorial lithospheric Magsat magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Ravat, D.; Hinze, W. J.

    1993-01-01

    The longitudinal, seasonal, and altitude-dependent variability of the magnetic field in equatorial latitudes is investigated to determine the effect of these variabilities on the isolation of lithospheric Magsat magnetic anomalies. It was found that the amplitudes of the dawn dip-latitude averages were small compared to the dusk averages, and that they were of the opposite sign. The longitudinal variation in the equatorial amplitudes of the dawn dip-latitude averages was not entirely consistent with the present knowledge of the electrojet field. Based on the results, a procedure is implemented for reducing the equatorial ionospheric effects from the Magsat data on the lithospheric component.

  5. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground-based GPS measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina; Redmon, Robert J.

    2015-09-01

    We report first results on the study of the high-latitude ionospheric irregularities observed in worldwide GPS data during the St. Patrick's Day geomagnetic storm (17 March 2015). Multisite GPS observations from more than 2500 ground-based GPS stations were used to analyze the dynamics of the ionospheric irregularities in the Northern and Southern Hemispheres. The most intense ionospheric irregularities lasted for more than 24 h starting at 07 UT of 17 March. This period correlates well with an increase of the auroral Hemispheric Power index. We find hemispheric asymmetries in the intensity and spatial structure of the ionospheric irregularities. Over North America, the ionospheric irregularities zone expanded equatorward below ~45°N geographic latitude. Additionally, the strong midlatitude and high-latitude GPS phase irregularities in the auroral oval were found to be related to the formation of storm enhanced density and deepening of the main ionospheric trough through upper atmosphere ionization by energetic particle precipitation. Significant increases in the intensity of the irregularities within the polar cap region of both hemispheres were associated with the formation and evolution of the storm enhanced density/tongue of ionization structures and polar patches.

  6. Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site

    NASA Astrophysics Data System (ADS)

    Tan, L. M.; Thu, N. N.; Ha, T. Q.; Marbouti, M.

    2014-06-01

    About 26 solar flare events from C2.56 to X3.2 classes were obtained and analyzed at Tay Nguyen University, Vietnam (12.56°N, 108.02°E) during May - December 2013 using very low frequency remote sensing to understand the responses of low latitude D-region ionosphere during solar flares. The observed VLF amplitude perturbations are used as the input parameters for the simulated Long Wavelength Propagation Capability (LWPC) program, using Wait's model of lower ionosphere, to calculate two Wait's parameters, viz. the reflection height (H') and the sharpness factor (?). The results reveal that when X-ray irradiance is increased, ? increased from 0.3 to 0.506 km-1, while H' decreased from 74 to 60 km. The electron density increased at the height of 74 km with 1-3 orders of magnitude during solar flares. These phenomena can be explained as: the ionization due to X-ray irradiance becomes greater than that due to cosmic rays and Lyman-α radiation, which increases the electron density profile. The present results are in agreement with the earlier results. The 3D representation of the electron density changes with altitude and time supports to fully understand the shape of the electron density changes due to X-ray flares. The shape variation of electron density is roughly followed to the variation of the amplitude perturbation and keeps this rule for different altitudes. It is also found that the electron density versus the height in lower latitude D-region ionosphere increases more rapidly during solar flares.

  7. Simulation of low latitude ionospheric response to 2015 St. Patrick's Day super geomagnetic storm over Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Mohan Joshi, Lalit; Sripathi, Samireddipelle; Singh, Ram

    2016-07-01

    We present low latitude ionospheric response over Indian longitude to the recent super geomagnetic storm of 17 March 2015, using the SAMI2 model which incorporates ionosonde derived vertical drift impacted by prompt penetration eastward electric field occurring during the evening Prereversal Enhancement (PRE) in the vertical drift. The importance of this storm is that (a) Dst reaches as low as -228 nT and (b) prompt penetration of eastward electric field coincided with evening hours PRE. The daytime vertical EXB drifts in the SAMI2 model are, however, considered based on Scherliess-Fejer model. The simulations indicate a significant enhancement in F layer height and equatorial ionization anomaly (EIA) in the post sunset hours on 17 March 2015 vis-a-vis quiet day. The model simulations during recovery phase, considering disturbance dynamo vertical EXB drift along with equatorward disturbance wind, indicates suppression of the daytime EIA. SAMI2 simulations considering the disturbance wind during the recovery phase suggests that equatorward wind enhances the ionospheric density in the low latitude, however, its role in the formation of the EIA depends on the polarity of the zonal electric field. Comparison of model derived total electron content (TEC) with the TEC from ground GPS receivers indicate that model does reproduce enhancement of the EIA during the main phase and suppression of the EIA during the recovery phase of the super storm. However, peculiarities pertaining to the ionospheric response to prompt penetration electric field in the Indian sector vis-a-vis earlier reports from American sector will be discussed.

  8. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  9. IFM-Modeled Response of the High-Latitude Ionosphere to Auroral Dynamics Based on Auroral Observations Acquired with the Visible Imaging System(VIS) on the Polar Spacecraft

    NASA Astrophysics Data System (ADS)

    Bekerat, H.; Sigwarth, J.; Schunk, R.; Eccles, V.

    2007-12-01

    Global physics-based models for the high-latitude ionosphere have been developed to such an extent that the large and small ionospheric features during magnetic storms and substorms can be studied. These models, however, require inputs for the magnetospheric forcing, i.e. Magnetospheric convection and particle precipitation. More specifically, for these models to yield reliable results during magnetic storms and substorms, reliable global maps for the high-latitude magnetospheric convection and auroral electron particle precipitation patterns as a function of time are needed. Over the last decades several statistical models for the high-latitude convection and particle precipitation have been developed and used to drive ionospheric models. However, due to the statistical nature of these models, they represent the average characteristics of the true convection and precipitation patten and they are very limited to simulate the effect of magnetic storms and substorms. Recently, with the realization of the Visible Imaging System (VIS) on the Polar Spacecraft, auroral images that yield information of auroral dynamics on a global scale with a spatial resolution of less than 100 km and temporal resolution of ~ 1 minute have become available. These images can be used to calculate reliable global maps for the particle precipitation parameters, electron energy flux and average energies, as a function of time. In this poster we present the preliminary results of our attempt to drive the Ionosphere Forecast Model (IFM) using global maps for the electron precipitation parameters calculated from the corresponding VIS images. In order to elucidate the effect of auroral dynamics on the high-latitude ionosphere, a one-day data set of VIS images during which the aurora was highly active is selected for this study. Then, these images are used to calculate global maps for the electron precipitation parameters using the Lumerzheim model. Next, the maps obtained in the previous step are

  10. TIME3D-IGGCAS: A new three-dimension mid- and low-latitude theoretical ionospheric model in realistic geomagnetic fields

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Wan, Weixing; Liu, Libo; Le, Huijun

    2012-05-01

    Based on the previous work, a new three-dimension mid- and low-latitude theoretical ionospheric model in realistic geomagnetic fields is developed, named Three-Dimension Theoretical Ionospheric Model of the Earth in the Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS). This new model covers the mid- and low-latitude ionosphere and whole plasmasphere. It self-consistently solves the equations of mass continuity, motion and energy of electron and ions to give out the time-dependent three-dimensional structures of the main ionospheric and plasmaspheric parameters in realistic geomagnetic fields, including ion number densities of O+, H+, He+, NO+, O2+, N2+ and electron; electron and ion temperature; and ion velocity vectors. We carry out simulations in March Equinox and in June Solstice, and compare the simulated results with that from IRI empirical model. TIME3D-IGGCAS can well reproduce the main ionospheric features in all simulations. We also simulate the ionospheric differences between different kinds of geomagnetic fields. The results suggest that the geomagnetic field configuration obviously affect the ionospheric plasma density, and the differences between NmF2 in realistic geomagnetic fields and that in tilted dipole fields can be larger than 40%.

  11. Topside Ionosphere Parameters Observed by POLAR and DMSP at high latitudes

    NASA Technical Reports Server (NTRS)

    Zeng, Wen; Horwitz, James L.; Stevenson, B. Adam; Germany, Glynn A.; Craven, Paul D.; Rich, Fred J.; Moore, Thomas E.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several near-simultaneous Southern polar passes for both POLAR (at perigee) and DMSP spacecraft are examined. The core ion measurements from the Thermal Ion Dynamics Experiment (TIDE) on POLAR spacecraft near 5000 km altitude and the ionospheric ion and electron parameters measured by both DMSP 12 and DMSP 13 at 840 kin altitude during these near-simultaneous passes provide unique quasi-global snapshots of the ionospheric flows. We consider such parameters as the O (+) and H (+) densities, temperatures and parallel flows from POLAR/TIDE and the O (+) ion parameters and electron temperature from the DMSP observations. For some passes, auroral images from the POLAR Ultraviolet Imager (UVI) are used to complement the ion/electron parameter observations. We will also examine the interplanetary magnetic field context of these quasi-global topside ionospheric measurements.

  12. Challenges for Future UV Imaging of the Earth's Ionosphere and High Latitude Regions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2006-01-01

    Large scale imaging of Geospace has played a significant role in the recent advances in the comprehension of the coupled Solar-Terrestrial System. The Earth's ionospheric far ultraviolet emissions provide a rich tapestry of observations that play a key role in sorting out the dominant mechanisms and phenomena associated with the coupling of the ionosphere and magnetosphere (MI). The MI coupling is an integral part of the Solar-Terrestrial and as such, future observations in this region should focus on understanding the coupling and the impact of solar variability. This talk will focus on the outstanding problems associated with the coupled Solar-Terrestrial system that can be best addressed using far ultraviolet imaging of the Earthls ionosphere. Challenges of global scale imaging and high-resolution imaging will be discussed and how these are driven by unresolved compelling science questions of magnetospheric configuration, and auroral dynamics.

  13. Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012

    NASA Astrophysics Data System (ADS)

    Pavan Chaitanya, P.; Patra, A. K.; Balan, N.; Rao, S. V. B.

    2015-08-01

    In this paper, we analyze daytime observations of the critical frequencies of the F2 (foF2) and F3 (foF3) layers based on ionosonde observations made from Indian low latitudes close to the magnetic equator and study their local time, seasonal, planetary-scale variations (including the solar rotation effect), and solar activity dependence. Given the occurrence of the F3 layer, which has remarkable local time, seasonal and solar activity dependences, variations in foF2 have been evaluated. Local time variations in foF2 and foF3 show noon "bite-out" in all seasons and in all solar activity conditions, which are attributed to vertically upward plasma transport by the zonal electric field and meridional neutral wind. Comparison of observed foF2 with those of the IRI-2012 model clearly shows that the model values are always higher than observed values and the largest difference is observed during noontime owing to the noon bite-out phenomenon. Peak frequency of the F layer (foF2 / foF3), however, is found to have better agreement with IRI-2012 model. Seasonal variations of foF2 and foF3 show stronger asymmetry at the solstices than at the equinoxes. The strong asymmetry at the solstice is attributed to the asymmetry in the meridional neutral wind with a secondary contribution from E × B drifts, and the relatively weak asymmetry observed at the equinox is attributed to the asymmetry in E × B drifts. Variations in foF2 and foF3 with solar flux clearly show the saturation effect when F10.7 exceeds ~ 120 sfu, which is different from that of the mid-latitudes. Irrespective of solar flux, both foF2 and foF3 in summer, however, are found to be remarkably lower than those observed in other seasons. Variations in foF2 show dominant periods of ~ 27, ~ 16 and ~ 6 days. Intriguingly, amplitudes of ~ 27-day variations in foF2 are found to be maximum in low solar activity (LSA), moderate in medium solar activity (MSA) and minimum in high solar activity (HSA), while the amplitudes of

  14. Short-term delays (hours) of ionospheric spread F occurrence at a range of latitudes, following geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Bowman, G. G.

    1998-06-01

    The analyses have investigated the short-term responses of spread F occurrence (as identified on ionograms) at low- and middle-latitude stations to geomagnetic activity changes so that comparisons can be made with results from equatorial stations reported earlier [Bowman, 1995]. Using superposed-epoch methods, it is found that the AE index is either enhanced or depressed a few hours prior to spread F occurrence depending on whether or not low or high (respectively) spread F controls are used. The geomagnetic activity related to this inverse relationship is centered mainly around the local times of 1200 and 1800. A direct relationship is also found for geomagnetic activity which occurs in the night hours. The results for these other latitude stations are the same as those reported in the earlier paper for equatorial stations. This paper also considers for the equatorial station Huancayo extreme responses of spread F occurrence to geomagnetic activity, involving occasions of high spread F occurrence when there is a sudden drop in the level to zero for isolated days when a few hours earlier at the favored times mentioned above enhanced geomagnetic activity occurs. It is suggested that the inverse relationship involves the control of medium-scale traveling ionospheric disturbance (MS-TID) wave amplitudes by neutral-density changes, produced by large-scale traveling ionospheric disturbances (LS-TIDs) generated by geomagnetic activity concentrated mainly around the local times of 1200 and 1800. The LS-TIDs generated by geomagnetic activity at night behave differently. Height rises are produced, and as a result of the lower neutral-density levels, spread F is recorded particularly in the presunrise period. Extending the comparison of spread F characteristics at different latitudes, some comments are made on recent observations using data from satellite recordings, concerning the similarities between electron-density depletions detected for equatorial regions and those for

  15. Spacecraft Charging at Geosynchronous Orbit and Large Scale Electric Fields in the High Latitude Ionosphere.

    DTIC Science & Technology

    1981-09-30

    in Figure I0 we have made the most naive x 10-" Jim 3 is required. Assuming a magnetopause thick- magnetic mapping between the ionosphere and the...direction of satellite sPhls. Department, Boton College. Chestut Hill. Massachu- motion ISmiddy et al., 1978]. The primary function of this seti

  16. Electron energy budget in the high-latitude ionosphere during Viking/EISCAT coordinated measurements

    SciTech Connect

    Lilensten, J.; Kofman, W.; Lathuillere, C. ); Fontaine, D. ); Eliasson, L. ); Oran, E.S. )

    1990-05-01

    The magnetospheric electron fluxes precipitating at the top of the auroral ionosphere contribute to the production of ionization, to the excitation of atmospheric constituents, and to the heating of the ambient electrons. This last process occurs essentially when the energy of the initial precipitated electrons and photoelectrons has been degraded to values lower than approximately 10 eV. The heated ambient electron gas loses this energy to the neutral gas and ambient ions. Finally, the temperature gradient produced in the ionospheric plasma induces a heat flux. In the absence of an electric field and for stationary conditions, the energy budget of ionospheric electrons results from the balance between these processes of heating, cooling, and heat conduction. The intensity of these different processes is quantitatively computed at each altitude in the ionosphere by combining simultaneous EISCAT and Viking in situ measurements, and by means of an electron transport model. The stationary electron flux, which leads to the heating rate, is computed, and remaining differences in the energy budget are discussed.

  17. Relating OGO-5 H(+) Plasmapause Transitions to Mid-Latitude Topside-Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Truhlik, Vladimir; Benson, Robert F.; Bilitza, Dieter; Grebowsky, Joseph M.; Wang, Yongli

    2009-01-01

    Plasmapause transitions, as seen in the H + and He+ density gradients measured by the Orbiting Geophysical Observatory 5 (OGO 5) ion spectrometer [Sharp, IEE Trans. in Geosci. Elect., 1969], have been investigated in an attempt to relate them to their topside ionospheric signatures as seen in the Alouette-1 & 2 and ISIS-1 data. The satellite data were obtained from the National Space Science Data Center (NSSDC). A search of the OGO-5 data revealed 54 sharp plasmapause crossings as evaluated from the H+ density. The ionospheric footprints (at 1400 km altitude) of the magnetic-field lines through the locations of these plasmapause crossings were then used to search for topside ionospheric electron-density profiles from the NSSDC. No profiles corresponding to these projections were identified. A similar search of the topside-sounder 35-mm ionogram-film database, however, identified 17 cases of candidate "conjunctions" involving Alouette l & 2 and ISIS 1. We will present samples of the plasmapause OGO-5 ion transitions and the related topside ionospheric signatures and discuss the observations in relation to the recent similar study based on Explorer-45 and ISIS-2 data [Grebowsky et al., JASTP, 2009].

  18. Magnetospheric effects in atmospheric electricity at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Frank-Kamenetsky, A. V.; Raspopov, O. M.; Vasiljev, A. N.; Struev, A. G.

    2003-04-01

    Measurements of the vertical atmospheric electric field (Ez) made at auroral station Apatity (geomagnetic latitude: 63.8) and polar cap station Vostok, Antarctica (geomagnetic latitude: -89.3) in 2001-2002 have been analyzed. The measurements were made by a high-latitude computer-aided complex installed at Apatity in 2001. It consists of three spatially placed microbarographs for measurements of atmospheric waves, a device for air conductivity measurement and a device for measurement of vertical component of the atmospheric electric field. The computer-aided system permits to get information with a frequency of five times per second. The ground level atmospheric electric field was found to have systematic local diurnal and seasonal variations. Diurnal variations of atmospheric potential gradient were found to have a departure from the Carnegie curve. A distinct difference in the diurnal variation of atmospheric electric field has been observed also between disturbed (Kp>30) and extremely quiet (Kp<5) geomagnetic conditions. These high-latitude electric field variations appear to be the result of solar wind-magnetosphere-ionosphere coupling. Besides, we have found the similarity between the diurnal course of the atmospheric electric field under the quiet geomagnetic conditions and the diurnal variation of galactic cosmic rays. These results have been explained in terms of calculated effective Bz component of the interpalnetary magnetic field arising due to variation of the geomagnetic dipole axis inclination during the Earth's rotation. The results of analysis of the influence of extreme weather conditions (rain, snow, snowstorm, stormclouds, thunderstorms, lightning) on atmospheric electricity (electric field and conductivity) are also discussed. This work was supported by EC (grant INTAS 97-31008) and RFBR (grant 01-05-64850).

  19. The Relationship Between Convection Velocities in Simultaneous High-Latitude Ionospheres

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Murr, D. L.; Ruohoniemi, J. M.

    2007-12-01

    Depending on the dipole tilt angle of the Earth's magnetosphere, the northern and southern hemispheres can have dramatically different average conductances. Because the ionosphere provides a path through which magnetospheric field-aligned currents coupling the two regions close, it is expected that the electric field and current density would also exhibit asymmetric behavior between hemispheres that depend on the dipole tilt angle. Some magnetohydrodynamic models of the magnetosphere show that the ratio of the global hemispheric electric potential can be a factor of 2-4 for large dipole tilt angles. Statistical studies of ionospheric electric fields using ground-based radars and spacecraft also show that there is a seasonal dependence of the global ionospheric potential but that the difference is at most ~20%. Here we use merged line-of-sight velocity vectors obtained simultaneously in both hemispheres from the SuperDARN network of HF radars to investigate the relationship of the convection velocity for conditions of varying hemispheric conductance. We find a marked difference in the hemispheric relationship of the simultaneous convection velocities between the dayside and the nightside ionospheres. Using a dataset consisting of seven years of SuperDARN merged velocities centered roughly on the most recent solar maximum, we show statistically that the ratio of velocities restricted to the dayside in the Summer hemisphere to those in the dayside Winter hemisphere depends only marginally on the dipole tilt angle and is at most a factor of ~1.2 for extreme tilt angles. The ratio of merged velocities restricted to the nightside, however, show a strong dependence on dipole tilt angle and can be as high as 2 for extreme tilt angles. The results are consistent with the notion that the dayside magnetosphere-ionosphere circuit behaves as if driven by a constant voltage source, whereas the nightside acts more like a circuit with a constant current source.

  20. Characterization of the geometries of the high-latitude ionospheric convection pattern

    NASA Astrophysics Data System (ADS)

    Keating, Christopher Francis

    An investigation of the geometries of the high-latitude convection pattern is conducted using spacecraft observations of the northern hemisphere during conditions when the z-component of the interplanetary magnetic field is negative. In the first part of this investigation we examine the specification of the polar cap boundary as a circle using data from nearly simultaneous satellites to investigate the variation in size and location of the circle and the means by which such variations may be specified. We also investigate the degree to which a circle departs from the instantaneous configuration of the boundary and the effect that such departures may have on the global potential distribution. The DMSP satellites F8 and F9 provide an opportunity to identify the polar cap boundary with four nearly simultaneous points that can be used in a least squares fitting procedure to derive a best fit circle describing the polar cap boundary. The results of this exercise confirmed that the polar cap boundary can be well represented by a circle with the center offset towards the midnight sector with a B(sub y) and seasonal dependence in the radius of the circle and the location of the center point. Our results indicated that departures from a nominally circular boundary occur most frequently on the dayside. These departures led us to conclude that the polar cap boundary can be best represented by two circular segments with a smaller segment on the dawnside for conditions of B(sub y) negative. We also identified localized bulges or depressions as departures from the circle that are consistent with the descriptions of suggested impulsive additions of magnetic flux to the polar cap. In the second part of this investigation we examine the latitude distribution of the potential at latitudes below the polar cap boundary to determine its sensitivity to interplanetary conditions, magnetic activity, and local time. We use a gaussian curve segment to best represent the distribution of the

  1. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    NASA Astrophysics Data System (ADS)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  2. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  3. Traveling ionospheric disturbances (TIDs) at mid-latitudes - solar cycle phase dependence

    SciTech Connect

    Soicher, H.

    1988-06-01

    Faraday observations of total electron content (TEC) at Haifa, Israel (32.87 deg N, 35.09 deg E), during periods near the maximum (1980) and minimum (1984) phases of the current solar cycle have yielded information about the structure and variability of the ionosphere during both epochs in general, and about traveling ionospheric disturbances (TIDs) in particular. The TEC is characterized by the large differences in the seasonally dependent absolute values, by the generally occurring spatially confined postsunset secondary maxima during solar maximum which are absent during solar minimum, and by the regularly appearing modulations of the structure due to TIDs. There is a definite seasonal and solar phase dependence in the characteristics of the TIDs. This is expressed in terms of their frequency of occurrence, likely phase of the diurnal variation during which the occurrences take place, their absolute magnitudes, and the time rate of change of these magnitudes. 9 references.

  4. Relationship of solar wind parameters to continuous, dayside, high latitude traveling ionospheric convection vortices

    NASA Technical Reports Server (NTRS)

    Mchenry, Mark A.; Clauer, C. Robert; Friis-Christensen, Eigil

    1990-01-01

    The results of a statistical study of the occurrence of steady traveling ionospheric convection vortices are presented. The upstream solar wind parameters observed by the IMP 8 spacecraft are studied as well. It is suggested that this class of pulsations is most likely to be detected post local noon and when the solar wind speed is low. A correlation between the frequency of dayside pulsations and the solar wind speed is found.

  5. Optical remote sensing of the ion convection pattern in the high-latitude ionosphere from a polar orbiting satellite

    SciTech Connect

    Minow, J.I.; Smith, R.W. )

    1993-04-09

    Presented is a technique where on a routine basis a single satellite borne instrument can be used to determine quasi-instantaneous ion convection patterns over the entire high-latitude ionosphere. The remote sensing technique utilizes the Doppler shift information in the optical emissions originating from thermospheric ions drifting in response to the Earth's magnetic and convection electric fields. The feasibility of the technique is demonstrated using a computer simulation. The simulation shows that a satellite can obtain information with sufficient spatial resolution to obtain quasi-instantaneous estimates of ion convection patterns. The results are accurate enough to distinguish between features present in currently accepted averaged models of ion convection. 20 refs., 3 figs.

  6. Spatial Structure and Dynamics of Intermediate -scale Irregularities in the Post-sunset Low-latitude Ionosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.

    2013-12-01

    Efforts to forecast the strength and latitudinal extent of scintillations on VHF and higher frequency trans-ionospheric radio signals recorded in low-latitude regions require a knowledge of the evolution of the spectrum of ionospheric irregularities in the intermediate scale range (~ 100m - few km), and dynamics of the irregularities. At present, the 3-D models that have been developed to simulate the evolution of equatorial plasma bubbles (EPBs), capture the dynamics of EPBs but do not have adequate spatial resolution to yield the intermediate scale irregularity spectrum. Power spectra of weak scintillations recorded on a VHF, UHF, or L-band signal provide direct information about the intermediate scale irregularity spectrum. However, for strong scintillations, it is not possible to derive the irregularity spectral slopes from scintillation spectra, and information about the irregularity spectrum is deduced from other characteristics, such as the coherence scale of the ground scintillation pattern of intensity, which depends on the irregularity spectrum as seen from model calculation results presented here. Information about the spatio-temporal evolution of intermediate scale irregularities is derived from scintillation data on the basis of these theoretical results. For this study, spaced receiver measurements of intensity scintillations on a VHF signal transmitted from a geo-stationary satellite and recorded at an equatorial station are used. Generally, in the initial phase of EPB development after sunset, there is a large de-correlation between the spaced receiver signals, that may be attributed to fluctuations in the velocity of the irregularities due to the perturbation electric fields associated with the interchange instability, which gives rise to the irregularities. The 'random velocity' parameter, computed from spaced receiver intensity scintillation measurements, is a measure of the de-correlation. The coherence scale and the random velocity, together

  7. Using simultaneous particle and field observations on a low-altitude satellite to estimate Joule heat energy flow into the high-latitude ionosphere

    SciTech Connect

    Rich, F.J.; Gussenhoven, M.S.; Greenspan, M.E.

    1987-06-01

    This report describes the background, the algorithm for calculating, and the early results of a survey of the Joule heat deposited in the high-latitude ionosphere. The algorithm is based upon data obtained with the polar-orbiting DMSP/F7 spacecraft. A significant portion of the energy input to the high-latitude ionosphere and thermosphere is transmitted from the magnetosphere to the ionosphere via precipitation of electrons and ions and via Joule heat. Several earlier spacecraft of the Defense Meteorological Satellite Program (DMSP) have carried sensors to measure the particle contribution to the energy low. The contribution from the precipitating particles has been extensively surveyed and reported. The DMSP/F7 is the first spacecraft of this series to carry sensors that allow the measurement of parameters which can be used to calculate the Joule heat input. This report is the beginning of a survey of the Joule heat.

  8. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  9. Statistical behavior of the longitudinal variations of daytime electron density in the topside ionosphere at middle latitudes

    NASA Astrophysics Data System (ADS)

    Su, Fanfan; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Zhu, Fuying; Lin, Jian

    2016-11-01

    Electron density in the topside ionosphere has significant variations with latitude, longitude, altitude, local time, season, and solar cycle. This paper focuses on the global and seasonal features of longitudinal structures of daytime topside electron density (Ne) at middle latitudes and their possible causes. We used in situ Ne measured by DEMETER and F2 layer peak height (hmF2) and peak density (NmF2) from COSMIC. The longitudinal variations of the daytime topside Ne show a wave number 2-type structure in the Northern Hemisphere, whereas those in the Southern Hemisphere are dominated by a wave number 1 structure and are much larger than those in the Northern Hemisphere. The patterns around December solstice (DS) in the Northern Hemisphere (winter) are different from other seasons, whereas the patterns in the Southern Hemisphere are similar in each season. Around March equinox (ME), June solstice (JS), and September equinox (SE) in the Northern Hemisphere and around ME, SE, and DS in the Southern Hemisphere, the longitudinal variations of topside Ne have similar patterns to hmF2. Around JS in the Southern Hemisphere (winter), the topside Ne has similar patterns to NmF2 and hmF2 does not change much with longitude. Thus, the topside variations may be explained intuitively in terms of hmF2 and NmF2. This approach works reasonably well in most of the situations except in the northern winter in the topside not too far from the F2 peak. In this sense, understanding variations in hmF2 and NmF2 becomes an important and relevant subject for this topside ionospheric study.

  10. Ionospheric and magnetic signatures of a high speed solar wind in low latitudes on 13 October 2012

    NASA Astrophysics Data System (ADS)

    Migoya-Orue, Y. O.; Azzouzi, I.; Coisson, P.; Amory Mazaudier, C.; Fleury, R.; Radicella, S. M.

    2016-03-01

    This paper presents the impact of a fast solar wind on the ionosphere, in low latitudes, on 13 October 2012. On that day, the high speed solar wind reached the Earth around 16:00UT, during the recovery phase of a geomagnetic storm which started around 00:00UT. The solar wind speed was determined to be 580km/s, on the same day, around 17:00UT. Its impact was observed in low and equatorial latitudes, in Africa and in Eastern South America, on the F layer and on the geomagnetic field variations. Through the analysis of magnetic indices, ionosonde characteristics and the horizontal component of the geomagnetic field, we found that the 13 October 2012 event exhibited a local impact, affecting the observatories situated in a longitude sector between 315°E and 45°E. Particularly, the F layer in Africa (observed by the ionosonde at Ascension Island) did not present any lift, and there was a delay for approximately two hours of the ascent of the F layer in America (the ionosonde at Fortaleza). In this case, there was an evident inhibition on the development of spread F at the time of the Pre Reversal Enhancement (PRE) in Africa and Eastern America, while the ionograms of the days before and after presented clear spread F traces. The disturbances of the ionospheric equivalent electric current (Diono) deduced from the variations of the geomagnetic field at M'Bour near Dakar (Africa) and at Kourou (Eastern America) exhibited on the dayside, an anti Sq current which is signature of the influence of the Disturbance Dynamo Electric Field (DDEF).

  11. Study of high-latitude ionosphere: One-year campaign over Husafell, Iceland

    NASA Astrophysics Data System (ADS)

    Bahari, S. A.; Abdullah, M.; Hasbi, A. M.; Yatim, B.; Suparta, W.; Kadokura, A.; Bjornsson, G.

    2016-07-01

    This paper reports on the effects of diurnal, seasonal, geomagnetic and solar activity on GPS Vertical Total Electron Content (VTEC) measurements at a high-latitude station in Husafell, Iceland (64.7°N, 21.0°W) from March 2009 to February 2010. According to the diurnal VTEC pattern, there was generally a build-up region at sunrise (0500-1000 LT), a daytime plateau in the afternoon (1200-1400 LT), and a decay region from evening to pre-dawn (1800-0400 LT). The month-to-month analysis showed high VTEC variability, particularly in February 2010, due to an increase in solar activity. The VTEC showed a high variability during both winter and the equinoxes, with the highest value being 90%, but showed a low variability in summer. Two abnormal peaks appeared at sunrise and sunset in winter and the equinoxes. These peaks were the result of steep density gradients caused by the onset and turnoff of solar radiation. The correlation analysis yielded almost no correlation between the VTEC and geomagnetic activity but showed a high correlation with solar activity for all the seasons, particularly at night-time.

  12. X-mode HF Pump-induced Phenomena at High Heater Frequencies in the High Latitude Ionosphere F-region

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kalishin, A. S.; Yeoman, T. K.; Häggström, I.

    2015-12-01

    Experimental results concentrating on X-mode HF-induced phenomena in the high latitude ionosphere F region are discussed. Experiments have been carried out at the HF Heating facility at Tromsø with an effective radiated power of 450 - 650 MW at high heater frequencies of 6.2 - 8.0 MHz. Multi-instriment diagnostics included the European Incoherent Scatter (EISCAT) UHF radar at 931 MHz at Tromsø, the Finland CUTLASS (Co-operative UK Twin Located Auroral Sounding System) radar, the stimulated electromagnetic emission (SEE) equipment at Tromsø, and the HF receiver near St. Petersburg for the observations of narrow band SEE features. The key parameter considered is the ratio between the heater frequency and critical frequency of the F2 layer (fH/foF2). We have analyzed the behaviors of small-scale artificial field-aligned irregularities (FAIs) and HF-enhanced plasma and ion lines (HFPLs and HFILs) depending on the pump proximity to the critical frequency. It was shown that the HFPLs and HFILs coexisted with FAIs throughout the whole heater pulse when fH/foF2 > 1 as well as fH/foF2 ≤ 1. It is indicative that parametric decay instability was not quenched by fully developed FAIs. The comparison between contrasting O/X mode HF-induced phenomena, when the heater frequency is below or near the critical frequency of F2 layer, is made. It was found that an X-mode HF pumping is able to excite different narrow band spectral components in the SEE spectra (within 1 kHz of pump frequency), such as ion acoustic, electrostatic ion cyclotron, and electrostatic ion cyclotron harmonic waves (otherwise known as neutralized ion Bernstein waves) observed at a long distance from the HF Heating facility. It was suggested that these spectral component can be attributed to the stimulated Brillion scatter (SBS) process. The results obtained show that an X-polarized electromagnetic wave scattered by SBS can propagate more than one thousand km without significant attenuation.

  13. Energy exchange rates between the ionosphere-thermosphere system and the magnetosphere at high latitudes

    NASA Astrophysics Data System (ADS)

    Aikio, A.; Cai, L.; Nygren, T.; Kuula, R.

    2012-04-01

    The magnetosphere and the ionosphere-thermosphere system exchange energy in the form of electromagnetic energy flux, accompanied by electric fields and field-aligned currents, as well as in the form of precipitating particle fluxes. In this study, we examine the first form of energy exchange by using a one-month database obtained by the EISCAT incoherent scatter radar measurements in Tromso. The electromagnetic energy exchange rate can be further divided into ion-neutral frictional heating rate (sometimes called Joule heating) and work done on neutrals. The ion-neutral frictional heating rate depends on Pedersen conductivity and on ionospheric electric fields, measured in the frame of reference moving with the neutrals. The role of neutral winds has been an open question, since it is difficult to measure them. The CP2 scan mode of the EISCAT radar makes it possible to deduce neutral winds in the E region and hence to estimate the role of neutral air motion (e.g. tidal winds and atmospheric gravity waves) in the energy exchange rates. In this talk, we will present the magnetic local time (MLT) dependence of height-integrated quantities: electromagnetic energy exchange rates (QEM), ion-neutral frictional heating rate (QJ) and work done on neutrals (Qm) for different magnetic activity levels categorized by the Kp index. We will show that the role of winds is different in different MLT sectors (e.g. dusk vs. dawn) and at different activity levels. We will also show that on rare occasions the ionosphere can act as a dynamo generating electromagnetic energy that may propagate to the magnetosphere.

  14. Response of equatorial and low latitude ionosphere to 2015 St. Patrick's Day super geomagnetic storm: Results from a chain of ground based observations over Indian region

    NASA Astrophysics Data System (ADS)

    Samireddipalle, Sripathi; Singh, Ram; Sreekumar, Sreeba; Suneel Kumar, Buduru

    2016-07-01

    In this paper, we present unique results of equatorial and low latitude ionosphere response to one of the major geomagnetic storms of the current solar cycle that occurred during 17-18 March 2015 where Dst reached its minimum of -228 nT. Here we utilized data from magnetometers, chain of ionosondes located at Tirunelveli (8.73°N, 77.70°E; geom: 0.320N), Hyderabad (17.360N, 78.470E; geom: 8.760N) and Allahabad (25.45°N, 81.85°E; geom: 16.50N) along with multi station GPS receivers over Indian sector. The observations showed a remarkable increase of h'F to as high as ~560 km over Tirunelveli (magnetic equator) with vertical drift of ~70 m/s at 13:30 UT due to direct penetration of storm time eastward electric fields which exactly coincided with the local time of Pre-Reversal Enhancement (PRE) and caused intense ESF irregularities in ionosondes and scintillations in GPS receivers at wide latitudes. Plasma irregularities are so intense that their signatures are seen in Allahabad/Lucknow. Stormtime thermospheric meridional winds as estimated using two ionosondes suggest the equatorward surge of gravity waves with period of ~2 hrs. Suppression of anomaly crest on the subsequent day of the storm suggests the complex role of disturbance dynamo electric fields and disturbance wind effects. Our results also show an interesting feature of Traveling Ionospheric Disturbances (TIDs) possibly associated with disturbance meridional wind surge during recovery phase. In addition, noteworthy observations are nighttime westward zonal drifts and PRE related TEC enhancements at anomaly crests during main phase and CEJ signatures during recovery phase.

  15. Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector

    NASA Astrophysics Data System (ADS)

    Ramsingh; Sripathi, S.; Sreekumar, Sreeba; Banola, S.; Emperumal, K.; Tiwari, P.; Kumar, Burudu Suneel

    2015-12-01

    In this paper, we present unique results of equatorial and low-latitude ionosphere response to one of the major geomagnetic storms of the current solar cycle that occurred during 17-18 March 2015, where Dst reached its minimum of -228 nT. Here we utilized data from magnetometers, chain of ionosondes located at Tirunelveli (8.73°N, 77.70°E; geometry: 0.32°N), Hyderabad (17.36°N, 78.47°E; geometry 8.76°N), and Allahabad (25.45°N, 81.85°E; geometry 16.5°N) along with multistation GPS receivers over Indian sector. The observations showed a remarkable increase of h'F to as high as ~560 km over Tirunelveli (magnetic equator) with vertical drift of ~70 m/s at 13:30 UT due to direct penetration of storm time eastward electric fields which exactly coincided with the local time of pre-reversal enhancement (PRE) and caused intense equatorial spread F irregularities in ionosondes and scintillations in GPS receivers at wide latitudes. Plasma irregularities are so intense that their signatures are seen in Allahabad/Lucknow. Storm time thermospheric meridional winds as estimated using two ionosondes suggest the equatorward surge of gravity waves with period of ~2 h. Suppression of anomaly crest on the subsequent day of the storm suggests the complex role of disturbance dynamo electric fields and disturbance wind effects. Our results also show an interesting feature of traveling ionospheric disturbances possibly associated with disturbance meridional wind surge during recovery phase. In addition, noteworthy observations are nighttime westward zonal drifts and PRE-related total electron content enhancements at anomaly crests during main phase and counter electrojet signatures during recovery phase.

  16. Effects on the Ionosphere Due to Phenomena Occurring Below it

    NASA Astrophysics Data System (ADS)

    Kazimirovsky, E.; Herraiz, M.; De La Morena, B. A.

    2003-03-01

    The terrestrial thermosphere and ionosphere form the most variable part of the Earth's atmosphere. Because our society depends on technological systems that can be affected by thermospheric and ionospheric phenomena, understanding, monitoring and ultimately forecasting the changes of the thermosphere-ionosphere system are of crucial importance to communications, navigation and the exploration of near-Earth space. The reason for the extreme variability of the thermosphere-ionosphere system is its rapid response to external forcing from various sources, i.e., the solar ionizing flux, energetic charged particles and electric fields imposed via the interaction between the solar wind, magnetosphere and ionosphere, as well as coupling from below (``meteorological influences'') by the upward propagating, broad spectrum, internal atmospheric waves (planetary waves, tides, gravity waves) generated in the stratosphere and troposphere. Thunderstorms, typhoons, hurricanes, tornadoes and even seismological events may also have observable consequences in the ionosphere. The release of trace gases due to human activity have the potential to cause changes in the lower and the upper atmosphere. A brief overview is presented concerning the discoveries and experimental results that have confirmed that the ionosphere is subject to meteorological control (especially for geomagnetic quiet conditions and for middle latitudes). D-region aeronomy, the winter anomaly of radiowave absorption, wave-like travelling ionospheric disturbances, the non-zonality and regional peculiarities of lower thermospheric winds, sporadic-E occurrence and structure, spread-F events, the variability of ionospheric electron density profiles and Total Electron Content, the variability of foF2, etc., should all be considered in connection with tropospheric and stratospheric processes. ``Ionospheric weather'', as a part of space weather, (i.e., hour-to-hour and day-to-day variability of the ionospheric parameters

  17. Ionospheric Superstorms: Polarization Terminator Effects in the Atlantic Sector

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Erickson, P. J.

    2007-12-01

    A combination of the stormtime penetration electric fields, the effect of the reduced magnetic field strength in the South Atlantic magnetic anomaly, and the geographic distortion of the magnetic field in the Atlantic sector contribute to the characteristics of the low-latitude polarization electric fields at the sunset terminator. This combination of effects leads to a strong localized enhancement of TEC at low-mid latitudes in the American sector during ionospheric superstorms. At dusk, the low-latitude polarization electric field effects begin on magnetic field lines when the E region at either end goes into darkness. We define the polarization terminator (PT) to be the locus of points at a given altitude for which the E-region shadow height at either end of the magnetic field line equals 100 km. Electric fields associated with the charge build-up in the conductivity-gradient region due to the effects of winds or penetration electric fields are directed perpendicular to the PT and increase in magnitude as the PT is approached from the dayside. The particular configuration of the magnetic field in the Atlantic sector creates a preferred longitude/Universal Time sector (western atlantic/ 21 UT) for the build-up of enhanced TEC on field lines inside the dusk plasmapause. The electric fields associated with the PT sweep up the plasmas of the equatorial anomaly crests and redistribute it into the mid-latitude SAPS channels, forming the high total content storm enhanced density (SED) plumes observed during strong storms in the American sector. This effect is most pronounced for northern hemisphere summer conditions, as experienced during the July 15/16, 2000 superstorm.

  18. Ionospheric Superstorms: Polarization Terminator Effects in the Atlantic Sector

    NASA Astrophysics Data System (ADS)

    Foster, John

    A combination of the stormtime penetration electric fields, the effect of the reduced magnetic field strength in the South Atlantic magnetic anomaly, and the geographic distortion of the magnetic field in the Atlantic sector contribute to the characteristics of the low-latitude polarization electric fields at the sunset terminator. This combination of effects leads to a strong localized enhancement of TEC at low-mid latitudes in the American sector during ionospheric superstorms. At dusk, the low-latitude polarization electric field effects begin on magnetic field lines when the E region at either end goes into darkness. We define the polarization terminator (PT) to be the locus of points at a given altitude for which the E-region shadow height at either end of the magnetic field line equals 100 km. Electric fields associated with the charge build-up in the conductivity-gradient region due to the effects of winds or penetration electric fields are directed perpendicular to the PT and increase in magnitude as the PT is approached from the dayside. The particular configuration of the magnetic field in the Atlantic sector creates a preferred longitude/Universal Time sector (western Atlantic/ 21 UT) for the build-up of enhanced TEC on field lines inside the dusk plasmapause. The electric fields associated with the PT sweep up the plasmas of the equatorial anomaly crests and redistribute it into the mid-latitude SAPS channels, forming the high total content storm enhanced density (SED) plumes observed during strong storms in the American sector. This effect is most pronounced for northern hemisphere summer conditions, as experienced during the July 15/16, 2000 superstorm.

  19. Studies of ionospheric variations during geomagnetic activities at the low-latitude station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Emmanuel, Ariyibi

    The dual frequency SCINDA NovAtel GSV 4004B GPS receiver installed at the Ile-Ife (low-latitude station) has been in operation since December 2009. Data records for the year 2010 were processed to obtain Total Electron Content (TEC) and S 4 index. These were interpreted to analyze the ionospheric condition during low geomagnetic activity period (when Dst is from -40 to 0 nT) and during geomagnetic storm events (with Dst about -100 nT). Seasonal variations of the TEC and S 4 index were also investigated. The occurrence of scintillations is closely linked to the peak value of TEC during the daytime; this is very evident during the equinox months when TEC ≥ 30 TECu. When the maximum TEC value is below 30 TECu, as shown by most of the days in the summer months, the scintillation phenomenon does not occur. During geomagnetic storms, the daytime segment of the TEC plot experiences fluctuations (even bifurcations) in values with the peak TEC value of about 40 TECu. From the interpreted data, the occurrence of geomagnetic storm does not necessarily suggest an increase in the level of scintillations at a low-latitude region. Also, there is a remarkable difference between the IRI 2007 model and the observed TEC values, as the daytime TEC peak differs in magnitude and time of occurrence from the observed TEC.

  20. Studies of ionospheric variations during geomagnetic activities at the low-latitude station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Ariyibi, Emmanuel; Joshua, Emanuel; Rabiu, Babatunde

    2013-02-01

    The dual frequency SCINDA NovAtel GSV 4004B GPS receiver installed at the Ile-Ife (low-latitude station) has been in operation since December 2009. Data records for the year 2010 were processed to obtain Total Electron Content (TEC) and S 4 index. These were interpreted to analyze the ionospheric condition during low geomagnetic activity period (when Dst is from -40 to 0 nT) and during geomagnetic storm events (with Dst about -100 nT). Seasonal variations of the TEC and S 4 index were also investigated. The occurrence of scintillations is closely linked to the peak value of TEC during the daytime; this is very evident during the equinox months when TEC ≥ 30 TECu. When the maximum TEC value is below 30 TECu, as shown by most of the days in the summer months, the scintillation phenomenon does not occur. During geomagnetic storms, the daytime segment of the TEC plot experiences fluctuations (even bifurcations) in values with the peak TEC value of about 40 TECu. From the interpreted data, the occurrence of geomagnetic storm does not necessarily suggest an increase in the level of scintillations at a low-latitude region. Also, there is a remarkable difference between the IRI 2007 model and the observed TEC values, as the daytime TEC peak differs in magnitude and time of occurrence from the observed TEC.

  1. A Digital Bistatic Radar Instrument for High-Latitude Ionospheric E-region Research

    NASA Astrophysics Data System (ADS)

    Huyghebaert, D. R.; Hussey, G. C.; McWilliams, K. A.; St-Maurice, J. P.

    2015-12-01

    A new 50 MHz ionospheric E-region radar is currently being developed and will be operational for the summer of 2016. The radar group in the Institute of Space and Atmospheric Studies (ISAS) at the University of Saskatchewan is designing and building the radar which will be located near the university in Saskatoon, SK, Canada and will have a field of view over Wollaston Lake in northern Saskatchewan. This novel radar will simultaneously obtain high spatial and temporal resolution through the use of a bistatic setup and pulse modulation techniques. The bistatic setup allows the radar to transmit and receive continuously, while pulse modulation techniques allow for enhanced spatial resolution, only constrained by the radio bandwidth licensing available. A ten antenna array will be used on both the transmitter and receiver sides, with each antenna having an independent radio path. This enables complete digital control of the transmitted 1 kW signal at each antenna, allowing for digital beam steering and multimode broadcasting. On the receiver side the raw digitized signal will be recorded from each antenna, allowing for complete digital post-processing to be performed on the data. From the measurements provided using these modern digital radar capabilities, further insights into the physics of E-region phenomena, such as Alfvén waves propagating from the magnetosphere above and ionospheric irregularities, may be investigated.

  2. Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.

  3. Equatorial and Low-Latitude Ionospheric Response to the Extreme Space Weather Event of March 2015, in the Brazilian Sector.

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Cardoso, F. A.; Fejer, B. G.; Kavutarapu, V.; Ribeiro, B. A.; Pillat, V. G.

    2015-12-01

    Fagundes PR, Cardoso FA and Venkatesh KPhysics and Astronomy Laboratory, Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Sao Paulo, Brazil In the present investigation we discuss the results on the response of the ionosphere (F-region) in the Brazilian sector, during extreme space weather event of March 2015. This geomagnetic storm has been considered as one of strongest storms in the solar cycle 24 where, the Dst index reached a minimum of -227 nT at 23:00 UT (17/03/2015) with KP reaching to 8-, and the monthly mean F10.7 solar flux was 125 sfu. This space weather event was studied using a large network of 110 GPS stations. It has been noticed that the Total Electron Content (TEC) was severely disturbed during the geomagnetic storm main and recovery phases. A wavelike oscillation with three peaks is observed from equator to low latitudes during the storm main phase on 17th and 18th March, 2015. Using a latitudinal chain of 8 GPS stations from equatorial region to low latitudes the storm time behavior of the Equatorial Ionization Anomaly (EIA) is investigated. It was noticed that the wavelike oscillation peak latitudinal extent decreases from the beginning of main phase to the recovery phase. The first maximum extends beyond from 2oS to 20oS, the second one from 8oS to 18oS and the third one from 13oS to 17oS. In addition, a strong negative phase in TEC variations is observed during the recovery phase on March 18, 2015. This negative phase is found to be stronger at low-latitude compared to the equatorial region. An anomalous behavior of EIA caused by the wavelike oscillations is observed during the main phase on March 17, 2015. Also, due to the strong negative phase in TEC resulted in strong EIA suppression on March 18, 2015.

  4. Plasma drifts and polarization electric fields associated with TID-like disturbances in the low-latitude ionosphere: C/NOFS observations

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2016-02-01

    Medium-scale traveling ionospheric disturbances are often observed at the magnetically conjugate points in the nighttime midlatitude ionosphere. It has been suggested that gravity waves disturb the ionosphere and induce electric fields in one hemisphere and that the electric fields are amplified by the Perkins instability and transmitted along the geomagnetic field lines to the conjugate ionosphere, creating similar disturbances there. However, direct observations of electric fields associated with traveling ionospheric disturbances (TIDs) are very few. In this study, we present low-latitude TID-like disturbances observed by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. It is found that ion velocity perturbations are generated in the directions parallel and perpendicular to the geomagnetic field within TIDs. Both the parallel and perpendicular ion velocity perturbations show an in-phase correlation with the ion density perturbations. For nighttime TIDs, the amplitude of both the parallel and meridional ion velocity perturbations increases almost linearly with the amplitude of the ion density perturbations, and the meridional ion drift is proportional to the parallel ion velocity. For daytime TIDs, the parallel ion velocity perturbation increases with the ion density perturbation, but the meridional ion velocity perturbation does not change much. The observations provide evidence that polarization electric field is generated within TIDs at low latitudes and maps along the geomagnetic field lines over a large distance.

  5. Wind induced composition effects at high latitudes

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    The temperature and compositional structure of the upper atmosphere are discussed in relation to the impacts of wind-induced diffusion processes. Seasonal variations in thermospheric temperature and composition are explained by energy and mass transport from the summer to the winter hemisphere induced by preferential heating, with the winter oxygen bulge participating in a feedback mechanism which acts to dampen wind velocities and increase temperature contrast. Changes in the eddy diffusion coefficient are considered as a complementary mechanism of producing the seasonal anomalies. The role of winds induced by high-latitude heating by particles and Joule dissipation during magnetic storms and substorms in accounting for thermospheric density increases and N2 and Ar enhancements and O and He depletions at high latitudes are discussed, and the rather weak compositional signature of E x B momentum coupling is distinguished from the effects of Joule dissipation.

  6. A Comparison of High-Latitude Ionosphere Propagation Predictions from AMBCOM with Measured Data

    DTIC Science & Technology

    1991-03-01

    radar . The point-to-point mode performs raytracing from a transmitter to a receiver and was used for this thesis. RIAYTRA co,-,putes grokil times... RADAR C and AMBCOM....... 9 3. Thc Naval Postgraduate School Studies ......................... 9 II. THE AMBIENT COMMUNICATIONS MO0DEL (AMBCOM...the transpolar path such as the a communications blackout on 12 November 1986. [Ref. 11] 2. Hi2h-Latitude HF Predictions From RADAR C and AMBCOM

  7. Frequency and duration of disturbances in the mid-latitude F region of the ionosphere

    SciTech Connect

    Lambert, S.

    1988-08-01

    Disturbances of the ionospheric F region at two well-separated midlatitude stations were identified on rapid run ionograms by spread echoes, blackouts, and anomalies in structure or critical frequency. The diurnal variation in the probability of disturbance consistently shows minima around sunrise and sunset. Details such as a brief postsunset enhancement in winter are revealed by the fine time resolution of the data. Disturbance probabilities were lowest in autumn and spring (8 and 9 percent), while that for winter (33 percent) exceeded the summer level (20 percent). Spread F constituted 32 percent of the events, and disturbances producing sharply defined ionogram signatures 77 percent, with some overlapping of types. The majority of disturbances were not correlated with geomagnetic phenomena. Disturbances at the two stations were essentially independent (spatial correlation of 0.15). Spread F events were of longer duration (25 min) than sharp disturbances (20 min). 24 references.

  8. Equatorial ionization anomaly in the low-latitude topside ionosphere: Local time evolution and longitudinal difference

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing; Zhang, Hui

    2016-07-01

    Although the equatorial ionization anomaly (EIA) has been widely studied, it was seldom investigated from observations for the topside ionosphere. In this paper, the climatology characteristics of the latitudinal structure of topside ion density (Ni) were investigated in detail using ROCSAT-1 and DMSP Ni observations. EIA double-peak structure may exist at 600 km, depending on longitude, local time, season, and solar activity, while it is not a prevalent characteristic at 840 km even at solar maximum sunset. Local time evolution of the EIA at 600 km was presented. The double-peak structure begins to appear at noontime, being later than the appearance of the EIA in F2 peak region. The pronounced EIA induced by the strong prereversal enhancement at solar maximum begins to appear at 19:00 LT and can last to premidnight; EIA crest-to-trough ratio is largest (lowest) at March equinox (June solstice) and reaches a maximum at 20:00 LT in all seasons. EIA structure shows evident longitudinal difference. Pronounced EIA exists around about 100°E at 13:00 LT at the two equinoxes and June solstice, while it exists at more extensive longitudes (about 90°E to 240°E) at December solstice. The trans-equator plasma transport induced by neutral winds can weaken the double-peak structure in the topside ionosphere. The longitudinal difference in the EIA structure at 600 km is related to the longitudinal variations of equatorial upward plasma drift and geomagnetic declination.

  9. Sources of low-latitude ionospheric E × B drifts and their variability

    NASA Astrophysics Data System (ADS)

    Maute, A.; Richmond, A. D.; Roble, R. G.

    2012-06-01

    The complete mechanism of how upward propagating tropospheric tides connect to the upper atmosphere is not yet fully understood. One proposed mechanism is via ionospheric wind dynamo. However, other sources can potentially alter the vertical E × B drift: gravity and plasma pressure gradient driven current, the geomagnetic main field, and longitudinal variation in the conductivities. In this study we examine the contribution to the vertical drift from these sources, and compare them. We use March equinox results from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model. We found that the gravity and plasma pressure gradient driven current and the longitudinal variation of the conductivities excluding the variation due to the geomagnetic main field do not change the longitudinal variation of the vertical drift significantly. Modifying the geomagnetic main field will change the vertical drift at 5-6 LT, 18-19 LT and 23-24 LT at almost all longitudes. In general the influence of the geomagnetic main field on the vertical drift is larger, with respect to the maximum difference, at 18-19 LT and 23-24 LT, equal at 5-6 LT, and smaller at 14-15 LT than the influence due to nonmigrating tidal components in the neutral winds. Examination of the contribution from E- and F-region neutral winds to the vertical drift shows that their importance depends on the local time and the solar activity. This implies that the vertical drift has to be analyzed at specific local times to examine the relation between the wave number in the vertical drift and in the neutral winds.

  10. Modeling storm-time electrodynamics of the low-latitude ionosphere thermosphere system: Can long lasting disturbance electric fields be accounted for?

    NASA Astrophysics Data System (ADS)

    Maruyama, Naomi; Sazykin, Stanislav; Spiro, Robert W.; Anderson, David; Anghel, Adela; Wolf, Richard A.; Toffoletto, Frank R.; Fuller-Rowell, Timothy J.; Codrescu, Mihail V.; Richmond, Arthur D.; Millward, George H.

    2007-07-01

    Storm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17 18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-computed electric fields. Comparison of model results with measured or estimated low-latitude vertical drift velocities (zonal electric fields) shows that the coupled model is capable of reproducing measurements under a variety of conditions. In particular, our model results suggest, from theoretical grounds, a possibility of long-lasting penetration of magnetospheric electric fields to low latitudes during prolonged periods of enhanced convection associated with southward-directed interplanetary magnetic field, although the model probably overestimates the magnitude and duration of such penetration during extremely disturbed conditions. During periods of moderate disturbance, we found surprisingly good overall agreement between model predictions and data, with penetration electric fields accounting for early main phase changes and oscillations in low-latitude vertical drift, while the disturbance dynamo mechanism becomes increasingly important later in the modeled events. Discrepancies between the model results and the observations indicate some of the difficulties in validating these combined numerical models, and the limitations of the available experimental data.

  11. Solar or meteorological control of lower ionospheric fluctuations (2-15 and 27 days) in middle latitudes

    NASA Technical Reports Server (NTRS)

    Pancheva, D.; Lastovicka, Jan

    1989-01-01

    Several types of short and long term effects of solar activity on the lower ionosphere are related to solar flares, the sector structure of the interplanetary magnetic field and some periodicities in sunspots or solar radio flux. The most evident periodicities of the Sun are the 11 year cycle of its activity and the differential rotation period near 27 days (25 to 30 days). Here, the following questions are discussed: which periods between 2 and 15 days and near 27 days occur in ionospheric absorption during the interval July 1980 to July 1985 and are these periods related to similar periods in solar Ly-alpha flux, geomagnetic activity, or neutral wind near 95 km observed in Collm (GDR). Day-time absorption data obtained by the A3 method was used for the following radio-paths: (164 kHz), (1539 kHz), (6090 kHz). With the use of these data the electron density variations in the lower ionosphere can be analyzed. An attempt was made to clarify the nature of the observed fluctuations in absorption.

  12. Electron Gyro-Harmonic Effects on Ionospheric Stimulated Brillouin Scatter

    DTIC Science & Technology

    2014-08-21

    power high-frequency (HF) radio waves may now produce stimulated Brillouin scattering (SBS) in the ionospheric plasma. The sensitivity of the...distribution is unlimited. Electron gyro-harmonic effects on ionospheric stimulated Brillouin scatter The views, opinions and/or findings contained in this...Inter American University of Puerto Rico - Bayamon P.O. Box 363255 San Juan, PR 00936 -3255 ABSTRACT Electron gyro-harmonic effects on ionospheric

  13. Analysis of Ionospheric Scintillation spectral and TEC in the Chinese low latitude region

    NASA Astrophysics Data System (ADS)

    Li, Guozhu; Ning, Baiqi; Yuan, Hong

    GPS L-band scintillations and total electron content TEC were recorded at Sanya 18 33° N 109 52° E for the period July 2004 - July 2005 Automatic recorded raw digital scintillation data are analyzed to obtain the spectral characteristics of irregularities producing ionospheric scintillations and to estimate the correlation between amplitude scintillation and power spectral density Concurrent measurements of TEC were used to analyze ROTI defined as the standard deviation of the rate of change of TEC Results show that spectral slope and auto correlation interval correspond quite well with amplitude scintillation index S4 during the generation evolution and decay phase of scintillation activity which indicates the formation evolution and erosion of small-scale irregularities The statistical results of S4 indices and spectral slopes indicate that the spectral slopes increase with S4 indices for weak scintillation S4 0 3 but for moderate and strong scintillation spectral slopes tend to be in saturation It is also find that the large and small scale irregularities coexist when scintillation occurs In the analyzed dataset the ratio of ROTI S4 is found to vary between 0 3 and 8

  14. Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region

    NASA Astrophysics Data System (ADS)

    Li, G.; Ning, B.; Yuan, H.

    2007-04-01

    GPS L-band scintillations and total electron content (TEC) were recorded at Sanya (18.33°N, 109.52°E) during the period July 2004-July 2005. Automatic recorded raw digital scintillation data are analyzed to obtain the spectral characteristics of irregularities producing ionospheric scintillations and to estimate the correlation between amplitude scintillation and power spectral density. Concurrent measurements of TEC are used to analyze ROTI, defined as the standard deviation of the rate of change of TECνll. The statistical results of S4 indices and power spectral indices indicate that the power spectral indices increase with S4 indices for weak scintillation (0.1 ≤ S4 < 0.3), but for moderate and strong scintillation, spectral indices tend to be saturated. In the analyzed data set, the ratio of ROTI/S4 is found to vary between 0.3 and 6, and the variation in estimated zonal drift velocities during geomagnetic quiet days (Kp < 3) shows that the motion of the irregularities is highly variable in the initial phase of irregularity development. After about 22:00 LT, the estimated drift velocities tend to follow the same pattern.

  15. Bistatic Sounding of High-Latitude Ionospheric Irregularities Using a Decameter EKB Radar and an UTR-2 Radio Telescope: First Results

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Kutelev, K. A.; Kurkin, V. I.; Grkovich, K. V.; Yampolsky, Yu. M.; Kashcheyev, A. S.; Kashcheyev, S. B.; Galushko, V. G.; Grigorieva, S. A.; Kusonsky, O. A.

    2015-11-01

    We present the first results of the joint Russian-Ukrainian experiments for recording of signals from the EKB radar of the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (Arti observatory of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences, Sverdlovsk region, Russia) at a distance of over 1600 km by using a coherent receiving system and a high-gain phased array of the UTR-2 radio telescope (S.Ya. Braude Radioastronomical Observatory (RAO) of the Institute of Radio Astronomy of the Ukrainian National Academy of Sciences (IRA UNAS), Kharkov region, Ukraine). It is shown that two pulse sequences that are identical to the transmitted EKB radar signal, but arrive with different delays were observed at the reception point. The sequence which was received first corresponded to the direct-signal propagation along the great-circle arc. The second sequence was received with delays corresponding to a path length of 2800 to 3400 km and was the result of scattering of the transmitted radar signal by high-latitude ionospheric irregularities. The Doppler frequency shift of the scattered signal was range-dependent and varied from -3 to +4 Hz, which corresponded to the radial component of the ionospheric irregularity velocity from -43 to +58 m/s. To interpret the results of the experiments, we numerically simulated the signal propagation based on the actual ionospheric conditions at an appropriate time. Ionospheric characteristics were retrieved by the vertical ionospheric sounding technique, with the ionosonde located in close proximity to the EKB radar. Comparison between monostatic radar diagnostic results and bistatic sounding results has shown a good agreement of the retrieved parameters of the high-latitude ionospheric irregularities.

  16. Pre-onset auroral signatures and subsequent development of substorm auroras: a development of ionospheric loop currents at the onset latitudes

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.; Thomsen, M.

    2014-08-01

    Substorm auroras observed on 17 January 1994 were localized within the field of view of an all-sky imager installed at Dawson City (DWS, 65.7° ILAT). In association with the enhancement of the anti-sunward convection in the polar cap and the ion flux enhancement in 1-6 keV at geosynchronous altitudes, a wave-like structure propagating equatorward to the onset latitudes with a high wave number in azimuth (m ~ 76, T ~ 120 s) was observed 30 min prior to the activation in the equatorward latitudes. The activation of the auroras in the equatorward latitudes and the subsequent poleward expansion lasted for approximately 6 min until a diffuse aurora formed. The auroras in the last 6 min were isolated and localized within the field of view of DWS, from 400 km west to 400 km east, and accompanied the magnetic pulse at the optical station. The magnetic pulse is interpreted by the propagating ionospheric current loop with a size comparable to the isolated auroras (~ 1000 km). We conclude that the wave-like structures in the pre-onset interval relate to the intrusion of the plasma-sheet plasmas from the tail by the convection. The plasmas from the tail eventually developed the ionospheric loop currents at the onset latitudes, in association with the triggering of the bead-like rippling of auroras and subsequent breaking out from the onset latitudes.

  17. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  18. Ionospheric response to the 2006 sudden stratospheric warming event over the equatorial and low latitudes in the Brazilian sector using GPS observations

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Batista, I. S.; Fagundes, P. R.; Venkatesh, K.; de Abreu, A. J.

    2017-02-01

    The main purpose of this paper is to study the response of the ionospheric F-region using GPS-TEC measurements at equatorial and low latitude regions over the Brazilian sector during an sudden stratospheric warming (SSW) event in the year 2006. In this work, we present vertical total electron content (VTEC) and phase fluctuations derived from GPS network in Brazil. The continuous wavelet transform (CWT) was employed to check the periodicities of the ∆VTEC during the SSW event. The results show a strong decrease in VTEC and ∆VTEC values in the afternoon over low latitudes from DOY 05-39 (during the SSW event) mainly after the second SSW temperature peak. The ionospheric ∆VTEC pattern over Brazilian sector shows diurnal and semidiurnal oscillations during the 2006 SSW event. In addition, for the first time, variations in ∆VTEC (low latitude stations) with periods of about 02-08 day have been reported during an SSW event. Using GPS stations located in the Brazilian sector, it is reported for the first time that equatorial ionospheric irregularities were not suppressed by the SSW event.

  19. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  20. Pearl-type micropulsations at mid-latitude; their relation to whistlers, solar and geomagnetic activity as well as ionospheric absorption

    NASA Astrophysics Data System (ADS)

    Märcz, F.; Verő, J.

    2002-02-01

    The occurrence of pearl-type (Pc 1) micropulsations recorded at the mid-latitude station Nagycenk (Hungary) during a half solar cycle showed a quite regular variation on this long time scale. Around solar activity maximum, the number of days with Pc 1 occurrence was rather low, while it began to increase during medium solar activity rising to a maximum around solar activity minimum. Pc 1 pulsations have been analyzed in relation to further parameters and on a shorter time scale, too. Based on data of 2 years with maximum Pc 1 occurrence (around solar activity minimum in 1985 and 1986), a seasonal variation was also found. Additionally, it was confirmed that pearl-type micropulsations might frequently occur, on and after days, with geomagnetic disturbances. At Nagycenk, the selected geomagnetic disturbances were generally associated with an increased ionospheric absorption of radio waves caused by enhanced ionization due to particle precipitation from the magnetosphere into the lower ionosphere. Whistler observations carried out at Panska Veš (a station in the Czech Republic) showed a significant whistler activity connected with these geomagnetic disturbances, however, no after-effect appeared in whistler activity. One of the main goals of the present study was to find a relationship between Pc 1 pulsations and whistlers. Results revealing an increased whistler activity associated with Pc 1 occurrences confirm our previous findings rather convincingly. The latter ones hinted at the probability that certain magnetospheric configurations, e.g. geomagnetic field line shells and whistler ducts are closely connected, as similar positions of the two structures were found within the magnetosphere when characteristics of Pc 3 pulsations and whistlers were analyzed.

  1. Phase fluctuations of GPS signals and irregularities in the high latitude ionosphere during geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Shagimuratov, I.; Chernouss, S.; Cherniak, Iu.; Efishov, I.; Filatov, M.; Tepenitsyna, N.

    2016-05-01

    In this report we analysed latitudinal occurrence of TEC fluctuations over Europe during October 2, 2013 geomagnetic storm. The data of GPS stations spaced in latitudinal range 68°-54° N over longitude of 20°E were involved in this investigation. The magnetograms of the IMAGE network and geomagnetic pulsations at Lovozero (68°02'N 35°00'W) and Sodankyla (67°22'N 26°38'W) observatories were used as indicator of auroral activity. During October 2, 2013 the strong geomagnetic field variations took place near 05 UT at auroral IMAGE network. We found good similarities between time development of substorm and fluctuations of GPS signals. The bay-like geomagnetic variations were followed by intensive phase fluctuations at auroral and subauroral stations. The strong short-term phase fluctuations were also found at mid-latitude Kaliningrad station near 05 UT that correspond to the maximal intense geomagnetic bay variations. This date confirms the equatorward expansion of the auroral oval. It brings in evidence also the storm time behavior of the irregularities oval obtained from multi-site GPS observations.

  2. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Häggström, I.; Kalishin, A. S.

    2015-12-01

    We present experimental results concentrating on a variety of phenomena in the high latitude ionosphere F2 layer induced by an extraordinary (X-mode) HF pump wave at high heater frequencies (fH=6.2-8.0 MHz), depending on the pump frequency proximity to the ordinary and extraordinary mode critical frequencies, foF2 and fxF2. The experiments were carried out at the EISCAT HF heating facility with an effective radiated power of 450-650 MW in October 2012 and October-November 2013. Their distinctive feature is a wide diapason of critical frequency changes, when the fH/foF2 ratio was varied through a wide range from 0.9 to 1.35. It provides both a proper comparison of X-mode HF-induced phenomena excited under different ratios of fH/foF2 and an estimation of the frequency range above foF2 in which such X-mode phenomena are still possible. It was shown that the HF-enhanced ion and plasma lines are excited above foF2 when the HF pump frequency is lying in range between the foF2 and fxF2, foF2≤fH≤fxF2, whereas small-scale field-aligned irregularities continued to be generated even when fH exceeded fxF2 by up to 1 MHz and an X-polarized pump wave cannot be reflected from the ionosphere. Another parameter of importance is the magnetic zenith effect (HF beam/radar angle direction) which is typical for X-mode phenomena under fH/foF2 >1 as well as fH/foF2 ≤1. We have shown for the first time that an X-mode HF pump wave is able to generate strong narrowband spectral components in the SEE spectra (within 1 kHz of pump frequency) in the ionosphere F region, which were recorded at distance of 1200 km from the HF heating facility. The observed spectral lines can be associated with the ion acoustic, electrostatic ion cyclotron, and electrostatic ion cyclotron harmonic waves (otherwise known as neutralized ion Bernstein waves). The comparison between the O- and X-mode SEE spectra recorded at distance far from HF heating facility clearly demonstrated that variety of the narrowband

  3. Ionospheric Storm Effects at Subauroral Latitudes: A Case Study

    DTIC Science & Technology

    1991-02-01

    al., 1988; Kilifarska, 1988; Oliver et al., 1988: Ezquer and de 6 7 Adler, 1989; Fesen et al., 1989; Rodger et al., 1989; Richards 100 et al., 1989...It is Buonsanto. M. J.. J. E. Salah. K. L. Miller, W. L. Oliver . R. G. t tBurnside. and P. G. Richards. Observations of neutral circulationunderstood...active times as observed by Hafstad, L. R., and M. A. Tuve. Note on Kennelly- Heaviside layer Dynamics Explorer 2, J. Geophys. Res., 92, 10.133-10,138

  4. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  5. North-South Asymmetries in Earth's Magnetic Field. Effects on High-Latitude Geospace

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Cnossen, I.; Milan, S. E.; Haaland, S. E.; Coxon, J.; Pedatella, N. M.; Förster, M.; Reistad, J. P.

    2017-03-01

    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere-ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutral winds, total electron content, ion outflow, ionospheric currents and auroral precipitation.

  6. Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) II: Inverse modeling with high-latitude observations to deduce irregularity physics

    NASA Astrophysics Data System (ADS)

    Deshpande, K. B.; Bust, G. S.; Clauer, C. R.; Scales, W. A.; Frissell, N. A.; Ruohoniemi, J. M.; Spogli, L.; Mitchell, C.; Weatherwax, A. T.

    2016-09-01

    Ionospheric scintillation is caused by irregularities in the ionospheric electron density. The characterization of ionospheric irregularities is important to further our understanding of the underlying physics. Our goal is to characterize the intermediate (0.1-10 km) to medium (10-100 km) scale high-latitude irregularities which are likely to produce these scintillations. In this paper, we characterize irregularities observed by Global Navigation Satellite System (GNSS) during a geomagnetically active period on 9 March 2012. For this purpose, along with the measurements, we are using the recently developed model: "Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere" (SIGMA). The model is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions and is presented in an earlier paper. We use an inverse modeling technique to derive irregularity parameters by comparing the high rate (50 Hz) GNSS observations to the modeled outputs. In this investigation, we consider experimental observations from both the northern and southern high latitudes. The results include predominance of phase scintillations compared to amplitude scintillations that imply the presence of larger-scale irregularities of sizes above the Fresnel scale at GPS frequencies, and the spectral index ranges from 2.4 to 4.2 and the RMS number density ranges from 3e11 to 2.3e12 el/m3. The best fits we obtained from our inverse method that considers only weak scattering mostly agree with the observations. Finally, we suggest some improvements in order to facilitate the possibility of accomplishing a unique solution to such inverse problems.

  7. Utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    SciTech Connect

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-03-01

    Increased emphasis is placed on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here is illustrated a methodology to realize the fullest potential of such ionosonde data. Hourly values are fit in latitude using Legendre polynominals, and variations from quiet time values are displayed in latitude - U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. Besides reflecting the anticipated southward flows and equatorward extensions in conjunction with magnetically disturbed conditions, the 24-hour average meridional winds exhibit a northward return flow after the magnetic disturbance has relaxed.

  8. Stratospheric Sudden Warming Effects on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.

    2013-12-01

    In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 tides are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating tides and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric response. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric responses will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.

  9. A case study of apparent longitudinal effects of spread-F occurrence for two mid-latitude and two low-latitude stations

    NASA Astrophysics Data System (ADS)

    Xiao, Zuo; Huang, Weiquan; Xiao, Sai-Guan; Zhang, Donghe; Hao, Yongqiang

    Spread-F is a widely studied subject due to its significance in understanding physical essen-tials of the ionospheric irregularities and applications in scintillations prediction of radio wave propagation. The occurrence of Spread-F is affected by many factors such as density gradient below the F2 peak, neutral wind, electric field and so on. Among those factors, Acoustic grav-ity wave is very important in seeding Spread-F occurring. Since most of the gravity wave in the ionosphere sourced from the lower atmosphere, there should be some regional features of Spread-F due to the different meteorological or tectonic conditions under the local ionosphere. Many authors discussed the longitudinal variations and concluded that it could be caused by wind or by deference between local geographic and magnetic latitudes. Few investigations have been focused on the tectonic characteristics under the ionosphere. Asian sector in the world has the sharpest contrast of ocean and continent and this provides a favorable condition to investigate whether the lower atmosphere influence the Spread-F greatly. Data covered about one solar cycle from two Chinese stations located at almost exact the same latitude and a 38O separation in longitude are used to make comparisons in detail of Spread-F occurrence between these two stations. The results showed that the total occurrence or percentage occurrence at Changchun station (very near the coast) is always much higher than that at Urumqi station (in the very center of the Europe-Asia continent) under all conditions. The other features on the occurrence at these two stations are in agreement with the existing results by many au-thors, while the great difference of occurrence at the two stations is striking and spectacular. It gives an evidence that lower atmospheric activities strongly influence the ionospheric Spread-F occurrence.. it is particularly evident in the Asian sector of the world. Also, in this article, Spread-F data of the

  10. On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    SciTech Connect

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-03-01

    Upper atmosphere science is placing increased emphasis on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here we illustrate a methodology whereby the fullest potential of such ionosonde data can be realized. Data from a chain of stations close to the -165/sup 0/ magnetic meridian and separated by about 5/sup 0/ in magnetic latitude are used to study the relationships between magnetic activity, hmF2, foF2, and inferred meridional winds during 17--28 April, 1979. Hourly values are fit in latitude using Legendre polynomials, and variations from quiet-time values are displayed in latitude-U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. For instance, net depletions in foF2 occur over the entire disturbed interval down to about 25/sup 0/--30/sup 0/ latitude, apparently due to such increased N/sub 2/ densities that the resulting enhanced plasma loss rates overcompensate and ''positive'' storm effects whereby southward winds elevate the F-layer peak to altitudes of reduced chemical loss.

  11. The high latitude ionosphere-magnetosphere transition region: Simulation and data comparison

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.; Horwitz, James L.

    1995-01-01

    A brief description of the major activities pursued during the last year (March 1994 - February 1995) of this grant are: (1) the development of a 200 km to 1 Re, O(+) H(+) Model; (2) the extension of the E x B convection heating study to include centrifugal effects; (3) the study of electron precipitation effects; (4) the study of wave heating of O(+); and (5) the polar wind acceleration study. A list of both papers published and papers submitted, along with a proposal for next year's study and a copy of the published paper is included.

  12. Geomagnetic Storm and Substorm effect on the total electron content using GPS at subauroral latitudes

    NASA Astrophysics Data System (ADS)

    Gomez, L.; Sabione, J. I.; van Zele, M. A.; Meza, A. M.; Brunini, C.

    The aim of this work is to characterize the ionospheric electron content variability during a geomagnetic storm and substorms during it This study is based on the vertical total electron content VTEC computed from global positioning system GPS GPS stations located at sub-auroral latitudes are taken into account for analyzing the signatures of the current wedge formed during the substorm expansion phase The study is focused on the geomagnetic storm befallen on April 6 and 7 2000 near the equinox Because our study is based on tying the geomagnetic disturbances with the variability of VTEC in local time the GPS stations are located at different geographic longitude The main results are a when the geomagnetic storm starts between pre-midnight and dawn a minimum of VTEC is recorded lasting all the long day ionospheric storm negative phase also the nighttime electron content may decrease below the corresponding for quiet days but near the 60z of latitude the ionization polar tongue can be observed at noon superimposed to the negative phase b the VTEC computed by GPS station placed lower than 50o recorded a positive phase when the geomagnetic storm starts between dawn and noon or a dusk effect if it starts at noon while those located between 50o and 60o show a sudden increase and later sudden decrease to nocturnal values c when it starts between afternoon and sunset the ionospheric negative phase is recorded during the next day and if the GPS station are located at higher latitude than 50o the VTEC representation shows the nocturnal end of the

  13. The High Latitude Ionosphere-Magnetosphere Transition Region: Simulation and Data Comparison

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.; Horwitz, James L.

    1996-01-01

    This technical paper presents a brief decription of the major activities for this grant during the last three years. Technologyical areas discussed include: model development, ExB convection heating study, study of energetic electron precipitation, polar cap data-model comparison, study of wave heating of O(+), study of photoelectron effects, and study of molecular ion outflow.

  14. Geomagnetic modification of the mid-latitude ionosphere - Toward a strategy for the improved forecasting of f0F2

    SciTech Connect

    Wrenn, G.L.; Rodger, A.S.

    1989-02-01

    An approach for modeling and forecasting the interspatial critical frequency (f0F2) at quiet and disturbed times is outlined. Statistical analyses of ionosonde data from the Argentine Islands (65 deg S) are used to define patterns for the main phase effects of midlatitude ionospheric storms. Extended to a number of stations, these could be incorporated into algorithms to permit the forecasting of maximum usable frequency for a few hours ahead and enhance the frequency management of shortwave radio communication, especially during a geomagnetic storm. Data from a complete solar cycle, 1971-1981, are used to determine the errors in the forecasts and to demonstrate that a useful advantage can be attained by this method. The rms error in f0F2 for 90,175 samples is 15.6 percent, which compares favorably with those obtained using forecasts based on quiet time values (20.4 percent) or the previous day's measurements (18 percent). 12 references.

  15. Asymmetry of the Venus nightside ionosphere: Magnus force effects

    NASA Astrophysics Data System (ADS)

    Pérez-de-Tejada, H.

    2008-11-01

    A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.

  16. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V. A.; Truhlik, V.; Wang, Y.; Arbacher, R. T.

    2011-12-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDAWeb). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  17. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  18. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  19. Space weather effects on lower ionosphere: First investigation from Bharati station during 34th Indian scientific expedition to Antarctica

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Saha, Kumarjit; De, Barin Kumar; Subrahmanyam, Kandula Venkata; Shreedevi, P. R.

    2017-04-01

    We investigate the solar flare effects on the D-region of the ionosphere with the help of VLF (Very Low Frequency) radio waves using a portable E-field system from Antarctica during the summer period of 34th Indian scientific expedition. Two GPS time synchronized VLF receivers, one located at Bharati, Antarctica (geographical latitude 69.40°S, longitude 76.18°E) and another located at Tripura, India (geographical latitude 23.84°N, longitude 91.28°E) were operated simultaneously to infer common mode changes in the lower ionosphere for a number of solar flares events. The two systems constantly monitored the carrier amplitude and phase of the MSK (Minimum Shift Keying) modulated navy transmitter located in Australia (Callsign: NWC, 19.8 kHz, geographical latitude 21.88°S, longitude 114.13°E), around 5.6 Mm great circle distance from the two receivers. The results are interpreted in terms of Earth-ionosphere wave-guide characteristics. A Long Wave Propagation Capability (LWPC) model study is also performed to infer the changes in the daytime electron density in polar D-region ionosphere during the solar flares. The exponential fit of the modeled electron density change with average X-ray flux change shows an excellent correlation (R2 value 0.95). The exponential fit is utilized to infer the daytime electron density change in the polar ionosphere during solar flare events. The analyses indicate that small solar flares of class 'C' can be very effectively detected with the portable antenna system even if the receiver is located in polar coastal region compared to equatorial region. The expedition results also demonstrate the feasibility of using portable VLF receivers from the coastal stations for monitoring the polar lower ionosphere from Antarctica and open up new opportunities for long term exploration.

  20. Estimating the ionospheric refraction effect on interferometric GPS - Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Cloppenburg, H.; Lohmar, F. J.

    A method is presented of realistically estimating the effects of missing ionospheric calibration on GPS determined baselines. The method is based on the experience gained with ionospheric path delays derived from Naval Navigation Satellite System Doppler observations. At present, short baseline determinations with the NAVSTAR Global Positioning System (GPS) in the interferometric or phase differencing mode suffer from lack of ionospheric calibration if only one of the two GPS-frequency bands can be used. The proposed method is expected to permit the use of low-cost clear/acquisition-code receivers for centimeter-accuracy baseline determinations.

  1. Magnetospheric control of the bulk ionospheric plasma

    SciTech Connect

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    The temperature, composition, and circulation of the high-latitude, ionosphere display a marked variation with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. This variation is largely a consequence of the effect that magnetospheric electric fields, particle precipitation, and heat flows have on the ionosphere. At F-region altitudes, the entire ionosphere drifts in response to magnetospheric electric fields, with the horizontal drift generally displaying a two-cell pattern of antisunward flow over the polar cap and return flow at lower latitudes. This ionospheric motion, in combination with downward magnetospheric heat flows and ion production due to energetic-particle precipitation, act to produce interesting ionospheric features such as ion and electron temperature hot spots, plasma blobs, localized ionization troughs, and extended tongue of ionization, and anomalous F-region peak altitudes and densities. The time delay for the ionosphere to respond to changing magnetospheric conditions is a strong function of altitude and can be as long as 3 to 4 hours in the upper F-region. The ionosphere's response to changing magnetospheric conditions are described using a time-dependent high-latitude ionospheric model.

  2. Thermospheric storms and related ionospheric effects

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.

    1976-01-01

    A comparative study of thermospheric storms for equinox and winter conditions is presented based on neutral-composition measurements from the Aeros-A neutral-atmosphere temperature experiment. The main features of the two storms as inferred from changes in N2, Ar, He, and O are described, and their implications for current theories of thermospheric storms are discussed. On the basis of the study of the F-region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are different manifestations of thermospheric storms.

  3. Studies of Ionospheric Irregularities: Origins and Effects

    DTIC Science & Technology

    2007-09-30

    and Ionospheric Scintillations that can be found at: GPS and ionospheric scintillations, P.M. Kintner, B.M. Ledvina , and E.R. de Paula, Space... Ledvina , and P.M. Kintner, Measurements of equatorial scintillations on the WAAS satellite signal, Radio Sci., submitted, 2005. [refereed] 7...Adv. Space Res., 31(3), 741-747, 2003. [refereed] Humphreys, T.E., B.M. Ledvina , M.L. Psiaki, A.P. Cerruti, and P.M. Kintner, Analysis of

  4. Ionospheric effects of magnetospheric and thermospheric disturbances on March 17-19, 2015

    NASA Astrophysics Data System (ADS)

    Polekh, N. M.; Zolotukhina, N. A.; Romanova, E. B.; Ponomarchuk, S. N.; Kurkin, V. I.; Podlesnyi, A. V.

    2016-09-01

    Using vertical and oblique radio-sounding data, we analyze the ionospheric and thermospheric disturbances during the magnetic storm that occurred in northeastern Russia on March 17-19, 2015. We consider the heliospheric sources that induced the magnetic storm. During the main and early recovery phases, the midlatitude stations are characterized by extremely low values of electron density at the F2 layer maximum. Using oblique sounding data, we recorded signals that propagated outside the great circle arc. In evening and night hours, no radio signals were found to pass along the Norilsk-Irkutsk and Magadan-Irkutsk paths. The observed ionospheric effects are shown to be caused by a sharp shift of the boundaries of the main ionospheric trough to the invariant latitude 46° N during the main phase of the magnetic storm. The negative ionospheric disturbance during the recovery phase of the storm, which was associated with significant variations in the composition of the neutral atmosphere, led to a change in the mode composition of received radio signals and a decline in observed maximal frequencies in daytime hours of March 18, 2015 by more than 2 times.

  5. Effects of an atmospheric gravity wave on the midlatitude ionospheric F layer

    SciTech Connect

    Millward, G.H.; Moffett, R.J.; Quegan, S.; Fuller-Rowell, T.J. |

    1993-11-01

    A modeling study of the atmospheric response to a single short burst of enhanced ion convection at high latitudes, undertaken using the Sheffield/University College London/Space Environment Laboratory coupled ionosphere/thermosphere model, has revealed a large-scale atmospheric gravity wave (AGW) moving equatorward from a source in the dawn sector auroral zone. The wave propagates to midlatitude, perturbing the ionosphere and creating a traveling ionospheric disturbance. Analysis of the interaction between the thermosphere and ionosphere during the passage of the AGW at midlatitudes is undertaken and reveals a complex height-dependent response. At lower altitudes the field-aligned velocity of the ions follows closely the field-aligned wind. Above the F peak, diffusion processes become important and the field-aligned ion velocity shows fluctuations which exceded those in the wind. Changes in N{sub m}F{sub 2} and h{sub m} F{sub 2}, during the interaction, are due to redistribution of plasma alone with changes in production and loss insignificant. As the F layer is lifted by the positive surge in the gravity wave, N{sub m}F{sub 2} decreases, due to a divergence in the ion flux, itself caused by the combination of a divergent neutral wind and an increase in the effects of diffusion with altitude. The slab thickness also increases. Subsequently, the opposite happens as h{sub m}F{sub 2} falls below its equilibrium value. 14 refs., 9 figs., 1 tab.

  6. Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current

    SciTech Connect

    Lu, G.; Richmond, A.D.; Emery, B.A.

    1995-10-01

    The assimilative mapping of ionospheric electrodynamics (AMIE) algorithm has been applied to derive the realistic time-dependent large-scale global distributions of the ionospheric convection and particle precipitation during a recent Geospace Environment Modeling (GEM) campaign period: March 28-29, 1992. The AMIE outputs are then used as the inputs of the National Center for Atmospheric Research thermosphere-ionosphere general circulation model to estimate the electrodynamic quantities in the ionosphere and thermosphere. It is found that the magnetospheric electromagnetic energy dissipated in the high-latitude ionosphere is mainly converted into Joule heating, with only a small fraction (6%) going to acceleration of thermospheric neutral winds. This study also reveals that the thermospheric winds can have significant influence on the ionospheric electrodynamics. On the average for these 2 days, the neutral winds have approximately a 28% negative effect on Joule heating and approximately a 27% negative effect on field-aligned currents. The field-aligned currents driven by the neutral wind flow in the opposite direction to those driven by the plasma convection. On the average, the global electromagnetic energy input is about 4 times larger than the particle energy input. 65 refs., 10 figs.

  7. Ionospheric effects of solar flares at Mars

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Lodhi, Neelesh K.; Singh, Sachchidanand

    2009-08-01

    From an analysis of electron density profiles recorded aboard Mars Global Surveyor, we report observations of some new and aeronomically important solar flare effects in the ionosphere of Mars. We find that all flares result in the formation of a well defined E layer peak, not always seen on other days. Further, while majority of flares result in elevated electron densities in the E region alone, some flares affect both the E and F1 layers. These altitude - related effects can provide vital information on the relative enhancement of photon fluxes in the various wavelength bands during solar flares. By using the unit optical depth values at Mars from Fox (2004) and the XUV irradiance model of Meier et al. (2002) for the Bastille Day solar flare, we infer that the well defined E peaks could result from enhancement of photon fluxes in the 10-13 nm spectral band. The extension of effect to the F1 layer is due to hardening of the 26-91 nm spectral band, as supported by Solar EUV Monitor measurements on Solar Heliospheric Observatory.

  8. Ionospheric Challenges for GNSS Based Augmentation Systems

    NASA Astrophysics Data System (ADS)

    Doherty, P.; Valladares, C. E.

    2007-12-01

    The ionosphere is a highly dynamic physical phenomenon that presents a variable source of error for Global Navigation Satellite System (GNSS) signals and GNSS based operational systems. The Federal Aviation Administration's (FAA) Wide-Area Augmentation System (WAAS) was designed to enhance the GNSS standard positioning service by providing additional accuracy, availability and integrity that is sufficient for use in commercial aviation. It is the first of a number of planned regional Satellite Based Augmentation Systems (SBAS). Other systems in development include the European EGNOS system, the MSAS system in Japan and the GAGAN system in India. In addition, the South American countries are investigating the feasibility of operating an SBAS system in this region. Much of the WAAS ionospheric research and development focused on defining and mitigating ionospheric challenges characteristic of the mid-latitude regions, where the ionosphere is well studied and relatively quiescent. The EGNOS and MSAS systems will primarily operate under a similarly quiescent mid-latitude ionosphere. SBAS system development in South America, India and other low-latitude regions, however, will have to contend with much more extreme conditions. These conditions include strong spatial and temporal gradients, plasma depletions and scintillation. All of these conditions have a potential to limit SBAS performance in the low latitude regions. This presentation will review the effects that the ionosphere has on the mid-latitude WAAS system. It will present the techniques that are used to mitigate ionospheric disturbances induced on the system during severe geomagnetic activity and it will quantify the effect that this activity has on system performance. The presentation will then present data from the South American Low-latitude Ionospheric Sensor Network (LISN) that can be used to infer the ionospheric effects on SBAS performance in the most challenging low-latitude ionospheric environment

  9. Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) I: High-latitude sensitivity study of the model parameters

    NASA Astrophysics Data System (ADS)

    Deshpande, K. B.; Bust, G. S.; Clauer, C. R.; Rino, C. L.; Carrano, C. S.

    2014-05-01

    Complex magnetosphere-ionosphere coupling mechanisms result in high-latitude irregularities that are difficult to characterize using only Global Navigation Satellite System (GNSS) scintillation measurements. However, GNSS observations combined with physical parameters derived from modeling can be used to study the physics of these irregularities. We have developed a full three-dimensional electromagnetic wave propagation model called "Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere" (SIGMA), to simulate GNSS scintillations. This model eliminates the most significant approximation made by the previous simulation approaches about the correlation length of the irregularity. Thus, for the first time, using SIGMA, we can accomplish scintillation simulations of significantly high fidelity. While the model is global, it is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions. Using SIGMA, we simulate the spatial and temporal variations in the GNSS signal phase and amplitude on the ground. In this paper, we present the model and results from a study to determine the sensitivity of the SIGMA outputs to different input parameters. We have deduced from our sensitivity study that the peak to peak (P2P) power gets most affected by the spectral index and line of sight direction, while the P2P phase and standard deviation of the phase (σφ) are more sensitive to the anisotropy of the irregularity. The sensitivity study of SIGMA narrows the parametric space to investigate when comparing the modeled results to the observations.

  10. Evidence of low-latitude daytime large-scale traveling ionospheric disturbances observed by high-frequency multistatic backscatter sounding system during a geomagnetically quiet period

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zhao, Zhengyu; Yang, Guobin; Chen, Gang; Hu, Yaogai; Zhang, Yuannong

    2012-06-01

    Observations from the high-frequency multistatic backscatter sounding radars on a geomagnetically quiet day (minimum Dst = -14 nT) captured the anti-equatorward propagation of daytime large-scale traveling ionospheric disturbance (LSTID) at the low-latitude regions. The observed LSTID was characterized approximately by a meridional propagation speed of 347 ± 78 m/s and azimuthal angle of -4.7 ± 27.6° (counterclockwise from north), with a period of 76 min and a wavelength of 1583 ± 354 km by means of maximum entropy cross-spectral analysis. Vertical phase velocity was also evaluated to be <˜42 m/s through the Doppler measurements. These results provide evidence that the low-latitude ionosphere can undergo large-scale perturbations even under geomagnetically quiet conditions. We suggest that this observed LSTID could be due to the secondary gravity waves from thermospheric body forces created from the dissipation of primary gravity waves from deep tropospheric convection.

  11. Ionospheric disturbance dynamo

    SciTech Connect

    Blanc, M.; Richmond, A.D.

    1980-04-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes.

  12. Variability of the bottomside (B0, B1) profile parameters of ionospheric electron density over the lower mid-latitude Cyprus and comparisons with IRI-2012 model

    NASA Astrophysics Data System (ADS)

    Panda, Sampad Kumar; Haralambous, Haris; Mostafa, Md Golam

    2016-07-01

    The present study investigates the variations of the bottomside ionospheric electron density profile thickness (B0) and shape (B1) parameters, deduced from the manually scaled digisonde (DPS-4D) ionograms at the lower mid-latitude Cyprus (Geographic 35°N, 33°E) covering the period 2009-2014. The monthly median hourly values of these parameters during different seasons and solar activity conditions are compared with the International Reference Ionosphere model (IRI-2012) estimations using three different options namely: Bil-2000, Gul-1987, and ABT-2009. To ensure the quiet time profile, the ionograms of the geomagnetically disturbed periods are discarded from the datasets and the storm model in the IRI is intentionally turned off. The statistical studies reveal considerable discrepancies in the observed B0 parameters from the model simulations, though the divergences are minimal around the daytime and during the summer solstice seasons. Nevertheless, B0 with the Gul-1987 option apparently shows closer daytime value during the low solar active summer, whereas the ABT-2009 option manifested relatively better agreement during the high solar active summer months. The characteristic morning, evening, as well as nighttime departure in the model derived B0 parameters are conspicuous in all the seasons in spite of unnoticed perturbations in the B1, suggesting that further improvement in the existing model database is essential with additional in-situ experimental data across the lower mid-latitude region. The important extracts from this study may support in the international efforts of determining the best set of profile parameters for the climatological representation of the ionospheric electron density variation across the globe.

  13. Mid-latitude ionospheric response to active experiments. Final report, 1 May 1990-30 April 1992

    SciTech Connect

    Foster, J.C.

    1992-01-01

    Understanding the ion chemistry and conditions leading to the formation of ionospheric depletions (ionospheric holes) was an important objective of the NASA active ionospheric experiment program. Millstone Hill radar observations were used to monitor the magnitude and temporal extent of the plasma holes produced under varying conditions. The major objective of the completed project was to provide radar diagnostic support for individual NASA rocket campaigns flown from Wallops Island. Two rocket programs, NICARE and REDAIR 2, were selected by NASA for radar support during the proposal period and pre-launch and in-flight radar observations were provided for each as well as basic reduction of the acquired data for scientific analysis. Radar operations and analysis for both of these experiments were performed as proposed and the work on these projects at M.I.T. was completed.

  14. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  15. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  16. Saturation and hysteresis effects in ionospheric modification experiments observed by the CUTLASS and EISCAT radars

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Davies, J. A.; Yeoman, T. K.; Robinson, T. R.; Shergill, H.

    2006-03-01

    The results of high latitude ionospheric modification experiments utilising the EISCAT heating facility at Tromsø are presented. As a result of the interaction between the high power pump waves and upper hybrid waves in the ionosphere, field-aligned electron density irregularities are artificially excited. Observations of these structures with the CUTLASS coherent HF radars and the EISCAT incoherent UHF radar exhibit hysteresis effects as the heater output power is varied. These are explained in terms of the two-stage mechanism which leads to the growth of the irregularities. Experiments which involve preconditioning of the ionosphere also indicate that hysteresis could be exploited to maximise the intensity of the field-aligned irregularities, especially where the available heater power is limited.

    In addition, the saturation of the irregularity amplitude is considered. Although, the rate of irregularity growth becomes less rapid at high heater powers it does not seem to fully saturate, indicating that the amplification would continue beyond the capabilities of the Tromsø heater - currently the most powerful of its kind. It is shown that the CUTLASS radars are sensitive to irregularities produced by very low heater powers (effective radiated powers <4 MW). This fact is discussed from the perspective of a new heating facility, SPEAR, located on Spitzbergen and capable of transmitting high frequency radio waves with an effective radiated power ~10% of that of the Tromsø heater (28MW).

  17. Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Bertucci, C.; Gurnett, D. A.; Holmberg, M. K. G.; Jackman, C. M.; Kurth, W. S.; Menietti, J. D.; Opgenoorth, H. J.; Shebanits, O.; Vigren, E.; Wahlund, J.-E.

    2015-10-01

    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from ˜200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.

  18. Studies of Ionospheric Irregularities: Origins and Effects

    DTIC Science & Technology

    2003-09-30

    occurred during a modest magnetic storm on September 25-26, 2001 [ Ledvina et al., 2002]. In this example a large ionospheric density surge, sometimes...receiver. REFERENCES Ledvina , B.M., J.J. Makela, and P.M. Kintner. 2002: First observations of GPS L1 amplitude scintillations at midlatitude...refereed] Ledvina , B.M., J.J. Makela, and P.M. Kintner. 2002: First observations of GPS L1 amplitude scintillations at midlatitude, Geophys. Res. Lett

  19. An investigation of the formation patterns of the ionospheric F3 layer in low and equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhao, Biqiang; Wan, Weixing; Ning, Baiqi

    2013-09-01

    Ionogram traces with the F3 layer in different latitude do not always seem similar. In our work, we tend to describe morphological features of traces with the F3 layer in magnetic low-latitude region and near magnetic equator through the quantitative investigation of the diurnal variation and latitude dependence of two morphologically characteristic parameters - the foF2-to-foF3 ratio and the difference between h‧F3 and h‧F2 - in geomagnetically quiet period. The distribution of two formation patterns (pattern A and pattern B are defined with increasing F3 peak density and with nearly constant or decreasing F3 peak density respectively as the peak moving upward around the onset of the F3 layer’s occurrence) of the F3 layer is also investigated based on statistics of formation patterns of the F3 layer in Sanya and Kwajalein in 2011. The ideal equinoctial distribution (without the summer-to-winter neutral wind) of those patterns is symmetrical about magnetic equator with pattern A in magnetic low-latitude region and pattern B near magnetic equator. When taking the summer-to-winter neutral wind which resists (enhances) the plasma diffusion to higher latitude in the windward (leeward) into consideration in a solstice, pattern A could be observed near magnetic equator in summer hemisphere and pattern B in magnetic low-latitude region in winter hemisphere compared with the ideal distribution in the equinox.

  20. Seasonal variations of nighttime D-region ionosphere in 2013 solar maximum observed from a low-latitude station

    NASA Astrophysics Data System (ADS)

    Tan, Le Minh; Thu, Nguyen Ngoc; Ha, Tran Quoc; Nguyen-Luong, Quang

    2015-10-01

    We present the observation of tweek atmospherics with harmonics m = 1-8 during the solar maximum year, 2013, at Tay Nguyen University, Vietnam (Geog. 12.65° N, 108.02° E). The analysis of 33,690 tweeks on ten international quiet days during 2 months each season, summer (May, August), winter (February, November), and equinox (March, September), shows that tweeks occur about 51 % during summer, 22 % during winter, and 27 % during equinox. The D-region ionosphere is more sharply bounded for harmonics m = 5-6 around an altitude of 85.5 km. The environment of the D-region is more inhomogeneous during winter and equinox seasons. The mean electron density varies from 28.4-225 cm -3, which corresponds to the harmonics m = 1-8 at the mean reflection height of 81.5-87.7 km. The results reveal that the lower reference height in our work as compared to other works is due to the higher level of solar activity. The equivalent electron density profile of the nighttime D-region ionosphere using tweek method during summer, equinox, and winter seasons shows lower values of electron density by 12-58 %, 3-67 %, and 24-76 % than those obtained using the International Reference Ionosphere (IRI-2012) model.

  1. Thermodynamic effect of the ion sound instability in the ionosphere

    SciTech Connect

    Khazanov, G.V.; Gombosi, T.I.; Gorbachev, O.A.

    1994-04-01

    During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of a non isothermal region (in which T{sub e}>3.4 T{sub i} at ionospheric heights) caused by a rapid cooling the H{sup +} ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence. 33 refs., 3 figs.

  2. Thermodynamic effect of the ion sound instability in the ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gombosi, T. I.; Gorbachev, O. A.; Trukhan, A. A.; Miller, R. H.

    1994-01-01

    During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of non-isothermal region (in which T(sub e) greater than 3.4 T(sub i) at ionospheric heights) caused by a rapid cooling the H(+) ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence.

  3. Ionospheric Effects from the superbolid exploded over the Chelyabinsk area

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Smirnov, Vladimir; Kuznetsov, Vladimir; Smirnova, Elena

    The Chelyabinsk meteorite fall is undoubtedly the most documented in history. Its passage through the atmosphere was recorded by video and photographers, visual observers, infrasonic microphones, seismographs on the ground, and by satellites in orbit. The data of transionospheric sounding by signals from the GPS cluster satellites carried out in the zone of explosion of the Chelyabinsk meteoroid have been analyzed. The analysis has shown that the explosion had a very weak effect on the ionosphere. The observed ionospheric disturbances were asymmetric with respect to the explosion epicenter. The signals obtained were compared both in shape and in amplitude with the known surface explosions for which the diagnostics of the ionospheric effects had been made by radio techniques. Ionospheric effects in the form of acoustic-gravity waves (AGW) produced by 500-600 tons TNT explosions on the ground are detected with confidence both by vertical sounding and by GPS techniques. This allows us to suggest that the reported equivalent of the meteoroid explosion was obviously overestimated. The experiments on the injection of barium vapor (3.3 kg) carried out under similar conditions in the terminator zone revealed the response of the ionosphere in variations of the critical frequencies of the layer at a distance of 1500-2000 km (AGW with a period of 5-10 min). The absence of such ionospheric effects in the remote zone at 1500-1700 km from the epicenter of the bolide explosion in the case under discussion also makes us feel doubtful about the estimated explosion equivalent.

  4. Localized High-Latitude Ionosphere-Thermosphere Ionization Events during the High Speed Stream Interval of 29 April - 5 May 2011

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Mannucci, A. J.; Tsurutani, B. T.; Mlynczak, M. G.; Hunt, L. A.; Redmon, R. J.; Green, J. C.

    2014-12-01

    We analyze localized ionospheric - thermospheric (IT) events in response to external driving by a high-speed stream (HSS) event during the ascending phase of the solar cycle 24. The HSS event occurred from 29 April to 5 May, 2011. The HSS (and not the associated co-rotating interaction region) caused a moderate geomagnetic storm with peak SYM-H = -55 nT and prolonged auroral activity. We analyze TIMED/SABER measurements of nitric oxide (NO) cooling emission during the interval as a measure of thermospheric response to auroral heating. We identify several local cooling emission (LCE) events in high- to sub-auroral latitudes that are presumed to be in response to external driving. Individual cooling emission profiles during these LCE events are enhanced at ~100 to 150 km altitude (ionospheric E layer). For the first time, we present electron density profiles in the vicinity of the LCE events using COSMIC radio-occultation measurements. Measurements at local nighttime show the formation of an enhanced E-layer (about 2.5 times increase over the undisturbed value) at the same approximate altitudes as the LCE peaks. Daytime electron density profiles show relatively smaller enhancements in the E-layer. We suggest that the IT response is due to additional ionization caused by medium energy electron (>20 keV) precipitation into the sub-auroral to high-latitude atmosphere during the HSS event. POES/MEPED electron precipitation data are presented to support this hypothesis. Consequences for space weather forecasting are discussed.

  5. LOFAR as an ionospheric probe

    NASA Astrophysics Data System (ADS)

    Gaussiran, T. L., II; Bust, G. S.; Garner, T. W.

    2004-12-01

    At the Low-Frequency Array (LOFAR)(Planet. Space Sci. (2004) these proceedings) frequencies (HF/VHF), extraterrestrial radiation experiences substantial propagation delay as it passes through the ionosphere. The adaptive calibration technique to be employed by LOFAR will use signals from many known bright radio sources in the sky to estimate and remove the effects of this delay. This technique will operate along many simultaneous lines of sight for each of the stations. Measurements will be made on time scales of seconds or shorter, and with accuracies corresponding to path length variations of 1 cm or less. Tomographic techniques can be used to invert the thousands of changing and independent total electron content (TEC) measurements produced by LOFAR into three-dimensional electron density specifications above the array. These specifications will measure spatial and time scales significantly smaller and faster than anything currently available. These specifications will be used to investigate small-scale ionospheric irregularities, equatorial plasma structures, and ionospheric waves. In addition, LOFAR will improve the understanding of the solar drivers of the ionosphere by simultaneously measuring the solar radio bursts and the TEC. Finally, LOFAR, which will be situated to observed the galactic plane, will make continuous, high-resolution observations of the low-latitude ionosphere, an important but under-observed region. This paper will look at LOFAR as an ionospheric probe including comparisons to other ionospheric probes as well as possible methods of operation to optimize ionospheric measurements.

  6. The effect of solar energetic particles on the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Darwish, Omar Hussain Al; Lillis, Robert; Fillingim, Matthew; Lee, Christina

    2016-10-01

    The precipitation of Solar Energetic Particles (SEP) into the Martian atmosphere causes several effects, one of the most important of which is ionization. However, the importance of this process to the global structure and dynamics for the Martian ionosphere is currently not well understood. The MAVEN spacecraft carries instrumentation which allow us to examine this process. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measures the densities of planetary ions in the Mars ionosphere (O+,CO2+ and O2+). The Solar Energetic Particle (SEP) detector measures the fluxes of energetic protons and electrons. In this project, we examine the degree to which the density of ions in the Martian ionosphere is affected by the precipitation of energetic particles, under conditions of different SEP ion and electron fluxes and at various solar zenith angles. We will present statistical as well as case studies.

  7. Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: Comparison of the Halloween 2003 and the Bastille Day events

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Guarnieri, F. L.; Fuller-Rowell, T.; Mannucci, A. J.; Iijima, B.; Gonzalez, W. D.; Judge, D. L.; Gangopadhyay, P.; Saito, A.; Tsuda, T.; Verkhoglyadova, O. P.; Zambon, G. A.

    2006-06-01

    Extreme solar flares can cause extreme ionospheric effects. The 28 October 2003 flare caused a ~25 total electron content units (TECU = 1016 el/m2 column density), or a ~30%, increase in the local noon equatorial ionospheric column density. The rise in the TEC enhancement occurred in ~5 min. This TEC increase was ~5 times the TEC increases detected for the 29 October and the 4 November 2003 flares and the 14 July 2000 (Bastille Day) flare. In the 260-340 Å EUV wavelength range, the 28 October flare peak count rate was more than twice as large as for the other three flares. Another strong ionospheric effect is the delayed influence of the interplanetary coronal mass ejection (ICME) electric fields on the ionosphere. For the 28 and 29 October flares, the associated ICMEs propagated from the Sun to the Earth at particularly high speeds. The prompt penetration of the interplanetary electric fields (IEFs) caused the dayside near-equatorial ionosphere to be strongly uplifted by E × B convection. Consequential diffusion of the uplifted plasma down the Earth's magnetic field lines to higher magnetic latitudes is a major plasma transport process during these IEF (superstorm) events. Such diffusion should lead to inverted midlatitude ionospheres (oxygen ions at higher altitudes than protons). The energy input into the midlatitude ionospheres by this superfountain phenomenon could lead to local dayside midlatitude disturbance dynamos, features which cannot propagate from the nightside auroral zones.

  8. Studies of Ionospheric Irregularities: Origins and Effects

    DTIC Science & Technology

    2002-09-30

    26, 2001 ( Ledvina et al., 2002). In this example a large ionospheric density surge, sometimes call a storm-enhanced density event, moved up the east...funds from NSF and ONR to enable a graduate student to examine Cluster plasma wave data. REFERENCES Ledvina , B.M., J.J. Makela, and P.M...H. Kil, C. Deehr, and P. Schuck. 2002: Simultaneous TEC and ASC measurements of an auroral arc, Radio Sci., in press. Ledvina , B.M., J.J. Makela

  9. The flywheel effect: Ionospheric currents after a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. )

    1991-10-01

    In the period following a geomagnetic storm the high-latitude, magnetospheric-driven convection pattern is normally weak. However, the neutral circulation, set up by ion-neutral momentum coupling during the main phase of the storm, may continue for several hours after the storm has ended. This persistent neutral circulation has the potential to drive Hall currents for some hours. In this paper the authors investigate these flywheel' currents by simulating a storm which occurred on the 23rd of November 1982 using the National Center for Atmospheric Research Thermosphere Ionosphere General Circulation Model (NCAR-TIGCM). The resulting high-latitude, height-integrated Hall currents are dominated by the neutral-wind-driven component for several hours after the end of main phase of the storm. The direction of these currents is reversed from normal. Analysis of the neutral and ion components of this current system indicates that the neutral component may drive as much as 80% of the high-latitude current system immediately after the storm has ended, and may continue to dominate this system for 4 to 5 hours.

  10. Dynasonde Measurements of Ionospheric Meteor Effects

    NASA Astrophysics Data System (ADS)

    Berkey, F. T.; Sikdar, P.; Fish, C. S.; Jones, O.; Tsai, L.; Yen, C.

    2002-12-01

    The ionization created when meteoric particles impinge on the upper atmosphere has been studied extensively, both with optical methods and by radar techniques. Traditionally, meteor radars have been configured as dedicated, fixed-frequency systems that operate in the HF/VHF bands and are employed to measure winds and other parameters in the mesosphere-lower thermosphere region. It has long been recognized that ionosondes are capable of detecting meteor ionization although the sparse sounding format of most synoptic instruments does not facilitate a rigorous analysis of meteor ionization effects. Furthermore, most ionosonde-based studies have focused on meteor shower intervals when the meteor ionization is especially prominent (e.g. Chandra et. al., 2001). However, the capabilities of digital ionosondes such as the NOAA dynasonde allow the detailed study of various parameters of the meteor-induced ionization such as amplitude, polarization and spatial location, in addition to the time-of-flight, as a function of time and frequency. In this report, we will examine meteor ionization recorded by dynasondes located at Bear Lake (Utah) and Halley (Antarctica) demonstrating that these ionogram data can be used to distinguish between underdense and overdense meteor ionization. Other characteristics of the meteor-induced ionization, such as spatial location and Doppler velocity will also be presented. The dynasonde operated at the USU Bear Lake Observatory (42° N, 111° W) detects a large flux of meteor echoes and will be the primary source of data for this study. Chandra, H., et. al., Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes, Annales. Geophys., 19, 59-69, 2001.

  11. Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr

    2015-04-01

    The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  12. Study of the morphology of nighttime D-region ionosphere using tweek atmospherics recorded at low latitudes

    NASA Astrophysics Data System (ADS)

    Tan, L. M.

    2015-12-01

    Recording the tweek atmospherics with a maximum up to eight harmonic using the receiver installed at Tay Nguyen University (12.65o N, 108.02o E), Vietnam during January - December 2013, we studied the morphology of the nighttime D-region ionosphere. Tweeks were recorded on 5 quiet nights per month. The occurrence of tweeks with mode number m = 2 - 3 is more dominant. Tweeks with higher modes (m ≥ 4) appear less than other tweeks due to the higher attenuation of wave energy for higher modes reflected at the ionospheric D region. The results show that electron densiy varies from 25.2 - 187.1 cm-3 corresponding the tweeks with m = 1 - 8 at the reflection height from 81.7- 86.6 km. The variation of tweek reflection hight during the solar maximum year, 2013, could be caused by the hydrogen Lyman-α and Lyman-β emissions from the geocorona, galactic cosmic rays, variations of neutral density, direct lightning coupling to the ionsphere and electron precipitaion. The reference height h' is low in January - April and high in May - December. The exponential sharpness factor β of electron density profile are higher during summer seasons as compared to those during winter and equinox seasons. The electron density using the tweek method is lower by about 18 - 49 % than those obtained using the IRI-2012 model and shows a good comparision with the IRI-2012 in the altitude range of 83 - 89 km.

  13. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  14. Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Rowland, D.; Liebrecht, C.; Bromund, K.; Roddy, P.

    2010-01-01

    Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude

  15. Longitudinal structure in electron density at mid-latitudes: upward-propagating tidal effects

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Kedeng

    2017-01-01

    This work studies the upward-propagating migrating and non-migrating tidal effects from the lower atmosphere on the longitudinal variation of electron density (Δ Ne) in both the E and F regions at mid-latitudes during the 2002 March equinox. A total of 12 runs are conducted using the Thermosphere Ionosphere Electrodynamic General Circulation model for theoretical investigation. The Δ Ne at altitudes above 200 km is affected by upward-propagating tides, with maximum values attained around 300 km. Migrating tides result in reduced longitudinal differences in the Δ Ne over North America and in the Southern Hemisphere, while non-migrating tides induce a wave-4 pattern in both hemispheres. The non-migrating effect is weaker than the migrating effect after penetrating into the F region. The neutral composition (i.e., ratio of atom oxygen to molecular nitrogen) is dominant in regulating the Δ Ne in both the migrating (accounting for approximately 64%) and non-migrating (about 60%) tidal penetration processes. The Δ Ne caused by the tidal meridional wind (accounting for approximately 70%) is stronger than the tidal zonal wind (about 30%) under both the migrating and non-migrating tidal conditions, except in the Southern Hemisphere under migrating tidal input. This work contributes to our understanding of the mechanisms for the longitudinal modulation of the Δ Ne at mid-latitudes.[Figure not available: see fulltext.

  16. Nighttime ionospheric saturation effect estimation in the African equatorial anomaly trough: A comparison of two approaches

    NASA Astrophysics Data System (ADS)

    Ikubanni, Stephen O.; Adeniyi, Jacob O.

    2016-02-01

    Using the two-segmented and the quadratic regression analyses methods, the existence of saturation effect in the ionospheric electron content has been established in published literatures. With data set that spans an 11 year period (one solar cycle) from an African low-latitude station—Ouagadougou, Burkina Faso (Geographical coordinates 12oN, 1.8oW, dip ~3oN)—and adopting the quadratic and the two-segmented regression methods, we have studied nighttime saturation effect on the critical frequency of ionospheric F2 layer (foF2) around the magnetic dip. Both methods revealed that saturation effect in foF2 cuts across all seasons during nighttime. This phenomenon was least at the peak of the prereversal enhancement (PRE) period and increases significantly beyond midnight. Either of the two approaches can be adopted for saturation effect studies. The advantage of the two-segmented over the quadratic is that the change point (breakpoint), which is the solar flux level where saturation effects first become observable, can be determined. The effect seen around the PRE period may be attributed to the E × B drift while the effect beyond the PRE period is masked by other mechanisms.

  17. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  18. High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations

    NASA Technical Reports Server (NTRS)

    Burchill, J. K.; Clemmons, J. H.; Knudsen, D. J.; Larsen, M.; Nicolls, M. J.; Pfaff, R. F.; Rowland, D.; Sangalli, L.

    2012-01-01

    We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling.

  19. Ionospheric Effects of Sudden Stratospheric Warming During Solar Maximum and Minimum Periods: What Do We See from Puerto Rico?

    NASA Astrophysics Data System (ADS)

    Hernandez-Espiet, A.; Goncharenko, L. P.; Spraggs, M. E.; Coster, A. J.; Galkin, I. A.; Aponte, N.

    2014-12-01

    Some of the main factors that contribute to changes in multiple ionospheric parameters are solar flux, geomagnetic activity, seasonal behavior, and coupling with lower atmosphere, which is particularly strong during sudden stratospheric warming events (SSW). Studying the way that these factors induce changes in the ionosphere is important, since these changes can have a negative effect on different types of communication systems. Multiple case studies have demonstrated large variations in ionospheric electron density in association with SSW in the low-latitude ionosphere, in particular near the crests of the equatorial ionization anomaly. However, the latitudinal extend of these variations was not addressed. In this study, we utilize data obtained in Puerto Rico by three instruments - Ramey digisonde, Arecibo Incoherent Scatter Radar (ISR) and GPS receivers to analyze four winter-time periods: two years with major SSW events (2005-2006, 2012-2013) and two years with minor SSW events (2006-2007, 2013-2014). In addition, selected cases represent two winters with low solar activity and two winters with moderate to high solar activity. The study focuses on the location of Arecibo, Puerto Rico (18.34°N, 66.75°W), ~15° to the north of the northern crest of the equatorial ionization anomaly. We report good agreement in ionospheric parameters between all three instruments. To investigate possible association with SSW events, we remove influences of seasonal behavior, solar flux, and geomagnetic activity by building empirical model and subtracting expected variations from the observational data. The analysis of residuals between the data and the model shows that ionospheric disturbances were observed in Puerto Rico for both minor and major SSW events in the ISR, digisonde and GPS Total Electron Content (TEC) data. We report 20-60% variations in NmF2 and TEC due to SSW effects. Large variations are also observed in electron density, electron temperature and plasma

  20. Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-09-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of

  1. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-08-01

    We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

  2. System Effects of Ionospheric-Magnetospheric Plasma Redistribution During Storms (Invited)

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    2009-12-01

    How does the magnetospheric uptake of ionospheric plasma change during storms, while the underlying ionosphere is modified by enhanced convection, precipitation and outflow? How does the outflow influence the dynamics and coupling of the magnetosphere and ionosphere, including plasma and geomagnetic field conditions of the lobes, plasmasheet and inner magnetosphere, and the evolution of the ionospheric conductance, temperature, and density? This paper addresses these questions by synthesizing results from selected presentations of the session. Observations of the F-region plasma and particle measurements in the low-altitude, high-latitude magnetosphere, lobes and plasmasheet are combined with results from ion outflow models, global kinetic models, ring-current models, and global geospace simulations. The synthesis shows that stormtime ionospheric outflows are superfluent in the cusp region with an upper flux limit of 1014 ions/m2-s. O+ beams appear in the lobes before interplanetary shock impact, and they exhibit dawn-dusk and hemispherical asymmetries, also manifested in the plasmasheet. The outflows enhance the stormtime ring current, relative to a system state with no ionospheric outflow. The distribution and intensity of the ring-current pressure depends also on the convection and the self-consistently induced magnetic field. In global simulations, the outflows modify dayside and nightside reconnection, precipitating electron power, the ionospheric conductance, the transpolar potential, and the electrodynamics of the magnetosphere-ionosphere interaction.

  3. Effects of absorption on high-latitude meteor scatter communication systems

    SciTech Connect

    Ostergaard, J.C.; Weitzen, J.A.; Kossey, P.A.; Bailey, A.D.; Bench, P.M. USAF, Geophysics Laboratory, Hanscom AFB, MA )

    1991-08-01

    Propagation data covering the solar disturbances of March and August 1989, acquired with the Geophysical Laboratory's High-Latitude Meteor Scatter Test-Bed, are presented and are examined as a function of frequency. It was found that the two solar-disturbance events were very different. The August event was dominated by ionospheric absorption which affected meteor arrival rates and duty cycles primarily at 35 and 45 MHz, while the March event combined weak ionospheric absorption with large solar noise burst. The absorption was frequency dependent during both events. 21 refs.

  4. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  5. Ionospheric data assimilation and forecasting during storms

    NASA Astrophysics Data System (ADS)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  6. Interactions between the polar ionosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1987-01-01

    The temperature, composition and circulation of the ionosphere and thermosphere in the polar regions are closely coupled and display a marked variation with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. To a large degree, this variation is a consequence of the effect that magnetospheric electric fields, particle precipitation, and heat flows have on the ionosphere-thermosphere system. These magnetospheric processes act to produce ionospheric hot spots, plasma blobs, localized ionization troughs, extended tongues of ionization and ion composition changes. These ionospheric features then affect the thermosphere because of ion-neutral momentum and energy coupling. The resulting interactions act to modify the thermospheric circulation, composition, and temperature, and this, in turn, affects the ionosphere. However, there are significant time delays associated with the various interactions. These and other results are reviewed.

  7. Saturation Effects in the VLF Scattering off Strongly Heated Ionosphere

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Bell, T. F.; Inan, U. S.

    2011-12-01

    The HAARP ionospheric HF heating facility modifies the conductivity of the lower ionosphere, creating a perturbation in the propagation of VLF transmitter-generated waves. The changes in the VLF amplitude may be detected by ground-based receivers and satellites with VLF instruments. In order to quantify these effects, we introduce a novel computational technique which combines the Stanford FWM (full-wave method) with the method of moments (MoM) to calculate the scattering on localized strong perturbations in stratified media. The Born approximation, which was previously used for similar calculations [Lehtinen et al., 2010], neglects the scattered field inside the perturbation region and therefore becomes invalid when the scattered field is of the order of the incident field, which happens when the perturbation is strong (i.e., the relative change of the conductivity is ~1). On the contrary, the use of MoM allows us to calculate the effects of the total field and thus may be applied to situations with any level of perturbation. This technique is applied to the VLF scattering off ionospheric disturbances created by HF heating. We show how the field measured on the ground and at a satellite deviates from that calculated previously in the Born approximation by demonstrating saturation effects for strong heating.

  8. Ionospheric Disturbance Effects on IPS signals from MEXART

    NASA Astrophysics Data System (ADS)

    Rodriguez-Martinez, M.; Perez-Enriquez, R.; Carrillo-Vargas, A.; Lopez-Montes, R.; Araujo-Pradere, E. A.; Casillas-Perez, G.; Lopez Cruz-Abeyro, J.

    2011-12-01

    We present a study related to the impact by ionospheric disturbances in the radio-signal of sources observed with MEXican Array Radio Telescope (MEXART) from April 20th to May 31th of 2010. Along this time interval, we observed the behavior of radio-signal for the sources: 3C048, 3C144, 3C274, Cas A, Cen A, and 3C405, in a daily basis. We found that there were days in which some of these sources showed slight fluctuations, even when there was no major solar event. We analyzed the time series of each source using a Wavelet tool that allowed us to highlight those periods which can exist in the signal related with these fluctuations. In addition, to characterize and identify ionospheric effects, we have calculated the Total Electron Content (TEC) from Global Positioning System (GPS) data and have taken into account the Dst index for the same period with the purpose of discard effect from geomagnetic storms. We found that the TEC can be used as a potential tool to discriminate between interplanetary scintillation and ionospheric fluctuations in MEXART data.

  9. Magnetic field effects on the accuracy of ionospheric mirror models for geolocation

    NASA Astrophysics Data System (ADS)

    Dao, Eugene V.; McNamara, Leo F.; Colman, Jonah J.

    2016-04-01

    The geolocation of an uncooperative HF emitter is based on observations of the azimuth and elevation (angle of arrival; AoA) of its signals as they arrive at a surveillance site, along with a model of the propagation medium. The simplest propagation model that provides an estimate of the location of the emitter is based on the use of a horizontal mirror placed at the appropriate altitude. If there are large-scale horizontal ionospheric gradients or traveling ionospheric disturbances present, tilts derived from a suitable ionosonde or from the AoA of convenient known emitters (check targets) may be applied to the mirror before geolocation is performed. However, the methodology of this approach to geolocation completely ignores the Earth's magnetic field, producing errors that can reach 25% of range for a short range (less than 100 km) low-latitude target. The errors are generally smaller at midlatitudes. This paper investigates and characterizes these errors in terms of wave polarization, magnetic dip, circuit length, and azimuth relative to the direction of the magnetic field. The magnetic field also affects the procedure of using tilts derived from check-target AoA because the field effects can masquerade as tilts of unknown magnitude.

  10. A study of the undisturbed mid-latitude ionosphere using simultaneous multiple site ionosonde measurements during the Sundial-86 campaign

    SciTech Connect

    Sica, R.J. ); Schunk, R.W. ); Willkinson, P.J. )

    1990-06-01

    The Sundial-86 campaign obtained simultaneous ionosonde measurements of N{sub m}F2 from 41 mid-latitude sites geographically dispersed around the world from September 21 to October 5, 1986. A three-dimensional, time-dependent model of Earth's ionoshpere has been used to fit the variations in N{sub m}F2 obtained from these sites. The model successfully reproduced the measurements in both the northern and southern hemispheres using the vertical plasma drift as a free parameter. During geomagnetically quiet conditions this drift is primarily due to the meridional neutral wind. The vertical plasma drift required to fit the data is consistent from location to location and the deduced meridional neutral wind is also consistent with previous neutral wind measurements and models. However, it is shown that a lack of knowledge of the variation of the O{sup +} flux at the top of the atmosphere introduces a large uncertainty in the deduced thermospheric winds.

  11. Comparison of Observations of Sporadic-E Layers in the Nighttime and Daytime Mid-Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Clemmons, J.; Larsen, M.; Kudeki, E.; Franke, S.; Urbina, J.; Bullett, T.

    2012-01-01

    A comparison of numerous rocket experiments to investigate mid-latitude sporadic-E layers is presented. Electric field and plasma density data gathered on sounding rockets launched in the presence of sporadic-E layers and QP radar echoes reveal a complex electrodynamics including both DC parameters and plasma waves detected over a large range of scales. We show both DC and wave electric fields and discuss their relationship to intense sporadic-E layers in both nighttime and daytime conditions. Where available, neutral wind observations provide the complete electrodynamic picture revealing an essential source of free energy that both sets up the layers and drives them unstable. Electric field data from the nighttime experiments reveal the presence of km-scale waves as well as well-defined packets of broadband (10's of meters to meters) irregularities. What is surprising is that in both the nighttime and daytime experiments, neither the large scale nor short scale waves appear to be distinctly organized by the sporadic-E density layer itself. The observations are discussed in the context of current theories regarding sporadic-E layer generation and quasi-periodic echoes.

  12. Ionospheric effects on synthetic aperture radar at VHF

    SciTech Connect

    Fitzgerald, T.J.

    1997-02-01

    Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations of the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.

  13. Measurements of ionospheric effects on wideband signals at VHF

    SciTech Connect

    Fitzgerald, T.J.

    1998-08-17

    Radars operating at very high frequency (VHF) have enhanced foliage and ground penetration compared to radars operated at higher frequencies. For example, VHF systems operated from airplanes have been used as synthetic aperture radars (SAR); a satellite-borne VHF SAR would have considerable utility. In order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. A satellite-borne radar would likely have to operate at altitudes above the maximum density of the ionosphere; the presence of the ionosphere in the propagation path of the radar will cause a deterioration of the performance because of dispersion over the bandwidth. The author presents measurements of the effects of the ionosphere on radar signals propagated from a source on the surface of the Earth and received by instruments on the FORTE satellite at altitudes of 800 km. The author employs signals with a 90 MHz bandwidth centered at 240 MHz with a continuous digital recording period of 0.6 s.

  14. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  15. Ionospheric effects of St. Patrick's storm over Asian Russia: 17-19 March 2015

    NASA Astrophysics Data System (ADS)

    Zolotukhina, N.; Polekh, N.; Kurkin, V.; Rogov, D.; Romanova, E.; Chelpanov, M.

    2017-02-01

    We have carried out a comprehensive analysis of data from the high-frequency coherent radar located near Yekaterinburg, ground-based ionospheric, riometric, and magnetic stations, situated within the radar field of view and in the vicinity of it, as well as from eight radio paths crossing the Asian region of Russia. Using these data, we studied dynamics of ionospheric disturbances over wide longitudinal sector during the first 3 days of the St. Patrick's two-step severe geomagnetic storm and determined the main mechanisms of their development. We showed that on 17 March during the main and early recovery storm phases, the major contribution to the generation of the ionospheric disturbances had been made by impact ionization by precipitating magnetospheric particles. This had lead to appearance of intense sporadic layers, alternating with intervals of total absorption. The main features of the storm were the large latitude width of the auroral precipitation zone and an expansion of this zone to corrected geomagnetic latitude 45°. We suppose that these peculiarities were due to high variability of interplanetary magnetic field and solar wind impacted on the magnetosphere. The most probable cause of the negative ionospheric disturbance on 18 March might have been a change in the neutral atmosphere composition. Significant differences between measured and simulated values of maximal electron concentration in F2 layer point to the need to improve the existing empirical models of thermosphere, auroral precipitations, and magnetospheric convection in order to use them for modeling of ionospheric parameters during severe geomagnetic storms.

  16. A theoretical study of the high-latitude winter F region at solar minimum for low magnetic activity

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Raitt, W. J.; Schunk, R. W.

    1981-02-01

    A simple plasma convection model is combined with an ionospheric-atmospheric composition model in order to study the high-latitude winter F region at the solar minimum for low magnetic activity. The high latitude ionospheric features, such as the main trough, the ionization hole, the tongue of ionization, the aurorally produced ionization peaks, and the universal time effects are a natural consequence of the competition between the various chemical and transport processes known to be operating in the high-latitude ionosphere. In the polar hole, the F region peak electron density is below 300 km, and the dominant process at 300 km for NO(+) ions is diffusion.

  17. Ionospheric effects of whistler waves from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Agrawal, D.; Cotts, B.; Golkowski, M.; Moore, R. C.

    2011-12-01

    Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. The spatial and temporal structure of LEP are affected by parameters such as lightning location and the return stroke peak current and spectral distribution. While previous works have emphasized lightning location and return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to evaluate the spectral content of individual lightning return strokes. Using an integrated set of numerical models we calculate the latitudinal dependence of the precipitation signature using observed rocket-triggered lightning channel-base currents. Results indicate that return strokes with higher ELF (3 Hz - 3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with higher VLF (3 kHz - 30 kHz) content. The ability to directly measure the channel-base current of the rocket-triggered lightning return stroke enables us to determine the relationship between lightning source spectrum and the removal of energetic electrons from the Earth's radiation belts and to predict the geographic location and magnitude of electron precipitation in both the northern and southern hemispheres.

  18. Ionospheric effects of whistler waves from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Cotts, B. R. T.; Gołkowski, M.; Moore, R. C.

    2011-12-01

    Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. While previous works have emphasized lightning location and the return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to directly measure the spectral content of individual lightning return strokes. Using an integrated set of numerical models and directly observed rocket-triggered lightning channel-base currents we calculate the latitudinal dependence of the precipitation signature. Model results indicate that rocket-triggered lightning may produce detectable LEP events and that return strokes with higher ELF (3 Hz-3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with proportionally higher VLF (3 kHz-30 kHz) content. The predicted spatio-temporal signature of the induced electron precipitation is highly dependent upon the return stroke spectral content. As a result, we postulate that rocket-triggered lightning experiments enable us to the estimate the spectral profile of energetic electrons precipitated from the Earth's radiation belts.

  19. Studing Solar Flare Effects on Ionosphere Using AWESOME Receiver

    NASA Astrophysics Data System (ADS)

    Mustafa, Famil; Babayev, Elchin; Alekperov, Ilgar

    2015-08-01

    Ground based observations of Extremely Low Frequency (ELF) / Very Low Frequency (VLF) (300 Hz 30 kHz) waves are considered as an important remote sensing tool for the investigation of the ionosphere and the magnetosphere. VLF waves find their origin in various natural and artificial phenomena; the natural sources include thunderstorms, lightning and associated phenomena. Sub-ionospheric VLF transmissions propagating inside the Earth-ionosphere wave-guide is also being widely used for investigating sudden ionospheric perturbations (SIDs) in lower part of the ionosphere.

  20. Effects of solar flares on the ionosphere of Mars.

    PubMed

    Mendillo, Michael; Withers, Paul; Hinson, David; Rishbeth, Henry; Reinisch, Bodo

    2006-02-24

    All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of these essentially unpredictable events can be measured reliably. Here, we report observations of solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that relative enhancements in the soft x-ray fluxes far exceed those in the UV.

  1. Effects of ionospheric turbulence on SPS pilot signal

    NASA Technical Reports Server (NTRS)

    Clynch, J. R.

    1981-01-01

    The spatial variation of the electron density was studied by monitoring the differential Doppler on radio beacons aboard the Navy navigation satellites. The radio frequency heater was used to deposit energy in the F-region ionosphere with the heating frequency above peak plasma frequency. The effects of the solar power satellite power beam on the pilot signal were simulated. It was found that a small depletion was formed in the beam and that there was turbulence in the elctron density up the magnetic field line from the beam. It is suggested that the depletion will not seriously affect the power or pilot beams of the solar power satellite.

  2. Lower ionosphere response to external forcing: A brief review

    NASA Astrophysics Data System (ADS)

    Laštovička, Jan

    2009-01-01

    There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above

  3. Observations of IMF and seasonal effects in high-latitude convection

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.

    1995-01-01

    Strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma are described. The findings are based on a statistical analysis of observations made with the Johns Hopkins University/ Applied Physics Lab (JHU/APL) HF radar located at Goose Bay, Labrador. For positive sign of the IMF dusk-dawn component, By greater than 0 the dawn cell is more crescent shaped and the dusk cell more round while for BY less than 0 these pairings of size and shape are reversed. The more extreme crescent /round cell dichotomy is obtained for BY greater than 0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (magnetic local time); the reversal in the zonal velocity in the 67 deg-69 deg lambda (magnetic latitude) interval occurs 2.5 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings By greater than 0, summer and BY less than 0, winter; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT.

  4. The effect of solar wind dynamic pressure changes on low and mid-latitude magnetic records

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Ginskey, M.; Petrinec, S.; Le, G.

    1992-06-01

    Magnetic records from low- and mid-latitude stations have been examined to determine their response to solar wind pressure changes. The best correlation between ground level changes and the change in the square root of the solar wind dynamic pressure occurs for stations at latitudes from 15 to 30 deg such as Tahiti, Honolulu, San Juan and Midway. The horizontal component of the field changes on average 16.5 nT for each change of 1(nPa) exp 1/2 of the square root of dynamic pressure. This is 50 percent greater than the vacuum model of Tsyganenko would predict for a nonconducting earth and therefore what would be expected for a perfectly conducting interior. Thus, low- and mid-latitude ground level response to solar wind pressure changes is dominated by the variation of the strength and location of the magnetopause current system and the corresponding induced currents within the earth rather than ionospheric current sources.

  5. Ionospheric redistribution during geomagnetic storms.

    PubMed

    Immel, T J; Mannucci, A J

    2013-12-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<-100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  6. Rocket studies of the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Bowhill, Sidney A.

    1990-01-01

    The earth's ionosphere in the altitude range of 50 to 200 km was investigated by rocket-borne sensors, supplemented by ground-based measurement. The rocket payloads included mass spectrometers, energetic particle detectors, Langmuir probes and radio propagation experiments. Where possible, rocket flights were included in studies of specific phenomena, and the availability of data from other experiments greatly increased the significance of the results. The principal ionospheric phenomena studied were: winter anomaly in radiowave absorption, ozone and molecular oxygen densities, mid-latitude sporadic-E layers, energetic particle precipitation at middle and low latitudes, ionospheric instabilities and turbulence, and solar eclipse effects in the D and E regions. This document lists personnel who worked on the project, and provides a bibliography of resultant publications.

  7. Effect of interplanetary magnetic field on ionosphere over the magnetic equator

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Patel, V. L.

    1975-01-01

    Large and quick changes of the latitude of the interplanetary magnetic field from its southward to northward direction are shown to be associated with the disappearance of the Es-q layer (Knecht, 1959) at the equatorial ionosphere during the daytime or with the reversal of E region horizontal and F region vertical electron drifts during both night and day. This phenomenon is suggested as the imposition of an electric field in the ionosphere in a direction opposite to that of the Sq electric field. The resultant electrostatic field on the equatorial ionosphere would be decreased or even reversed from its normal direction, resulting in the reduction of electron drift velocity. When the normal Sq field is over-compensated by the magnetospheric electric field, the electron drifts are reversed and the irregularities in the E region due to the cross-field instabilities are inhibited, resulting in the sudden disappearance of the Es-q layers.

  8. Ppp Analisys with GPS and Glonass Integration in Periods Under Ionospheric Scintillation Effects

    NASA Astrophysics Data System (ADS)

    Marques, H. A. S.

    2015-12-01

    The GNSS is widely used nowadays either for geodetic positioning or scientific purposes. The GNSS currently includes GPS, GLONASS, Galileo among other emerging systems. The GPS and GLONASS are currently operational with a full satellite constellation. The GPS is still the most used nowadays and both GPS and GLONASS are under a modernization process. The geodetic positioning by using data from multi-constellation can provide better accuracy in positioning and also more reliability. The PPP is benefited once the satellite geometry is crucial in this method, mainly for kinematic scenarios. The satellite geometry can change suddenly for data collected in urban areas or in conditions of strong atmospheric effects such as Ionospheric Scintillation (IS) that causes weakening of signals with cycle slips and even loss of lock. The IS is caused by small irregularities in the ionosphere layer and is characterized by rapid change in amplitude and phase of the signal being stronger in equatorial and high latitudes regions. In this work the PPP is evaluated with GPS and GLONASS data collected by monitoring receivers from Brazilian CIGALA/CALIBRA network under IS conditions. The PPP processing was accomplished by using the GPSPPP software provided by Natural Resources Canadian (NRCAN). The IS effects were analyzed taking account the S4 and PHI60 indices. Considering periods with moderate IS effects, the use of only GPS data in the PPP presented several peaks in the coordinate time series due to cycle slips and loos of lock. In cycle slip conditions the ambiguity parameter are reinitialized by GPSPPP and considering loss of lock few satellites can be available in some epochs affecting the positioning geometry and consequently decreasing accuracy. In such situations, the PPP using GPS and GLONASS data presented improvements in positioning accuracy of the order to 70% in height component when compared with PPP using only GPS data. Analyses of GDOP and ambiguities parameters were

  9. Storming the Bastille: the effect of electric fields on the ionospheric F-layer

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Heelis, R. A.; Makela, J. J.; Basu, S.

    2010-04-01

    We discuss different phenomena occurring during ionospheric F-region storms that in principle might be caused by electric fields and point out challenges that must be faced when considering the physical processes at work. We consider the transport of plasma across many degrees of latitude at sub-auroral latitudes, the origin of patches of so-called "storm enhanced density" at high mid-latitudes, and the very high reported heights of the F2 peak at low latitudes. We discuss the role that electric fields might play in changing locally the net production of ionization as well as transporting it. We suggest that the local change in ionization production should be considered as a more important process for producing plasma density enhancements than transport from a more remote source of enhanced density.

  10. Ionospheric physics

    SciTech Connect

    Sojka, J.J. )

    1991-01-01

    Advances in all areas of ionospheric research are reviewed for the 1987-1990 time period. Consideration is given to the equatorial ionosphere, the midlatitude ionosphere and plasmasphere, the auroral ionosphere, the polar ionosphere and polar wind, ionospheric electrodynamic inputs, plasma waves and irregularities, active experiments, ionospheric forecasting, and coupling the ionosphere with other regions.

  11. Ionospheric Plasma Disturbances and Effects on Radio Waves

    DTIC Science & Technology

    2007-11-02

    power HF waves. This study will be based on to propose future heating experiments in Alaska, using the newly constructed HAARP facility. 2. Summary...unlimited 13. ABSTRACT (Maximum 200 words) Ionospheric plasma heating experiments were conducted at Arecibo to investigate generation of ionospheric plasma...Plasma Research Group at MIT’s Plasma Science and Fusion Center has been conducting ionospheric plasma heating experiments at Arecibo, using the

  12. High-Latitude Ionospheric Irregularities.

    DTIC Science & Technology

    1984-05-10

    associated with radar backscatter, ./ V ionogram spread-F, airglow depletions and radiowave scintillation [Ossakow, " 1979, and references cited...times, the zonal neutral wind is large ( 150 m/s) and eastward. In such conditions the generalized Rayleigh-Taylor process is unstable to a westward...determine this quantity because the Hall compo- region neutral wind , assumed constant with altitude [de la yf l 5 nent of the current is often much

  13. Multi-station observation of ionospheric irregularities over South Africa during strong geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant Bertillas; Cilliers Pierre, J.

    2013-03-01

    This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07-09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h‧F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.

  14. Stratwarm Effects in the Ionospheric D Region Wind Field

    NASA Technical Reports Server (NTRS)

    Vergasova, G. V.

    1984-01-01

    An analysis is made of the wind field structure in the strato-thermosphere over Eastern Siberia during the winter stratwarms of 1975-1977. It is found that coupling between dynamical processes in the stratosphere and lower thermosphere is effected through changes of the temperature regime of the atmosphere. The circulation regime both in the stratosphere and lower thermosphere depends on location of the source of perturbations that cause stratospheric warmings. The effect of warming-induced perturbations on the dynamics of above- and underlying layers and the meridional extent of the processes are determined by the altitude and region where anti-cyclones originate. In conditions of a warmer stratosphere, there is a considerable loss of wind stability in the ionospheric D-region. A time delay of 1 to 2 days of lower-thermosphere processes is found to occur with respect to stratospheric processes of temperature variation at 30 mb level.

  15. F region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes

    NASA Astrophysics Data System (ADS)

    Chen, X.-C.; Lorentzen, D. A.; Moen, J. I.; Oksavik, K.; Baddeley, L. J.; Lester, M.

    2016-05-01

    Structured particle precipitation in the cusp is an important source for the generation of F region ionospheric irregularities. The equatorward boundaries of broad Doppler spectral width in Super Dual Auroral Radar Network (SuperDARN) data and the concurrent OI 630.0 nm auroral emission are good empirical proxies for the dayside open-closed field line boundary. However, SuperDARN currently employs a simple virtual model to determine the location of its echoes, instead of a direct calculation of the radio wave path. The varying ionospheric conditions could influence the final mapping accuracy of SuperDARN echoes. A statistical comparison of the offsets between the SuperDARN Finland radar spectral width boundary (SWB) and the OI 630.0 nm auroral emission boundary (AEB) from a meridian-scanning photometer (MSP) on Svalbard is performed in this paper. By restricting the location of the 630.0 nm data to be near local zenith where the MSP has the highest spatial resolution, the optical mapping errors were significantly reduced. The variation of the SWB-AEB offset confirms that there is a close relationship between the mapping accuracy of the HF radar echoes and solar activity. The asymmetric variation of the SWB-AEB offset versus magnetic local time suggests that the intake of high-density solar extreme ultraviolet ionized plasma from postnoon at subauroral latitudes could result in a stronger refraction of the HF radar signals in the noon sector, while changing the HF radar operating frequency also has a refraction effect that contributes to the final location of the HF radar echoes.

  16. F-region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes

    NASA Astrophysics Data System (ADS)

    Chen, Xiangcai; Lorentzen, Dag; Moen, Jøran; Oksavik, Kjellmar; Baddeley, Lisa; Lester, Mark

    2016-04-01

    Structured particle precipitation in the cusp is an important source for the generation of F -region ionospheric irregularities. The equatorward boundaries of broad Doppler spectral width in Super Dual Auroral Radar Network (SuperDARN) data and the concurrent OI 630.0 nm auroral emission are good empirical proxies for the dayside open-closed field line boundary (OCB). However, SuperDARN currently employs a simple virtual model to determine the location of its echoes, instead of a direct calculation of the radio wave path. The varying ionospheric conditions could influence the final mapping accuracy of SuperDARN echoes. A statistical comparison of the offsets between the SuperDARN Finland radar spectral width boundary (SWB) and the OI 630.0 nm auroral emission boundary (AEB) from a meridian-scanning photometer (MSP) in Longyearbyen from December 1995 to January 2014 in wintertime is performed. By restricting the location of the OI 630.0 nm data to be near local zenith, where the MSP has the highest spatial resolution, the mapping errors were significantly reduced for the AEB. The variation of the SWB - AEB offset confirms that there is a close relationship between the mapping accuracy of the HF radar echoes and solar activity. The asymmetric variation of the SWB - AEB offset versus magnetic local time suggests that the intake of high density solar extreme ultraviolet ionized plasma from post-noon at sub-auroral latitudes could result in a stronger refraction of the HF radar signals in the noon sector. The changing HF radar operating frequency also has a refraction effect that contributes to the final location of the HF radar echoes.

  17. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  18. Anomalies in the Ionosphere around the Southern faults of Haiti near the 2010 Earthquake

    NASA Astrophysics Data System (ADS)

    Cornely, P.; Daniell, R. E.

    2013-12-01

    In the last few decades, research on earthquake prediction has resulted in the recognition that there may exist many earthquake precursors in the lithosphere, atmosphere and ionosphere. The ionosphere is naturally perturbed by solar and geomagnetic disturbances and it is difficult to extract the variations connected with earthquakes particularly for the equatorial and high latitude ionosphere. Several researchers have contending theories on the mechanisms associated with pre-earthquake signals. The basic premise is that a thin layer of particles created before earthquakes due to ions originating from the earth's crust travel to the earth's surface and begin radiating from the earth's surface due to strong electric fields Namgaladze et al., [2009]. The ions can then travel from above earth's surface to the ionosphere where they can create ionospheric disturbances. When solar and geomagnetic disturbances can be ruled out, the effects of pre-seismic activities in the ionosphere can be assessed using fluctuations in the ionospheric electron density in the vicinity of fault lines. The Parameterized Ionospheric Model (PIM) is a fast global ionospheric model which produces electron density profiles (EDPs) between 90 and 25000 km altitude, which corresponds to critical altitudes of the ionosphere Daniell et al., [1995]. Since PIM only simulates a statistical mean ionosphere, sudden variations in ionospheric electron density will not be represented in the models, which make PIM ideal for background electron density predictions. The background predictions can then removed from the actual electron density data which could provide means for identifying pre-seismic electron density perturbations.

  19. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Takacs, L. L.; Hoffman, R. N.

    1984-01-01

    The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.

  20. Effect of sudden solar wind dynamic pressure changes at subauroral latitudes: Change in magnetic field

    SciTech Connect

    Le, G.; Russell, C.T.; Petrinec, S.M.; Ginskey, M. )

    1993-03-01

    The observations obtained during the International Magnetospheric Study (IMS) from the magnetometers of the IGS network extending from Cambridge, England, to Tromso, Norway, are used to study the response of subauroral current systems to sudden changes in solar wind dynamic pressure. Observations show that the response is very strong at subauroral latitudes. The preliminary response in the H component is a brief, small increase in the dayside moring sector and a decrease in the afternoon and night sectors. The main response in the horizontal field (the H and D components) is toward the pole except in the dayside morning sector. The inferred ionospheric current is mainly a circulatory system flowing counterclockwise when viewed form the north pole everywhere at subauroral latitudes except the dayside morning sector. 29 refs., 12 figs.

  1. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  2. Effects of Meteorological Variability on the Thermosphere-Ionosphere System during the Moderate Geomagnetic Disturbed January 2013 Period As Simulated By Time-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Hagan, M. E.; Richmond, A. D.; Liu, H.; Yudin, V. A.

    2014-12-01

    The ionosphere-thermosphere system is affected by solar and magnetospheric processes and by meteorological variability. Ionospheric observations of total electron content during the current solar cycle have shown that variability associated with meteorological forcing is important during solar minimum, and can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to study the comparative importance of geomagnetic and meterological forcing.This study focuses on the January 2013 Stratospheric Sudden Warming (SSW) period, which is associated with a very disturbed middle atmosphere as well as with moderately disturbed solar geomagntic conditions. We employ the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) with a nudging scheme using Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of the meteorological and solar wind forcing on the upper atmosphere. The model results are evaluated by comparing with observations e.g., TEC, NmF2, ion drifts. We study the effect of the SSW on the wave spectrum, and the associated changes in the low latitude vertical drifts. These changes are compared to the impact of the moderate geomagnetic forcing on the TI-system during the January 2013 time period by conducting numerical experiments. We will present select highlights from our study and elude to the comparative importance of the forcing from above and below as simulated by the TIME-GCM.

  3. Effects of tropospheric and ionospheric refraction errors in the utilization of GEOS-C altimeter data

    NASA Technical Reports Server (NTRS)

    Goad, C. C.

    1977-01-01

    The effects of tropospheric and ionospheric refraction errors are analyzed for the GEOS-C altimeter project in terms of their resultant effects on C-band orbits and the altimeter measurement itself. Operational procedures using surface meteorological measurements at ground stations and monthly means for ocean surface conditions are assumed, with no corrections made for ionospheric effects. Effects on the orbit height due to tropospheric errors are approximately 15 cm for single pass short arcs (such as for calibration) and 10 cm for global orbits of one revolution. Orbit height errors due to neglect of the ionosphere have an amplitude of approximately 40 cm when the orbits are determined from C-band range data with predominantly daylight tracking. Altimeter measurement errors are approximately 10 cm due to residual tropospheric refraction correction errors. Ionospheric effects on the altimeter range measurement are also on the order of 10 cm during the GEOS-C launch and early operation period.

  4. Observations of IMF and seasonal effects in high-latitude convection

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.

    1995-05-01

    The authors describe strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma. The findings are based on a statistical analysis of observations made with the JHU/APL HF radar located at Goose Bay, Labrador. For positive sign of the IMF dawn-dusk component, i.e., B{sub y}>0, the dawn cell is more crescent-shaped and the dusk cell more round while for B{sub y}<0 these pairings of size and shape are reversed. The more extreme crescent/round cell dichotomy is obtained for B{sub y}>0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (Magnetic Local Time); the reversal in the zonal velocity in the 67{degrees}-69{degrees}{Lambda} (magnetic latitude) interval occurs 2 1/2 hr earlier for B{sub y}>0. The seasonal dependence of nightside convection resembles in important respects the B{sub y} dependence. Greater latitudinal velocity shears occur in the morning/afternoon sector for summer/winter and the return flow of this sector dominates at midnight. The zonal flow reversal occurs 2 1/2 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings [B{sub y}>0, summer] and [B{sub y}<0, winter]; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT. 15 refs., 4 figs.

  5. Four-beam measurements of ionospheric structure with MU radar during the low-latitude auroral event of 20-23 October 1989

    SciTech Connect

    Oliver, W.L. Boston Univ., MA ); Fukao, Shoichiro; Takami, Tomoyuki; Tsuda, Toshitaka; Kato, Susumu )

    1991-11-01

    The MU radar was used to observe the ionospheric F-region electron density simultaneously in four oblique beams during the geomagnetic storm of 20-23 October 1989, when the first significant auroral display over Japan since 1960 was observed. The four beams, separated by about 250 km horizontally in the F region, observed drastically different behavior, with independent and extreme changes occurring on time scales of one minute during the period of peak activity, indicating a strongly structured ionosphere streaming over the radar. The authors observed cases in which, simultaneously, a deep trough was seen in one beam, densities exceeding 4 {times} 10{sup 6} cm{sup {minus}3} were seen in another, and a normal ionosphere was seen in a third. During the most disturbed periods the F-layer peak height appeared to rise to 800 km altitude in one beam while it remained near 500 km in another.

  6. Energetic particle precipitation into the high-latitude ionosphere and the auroral electrojets. I - Definition of electrojet boundaries using energetic electron spectra and ground-based magnetometer data

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Kawasaki, K.; Rostoker, G.

    1979-01-01

    Magnetometric data are used to define the poleward and equatorward borders of the eastward electrojet in the evening sector. The relationship between central plasma sheet (cps) and boundary plasma sheet (bps) and the auroral electrojet region is explored. This relationship is used to infer the electric field configuration in the cps and bps regions. It is shown that in the evening sector the cps is threaded by field lines carrying current flowing into the ionosphere, while the bps is threaded by field lines carrying current flowing out of the ionosphere.

  7. Space Weather Topics at Ionospheric Effects Symposium 2008

    NASA Astrophysics Data System (ADS)

    Goodman, John

    2008-08-01

    The ionosphere has captured the interest of scientists and communications specialists for many years. Research has been intrinsically applications oriented since Guglielmo Marconi identified an ionized region within the upper atmosphere that acted like a high-altitude mirror reflecting radio waves so that long-distance communication could be achieved. His successful transatlantic radio transmissions early in the twentieth century heralded the beginning of an era of wireless communications. Eager to capitalize on this, civilian and military industries sponsored research to better understand the ionosphere. These endeavors established that the ionosphere exhibits considerable variability, with significant changes associated with ionospheric storms that are driven by solar disturbances. This variability, now termed space weather, also introduces changes in radio propagation conditions that can disrupt various radio systems, such as high-frequency and satellite communications, the Global Positioning System, radar, and specialized surveillance methods.

  8. Effects of Atmospheric Variability on Ionospheric Manifestations of Earthquakes and Tsunamis

    NASA Astrophysics Data System (ADS)

    Godin, O. A.; Zabotin, N. A.; Zabotina, L.

    2014-12-01

    There is a large and increasing number of ground-based and satellite-borne instruments, which reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate wave propagation from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere as well as the generation of atmospheric waves by seismic surface waves and tsunamis. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. The effects will be discussed of background ionospheric disturbances and uncertainty in atmospheric parameters on the feasibility and accuracy of retrieval of open-ocean tsunami heights from observations

  9. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Hoffman, R.; Takacs, L. L.

    1983-01-01

    An assessment is made of the extent to which polar filtering may seriously affect the skill of latitude-longitude NWP models, such as the U.S. Navy's NOGAPS, or the GLAS fourth-order model. The limited experiments which have been completed to date with the 4 x 5-deg, 9-level version of the latter model indicate that the high latitude filter currently in operation affects its forecasting skill very little, with only one exception in which the use of the PG filter significantly improved forecasting.

  10. Analysis of the effects of ionospheric sampling of reflection points near-path, for high-frequency single-site-location direction finding systems. Master's thesis

    SciTech Connect

    Filho, C.A.

    1990-12-01

    This thesis suggests a method to estimate the current value of an ionospheric parameter. The proposed method is based on the known variability of the observed current values near path and utilizes data derived from ionospheric sampling measurements. Analysis of errors is provided in Single-Site-Location High-Frequency Direction Finding (SSL-HFDF), arising from ionospheric irregularities such as Es (sporadic E), ionospheric tilts, and traveling ionospheric disturbances (TIDs). The characteristics of Es, tilts and TIDs for mid-latitudes are summarized in tables. The spatial and temporal coherence of ionospheric variabilities and irregularities is analyzed over the electron density. Practical results, measurements, and studies are presented on SSL-HFDF. A survey of characteristics of the ionosphere in the equatorial region is also provided. Finally, some recommendations are given to maximize the applicability of the proposed method.

  11. Solar Energetic Particle Precipitation Effects on the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Larson, Davin; Luhmann, Janet; Lee, Christina; Jakosky, Bruce

    2016-10-01

    Solar Energetic Particles (SEPs) are an important, if irregular, source of ionization and energy input to the Martian atmosphere. As is the case for much-studied Polar Cap precipitation events on the earth, when SEPs precipitate into the Mars atmosphere, they cause heating, ionization, excitation and dissociation, leading to altitude-dependent changes in chemistry. We present a study of the effects of SEP ionization in the Martian atmosphere using data from the Mars Atmosphere and Volatile Evolution (MAVEN) mission. Specifically, we will correlate altitude profiles of thermal planetary ions (O+, CO2+ and O2+) and electrons measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS) and Langmuir Probe on the MAVEN spacecraft with fluxes of energetic protons and electrons measured by the Solar Energetic Particle (SEP) detector. First, we will present case studies of this correlation, before and during SEP events to examine short-term effects of SEP ionization. We will also examine SEP ionization under different heliospheric conditions, leading to different SEP shadowing geometries and ionization rates. Second, we will present a statistical study showing the degree to which ionospheric densities are affected by the presence of energetic particles, as a function of altitude, SEP spectrum flux and solar zenith angle. This work will provide a better understanding of this important source of ionization in the Martian upper atmosphere and hence, how more frequent and more intense SEP events in Mars' past may have affected the structure of the Martian upper atmosphere and hence atmospheric escape.

  12. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  13. On the determination of the effect of horizontal ionospheric gradients on ranging errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Danilogorskaya, Ekaterina A.; Zernov, Nikolay N.; Gherm, Vadim E.; Strangeways, Hal J.

    2016-12-01

    An alternative approach to the traditionally employed method is proposed for treating the ionospheric range errors in transionospheric propagation such as for GNSS positioning or satellite-borne SAR. It enables the effects due to horizontal gradients of electron density (as well as vertical gradients) in the ionosphere to be explicitly accounted for. By contrast with many previous treatments, where the expansion of the solution for the phase advance is represented as the series in the inverse frequency powers and the main term of the expansion corresponds to the true line-of-sight distance from the transmitter to the receiver, in the alternative technique the zero-order term is the rigorous solution for a spherically layered ionosphere with any given vertical electron density profile. The first-order term represents the effects due to the horizontal gradients of the electron density of the ionosphere, and the second-order correction appears to be negligibly small for any reasonable parameters of the path of propagation and its geometry for VHF/UHF frequencies. Additionally, an "effective" spherically symmetric model of the ionosphere has been introduced, which accounts for the major contribution of the horizontal gradients of the ionosphere and provides very high accuracy in calculations of the phase advance.

  14. The Effect of Diurnal Variations on Ionospheric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Yelle, Roger V.; Koskinen, Tommi; Withers, Paul; Schinder, Paul J.; Moses, Julianne I.; Mueller-Wodarg, Ingo

    2016-10-01

    Radio occultations are a powerful technique for the study of atmospheres and ionospheres by planetary spacecraft. For missions to the outer solar system, the occultations always probe the terminator region of the planet. The analysis of radio occultations typically assumes symmetry along the ray path in the horizontal direction about the tangent point. While this is an excellent assumption for the neutral atmosphere where the scale length of horizontal gradients is large, it is suspect for the ionosphere where electron densities decrease rapidly from day to night. Diurnal variations in peak electron density are often several orders of magnitude and may occur over a region of a few degrees. We investigate the consequences of diurnal variations on ionospheric occultations with a ray tracing calculation for the angular deflection and frequency residual of the radio wave. The calculations are based on photochemical/diffusion models for the ionospheres of Saturn and Titan. Differences from analysis based on the assumption of horizontal symmetry are most pronounced in the bottom side ionosphere where chemical time constants are short.

  15. Thermal structure of the ionosphere

    NASA Technical Reports Server (NTRS)

    Brace, L. H.

    1975-01-01

    A brief review is presented of recent progress made toward gaining a more complete understanding of the thermal structure of the ionosphere. Important heat sources for the ionosphere are described, including the solar EUV flux, midlatitude interactions between the magnetosphere and ionosphere, electric-field enhancements at high latitudes, particle precipitation in the auroral oval, and polar-wind heating. Discrepancies between electron-temperature measurements by satellite probes and incoherent-backscatter techniques are noted.

  16. Observations for Sharp Changes of Ionospheric Ion Concentration and Electromagnetic Field Measurements at Altitude 900 km on Equatorial Latitudes by INTERKOSMOS - Bulgaria-1300 Satellite Data

    NASA Astrophysics Data System (ADS)

    Gdalevich, G. L.; Bankov, N.; Chapkanov, S.; Todorieva, L.

    Three-axis stabilization of the satellite orientation ensured success for convenient measurements both of electric and magnetic field vectors. X axis was directed along the satellite orbital velocity vector. Z axis was directed upwards, perpendicular to the Earth's surface. Fast flows of electrons and ions were measured in the directions along both +z and -z axes and also perpendicular to z axis. Ionospheric ion concentration meters registered sharp changes of the plasma density. Taking into account the totality meter set data we can conclude that the physical phenomena observed in these measurements are caused by damping both of electrostatic oscillations and plasma vortices. Also it is shown that large-scale irregularity rise and disintegration into small-scale irregular structures can be connected with magnetospheric and ionospheric sources.

  17. Ionospheric Effects of Strong El Nino Southern Oscillation Conditions

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Forbes, J. M.; Nguyen, V.; Lieberman, R. S.; Maute, A. I.; Greer, K.

    2015-12-01

    The current prediction for the occurrence of a very strong positive phase in the El Nino Southern Oscillation (ENSO) in late 2015 has implications for weather around the entire planet. Furthermore, recent investigations show that ENSO-related changes in tropospheric water vapor and rainfall drive extraordinary changes in the temperature and wind structure in the middle atmosphere, through the modification of the spectrum of atmospheric tides. Given that several components of the tidal spectrum can propagate into the thermosphere, ENSO-related changes at altitudes above the mesopause and into the ionosphere may be expected. We will show the ionospheric and thermospheric variations expected for El Niño and La Niña conditions. These efforts are enabled in part by modeling capabilities developed for the upcoming NASA Ionospheric Connection Explorer mission.

  18. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    SciTech Connect

    Maski, Kalpana; Vijay, S. K.

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.

  19. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  20. Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON

    NASA Astrophysics Data System (ADS)

    Maute, Astrid

    2017-04-01

    The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.

  1. Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region

    NASA Astrophysics Data System (ADS)

    Abe, O. E.; Otero Villamide, X.; Paparini, C.; Radicella, S. M.; Nava, B.

    2017-02-01

    Investigating the effects of the Equatorial Ionization Anomaly (EIA) ionosphere and space weather on Global Navigation Satellite Systems (GNSS) is very crucial, and a key to successful implementation of a GNSS augmentation system (SBAS) over the equatorial and low-latitude regions. A possible ionospheric vertical delay (GIVD, Grid Ionospheric Vertical Delay) broadcast at a Ionospheric Grid Point (IGP) and its confidence bounds errors (GIVE, Grid Ionospheric Vertical Error) are analyzed and compared with the ionospheric vertical delay estimated at a nearby user location over the West African Sub-Saharan region. Since African sub-Saharan ionosphere falls within the EIA region, which is always characterized by a disturbance in form of irregularities after sunset, and the disturbance is even more during the geomagnetically quiet conditions unlike middle latitudes, the need to have a reliable ionospheric threat model to cater for the nighttime ionospheric plasma irregularities for the future SBAS user is essential. The study was done during the most quiet and disturbed geomagnetic conditions on October 2013. A specific low latitude EGNOS-like algorithm, based on single thin layer model, was engaged to simulate SBAS message in the study. Our preliminary results indicate that, the estimated GIVE detects and protects a potential SBAS user against sampled ionospheric plasma irregularities over the region with a steep increment in GIVE to non-monitored after local sunset to post midnight. This corresponds to the onset of the usual ionospheric plasma irregularities in the region. The results further confirm that the effects of the geomagnetic storms on the ionosphere are not consistent in affecting GNSS applications over the region. Finally, this paper suggests further work to be investigated in order to improve the threat integrity model activity, and thereby enhance the availability of the future SBAS over African sub-Saharan region.

  2. Ionization effects due to solar flare on terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Tan, A.

    1976-01-01

    Sudden frequency deviation ionospheric disturbances related to the flares of May 18 and 19, 1973 were observed from the NASA/MSFC high frequency Doppler sounder array system in Huntsville, Alabama. The results are compared with those observed at Table Mountain near Boulder, Colorado and at the University of Hawaii.

  3. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  4. Effects of electric fields and other processes upon the nighttime high-latitude F layer

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Banks, P. M.; Raitt, W. J.

    1976-01-01

    The dynamics of the nighttime high-latitude F region is studied with special emphasis on the formation of the electron-density trough region which lies equatorward of the auroral oval. It is found that the absence of photoionization together with ordinary ionic recombination and slow plasma convection velocity can give a deep trough over a period of many hours. However, the normal global pattern of electric fields has regions of plasma convection sufficiently rapid to affect the rate of O(+) + N2 reactions and to speed the rate of ionospheric decay. In addition, the escape of thermal plasma via the polar winds as well as N2 vibrational excitation and enhanced N2 densities act to deplete the ionosphere. In combination, these destructive processes can readily account for the great variety of troughs found by experimentation. Thus, it appears that there is no single cause for the observed troughs, but that at various times, different processes act together to create density depressions of substantial magnitude.

  5. Modeling study of equatorial ionospheric height and spread F occurrence

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi

    1996-03-01

    In the ionospheric F region at equatorial latitudes, the strength of the zonal electric field in the evening hours is closely connected with the generation of equatorial spread F and plasma bubbles. Many researchers discuss the electric fields and dynamics of the ionosphere in terms of the time derivative of F layer virtual heights (dh'F/dt) scaled on the ionograms, and this paper examines the accuracy of zonal electric fields derived by such a method. Although the effect of transequatorial thermospheric wind had been thought to be negligible, model calculations of ion concentration show that this wind significantly changes ionospheric height in the evening hours. Further, the electric field strength is estimated based on observed dh'F/dt, considering the apparent vertical drift of the ionosphere due to the thermospheric wind effect. Rayleigh-Taylor growth rates calculated for those electric fields agree quantitatively with the spread F occurrence.

  6. The mapping of ionospheric TEC for central Russian and European regions on the base of GPS and GLONASS measurements

    NASA Astrophysics Data System (ADS)

    Shagimuratov, Irk; Cherniak, Iurii; Zakharenkova, Irina; Ephishov, Ivan; Krankowski, Andrzej; Radievsky, Alexander

    2014-05-01

    The total electron content (TEC) is a key parameter not only for space radio communication but also for addressing the fundamental problems of the ionosphere physics and near Earth space. Currently, the main sources of information on the TEC in the global scale are GNSS signals measurements. The spatial-temporal behavior of the ionosphere can be most effectively analyzed using TEC maps. To date, global IGS global ionospheric maps with a resolution of 2.5 degree in latitude and 5 in longitude and a time resolution of 2 h are most widely used. To study the detailed structure of the ionospheric gradients and rapid process as well as for precise positioning task it is necessary to use more precise regional TEC maps. The Regional TEC maps are currently constructed by different research groups for different regions: USA, Europe, Japan etc. The West Department of IZMIRAN research group is a one in Russia who works on the task of regional ionosphere mapping since 2000. It was developed the methodology for obtaining information on the spatial TEC distribution, TEC maps of the ionosphere on the basis of the algorithm for multi-station processing of GNSS observations. Using a set of algorithms and programs, regional TEC maps with a spatial resolution of 1° and a time resolution up to 15 min can be produced. Here is developed the approach to establish the regular online internet service for regional ionosphere mapping of the Western Russia and Eastern Europe. Nowadays the development of GLONASS navigation system is completely finished and it consists of a constellation of more than 24 satellites. It is good perspective for investigations of the ionosphere structure and dynamics on the base of the simultaneous observations of GPS and GLONASS systems. The GLONASS satellites have the inclination about 64 degrees as against GPS satellites with 56. So the GLONASS provides opportunity to study the high latitude ionosphere. The different scale electron density irregularities

  7. Ionosphere data assimilation modeling of 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.

    2016-11-01

    The ionospheric plasma disturbances during a severe storm can affect human activities and systems, such as navigation and HF communication systems. Therefore, the forecast of ionospheric electron density is becoming an important topic recently. This study is conducted with the ionospheric assimilation model by assimilating the total electron content observations into the thermosphere-ionosphere coupling model with different high-latitude ionospheric convection models, Heelis and Weimer, and further to forecast the variations of ionospheric electron density during the 2015 St. Patrick's Day geomagnetic storm. The forecast capabilities of these two assimilation models are evaluated by the root-mean-square error values in different regions to discuss its latitudinal effects. Results show the better forecast in the electron density at the low-latitude region during the storm main phase and the recovery phase. The well reproduced eastward electric field at the low-latitude region by the assimilation model reveals that the electric fields may be an important factor to have the contributions on the accuracy of ionospheric forecast.

  8. Recent Advances in Ionospheric Anomalies detection

    NASA Astrophysics Data System (ADS)

    Titov, Anton; Vyacheslav, Khattatov

    2016-07-01

    The variability of the parameters of the ionosphere and ionospheric anomalies are the subject of intensive research. It is widely known and studied in the literature ionospheric disturbances caused by solar activity, the passage of the terminator, artificial heating of high-latitude ionosphere, as well as seismic events. Each of the above types of anomalies is the subject of study and analysis. Analysis of these anomalies will provide an opportunity to improve our understanding of the mechanisms of ionospheric disturbances. To solve this problem are encouraged to develop a method of modeling the ionosphere, based on the assimilation of large amounts of observational data.

  9. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  10. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2016-10-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  11. Ionospheric effects of solar flares and their associated particle ejections in March 2012

    NASA Astrophysics Data System (ADS)

    Zolotukhina, N.; Polekh, N.; Kurkin, V.; Romanova, E.

    2015-06-01

    Flares of March 4-9, 2012 were accompanied by an intensification of solar electromagnetic and corpuscular radiations and five coronal mass ejections. Bursts of X-rays and increased solar cosmic ray fluxes caused an increase in ionospheric absorption manifesting itself in data from vertical sounding stations as enhancements of the lowest frequency of reflections up to 4-6 MHz at the daytime and as the disappearance of reflections in the ionograms of high latitude stations. Interplanetary coronal mass ejections (ICME) generated March 7-8 moderate and March 8-11 intense magnetic storms accompanied by ionospheric disturbances. At the peaks of both magnetic storms there were abrupt afternoon-evening decreases in the ionospheric F2-layer critical frequency (foF2). During the March 7-8 storm, the foF2 decrease concurred with the reversal of the interplanetary magnetic field azimuthal component (IMF By) which initiated restructuring of magnetospheric convection; during the March 8-11 storm, with the abrupt weakening of the interplanetary magnetic field southward component (IMF Bz) which triggered a substorm.

  12. Ionospheric Effects Prior to the Napa Earthquake of August 24, 2014

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Swartz, W. E.; Komjathy, A.; Mannucci, A. J.; Shume, E. B.; Heki, K.; Fraser-Smith, A. C.; McCready, M. A.

    2014-12-01

    Recently, evidence that the ionosphere reacts in a reliable, reproducible manner before major earthquakes has been increasing. Fraser-Smith (1990) reported ULF magnetic field fluctuations prior to the Loma Prieta quake. Although not an ionospheric measurement, such magnetic fields before a quake are part of our explanation for the ionospheric effect. Heki (2011) and Heki and Enomoto (2013) reported in great detail the devastating March 11, 2011 Tohoku-Oki earthquake in which numerous GPS satellite/ground-station pairs showed apparent changes, both increases and decreases, starting 40 minutes before the event. We say "apparent" since our theory is that electric fields associated with stresses before an earthquake map through the ionosphere at the speed of light and raise or lower the main ionosphere. Both effects have been detected. Heki's results for four quakes exceeding M = 7 are shown in Figure 4 of Heki (2011). Based on the inserted curve of Heki's Figure 4 relating the size of the ionospheric effect to the quake's magnitude, we were not optimistic about detecting an effect for the 6.0 Napa quake. However, it occurred at night, when the well-known shielding effect of the ionospheric D and lower E regions for EM fields becomes very small. When this special session with a later abstract deadline was announced, JPL researchers were asked to examine GPS data from California stations. Based on their data, the plot shown (left panel) combined with a similar plot for the Tohoku-Oki earthquake (right panel, based on Heki's data) was produced. Both panels show fluctuations of STEC (Slant Total Electron Content) before the quake times (indicated by asterisks showing the positions of ionospheric penetration points (IPP) at the respective quake times). Although alternative explanations for the TEC fluctuations cannot be ruled out entirely, these results suggest that a patent-pending system able to predict an earthquake some 30 minutes before an event by using satellites

  13. Geomagnetic storm effects on the thermosphere and the ionosphere revealed by in situ measurements from OGO 6

    NASA Technical Reports Server (NTRS)

    Marubashi, K.; Reber, C. A.; Taylor, H. A., Jr.

    1976-01-01

    The temporal response of the densities of upper-atmospheric ion and neutral constituents to a particular geomagnetic storm is studied using simultaneous ion and neutral-composition data obtained by the OGO 6 satellite during consecutive orbits at altitudes greater than 400 km. The investigated constituents include H(+), O(+), N2, O, He, and H. Derivation of the H density is reviewed, and the main effects of the storm are discussed, particularly temporal and global variations in the densities. It is found that: (1) the H and He densities began to decrease near the time of sudden commencement, with the decrease amounting to more than 40% of the quiet-time densities during the maximum stage at high latitudes; (2) the O and N2 densities exhibited an overall increase which began later than the change in H and He densities; (3) the H(+) density decreased differently in two distinct regions separated near the low-latitude boundary of the light-ion trough; and (4) the O(+) density showed an increase during earlier stages of the storm and decreased only in the Northern Hemisphere during the recovery phase. Certain physical and chemical processes are suggested which play principal roles in the ionospheric response to the storm

  14. Variability of total electron content in the high-latitude ionosphere following solar maximum. Final report, 27 August 1992-26 November 1994

    SciTech Connect

    Andreasen, C.C.; Holland, E.A.

    1995-03-01

    A data archive of Total Electron Content CIEC data was developed through operation and maintenance of GPS satellite receiver equipment at Shemya, AK; Hanscom AFB, MA; Thule AB, Greenland; Tucuman, Argentina; and Agua Verde, Chile. Scintillation data can be extracted from much of this database. The Shemya, AK, data provide a valuable source for characterizing TEC morphology and variability with look direction at this site. The Shemya data were also used in an initial assessment of the seasonal and directional specification accuracy of the Bent ionospheric model, specific to this site. Analysis of an existing NWRA database has produced ionospheric trough boundary signatures in the sub auroral European sector. These signatures will support studies aimed at real time detection of the trough boundary. Innovative software techniques were developed to improve data quality in the areas of multipath integration (the Multipath Template Technique) and the automated calibration of an installed receiver system for the combination of all system components` contributions to pseudorange error (SCORE:: Self-Calibration Of pseudoRange Errors).

  15. Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula

    NASA Astrophysics Data System (ADS)

    Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.

    2014-09-01

    In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h‧) in km and inverse scale height parameter (β) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.

  16. The oxygen red OI 630.0 nm line nightglow intensity as an indicator of atmospheric waves propagation in the mid-latitude ionosphere F2 region

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Giorgi; Didebulidze, Goderdzi; Gudadze, Nikoloz; Toriashvili, Lexo

    2016-04-01

    The behavior of the oxygen red OI 630.0 nm line nightglow intensity under influence of atmospheric gravity waves (AGWs) is considered, taking into account nightly changes of the thermosphere meridional wind by observations from Abastumani (41.75 N; 42.82 E). The vortical type perturbations, which can be in situ excited, are also considered. On the basis of theoretical model, the 630.0 nm line integral intensity variations are estimated taking into account thermosphere wind field changes and atmospheric waves propagation influence on the nighttime ionosphere F2 layer. A possibility of identification of waves propagation from polar and equatorial regions during various helio-geophysical conditions is noted. The cases of detected large scale traveling ionosphere disturbances -TIDs (mostly generated in the polar regions) and traveling atmospheric disturbances -TADs (which can be generated both in polar and equatorial regions) are demonstrated. Acknowledgements: This work has been supported by Shota Rustaveli National Science Foundation Grant no. 31/56.

  17. Space weather and the Earth ionosphere from auroral zone to equator

    NASA Astrophysics Data System (ADS)

    Biktash, L.

    2007-08-01

    the field-aligned current effect on the equatorial ionosphere. The examples demonstrated in our study show that the strong auroral electrojets were formed by coupling of the solar wind with the magnetosphere when the Bz turned southward and the solar wind velocity increased. At the same time the equatorial night-time ionosphere parameters showed the short-term variations in the virtual ionospheric height and foF2. For example, the ionospheric heights and the critical frequency foF2 at low latitudes were very different in periods when the Bz-component turns to north (the quiet day conditions) and when Bz-component turns on south (the main phase of magnetic storms). Distinction between the quiet and disturbed periods in the heights reached values up to 150 km and more. It is also evident from these examples that the solar wind controls not only the auroral ionosphere but the eqtatorial ionosphere too. Time delay around 40 min between the Bz IMF and the equatorial ionospheric variations during the geomagnetic storms allows us to make this assumption. The latitudinal and the longitudinal extent the auroral electrojets and its movements are well determined by the IMF Bz. These conditions and a good conductivity of the night ionosphere allow the auroral electric fields move closer to the equator. In consequence, the auroral electric fields penetrate to the equator and an additional night-time current system can form at the equatorial ionosphere and change the true layer heights and electron concentration. This current system may be linked to the Region II field-aligned currents (FAC) during the westward auroral electrojet formation at the night ionosphere. It is well known that the field-aligned currents are closely connected with the auroral electrojets and the DP systems. These currents location and intensity are defined by the solar wind conditions. If the electric fields from FAC of Region II can penetrate through the midlatitudes to the low-latitude ionosphere and

  18. Derivation of a planetary ionospheric storm index

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Stanislawska, I.

    2008-09-01

    The planetary ionospheric storm index, Wp, is deduced from the numerical global ionospheric GPS-IONEX maps of the vertical total electron content, TEC, for more than half a solar cycle, 1999-2008. The TEC values are extracted from the 600 grid points of the map at latitudes 60° N to 60° S with a step of 5° and longitudes 0° to 345° E with a step of 15° providing the data for 00:00 to 23:00 h of local time. The local effects of the solar radiant energy are filtered out by normalizing of the TEC in terms of the solar zenith angle χ at a particular time and the local noon value χ0. The degree of perturbation, DTEC, is computed as log of TEC relative to quiet reference median for 27 days prior to the day of observation. The W-index map is generated by segmentation of DTEC with the relevant thresholds specified earlier for foF2 so that 1 or -1 stands for the quiet state, 2 or -2 for the moderate disturbance, 3 or -3 for the moderate ionospheric storm, and 4 or -4 for intense ionospheric storm at each grid point of the map. The planetary ionospheric storm Wp index is obtained from the W-index map as a latitudinal average of the distance between maximum positive and minimum negative W-index weighted by the latitude/longitude extent of the extreme values on the map. The threshold Wp exceeding 4.0 index units and the peak value Wpmax≥6.0 specify the duration and the power of the planetary ionosphere-plasmasphere storm. It is shown that the occurrence of the Wp storms is growing with the phase of the solar cycle being twice as much as the number of the magnetospheric storms with Dst≤-100 nT and Ap≥100 nT.

  19. The effects of Corotating interaction region/High speed stream storms on the thermosphere and ionosphere during the last solar minimum

    NASA Astrophysics Data System (ADS)

    Burns, A. G.; Solomon, S. C.; Qian, L.; Wang, W.; Emery, B. A.; Wiltberger, M.; Weimer, D. R.

    2012-07-01

    Geomagnetic storms at solar minimum are driven by the interaction between high speed streams and low speed streams (Corotating Interactions regions/High Speed Streams—CIR/HSSs- this includes both the CIR part of the storm and the HSS part as both has effects on the thermosphere and ionosphere), rather than by Coronal Mass Ejections (CMEs). Solar minimum storms are generally of smaller amplitude, but they also have other characteristics that affect the response of the thermosphere/ionosphere (TI) system to them. We explore both the background upper atmosphere and the characteristics of these CIR/HSS events in 2008 using both models and data. The model data comparisons were good, showing mid-latitude positive storm effects on NmF2 on the day of the storm and long, extended periods of storm induced changes on the following days. Generally, the version of the NCAR-TIEGCM (National Center for Atmospheric Research-Thermosphere Ionosphere Electrodynamics Model) run with the Heelis convection pattern was in better agreement with the data than the version run with the Weimer convection pattern. We attribute this difference in the response of the two versions of the NCAR-TIEGCM to the fact that the precipitation we associate with the Heelis model has been tuned to better represent observed precipitation over many years, whereas such tuning has just begun for the version of the NCAR-TIEGCM that uses the Weimer model. Physically, the most important conclusion that we draw is the CIR/HSS events can have significant effects on the ionosphere and thermosphere for several days after the CIR has ended. While CIR/HSS events are normally weaker than CME events, the effects of the latter normally disappear in a day or two. Thus the effects of CIR/HSS events may be comparable to those of CME events for some fields, notably neutral density changes.

  20. Ionospheric effects in active retrodirective array and mitigating system design

    NASA Technical Reports Server (NTRS)

    Nandi, A. K.; Tomita, C. Y.

    1980-01-01

    The operation of an active retrodirective array (ARA) in an ionospheric environment (that is either stationary or slowly-varying) was examined. The restrictions imposed on the pilot signal structure as a result of such operation were analyzed. A 3 tone pilot beam system was defined which first estimates the total electron content along paths of interest and then utilizes this information to aid the phase conjugator so that correct beam pointing can be achieved.

  1. Assessment of ionospheric threat modeling techniques over Marmara Region

    NASA Astrophysics Data System (ADS)

    Onur Karslioglu, Mahmut; Yeganehsahab, Amir; Durmaz, Murat

    2016-04-01

    It is generally known that extreme ionospheric density associated with severe magnetic storm degrades the Global Navigation satellite Systems (GNSS) measurements also at mid - to high latitudes. Strong solar activity can cause large local spatial and temporal gradients in the delays induced on the GNSS signals by the ionosphere. The local nature of gradients can result in significant decorrelation between Ground Based Augmentation System (GBAS) Ground Stations and the GNSS receiver on board the aircraft. For the mitigation of this effect either a special functional architecture is established to monitor the ionosphere on the basis of so called Extended GBAS or ionospheric threat models can be constructed for a certain region. In this work two different techniques have been evaluated for the estimation of ionospheric threat model parameters consisting of width, slope and velocity of the ionospheric wave front by using real ground-based observations from both GPS and GLONASS in the Marmara Region. The data collected between 2012 and 2015 also containing high ionospheric activities are pre-processed to extract ionospheric gradients. Ionospheric delays at each ionospheric piercing point are determined by applying a local ionospheric Total Electron Content (TEC) modeling and filtering techniques on the basis of raw carrier-phase observations. The ionospheric fronts are searched by looking at high ionospheric gradients which result from ionospheric delay differences between ionospheric piercing points. The first technique of the threat model evaluation is based on the propagation of an ideal plane wave as a wave front, velocity of which is estimated on the basis of a Gauss Markov Model using an ordinary least square estimation procedure. The remaining parameters namely slope and width are calculated afterwards using rate of change gradients and the duration of the wave front in context with the estimated front velocity. In the second technique both the magnitude of the

  2. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    SciTech Connect

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: “simple” where the time delay goes as the inverse of the frequency-squared, “full Appleton-Hartree”, the “BobRD integrals” and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the cause of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.

  3. Analysis of the disturbed electric field effects in the sporadic E-layers at equatorial and low latitude regions

    NASA Astrophysics Data System (ADS)

    Araujo Resende, Laysa Cristina; Moro, Juliano; Denardini, Clezio Marcos; Carrasco, Alexander J.; Batista, Paulo; Chen, Sony Su; Batista, Inez S.; Andrioli, Vania Fatima

    2016-07-01

    In the present work we analyze the disturbed electric field effects in the sporadic E-layers at equatorial regions, Jicamarca (11.57°S, 76.52°O, I: -2°) and São Luís (2°S, 44° O, I: -2.3°), and at low latitude regions, Fortaleza (3.9°S, 38.45°O, I: -9°) and Cachoeira Paulista (22.42°S, 45°O, I: -15°). We have conducted a deep analysis to investigate these effects using a theoretical model for the ionospheric E region, called MIRE. This model is able to simulate the Es layers taking into account the E region winds and electric fields. It calculates the densities for the main molecular (NO^{+}, O_{2}^{+}, N_{2}^{+}) and metallic ions (Fe^{+}, Mg^{+}) by solving the continuity and momentum equations for each species. The main purpose of this analysis is to verify the disturbed electric fields role in the occurrence or disruption of Es layers through simulations. The analysis show that the Es layer formation and dynamics can be influenced by the prompt penetration electric fields that occur during magnetic disturbances. Therefore, the simulations present interesting results that helps to improve the understanding of Es layer behavior during the disturbed periods.

  4. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  5. Ionospheric effects of the cosmic gamma ray burst of 29 March 2003

    NASA Astrophysics Data System (ADS)

    Maeda, Koitiro; Tomizawa, Ichiro; Shibata, Takashi F.; Tokimasa, Noritaka; Saito, Akinori; Maruyama, Takashi

    2005-09-01

    We present evidence for ionospheric effects caused by the gamma ray burst that originated at a cosmological distance. At the time of the strong cosmic gamma-ray burst of 29 March 2003 (GRB030329) that took place in the nighttime in Japan we observed a transient decrease in the strength of the radio noise coming from extraterrestrial sources (cosmic noise) at 38 MHz. We also observed a sudden field-amplitude decrease of an 8.006 MHz transmission signal recorded at a distance of 690 km from the transmitter. These phenomena are interpreted as a result of an ionospheric absorption enhancement due to transient ionization caused by GRB030329. We also report no appreciable effect on the ionospheric electron column content derived using GPS (Global Positioning System) microwave signals.

  6. Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Garmash, K. P.

    2017-01-01

    The results of observations of disturbances in the lower and middle ionosphere and in the geomagnetic field accompanying the partial solar eclipse over Kharkov are presented. The ionospheric effects have been studied with the use of an ionosonde and measurements of the phase and amplitude of a radio signal with a frequency of 66.(6) kHz on the Moscow-Kharkov route, and the effects in the magnetic field have been analyzed with the help of a magnetometer-fluxmeter in the range of periods from 1 to 1000 s. Disturbances in both the lower and middle ionosphere, as well as in the geomagnetic field, have been detected. The observation results have been compared with the results of a simulation of physical processes accompanying the solar eclipse. A good agreement has been found between observational and modeling results.

  7. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  8. Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Murphy, Tara; Bell, Martin E.; Kaplan, David L.; Lenc, Emil; Offringa, André R.; Hurley-Walker, Natasha; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-11-01

    Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 h of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-time-scale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for cross-matching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3 per cent for the various nights. For sources fainter than ˜1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.

  9. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J.; Ceron-Gomez, D.; Richards, G.

    2016-09-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 350 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the electron density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant uncertainty in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine correlations with ionospheric variability. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  10. Matching CHAMP and C/NOFS Climatology at Low Latitudes with the ionosphere-thermosphere TIEGCM and the plasmasphere GIP Models

    NASA Astrophysics Data System (ADS)

    Emery, B. A.; Bhaneja, P.; Bilitza, D.; Chau, J. L.; Coley, W. R.; Drob, D. P.; Fang, T.; Fejer, B. G.; Foster, B. T.; Haeusler, K.; Jones, M.; Klenzing, J.; Luhr, H.; Retterer, J. M.; Richmond, A. D.; Roddy, P. A.; Stoneback, R.; Su, Y.; Wu, Q.; Zhang, X.

    2013-05-01

    The equatorial orbiting Communications/Navigation Outage Forecasting System (C/NOFS) satellite observations from 400-800km started in mid-2008 in a period of deep solar minimum where the 10.7 cm solar radio flux flattened out around 67. By 2012, the solar flux increased to about 135. The polar orbiting CHAllenging Minisatellite Payload (CHAMP) satellite observations between about 410-310km above the equator are available from 2000 to 2010 from high to very low solar flux conditions. CHAMP Planar Langmuir Probe (PLP) observations of the electron density and temperature and the instrument measuring neutral cross-track winds (mostly zonal) are used. C/NOFS PLP, Ion Velocity Meter (IVM), and Vector Electric Field Instrument (VEFI) observations are used. The IVM package gives cross-track ExB ion drifts (meridional/upward and perpendicular) which can be mapped to the magnetic equator, along with a Retarding Potential Analyzer (RPA) for along-track ion drifts (zonal), plus [O+] composition and ion temperatures. VEFI also gives meridional/upward and zonal ion drifts. We compare climatological observations in equinox and winter with empirical models, and with the first-principles model estimates from the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), coupled with the Global Ionosphere-Plasmasphere (GIP) model, with various tidal forcings from the lower atmosphere. We compare longitude variations as well as local time zonal averages between the observations and model results. We also compare with ground observations of the meridional/upward and zonal ion drifts from the magnetic equator at Jicamarca, Peru.

  11. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  12. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  13. Storm time plasma transport at middle and high latitudes

    SciTech Connect

    Foster, J.C. )

    1993-02-01

    Associated with the large-scale enhancement of the ionospheric convection electric field during disturbed geomagnetic conditions, solar-produced F region plasma is transported to and through the noontime cleft from a source region at middle and low latitudes in the afternoon sector. As a result of the offset between the geomagnetic and geographic poles, the afternoon sector region of strong sunward convection is shifted to increasingly lower geographic latitude throughout the interval between 12 UT and 24 UT. A snowplow effect occurs in which the convection cell continually encounters fresh corotating ionospheric plasma along its equatorward edge, producing a latitudinally narrow region of storm-enhanced plasma density (SED) and increased total electron content which is advected toward higher latitudes in the noon sector. The Millstone Hill incoherent scatter radar regularly observes SED as a spatially continuous, large-scale feature spanning local times between noon and midnight and at latitudes between the polar cap and its mid- or low-latitude source region. For local times away from noon, the latitude of most probable SED occurrence moves equatorward by 6[degrees] for an increase of 2 in the Kp index. During strong disturbances the topside SED is observed to be convecting sunward at [approximately]750 m s[sup [minus]1] with a flux of 10[sup 14] m[sup [minus]2] s[sup [minus]1]. This feature accounts for the pronounced enhancement of ionospheric density near dusk at middle latitudes observed during the early stages of magnetic storms (called the dusk effect) and constitutes a source for the enhanced F region plasma observed in the polar cap during disturbed conditions. 34 refs., 13 figs., 1 tab.

  14. Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A new method

    NASA Astrophysics Data System (ADS)

    Roy, Corinna; Occhipinti, Giovanni; Boschi, Lapo; Moliné, Jean-Philippe; Wieczorek, Mark

    2014-09-01

    Most recent methods in ionospheric tomography are based on the inversion of the total electron content measured by ground-based GPS receivers. As a consequence of the high frequency of the GPS signal and the absence of horizontal raypaths, the electron density structure is mainly reconstructed in the F2 region (300 km), where the ionosphere reaches the maximum of ionization, and is not sensitive to the lower ionospheric structure. We propose here a new tomographic method of the lower ionosphere, based on the full inversion of over-the-horizon (OTH) radar data. Previous studies using OTH radar for ionospheric tomography inverted only the leading edge echo curve of backscatter ionograms. The major advantage of our methodology is taking into account, numerically and jointly, the effect that the electron density perturbations induce not only in the speed of electromagnetic waves but also on the raypath geometry. This last point is extremely critical for OTH radar inversions as the emitted signal propagates through the ionosphere between a fixed starting point (the radar) and an unknown end point on the Earth surface where the signal is backscattered. We detail our ionospheric tomography method with the aid of benchmark tests. Having proved the necessity to take into account both effects simultaneously, we apply our method to real data. This is the first time that the effect of the raypath deflection has been quantified and that the ionospheric plasma density has been estimated over the entirety of Europe with an OTH radar.

  15. Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Dyson, P. L.; Essex, E. A.; Moldwin, M. B.

    2005-03-01

    The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC) obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP), TOPographic EXplorer (TOPEX), and solar wind data from the Advanced Composition Explorer (ACE). A chain of Global Positioning System (GPS) stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs). The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.

  16. Topside Ionospheric Response to Solar EUV Variability

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.; Hawkins, J.

    2015-12-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an

  17. Ionospheric effects on one-way timing signals

    NASA Technical Reports Server (NTRS)

    Soicher, H.; Gorman, F. J., Jr.

    1973-01-01

    A proposed navigation concept requires that a user measure the time-delay that satellite-emitted signals experience in traversing the distance between satellite and user. Simultaneous measurement of the propagation time from four different satellites permits the user to determine his position and clock bias if satellite ephemerides and signal propagation velocity are known. A pulse propagating through the ionosphere is slowed down somewhat, giving an apparent range that is larger than the equivalent free space range. The difference between the apparent range and the true range, or the free space velocity and the true velocity, is the quantity of interest. This quantity is directly proportional to the total electron content along the path of the propagating signal. Thus, if the total electron content is known, or is measured, a perfect correction to ranging could be performed. Faraday polarization measurements are continuously being taken at Fort Monmouth, N. J., using beacon emissions of the ATS-3 (137.35 MHz) satellite. Day-to-day variability of the diurnal variation of total electron content values is present with differences of up to 50% or more not being uncommon. In addition, superposed on the overall diurnal variation are smaller scale variations of approximately 5 to 10% of the total content which are attributed to ionospheric density irregularities.

  18. Day-to-day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Häusler, K.; Wild, J. A.

    2016-07-01

    As known from previous studies on the solar quiet (Sq) variation of the geomagnetic field, the strength and pattern of ionospheric dynamo currents change significantly from day to day. The present study investigates the relative importance of two sources that contribute to the day-to-day variability of the ionospheric currents at middle and low latitudes. One is high-latitude electric fields that are caused by magnetospheric convection, and the other is atmospheric waves from the lower atmosphere. Global ionospheric current systems, commonly known as Sq current systems, are simulated using the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. Simulations are run for 1-30 April 2010 with a constant solar energy input but with various combinations of high-latitude forcing and lower atmospheric forcing. The model well reproduces geomagnetic perturbations on the ground, when both forcings are taken into account. The contribution of high-latitude forcing to the total Sq current intensity (Jtotal) is generally smaller than the contribution of wave forcing from below 30 km, except during active periods (Kp≥4), when Jtotal is enhanced due to the leakage of high-latitude electric fields to lower latitudes. It is found that the penetration electric field drives ionospheric currents at middle and low latitudes not only on the dayside but also on the nightside, which has an appreciable effect on the Dst index. It is also found that quiet time day-to-day variability in Jtotal is dominated by symmetric-mode migrating diurnal and semidiurnal tidal winds at 45-60° latitude at ˜110 km.

  19. Mid-latitude thermospheric dynamics as observed by the North American Thermosphere-Ionosphere Observing Network of imaging Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Meriwether, J. W.; Ridley, A. J.; Castellaz, M. W.; Ciocca, M.; Fisher, D. J.

    2012-12-01

    In June and July of 2012, three new imaging Fabry-Perot interferometers (FPI) were installed at the Urbana Atmospheric Observatory in Urbana, IL (University of Illinois), Peach Mountain Observatory in Pinkney, MI (University of Michigan), and Richmond, KY (Eastern Kentucky University). Together with the existing FPI operating at the Pisgah Astronomical Research Institute in Rosman, NC (Clemson University), these FPIs form the initial deployment of the North American Thermosphere-Ionosphere Observing Network (NATION). NATION represents a new midlatitude chain of instruments capable of providing measurements of the thermospheric neutral winds and temperatures through observations of the redline emission at 630.0 nm. We present results from the first five months of operations of these instruments. The capabilities of the network are also demonstrated, first with each instrument operating as a stand alone observatory and then with each instrument operating in concert with one another to form a distributed sensing system capable of providing temperature and horizontal vector wind measurements over the midwestern United States.

  20. Towards estimation of atmospheric tidal effects on the ionosphere via data assimilation

    NASA Astrophysics Data System (ADS)

    Solomentsev, Dmitry; Cherniak, Yakov; Titov, Anton; Khattatov, Boris; Khattatov, Vyacheslav

    2015-11-01

    The impact of atmospheric tides on the night time ionosphere is now being a subject of the extensive research within the scientific community. The plausible effect has been observed using the multiple space-borne instruments (e.g. COSMIC/FORMOSAT-3 constellation, TIMED GUVI and NASA IMAGE). Along with the observations, several modelling attempts has been undertaken to prove or refute the interrelation between the atmospheric tides and the wave-four longitudinal night time ionosphere structure. The scope of the current article is to assess the data assimilation ionosphere model capabilities in representing the longitudinal effect in the night time ionosphere induced by the DE3 atmospheric tide. Along with this, the core physics-based model capabilities in estimating the same effect are presented and discussed. For the current research, two periods were taken into consideration: the autumn equinox of the years 2006 and 2012. In the current article the data assimilation and physics-based models calculation results are presented and discussed along with the models' error estimation and analysis.

  1. Long-duration geomagnetic storm effects on the D region of the ionosphere: Some case studies using VLF signal

    NASA Astrophysics Data System (ADS)

    Choudhury, Abhijit; De, Barin Kumar; Guha, Anirban; Roy, Rakesh

    2015-01-01

    present work investigates the effects of long-duration geomagnetic storms on VLF signal during ionospheric sunrise time, commonly known as D Layer Preparation Time (DLPT) depth. The VLF signal at 19.8 kHz transmitted from Northwest Cape, Australia, and received at a low-latitude station, Tripura, India, is used for the present analysis. The data for the analysis are selected from November 2008 to October 2011. In the active period of the geomagnetic storms, the average DLPT depth is found to have a negative correlation coefficient of 0.91 with geomagnetic Ap index. It is also found that with each 10 unit increase of Ap index, the DLPT depth (the day and night asymmetry level) changes by 1.25 dB. The results are supported with modeled International Reference Ionosphere (IRI) electron density data and DLPT depth at 71 km height for the three positions, namely, receiver position, signal hop position, and the transmitter position along the total Great Circle Path. It is found that the receiver position electron density is the main controlling factor for DLPT depth. The correlation between IRI electron density and DLPT depth increases from -0.13 at transmitter position to -0.33 at the first hop position, to -0.46 at the receiver position, respectively. The percentage change of post storm electron density, at 71 km height, is found to increase by more than 100% at the receiver position. The results are discussed on the basis of the electron density changes over the signal propagation path, mainly caused by the geomagnetic storms.

  2. Ionospheric topside sounding.

    PubMed

    Calvert, W

    1966-10-14

    Over the past few years, the satellite topside sounders have significantly contributed to the understanding of the upper ionosphere. A great quantity of radio echo data has been accumulated, from which the ionospheric electrondensity distribution can be determined. The topside measurements of electron density essentially agree with similar measurements from the ground, except for an occasional 10-percent discrepancy near the peak of the ionosphere. While horizontal non-uniformity is a likely cause, this discrepancy has not yet been adequately explained. The electron-density scale heights measured at a constant altitude indicate both a higher temperature and a heavier mean ion mass at high latitudes. At low latitudes the topside measurements have shown the detailed latitudinal structure of the equatorial anomaly, demonstrating control by the geomagnetic field. A variety of electron-density irregularities have been studied. Most are greatly elongated along the magnetic field, and produce echoes either by lateral scattering, if they are thin, or by longitudinal ducting, if they are thick. Some of the thick irregularities are continuous between the hemispheres and support conjugate echo propagation. The topside sounders have revealed the complex structure of the ionosphere near the auroral zone and at higher latitudes. At night an east-west trough of greatly reduced electron density occurs equatorward of the auroral zone. At the auroral zone itself the electron density is high and quite variable, both in space and time. The electron density at the polar cap within the auroral zone is often uniform and smooth. Ionospheric irregularities are common in the area of the trough and the auroral zone. Among other satellites, the topside sounders have been used in various plasma studies involving the excitation and propagation of waves. These studies suggest that the ionosphere is an appropriate region for future plasma physics investigations, especially with rocket and

  3. Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.

  4. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Jin, Rui; Kutoglu, H.

    2017-01-01

    The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI [O]/[N2] ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

  5. Radiotomographic observations of corpuscular ionization in the ionosphere

    NASA Astrophysics Data System (ADS)

    Andreeva, E. S.; Kunitsyn, V. E.; Tereshchenko, E. D.; Krysanov, B. Yu.; Nazarenko, M. O.

    2012-04-01

    Along with the antisunward cross-polar convection of the ionospheric plasma and the field-aligned electric currents, the corpuscular fluxes play an important role in the magnetosphere-ionosphere coupling. Being more tightly coupled with the magnetosphere, the subauroral and auroral ionosphere noticeably differs from the midlatitude ionosphere. It experiences much stronger and faster variations in space and time. The particle fluxes and the electric fields of magnetospheric origin penetrate into the ionosphere and substantially affect the production, loss and transport of charged particles. The rate of ionization in the midlatitude ionosphere is controlled almost solely by the X-ray and UV/EUV solar radiation, whereas in high latitudes the fluxes of particles precipitating from the magnetosphere are significant sources of ionization. Moreover, they are probably the single source during the polar night. Typically, the contribution of the magnetospheric corpuscular fluxes into the ionization is small compared to the contribution of electromagnetic radiation; however, during the geomagnetic storms, it may prove significant, especially if these fluxes are sufficiently strong and act in the nighttime when the solar electromagnetic radiation is absent. The present work is devoted to radio tomographic imaging of the ionospheric effects of particle precipitation using the data from low-orbital navigational satellite systems. The ionospheric radio tomography is actively developed during the past two decades. It provides images of the 2D distribution of electron density in the vertical plane (latitude-altitude cross-sections) (averaged over an interval of 10-15 minutes) for the spatial sector covering several thousand kilometers. The horizontal and vertical resolution of the RT method is 20-30 km and 30-40 km, respectively. In the present work, the particle precipitation events are identified from the particle flux measurements onboard DMSP satellites. We present and discuss

  6. The lower ionosphere effects caused by the tsunami-driven internal gravity waves

    NASA Astrophysics Data System (ADS)

    Rozhnoi, Alexander; Solovieva, Maria; Shalimov, Sergei; Levin, Boris; Shevchenko, Georgy; Hayakawa, Masashi

    2014-05-01

    Measurements from the VLF/LF station in Petropavlovsk-Kamchatsky (Russia) were used to observe the response of the lower ionosphere to the tsunami triggered by the 2010 Chili earthquake. This earthquake produced the trans-ocean tsunami, which severely affected the coastal communities of Chile and presented a serious threat for all Pacific Ocean coasts including the far eastern coast of Russia. Disturbances in the phase and amplitude of the VLF signal propagating from the transmitter in Hawaiian Islands were observed during the tsunami wave passage recorded by the Deep-ocean Assessments and Reporting of Tsunamis (DART) bottom pressure stations. The tsunami propagation time from the source to Hawaii Islands was about 14 h and to the coast of Russia about 21 h. The new point discussed here is that we observed a second tsunami and its ionospheric effects which have been missed in the previous observations in the upper ionosphere. Nevertheless, the presence of the second tsunami is confirmed by both the VLF and DART's measurements. The tsunamigenic effects in the ionosphere were compared to the in-situ sea-level DART measurements near Hawaii Islands and not far from Kamchatka. The frequency of the maximum spectral amplitude both for the VLF and DART data was found to be in the range of periods of 8-60 min which corresponds to the period of the internal gravity waves generated by tsunami.

  7. Tropical cyclone effects on the equatorial ionosphere: First result from the Indian sector

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Paul, Bapan; Chakraborty, Monti; De, Barin Kumar

    2016-06-01

    Ionospheric response to the effects of tropical cyclone (TC) "Mahasen" in 2013 and Hudhud in 2014 is studied on the equatorial ionosphere over the Indian sector for the first time using Global Positioning System-derived total electron content (TEC) data. We observed an anomalous decrease of 3.8 TEC unit (1 TECU = 1016 el m-2) in vertical TEC (VTEC) value from the monthly mean for TC Mahasen and 2.1 TECU for TC Hudhud on the day of the landfall. We have also observed similar VTEC depletion of 1.5, 1.9, and 2.1 TECU for three different receivers on the landfall day for TC Vongfong over Japan. This anomalous decrease is observed over a wide zone around the trajectory of the cyclone during the active cyclonic storm stage. This observed anomaly might be the result of combined effect of TC-inspired gravity waves, ejection of neutral particles from the terminator of a TC, and lightning electric fields which redistribute the chemical constituents of the ionosphere by increasing the number of neutral particles at different ionospheric heights, thus decreasing the TEC over the satellite-receiver path.

  8. Effect of Solar Eclipse of March 20, 2015 on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ippolito, Alessandro; Settimi, Alessandro; Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-04-01

    The effect on the ionosphere of solar eclipse of March 20, 2015 on different ionospheric layers has been studied, using the vertical ionospheric soundings from the ionosondes of Rome, Gibilmanna and San Vito dei Normanni. The response of the critical frequencies foF1 and foF2 have been investigated during the solar eclipse. The DuCharme and Petrie's formulation used to estimate foF1 has been corrected taking into account the decreased solar irradiance. This effect has been modeled by a Solar Obscuration Factor (SOF) and comparison with experimental values has been performed. A further study on the occurrence of the Sporadic E layer during the eclipse is here presented. As reported in literature, sporadic E layer appears during the eclipse, if the ionograms for 3 days before and 3 days after are analysed. When a wider set of days before and after the eclipse event are taken into account this phenomenon does not appear so clear. The behaviour of a regional adaptive and assimilative 3D ionospheric model has been tested as well, assimilating plasma frequency profiles fp(h). The study of the model behaviour in such particular condition has let us introduce corrections to F1 and E region modeling, improving its performances.

  9. Relating high-Latitude Topside Ionospheric Vertical Electron-Density-Profile changes to Solar-Wind Parameters During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V.; Truhlik, V.; Wang, Y.; Bilitza, D.; Lam, H.

    2012-12-01

    Ten large magnetic storms (Dst < -100 nT) where high-latitude topside electron-density profiles Ne(h) could be obtained from Alouette/ISIS topside-sounder data, and where solar-wind data were available, were investigated. The former were obtained from the NASA Space Physics Data Facility (SPDF) and the latter were obtained from the NASA OMNIWeb database. Large Ne(h) changes were observed during the storms in all cases. In some cases large topside Ne(h) gradients were observed between adjacent ionograms (separated by ~ ½ minute) and even within a single ionogram (profiles separated by < 10 s). The changes in the winter profiles have a clear relationship with the solar-wind velocity Vsw in that the topside Ne(h) increases with increasing Vsw during nighttime and decreases with increasing Vsw during daytime.

  10. Global effects on Ionospheric Weather over the Indian subcontinent at Sunrise and Sunset

    SciTech Connect

    Basak, Tamal; Pal, S.; Chakrabarti, S. K.

    2010-10-20

    Study of Very Low Frequency (VLF) electromagnetic wave is very important for knowing the behavior of the Ionospheric layers due to Sunrise-Sunset, Earthquakes, Solar flares, Solar eclipses and other terrestrial and extra terrestrial radiations. We study the properties of the variation of the VLF signal strength theoretically all over Indian sub-continent. As an example, we concentrate on the VLF signal transmitted by Indian Naval Transmitter VTX at Vijayanarayanam (Latitude 08 deg. 23', Longitude 77 deg. 45') near the southern tip of Indian subcontinent. As has been noticed, several receiving stations placed during the VLF campaign in all over India, the VLF signal strength varies significantly with place and time. To understand the diurnal and seasonal variation of the received signal, a complete knowledge of physics of intensity distribution of the VLF signal is essential. The spatial variation of VLF signal plays an important role in selecting future VLF stations. In the wave-hop theoretical model presented here, horizontally stratified ionospheric layers have been considered. The VLF wave emitted by the transmitter has both the ground wave and the sky wave components. The ground wave attenuates during propagation. The sky wave component experiences reflections by the ionosphere on its way to the receiver and its attenuation depends on the degree of ionization. Intensity variation occurs at a given receiver location for interference among singly and multiply reflected waves. This has been simulated considering some simplified and justifiable assumptions. This spatial variation wave-hop theoretical model developed here has been compared with LWPC code generated results.

  11. Global effects on Ionospheric Weather over the Indian subcontinent at Sunrise and Sunset

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, S. K.; Pal, S.

    2010-10-01

    Study of Very Low Frequency (VLF) electromagnetic wave is very important for knowing the behavior of the Ionospheric layers due to Sunrise-Sunset, Earthquakes, Solar flares, Solar eclipses and other terrestrial and extra terrestrial radiations. We study the properties of the variation of the VLF signal strength theoretically all over Indian sub-continent. As an example, we concentrate on the VLF signal transmitted by Indian Naval Transmitter VTX at Vijayanarayanam (Latitude 08°23', Longitude 77°45') near the southern tip of Indian subcontinent. As has been noticed, several receiving stations placed during the VLF campaign in all over India, the VLF signal strength varies significantly with place and time. To understand the diurnal and seasonal variation of the received signal, a complete knowledge of physics of intensity distribution of the VLF signal is essential. The spatial variation of VLF signal plays an important role in selecting future VLF stations. In the wave-hop theoretical model presented here, horizontally stratified ionospheric layers have been considered. The VLF wave emitted by the transmitter has both the ground wave and the sky wave components. The ground wave attenuates during propagation. The sky wave component experiences reflections by the ionosphere on its way to the receiver and its attenuation depends on the degree of ionization. Intensity variation occurs at a given receiver location for interference among singly and multiply reflected waves. This has been simulated considering some simplified and justifiable assumptions. This spatial variation wave-hop theoretical model developed here has been compared with LWPC code generated results.

  12. Long-term monthly statistics of the mid-latitude ionospheric E-layer peak electron density in the Northern geographic hemisphere during geomagnetically quiet and steadily low solar activity conditions

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoli; Pavlova, Nadezhda

    2016-07-01

    Long-term hourly values of the ionospheric E-layer peak electron density, NmE, measured during the time period of 1957-2014 by 4 mid-latitude ionosondes (Wallops Island, Boulder, de l'Ebre, and Rome) in the Northern geographic hemisphere were processed to select periods of geomagnetically quiet and low solar activity conditions to calculate several descriptive statistics of NmE close to noon for each month in a year, including the mathematical expectation of NmE, the standard deviations of NmE from the mathematically expected NmE, and the NmE variation coefficient. The month-to-month variability of these descriptors allowed us to identify months of a year when they reach their extremes (maxima, minima). We found that the most probable NmE cannot be considered as the best statistical parameter among the most probable NmE and the mathematically expected NmE in statistical studies of month-to-month variations of NmE. Depending on a choice of an ionosonde and a month, the calculated NmE variation coefficient changes from 5 to 12 %.

  13. MLT Asymmetries in the Magnetospheric Wave Distribution and Their Effect on Ionospheric Conductivity and Global Transport

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Li, W.; Bortnik, J.; Ni, B.; Jordanova, V.; Kletzing, C.; Kurth, W. S.; Hospodarsky, G. B.; Angelopoulos, V.

    2014-12-01

    Diffuse auroral precipitation is the major source of ionospheric conductivity at high latitudes, and the resulting global distribution of enhanced conductivity affects the penetration of magnetospheric electric fields and plasma transport into the inner magnetosphere. Recent work has demonstrated that diffuse auroral precipitation is caused by resonant scattering of plasma sheet electrons due to a combination of both electrostatic electron cyclotron harmonic waves and electromagnetic whistler mode chorus emissions. Each class of wave is excited, predominantly on the dawn side of the magnetosphere, following the convective injection and gradient drifting of plasma sheet electrons into the inner magnetosphere. During geomagnetically active periods, the resultant electron scattering can approach the limit of strong diffusion, and the timescale for scattering loss into the atmosphere becomes shorter than the time for transport of plasma to the dayside. This leads to a pronounced day/night asymmetry in the diffuse auroral precipitation and a localized enhancement in conductivity in the post midnight sector. Quantifying the rate of diffuse auroral scattering by each class of wave is therefore imperative for understanding the global distribution of enhanced ionospheric conductivity and its non-linear feedback on plasma transport in the inner magnetosphere. Recent attempts to model the observed global distribution of waves and the associated pattern of electron precipitation will be discussed.

  14. Solar and geomagnetic activity effects on nocturnal zonal velocities of ionospheric plasma depletions.

    NASA Astrophysics Data System (ADS)

    Sobral, J. H. A.; Abdu, M. A.; Takahashi, H.; Sawant, H.; Zamlutti, C. J.; Borba, G. L.

    1999-01-01

    The understanding of postsunset zonal drifts of ionospheric plasma depletions in the equatorial and subequatorial regions are of importance to the knowledge of the electrodynamics of the nocturnal ionosphere. Drifts occurring over the low latitude station Cachoeira Paulista-CP during the October and March time frames are analyzed for the period 1980 - 1992. That analysis is based upon about 650 days of zonal scanning photometer measurements of the nocturnal O I 630 nm airglow. The zonal motions of valleys of the O I 630 nm intensity are used to infer the eastward plasma velocity variations with local time. In this way, the velocity variations with solar activity and magnetic activity are studied. The mean trend in the velocity local time variation is a decrease from early evening to postmidnight hours, as expected in view of the F-region vertical electric fields, naturally decreasing magnitudes after sunset due to recombination. The zonal velocity decay between 21 LT and 02 LT is faster during the period of maximum solar activity than during the solar minimum period.

  15. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  16. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  17. EISCAT verification in the development of ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Walker, I. K.; Heaton, J. A. T.; Kersley, L.; Mitchell, C. N.; Pryse, S. E.; Williams, M. J.

    1996-12-01

    This paper highlights the important role played by the EISCAT radar for verification in the development of tomographic techniques to produce images of ionospheric electron density. A brief review is given of some of the stages in the application of tomographic reconstruction techniques to the ionosphere. Results are presented to illustrate the effectiveness of the method in imaging ionospheric structures at high latitudes. In addition, the results include the first tomographic image of the ionosphere for a region extending from mid-latitudes over mainland Scandinavia to high latitudes above Svalbard. Acknowledgements. This work has been supported by the UK Particle-Physics and Astronomy Research Council. The assistance of the director and staff of the EISCAT Scientific Association, the staff of the Norsk Polarinstitutt and the director and staff of the Swedish Institute of Space Physics is gratefully acknowledged. In addition the authors would like to thank Professor Evgeny Tereshchenko of the Polar Geophysical Institute in Mumansk, Russia and Dr Tuomo Nygrén of the University of Oulu, Finland for provision of data from EISCAT special program time during the November 1995 campaign. Topical Editor D. Alcaydé thanks E. J. Fremouw and another referee for their help in evaluating this paper.--> Correspondence to: I. K. Walker-->

  18. Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan; Wang, Wenbing; Yue, Jia; Liu, Hanli; Chang, Loren C.; Zhang, Shaodong; Burns, Alan; Du, Jian

    2016-10-01

    The Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to theoretically study the 6 day wave effects on the ionosphere. By introducing a 6 day perturbation with zonal wave number 1 at the model lower boundary, the TIME-GCM reasonably reproduces the 6 day wave in temperature and horizontal winds in the mesosphere and lower thermosphere region during the vernal equinox. The E region wind dynamo exhibits a prominent 6 day oscillation that is directly modulated by the 6 day wave. Meanwhile, significant local time variability (diurnal and semidiurnal) is also seen in wind dynamo as a result of altered tides due to the nonlinear interaction between the 6 day wave and migrating tides. More importantly, the perturbations in the E region neutral winds (both the 6 day oscillation and tidal-induced short-term variability) modulate the polarization electric fields, thus leading to the perturbations in vertical ion drifts and ionospheric F2 region peak electron density (NmF2). Our modeling work shows that the 6 day wave couples with the ionosphere via both the direct neutral wind modulation and the interaction with atmospheric tides.

  19. Anisotropic fluid modeling of ionospheric upflow: Effects of low-altitude anisotropy and thermospheric winds

    NASA Astrophysics Data System (ADS)

    Burleigh, M.; Zettergren, M.

    2017-01-01

    A new anisotropic fluid model is developed to describe ionospheric upflow responses to magnetospheric forcing by electric fields and broadband ELF waves at altitudes of 90-2500 km. This model is based on a bi-Maxwellian ion distribution and solves time-dependent, nonlinear equations of conservation of mass, momentum, parallel energy, and perpendicular energy for six ion species important to E, F, and topside ionospheric regions. It includes chemical and collisional interactions with the neutral atmosphere, photoionization, and electron impact ionization. This model is used to examine differences between isotropic and anisotropic descriptions of ionospheric upflow driven by DC electric fields, possible effects of low-altitude (<500 km) wave heating, and impacts of neutral winds on ion upflow. Results indicate that isotropic models may overestimate field-aligned ion velocity responses by as much as ˜48%. Simulations also show significant ionospheric responses at low altitudes to wave heating for very large power spectral densities, but ion temperature anisotropies below the F region peak are dominated by frictional heating from DC electric fields. Neutral winds are shown to play an important role regulating ion upflow. Thermospheric winds can enhance or suppress upward fluxes driven by DC and BBELF fields by 10-20% for the cases examined. The time history of the neutral winds also affects the amount of ionization transported to higher altitudes by DC electric fields.

  20. Three-dimensional structure of ionospheric currents produced by field-aligned currents

    NASA Astrophysics Data System (ADS)

    Takeda, M.

    1982-08-01

    Ionospheric currents caused by field-aligned currents are calculated three-dimensionally under quiet conditions at the equinox, using a magnetic field line coordinate system and with the assumption of infinite parallel conductivity. Input field-aligned currents are assumed to be distributed only in the daytime and the whole system is assumed to be symmetric about the equator. Calculated currents are comparable with those of the ionospheric dynamo in higher latitudes, but much weaker in lower latitudes including the equatorial electrojet region. Hence, if the model is valid these currents may have a considerable effect on the day-to-day variation of Sq currents in higher latitudes, but little effect on those in lower latitudes such as the counter-electrojet.

  1. Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Fagundes, P. R.; Coster, A.; Bolaji, O. S.; Sobral, J. H. A.; Batista, I. S.; de Abreu, A. J.; Venkatesh, K.; Gende, M.; Abalde, J. R.; Sumod, S. G.

    2016-02-01

    The main purpose of this paper is to investigate the response of the ionospheric F layer in the American and African sectors during the intense geomagnetic storm which occurred on 30 September-01 October 2012. In this work, we used observations from a chain of 20 GPS stations in the equatorial, low- and mid-latitude regions in the American and African sectors. Also, in this study ionospheric sounding data obtained during 29th September to 2nd October, 2012 at Jicamarca (JIC), Peru, São Luis (SL), Fortaleza (FZ), Brazil, and Port Stanley (PST), are presented. On the night of 30 September-01 October, in the main and recovery phase, the h´F variations showed an unusual uplifting of the F region at equatorial (JIC, SL and FZ) and mid- (PST) latitude stations related with the propagations of traveling ionospheric disturbances (TIDs) generated by Joule heating at auroral regions. On 30 September, the VTEC variations and foF2 observations at mid-latitude stations (American sector) showed a long-duration positive ionospheric storm (over 6 h of enhancement) associated with large-scale wind circulations and equatorward neutral winds. Also, on 01 October, a long-duration positive ionospheric storm was observed at equatorial, low- and mid- latitude stations in the African sector, related with the large-scale wind circulations and equatorward neutral winds. On 01 and 02 October, positive ionospheric storms were observed at equatorial, low- and mid-latitude stations in the American sector, possibly associated with the TIDs and an equatorward neutral wind. Also, on 01 October negative ionospheric storms were observed at equatorial, low- and mid-latitude regions in the American sector, probably associated with the changes in the O/N2 ratio. On the night of 30 September-01 October, ionospheric plasma bubbles were observed at equatorial, low- and mid- latitude stations in the South American sector, possibly associated with the occurrence of geomagnetic storm.

  2. Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Melillo, J.M.; Randerson, J.T.; Parton, W.J.; Heimann, Martin; Meier, R.A.; Clein, J.S.; Kicklighter, D.W.; Sauf, W.

    2000-01-01

    Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2) at high latitude monitoring stations during the nongrowing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 ??C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30??N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations, in comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the

  3. Low latitude ionospheric scintillation and zonal irregularity drifts observed with GPS-SCINDA system and closely spaced VHF receivers in Kenya

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Baluku, T.; Baki, P.; Cilliers, P. J.; Mito, C.; Doherty, P.

    2013-05-01

    In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March-April than in September-October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30-160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east-west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives

  4. Characteristics of ionospheric storms in East Asia during 2002-2014

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zherebtsov, Gelii; Wang, Guojun; Ratovsky, Konstantin; Romanova, Elena; Shi, Jiankui

    2016-07-01

    The ionosphere experiences intense response during the geomagnetic storm and it varies with latitude and longitude. The DPS-4 digisonde measurements and GPS-TEC data of ionospheric stations located at different latitudes in the longitudinal sector of 90-130°E during 2002 to 2014 were analyzed to investigate the ionospheric effects in the different latitude of East Asia during geomagnetic storm. About 80 geomagnetic storms are selected according to the Dst index and observed data and they are in different seasons and different solar activity levels. A few quiet days' averages of data before geomagnetic storm were used as the undisturbed level. Results show that for the middle and high latitude, the short-lived positive disturbance associated with the initial phase of the every storm was observed in each season and then the disturbances were negative till the termination of storm. At the low latitude, storm-time disturbances of foF2 have obvious diurnal, seasonal and solar cycle characteristics. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime except for the summer in low solar activity period. The intensity of response of foF2 is stronger at nighttime than that at daytime. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only. It's notable that geomagnetic activities occurred at local time nighttime can cause stronger and longer responses of foF2 at the low latitude. For the TEC data, strong disturbances can be observed simultaneously from high latitude to low latitude during the main phase of some storms. Generally strong/weak storms can cause the negative

  5. Effect of the ionosphere on C3I systems

    SciTech Connect

    Akasofu, S.I.

    1988-05-03

    Geomagnetic and auroral disturbances cause significant interference on communications, navigation, and radar systems. Therefore, it is essential to develop a geomagnetic and auroral storm prediction scheme which can provide necessary information in evaluating the interference well before a major geomagnetic storm. The prediction of auroral disturbances and of the F-layer trough development is especially significant for the operation of HF systems at mid and high latitudes. For these reasons, the author has been developing a practical numerical prediction scheme, that can predict storm characteristics, oval diameter, and trough parameters with a 6-12 hour lead time.

  6. Climate Effects on High Latitude Daphnia via Food Quality and Thresholds

    PubMed Central

    Przytulska, Anna; Bartosiewicz, Maciej; Rautio, Milla; Dufresne, France; Vincent, Warwick F.

    2015-01-01

    Climate change is proceeding rapidly at high northern latitudes and may have a variety of direct and indirect effects on aquatic food webs. One predicted effect is the potential shift in phytoplankton community structure towards increased cyanobacterial abundance. Given that cyanobacteria are known to be a nutritionally poor food source, we hypothesized that such a shift would reduce the efficiency of feeding and growth of northern zooplankton. To test this hypothesis, we first isolated a clone