Sample records for latitudinal temperature gradient

  1. Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change

    PubMed Central

    La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009

  2. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  3. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  4. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    PubMed Central

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-01-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112

  5. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  6. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.

    PubMed

    McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J

    2016-04-01

    Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.

  7. Equatorial seawater temperatures and latitudinal temperature gradients during the Middle to Late Jurassic: the stable isotope record of brachiopods and oysters from Gebel Maghara, Egypt

    NASA Astrophysics Data System (ADS)

    Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils

    2017-04-01

    The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (<2°C) as can be expected for a tropical palaeolatitude. A comparison of the results from Egypt with literature data enabled the reconstruction of latitudinal temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine faunal diversity patterns.

  8. Genetic and environmental influences on cold hardiness of native and introduced riparian trees

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Cade, Brian S.

    2012-01-01

    To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis, and hybrids) collected from 15 sites from 29.2 to 47.6°N in the central United States. In the common garden, both species showed latitudinal variation in fall, but not spring, leaf phenology. This suggests that latitudinal gradient field observations in fall phenology are a result, at least in part, of the inherited variation in the critical photoperiod. Conversely, the latitudinal gradient field observations in spring phenology are largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization, and natural selection in the 150 years since introduction.

  9. Energy gradients and the geographic distribution of local ant diversity.

    PubMed

    Kaspari, Michael; Ward, Philip S; Yuan, May

    2004-08-01

    Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.

  10. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    PubMed

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  11. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining quantitative data regarding the mid-Cretaceous hydrologic cycle in the KWIB. Our goal is to encourage the incorporation of isotopic tracers into GCM simulations of the mid-Cretaceous, and to show how our empirical data and mass balance model estimates help constrain the boundary conditions. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  13. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus

    PubMed Central

    Pittera, Justine; Humily, Florian; Thorel, Maxine; Grulois, Daphné; Garczarek, Laurence; Six, Christophe

    2014-01-01

    Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation. PMID:24401861

  14. Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees

    USGS Publications Warehouse

    Friedman, J.M.; Roelle, J.E.; Cade, B.S.

    2011-01-01

    To explore the roles of plasticity and genetic variation in the response to spatial and temporal climate variation, we established a common garden consisting of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6??N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis and hybrids) collected from 15 sites at 29.2-47.6??N in the central United States. In the common garden both species showed latitudinal variation in fall, but not spring, leaf phenology, suggesting that the latitudinal gradient in fall phenology observed in the field results at least in part from inherited variation in the critical photoperiod, while the latitudinal gradient in spring phenology observed in the field is largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. For cottonwood, cold hardiness began earlier and ended later in northern than in southern populations. For saltcedar northern populations were hardier throughout the cold season than southern populations. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization and natural selection in the 150 years since introduction. ?? 2011 US Government.

  15. Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China

    PubMed Central

    Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li

    2014-01-01

    The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421

  16. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  17. Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

    PubMed

    Airi, Valentina; Prantoni, Selena; Calegari, Marco; Lisini Baldi, Veronica; Gizzi, Francesca; Marchini, Chiara; Levy, Oren; Falini, Giuseppe; Dubinsky, Zvy; Goffredo, Stefano

    2017-01-01

    Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

  18. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    PubMed

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.

  19. Sap-feeding insects on forest trees along latitudinal gradients in northern Europe: a climate-driven patterns.

    PubMed

    Kozlov, Mikhail V; Stekolshchikov, Andrey V; Söderman, Guy; Labina, Eugenia S; Zverev, Vitali; Zvereva, Elena L

    2015-01-01

    Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap-feeding insects as a model group to test the hypotheses that the strength of plant-herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap-feeding insects from four species of forest trees along five latitudinal gradients (750-1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008-2011. Similar decreases in diversity of sap-feeding insects with latitude were observed in all gradients during all study years. The sap-feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome-shaped relationships between the loads of sap-feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap-feeders will increase by 0-45% of the current level in southern boreal forests and by 65-210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap-feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap-feeding insects, especially in subarctic forests, but can also alter plant-plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems. © 2014 John Wiley & Sons Ltd.

  20. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  1. Cannibalism and activity rate in larval damselflies increase along a latitudinal gradient as a consequence of time constraints.

    PubMed

    Sniegula, Szymon; Golab, Maria J; Johansson, Frank

    2017-07-14

    Predation is ubiquitous in nature. One form of predation is cannibalism, which is affected by many factors such as size structure and resource density. However, cannibalism may also be influenced by abiotic factors such as seasonal time constraints. Since time constraints are greater at high latitudes, cannibalism could be stronger at such latitudes, but we know next to nothing about latitudinal variation in cannibalism. In this study, we examined cannibalism and activity in larvae of the damselfly Lestes sponsa along a latitudinal gradient across Europe. We did this by raising larvae from the egg stage at different temperatures and photoperiods corresponding to different latitudes. We found that the more seasonally time-constrained populations in northern latitudes and individuals subjected to greater seasonal time constraints exhibited a higher level of cannibalism. We also found that activity was higher at north latitude conditions, and thus correlated with cannibalism, suggesting that this behaviour mediates higher levels of cannibalism in time-constrained animals. Our results go counter to the classical latitude-predation pattern which predicts higher predation at lower latitudes, since we found that predation was stronger at higher latitudes. The differences in cannibalism might have implications for population dynamics along the latitudinal gradients, but further experiments are needed to explore this.

  2. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora

    NASA Astrophysics Data System (ADS)

    Tang, G.; Zhang, M. G.; Liu, C.; Zhou, Z.; Chen, W.; Slik, J. W. F.

    2014-05-01

    The Tropical Niche Conservatism Hypothesis (TCH) tries to explain the generally observed latitudinal gradient of increasing species diversity towards the tropics. To date, few studies have used phylogenetic approaches to assess its validity, even though such methods are especially suited to detect changes in niche structure. We test the TCH using modeled distributions of 1898 woody species in Yunnan Province (southwest China) in combination with a family level phylogeny. Unlike predicted, species richness and phylogenetic diversity did not show a latitudinal gradient, but identified two high diversity zones, one in Northwest and one in South Yunnan. Despite this, the underlying residual phylogenetic diversity showed a clear decline away from the tropics, while the species composition became progressingly more phylogenetically clustered towards the North. These latitudinal changes were strongly associated with more extreme temperature variability and declining precipitation and soil water availability, especially during the dry season. Our results suggests that the climatically more extreme conditions outside the tropics require adaptations for successful colonization, most likely related to the plant hydraulic system, that have been acquired by only a limited number of phylogenetically closely related plant lineages. We emphasize the importance of phylogenetic approaches for testing the TCH.

  3. Two Birch Species Demonstrate Opposite Latitudinal Patterns in Infestation by Gall-Making Mites in Northern Europe

    PubMed Central

    Skoracka, Anna; Zverev, Vitali; Lewandowski, Mariusz; Zvereva, Elena L.

    2016-01-01

    Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008–2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit. PMID:27835702

  4. Evidence of high-elevation amplification versus Arctic amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  5. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  6. Polychaete functional diversity in shallow habitats: Shelter from the storm

    NASA Astrophysics Data System (ADS)

    Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo

    2018-05-01

    Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.

  7. Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters.

    PubMed

    Timi, Juan T

    2007-06-01

    The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.

  8. Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.

  9. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity

    PubMed Central

    2017-01-01

    Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698

  10. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.

    PubMed

    Wos, Guillaume; Willi, Yvonne

    2015-01-01

    The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

  11. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    PubMed

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  12. Altitudinal vs Latitudinal Climactic Drivers: A Comparison of a Relict Picea and Abies Forest in the Southern Appalachians versus the Hemi-Boreal Transition Zone off Southern Canada

    NASA Astrophysics Data System (ADS)

    Evans, A.; Lafon, C. W.

    2015-12-01

    Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species across a latitudinal gradient.

  13. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling

    NASA Astrophysics Data System (ADS)

    Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio

    2017-06-01

    Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.

  14. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    PubMed Central

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

  15. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming

    USDA-ARS?s Scientific Manuscript database

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary productivity (ANPP) in most grasslands. In contrast, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to wa...

  16. Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    PubMed Central

    Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.

    2010-01-01

    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020

  17. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests

    Treesearch

    A. J. Burton; K. S. Pregitzer; R. L. Hendrick

    2000-01-01

    Minirhizotrons were used to observe fine root (≤1 mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine...

  18. Latitudinal variation of the solar limb-darkening function

    NASA Astrophysics Data System (ADS)

    Kroll, Ronald J.

    1994-06-01

    In an effort to monitor solar limb-darkening variability, the continuum radiation intensity at 550 nm over the outermost 32 arcseconds of the limb is measured at various solar latitudes. Using the Finite Fourier Transform Definition, the edge location of the Sun is determined for a series of scan amplitudes at each of the observed positions. The differential radius is the difference between edge locations for a fixed pair of scan amplitudes, and is a quantity which characterizes the slope of the solar limb-darkening function. Utilizing the differential radius, such observations offer the possibility of revealing a latitudinal variation of the photospheric temperature gradient and could provide clues to the mechanisms and variability of energy transport out of the Sun. These observations began in 1988 with measurements at 24 separate limb positions and include observations since 1990 when 36 positions were observed. The daily differential radius measurements for each position that is free of contamination from solar active regions are weighted according to the corresponding daily variance and averaged to obtain an overall value at each position for the observing season. The results indicate that during the 1991 observing season, there were regions near 20 deg N latitude and 30 deg S latitude on the Sun where the differential radius values were significantly greater than surrounding regions. This suggests that perturbations to the temperature gradient occur in latitudinally localized regions and persist for at least several months. It is shown that this phenomenon could have the same origin as the observed latitudinal variations of surface temperature and could also speak to the question of a lag time between the cycles of irradiation and magnetic variation.

  19. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Multiple Equilibria Associated with Response of the ITCZ to Seasonal SST Forcing

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    1998-01-01

    Supported by numerical experiment results, the abrupt change of the location of the intertropical convergence zone (ITCZ), from the equatorial trough flow regime to the monsoon trough flow regime is interpreted as a subcritical instability. The existence of these multiple quasi-equilibria is due to the balance of two "forces" on the ITCZ: one toward the equator, due to the earth's rotation, has a nonlinear latitudinal dependence; and the other toward the latitude of the sea surface (or ground) temperature peak has a relatively linear latitudinal dependence. This work pivots on the finding that the ITCZ and Hadley circulation can still exist without the pole-to-equator gradient of radiative-convective equilibrium temperature.

  1. Anomalous cosmic ray oxygen gradients throughout the heliosphere

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Mewaldt, R. A.; Blake, J. B.; Cummings, J. R.; Franz, M.; Hovestadt, D.; Klecker, B.; Mason, G. M.; Mazur, J. E.; Stone, E. C.

    1995-01-01

    We have used data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Ulysses, Voyager 1, Voyager 2, and Pioneer 10 spacecraft to determine the radial and latitudinal gradients of anomalous cosmic ray oxygen at 10 MeV/nuc during the last half of 1993. These five spacecraft cover radial distances from 1 AU (SAMPEX) to 58 AU (P10) and latitudes to 41 deg S (Ulysses) and 32 deg N (V1). We find that the radial gradient is a decreasing function of radial distance, approximately r(exp -n), with n = 1.7 +/- 0.7. The large-scale radial gradient between the inner and outer heliosphere is much smaller than it was during the last solar minimum period in approximately 1987. The latitudinal gradient is small and positive, 1.3 +/- 0.4 %/deg, as opposed to the large and negative latitudinal gradients found during 1987, but similar to the small positive latitudinal gradient measured during 1976 for anomalous cosmic ray helium. These observations confirm that effects of curvature and gradient drift in the large scale magnetic field of the Sun are important for establishing the three-dimensional intensity distributions of these particles in the heliosphere during periods of solar minimum conditions.

  2. A latitudinal phylogeographic diversity gradient in birds

    PubMed Central

    Seeholzer, Glenn F.; Harvey, Michael G.; Cuervo, Andrés M.; Brumfield, Robb T.

    2017-01-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns. PMID:28406905

  3. Radial and latitudinal gradients in the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1988-01-01

    The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.

  4. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Osores, Sebastián; Lardies, Marco A

    2017-08-01

    Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A latitudinal study of oxygen isotopes within horsehair

    NASA Astrophysics Data System (ADS)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  6. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication. PMID:25137123

  7. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.

  8. Evidence of latitudinal fractionation of polychlorinated biphenyl congeners along the Baltic Sea region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrell, C.; Okla, L.; Larsson, P.

    Annual cycles of the atmospheric concentrations of PCBs were determined at 16 (mostly rural) stations around the Baltic Sea between 1990 and 1993. The concentration levels of individual congeners were found to be influenced by their physical-chemical properties, ambient temperature, and geographical location. Median levels of PCBs were similar at all stations except at one urban site near Riga. A latitudinal gradient with higher levels in the south was found for the sum of PCB as well as for individual congeners, and the gradient was more pronounced for the low volatility congeners. As a result, the high volatility congeners increasedmore » in relative importance with latitude. Generally, PCB concentrations increased with temperature, but slopes of the partial pressure in air versus reciprocal temperature were different between congeners and between stations. In general, the low volatility congeners were more temperature dependent than the high volatility PCB congeners. Steep slopes at a sampling location indicate that the concentration in air is largely determined by diffusive exchange with soils. Lack of a temperature dependence may be due to the influence of long-range transported air masses at remote sites and due to the episodic or random nature of PCB sources at urban sites.« less

  9. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems

    PubMed Central

    Tomašových, Adam; Kennedy, Jonathan D.; Betzner, Tristan J.; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K.; White, Alexander E.; Rahbek, Carsten; Huang, Shan; Price, Trevor D.; Jablonski, David

    2016-01-01

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  10. Reproductive Efficiency of a Mediterranean Endemic Zooxanthellate Coral Decreases with Increasing Temperature along a Wide Latitudinal Gradient

    PubMed Central

    Airi, Valentina; Gizzi, Francesca; Falini, Giuseppe; Levy, Oren; Dubinsky, Zvy; Goffredo, Stefano

    2014-01-01

    Investments at the organismal level towards reproduction and growth are often used as indicators of health. Understanding how such energy allocation varies with environmental conditions may, therefore, aid in predicting possible responses to global climatic change in the near future. For example, variations in seawater temperature may alter the physiological functioning, behavior, reproductive output and demographic traits (e.g., productivity) of marine organisms, leading to shifts in the structure, spatial range, and abundance of populations. This study investigated variations in reproductive output associated with local seawater temperature along a wide latitudinal gradient on the western Italian coast, in the zooxanthellate Mediterranean coral, Balanophyllia europaea. Reproductive potential varied significantly among sites, where B. europaea individuals from the warmest site experienced loss of oocytes during gametogenesis. Most of the early oocytes from warmest sites did not reach maturity, possibly due to inhibition of metabolic processes at high temperatures, causing B. europaea to reabsorb the oocytes and utilize them as energy for other vital functions. In a progressively warming Mediterranean, the efficiency of the energy invested in reproduction could be considerably reduced in this species, thereby affecting vital processes. Given the projected increase in seawater temperature as a consequence of global climate change, the present study adds evidence to the threats posed by high temperatures to the survival of B. europaea in the next decades. PMID:24618568

  11. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae)

    NASA Astrophysics Data System (ADS)

    González, José A.; Pajuelo, José G.; Triay-Portella, Raül; Ruiz-Díaz, Raquel; Delgado, João; Góis, Ana R.; Martins, Albertino

    2016-11-01

    Patterns in the life-history traits of the pandalid shrimp Plesionika edwardsii are studied for the first time in three isolated Atlantic populations (Madeira, Canaries and Cape Verde Islands) to gain an understanding of their latitudinal variations. The maximum carapace size of the populations studied, as well as the maximum weight, showed clear latitudinal patterns. The patterns observed may be a consequence of the temperature experienced by shrimps during development, 1.37 ° C higher in the Canaries and 5.96 ° C higher in the Cape Verde Islands than in Madeira. These temperature differences among populations may have induced phenotypic plasticity because the observed final body size decreased as the temperature increased. A latitudinal north-south pattern was also observed in the maximum size of ovigerous females, with larger sizes found in the Madeira area and lower sizes observed in the Cape Verde Islands. A similar pattern was observed in the brood size and maximum egg size. Females of P. edwardsii produced smaller eggs in the Cape Verde Islands than did those at the higher latitude in Madeira. P. edwardsii was larger at sexual maturity in Madeira than in the Cape Verde Islands. The relative size at sexual maturity is not affected by latitude or environmental factors and is the same in the three areas studied, varying slightly between 0.568 and 0.585. P. edwardsii had a long reproductive season with ovigerous females observed all year round, although latitudinal variations were observed. Seasonally, there were more ovigerous females in spring and summer in Madeira and from winter to summer in the Cape Verde Islands. P. edwardsii showed a latitudinal pattern in size, with asymptotic size and growth rate showing a latitudinal compensation gradient as a result of an increased growth performance in the Madeira population compared to that of the Cape Verde Islands.

  12. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals

    NASA Astrophysics Data System (ADS)

    Marcot, Jonathan D.; Fox, David L.; Niebuhr, Spencer R.

    2016-06-01

    The decline of species richness from equator to pole, or latitudinal diversity gradient (LDG), is nearly universal among clades of living organisms, yet whether it was such a pervasive pattern in the geologic past remains uncertain. Here, we calculate the strength of the LDG for terrestrial mammals in North America over the past 65 My, using 27,903 fossil occurrences of Cenozoic terrestrial mammals from western North America downloaded from the Paleobiology Database. Accounting for temporal and spatial variation in sampling, the LDG was substantially weaker than it is today for most of the Cenozoic and the robust modern LDG of North American mammals evolved only over the last 4 My. The strength of the LDG correlates negatively with global temperature, suggesting a role of global climate patterns in the establishment and maintenance of the LDG for North American mammals.

  13. A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.

    PubMed

    De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K

    2011-05-01

    The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga

    Treesearch

    Andrea H. Lloyd; Andrew G. Bunn; Logan Berner

    2010-01-01

    We investigated the climate response of three Siberian taiga species, Larix cajanderi, Picea obovata, and Pinus sylvestris, across a latitudinal gradient in central Siberia. We hypothesized that warming is more frequently associated with increased growth for evergreen conifers (P. obovata and P....

  15. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    PubMed

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  16. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.

    2005-01-01

    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  17. Decadal Changes in the World's Coastal Latitudinal Temperature Gradients

    PubMed Central

    Baumann, Hannes; Doherty, Owen

    2013-01-01

    Most of the world's living marine resources inhabit coastal environments, where average thermal conditions change predictably with latitude. These coastal latitudinal temperature gradients (CLTG) coincide with important ecological clines,e.g., in marine species diversity or adaptive genetic variations, but how tightly thermal and ecological gradients are linked remains unclear. A first step is to consistently characterize the world's CLTGs. We extracted coastal cells from a global 1°×1° dataset of weekly sea surface temperatures (SST, 1982–2012) to quantify spatial and temporal variability of the world's 11 major CLTGs. Gradient strength, i.e., the slope of the linear mean-SST/latitude relationship, varied 3-fold between the steepest (North-American Atlantic and Asian Pacific gradients: −0.91°C and −0.68°C lat−1, respectively) and weakest CLTGs (African Indian Ocean and the South- and North-American Pacific gradients: −0.28, −0.29, −0.32°C lat−1, respectively). Analyzing CLTG strength by year revealed that seven gradients have weakened by 3–10% over the past three decades due to increased warming at high compared to low latitudes. Almost the entire South-American Pacific gradient (6–47°S), however, has considerably cooled over the study period (−0.3 to −1.7°C, 31 years), and the substantial weakening of the North-American Atlantic gradient (−10%) was due to warming at high latitudes (42–60°N, +0.8 to +1.6°C,31 years) and significant mid-latitude cooling (Florida to Cape Hatteras 26–35°N, −0.5 to −2.2°C, 31 years). Average SST trends rarely resulted from uniform shifts throughout the year; instead individual seasonal warming or cooling patterns elicited the observed changes in annual means. This is consistent with our finding of increased seasonality (i.e., summer-winter SST amplitude) in three quarters of all coastal cells (331 of 433). Our study highlights the regionally variable footprint of global climate change, while emphasizing ecological implications of changing CLTGs, which are likely driving observed spatial and temporal clines in coastal marine life. PMID:23825672

  18. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  19. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  20. Plant species invasions along the latitudinal gradient in the United States

    Treesearch

    Thomas J. Stohlgren; David Barnett; Curtis Flather; John Kartesz; Bruce Peterjohn

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the...

  1. Phenotypic plasticity of invasive Spartina densiflora (Poaceae) along a broad latitudinal gradient on the Pacific Coast of North America

    USDA-ARS?s Scientific Manuscript database

    We examined morphological and physiological leaf traits of Spartina densiflora plants in populations from invaded estuarine sites across broad latitudinal and climate gradients along the Pacific west coast of North America, and in favourable conditions in a common garden experiment. We hypothesized ...

  2. Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species.

    PubMed

    Matías, Luis; Jump, Alistair S

    2015-02-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data. © 2014 John Wiley & Sons Ltd.

  3. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient.

    PubMed

    Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva

    2017-11-01

    A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.

  4. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts

    NASA Astrophysics Data System (ADS)

    Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.

    2017-02-01

    A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a clear latitudinal gradient unaffected by mesoscale variability of the ARC eddy field and allowing the three phytoplankton communities to persist. Phytoplankton biomass was enhanced in the shallow (< 200 m) seamount waters, although the speed of the currents indicates an allochthonous origin.

  5. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  6. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry.

    PubMed

    Evans, David; Sagoo, Navjit; Renema, Willem; Cotton, Laura J; Müller, Wolfgang; Todd, Jonathan A; Saraswati, Pratul Kumar; Stassen, Peter; Ziegler, Martin; Pearson, Paul N; Valdes, Paul J; Affek, Hagit P

    2018-02-06

    Past greenhouse periods with elevated atmospheric CO 2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO 2 , the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ 47 )-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ 47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Ca sw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

  7. Does Day Length Affect Winter Bird Distribution? Testing the Role of an Elusive Variable

    PubMed Central

    Carrascal, Luis M.; Santos, Tomás; Tellería, José L.

    2012-01-01

    Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus) in 26 localities of Spanish juniper (Juniperus thurifera) dwarf woodlands (average height of 5 m) located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density). Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47′ latitudinal interval (190 km) included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions. PMID:22393442

  8. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile.

    PubMed

    Riquelme, Nicza Alveal; Díaz-Páez, Helen; Ortiz, Juan Carlos

    2016-08-01

    Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10°C and 20°C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34°C, a critical thermal maxima of 34.6-41.4°C, and a critical thermal minima of 2.6-0.8°C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner. The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient.

    PubMed

    Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Hereme, Rasme; Molina-Montenegro, Marco A

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread.

  10. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.

    1982-01-01

    The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.

  11. Fish assemblage production estimates in Appalachian streams across a latitudinal and temperature gradient

    Treesearch

    Bonnie J.E. Myers; C. Andrew Dolloff; Jackson R. Webster; Keith H. Nislow; Brandon Fair; Andrew L. Rypel

    2017-01-01

    Production of biomass is central to the ecology and sustainability of fish assemblages. The goal of this study was to empirically estimate and compare fish assemblage production, production-to-biomass (P/B) ratios and species composition for 25 second- to third-order streams spanning the Appalachian Mountains (from Vermont to North Carolina) that vary in their...

  12. Theoretical and experimental design studies for the Atmospheric General Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.

    1985-01-01

    The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.

  13. Latitudinal concordance between biogeographic regionalization, community structure, and richness patterns: a study on the reptiles of China

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Srivastava, Diane S.

    2015-02-01

    Latitudinal patterns in species richness may be affected by both continuous variations in macroecological factors as well as discrete change between biogeographic regions. We examined whether latitudinal reptilian richness and community structure in China were best explained by three macroecological patterns (mid-domain effects, Rapoport's rule effects, or environmental correlates) within or across the ranges of biogeographic realms. The results showed that (1) there was a weak mid-domain effect within the Oriental Realm. However, the mid-domain effect was detected neither at the overall regional scale nor in the Palaearctic Realm. (2) Rapoport's rule was only weakly supported for reptilian fauna in China at lower latitudinal areas. (3) Environmental variables were more strongly correlated with species' latitudinal community structure and richness patterns at the scale of biogeographic realms. Based on the faunal similarity of reptilian community across latitudinal bands, we proposed a latitudinal delineation scheme at 34° N for dividing East Asia into Oriental and Palaearctic biogeographic realms. At last, at the functional group level, we also evaluated the relevant ecological patterns for lizard and snake species across different latitudinal bins, showing that the distributions of lizards presented strong mid-domain effects at the latitudinal ranges within the Oriental Realm and over the whole range but did not support Rapoport's rule. In comparison, snake species supported Rapoport's rule at low latitudinal zones but did not present any remarkable mid-domain effects at any spatial extents. In conclusion, biogeographic realms are an appropriate scale for studying macroecological patterns. Reptilian latitudinal richness patterns of China were explained by a combination of environmental factors and geometric constraints, while the latitudinal community structure patterns were greatly affected by environmental gradients. Functional guilds present differentiated macroecological patterns along the latitudinal gradients.

  14. Comparison of Forest Soil Carbon Dynamics at Five Sites Along a Latitudinal Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T

    2011-01-01

    Carbon stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five forest sites, ranging from 60 to 100 years old, along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. For many measurements (like forest floor carbon stocks, cumulative soil organic carbon stocks to 20 cm, and the fraction of whole soil carbon in POM), there was no significant difference between years at each site despite the use of somewhat different sampling methods.more » With one exception, forest floor and mineral soil carbon stocks increased from warm, southern, sites (with fine-textured soils) to northern, cool, sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic carbon stock similar to those measured at southern sites. Soil carbon at each site was partitioned into two pools (labile and stable) on the basis of carbon measured in the forest floor and POM and MOM fractions from the mineral soil. A two-compartment steady-state model, with randomly varying parameter values, was used in probabilistic calculations to estimate the turnover time of labile soil organic carbon (MRTU) and the annual transfer of labile carbon to stable carbon (k2) at each site in two different years. Based on empirical data, the turnover time of stable soil carbon (MRTS) was determined by mean annual temperature and increased from 30 to 100 years from south to north. Moving from south to north, MRTU increased from approximately 5 to 14 years. Consistent with prior studies, 13C enrichment factors ( ) from the Rayleigh equation, that describe the rate of change in 13C through the soil profile, were an indicator of soil carbon turnover times along the latitudinal gradient. Consistent with its role in stabilization of soil organic carbon, silt-clay content along the gradient was positively correlated (r = 0.91; P 0.001) with parameter k2. Mean annual temperature was indicated as the environmental factor most strongly associated with south to north differences in the storage and turnover of labile soil carbon. However, soil texture appeared to override the influence of temperature when there was too little silt-clay content to stabilize labile soil carbon and thereby protect it from decomposition. Irrespective of latitudinal differences in measured soil carbon stocks, each study site had a relatively high proportion of labile soil carbon (approximately 50% of whole soil carbon to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil carbon are potentially at risk of depletion by decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.« less

  15. Using Stable Isotopes to Assess Connectivity: the Importance ...

    EPA Pesticide Factsheets

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,

  16. Plant species invasions along the latitudinal gradient in the United States: Reply

    Treesearch

    Curtis H. Flather; Thomas J. Stohlgren; Catherine Jarnevich; David Barnett; John Kartesz

    2006-01-01

    We welcome the opportunity to respond to the comments of our colleagues, Fridley et al. (2006), on our recent paper (Stohlgren et al. 2005) regarding plant species invasions along latitudinal gradients. We agree on many aspects of this important line of research. In fact, the two major findings that they report from their analysis of floras are consistent with our main...

  17. Structure of Benthic Communities along the Taiwan Latitudinal Gradient

    PubMed Central

    De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  18. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics

    PubMed Central

    Ruggiero, Adriana

    2017-01-01

    The latitudinal diversity gradient has been considered a consequence of a shift in the impact of abiotic and biotic factors that limit species distributions from the poles to the equator, thus influencing species richness variation. It has also been considered the outcome of evolutionary processes that vary over geographical space. We used six South American mammal groups to test the association of environmental and evolutionary factors and the ecological structuring of mammal assemblages with spatial variation in taxonomic richness (TR), at a spatial resolution of 110 km x 110 km, at tropical and extra-tropical latitudes. Based on attributes that represent what mammal species do in ecosystems, we estimated ecological diversity (ED) as a mean pairwise ecological distance between all co-occurring taxa. The mean pairwise phylogenetic distance between all co-occurring taxa (AvPD) was used as an estimation of phylogenetic diversity. Geographically Weighted Regression analyses performed separately for each mammal group identified tropical and extra-tropical high R2 areas where environmental and evolutionary factors strongly accounted for richness variation. Temperature was the most important predictor of TR in high R2 areas outside the tropics, as was AvPD within the tropics. The proportion of TR variation accounted for by environment (either independently or combined with AvPD) was higher in tropical areas of high richness and low ecological diversity than in tropical areas of high richness and high ecological diversity. In conclusion, we confirmed a shift in the impact of environmental factors, mainly temperature, that best account for mammal richness variation in extra-tropical regions, whereas phylogenetic diversity best accounts for richness variation within the tropics. Environment in combination with evolutionary history explained the coexistence of a high number of ecologically similar species within the tropics. Consideration of the influence of contemporary environmental variables and evolutionary history is crucial to understanding of the latitudinal diversity gradient. PMID:28873434

  19. Can temperature explain the latitudinal gradient of ulcerative colitis? Cohort of Norway

    PubMed Central

    2013-01-01

    Background Incidence and prevalence of ulcerative colitis follow a north–south (latitudinal) gradient and increases northwards at the northern hemisphere or southwards at the southern hemisphere. The disease has increased during the last decades. The temporal trend has been explained by the hygiene hypothesis, but few parallel explanations exist for the spatial variability. Many factors are linked to latitude such as climate. Our purpose was to investigate the association between variables governing the climate and prospectively identified patients. Methods In this study, we used a subset of the population-based Cohort of Norway (n = 80412) where 370 prevalent cases of ulcerative colitis were identified through self-reported medication. The meteorological and climatic variables temperature, precipitation, and altitude were recorded from weather stations of the Norwegian Meteorological Institute. Summer temperature was used to capture environmental temperature. Results Summer temperature was significantly related to the prevalence of ulcerative colitis. For each one-degree increase in temperature the odds for ulcerative colitis decreased with about 9% (95% CI: 3%-15%). None of the other climatic factors were significantly associated to the risk of ulcerative colitis. Contextual variables did not change the association to the prevalence of ulcerative colitis. Conclusions The present results show that the prevalence of ulcerative colitis is associated to summer temperature. Our speculation is that summer temperature works as an instrumental variable for the effect of microbial species richness on the development of ulcerative colitis. Environmental temperature is one of the main forces governing microbial species richness and the microbial composition of the commensal gut flora is known to be an important part in the process leading to ulcerative colitis. PMID:23724802

  20. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds.

    PubMed

    Botero, Carlos A; Dor, Roi; McCain, Christy M; Safran, Rebecca J

    2014-02-01

    Life on Earth is conspicuously more diverse in the tropics. Although this intriguing geographical pattern has been linked to many biotic and abiotic factors, their relative importance and potential interactions are still poorly understood. The way in which latitudinal changes in ecological conditions influence evolutionary processes is particularly controversial, as there is evidence for both a positive and a negative latitudinal gradient in speciation rates. Here, we identify and address some methodological issues (how patterns are analysed and how latitude is quantified) that could lead to such conflicting results. To address these issues, we assemble a comprehensive data set of the environmental correlates of latitude (including climate, net primary productivity and habitat heterogeneity) and combine it with biological, historical and molecular data to explore global patterns in recent divergence events (subspeciation). Surprisingly, we find that the harsher conditions that typify temperate habitats (lower primary productivity, decreased rainfall and more variable and unpredictable temperatures) are positively correlated with greater subspecies richness in terrestrial mammals and birds. Thus, our findings indicate that intraspecific divergence is greater in regions with lower biodiversity, a pattern that is robust to both sampling variation and latitudinal biases in taxonomic knowledge. We discuss possible causal mechanisms for the link between environmental harshness and subspecies richness (faster rates of evolution, greater likelihood of range discontinuities and more opportunities for divergence) and conclude that this pattern supports recent indications that latitudinal gradients of diversity are maintained by simultaneously higher potentials for both speciation and extinction in temperate than tropical regions. © 2013 John Wiley & Sons Ltd.

  1. Seasonal body size reductions with warming covary with major body size gradients in arthropod species.

    PubMed

    Horne, Curtis R; Hirst, Andrew G; Atkinson, David

    2017-03-29

    Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers. © 2017 The Author(s).

  2. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    PubMed Central

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  3. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    PubMed

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  4. Variation of cosmic rays and solar wind properties with respect to the heliospheric current sheet. II - Rigidity dependence of the latitudinal gradient of cosmic rays at 1 AU

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.; Asbridge, J.; Lockwood, J. A.; Garcia-Munoz, M.; Simpson, J. A.

    1986-01-01

    The role which empirical determinations of the latitudinal variation of cosmic rays with respect to the current sheet may have in illuminating the importance of the cross-field drift of particles in the large-scale heliospheric magnetic field is discussed. Using K coronameter observations and measured solar wind speeds, the latitudinal gradients have been determined with respect to the current sheet for cosmic rays in four rigidity ranges. Gradients vary between approximately -2 and -50 pct/AU. The rigidity dependence of the decrease of cosmic ray flux with distance from the current sheet lies between the -0.72 to -0.86 power of the rigidity, with the exact dependence being determined by the definition used for the median rigidity of each monitor.

  5. Recurrent Cosmic-ray Variations as a Probe of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Engelbrecht, E. E.

    2006-12-01

    A linear relationship between the observed 26-day recurrent cosmic-ray intensity variations and the global latitudinal gradient was first reported by Zhang (1997, ApJ, 488), who made extensive use of Ulysses data. This relationship is seen for all species considered and at all latitudes covered by the spacecraft. Burger and Hitge (2004, ApJL, 617) used a three-dimensional steady-state numerical modulation model and showed that a Fisk-type (Fisk 1996, JGR, 101) heliospheric magnetic field (HMF) can in principle explain these observations, at least at high latitudes. In this progress report we use a refinement of the Fisk-Parker hybrid HMF model of Burger and Hitge (2004) by Kruger (2006, MSc dissertation, NWU University) (see also Kruger, Burger and Hitge 2005, AGU Fall meeting abstracts SH23B-0341) to study these 26-day recurrent variations in more detail with the same modulation code. In Kruger's model the HMF is Parker-like at the highest latitudes, becomes Fisk- like at intermediate latitudes, and becomes Parker-like again in the region swept out by the wavy current sheet. By using an almost continuous range of latitudinal gradients for both solar magnetic polarity cycles and for both protons and electrons - in contrast to the limited number of values used by Burger and Hitge (2004) - the structure of the graphs of amplitude of the recurrent cosmic-ray intensity variations as function of global latitudinal gradient can be studied in detail. This was performed in a 100 AU model heliosphere for solar minimum conditions with the tilt angle of the heliospheric current sheet at 10 degrees. In all cases drift effects are included. We find that these curves for amplitude vs. latitudinal gradient are similar for protons and for electrons. By switching the sign of the modeled amplitudes when the latitudinal gradient becomes negative, the existence of a single relationship between the two quantities can be studied for the whole range of modeled latitudinal gradients. This study shows that a single second-order fit gives better results than a first-order fit for the whole range of latitudinal gradients (and consequently for both species and both solar magnetic polarities) and that there is a difference in the amplitudes for high- and for low rigidities, even if the latitudinal gradient is the same. This difference is a minimum at latitudes where the Fisk-type field is expected to dominate. In the ecliptic at 1 AU, we find that at high rigidity, the amplitude of the recurrent variations is larger for protons during A > 0 polarity epochs than for A < 0 epochs. This is in agreement with observational results of Richardson, Cane and Wibberenz (1999, JGR, 104). For the case of a Parker field, the modeled amplitudes have about the same magnitude for both polarity epochs. Note that what we discus here are preliminary results, and while they clearly suggest the existence of a Fisk-type HMF, the role of the diffusion tensor (and the associated turbulence quantities) has yet to be determined.

  6. Latitudinal Trends in Stable Isotope Signatures of Northeast Atlantic Rhodoliths

    NASA Astrophysics Data System (ADS)

    Hofmann, Laurie

    2017-04-01

    Rhodoliths are free-living calcifying red algae that form extensive beds in shallow marine benthic environments (< 200 m) that provide important habitats and nurseries for marine organisms and contribute to carbonate sediment accumulation. There is growing concern that these organisms are sensitive to global climate change, which will have important consequences for coastal productivity and stability. Despite their significance and sensitivity, their basic photosynthetic and calcification mechanisms are not well understood. The goal of this study was to determine the plasticity of dissolved inorganic carbon (DIC) uptake mechanisms of rhodoliths along a latitudinal gradient in the Northeast (NE) Atlantic using natural stable isotope signatures. The delta 13C signature of macroalgae can be used to provide an indication of the preferred inorganic carbon source (CO2 vs. HCO3-). Here we present the total and organic delta 13C signatures of NE Atlantic rhodoliths with respect to changing temperature and light along the latitudinal gradient from the Canary Islands to Spitsbergen. A decreasing trend in delta 13C signatures with increasing latitude suggests that rhodoliths rely solely on CO2 as an inorganic carbon source at mid latitudes, while those at low latitudes may be able to utilize HCO3-. Polar rhodoliths deviate from this trend, suggesting they may have unique physiological mechanisms related to inorganic carbon acquisition and assimilation, which may have important implications for calcification in an environment undergoing rapid changing ocean chemistry.

  7. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Gaskin, John F.; Pepper, Alan E.; Manhart, James R.

    2008-01-01

    To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoidessubsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29–48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to −70°C, while saltcedar was killed at −33 to −47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5–21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness.

  8. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  9. The response of forest plant regeneration to temperature variation along a latitudinal gradient

    PubMed Central

    De Frenne, Pieter; Graae, Bente J.; Brunet, Jörg; Shevtsova, Anna; De Schrijver, An; Chabrerie, Olivier; Cousins, Sara A. O.; Decocq, Guillaume; Diekmann, Martin; Hermy, Martin; Heinken, Thilo; Kolb, Annette; Nilsson, Christer; Stanton, Sharon; Verheyen, Kris

    2012-01-01

    Background and Aims The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Methods Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Key Results Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Conclusions Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics. PMID:22345113

  10. Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism

    NASA Astrophysics Data System (ADS)

    Beaudoin, Patrice; Strugarek, Antoine; Charbonneau, Paul

    2018-05-01

    We present a set of four global Eulerian/semi-Lagrangian fluid solver (EULAG) hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations of solar convection, two of which are restricted to the nominal convection zone, and the other two include an underlying stably stratified fluid layer. While all four simulations generate reasonably solar-like latitudinal differential rotation profiles where the equatorial region rotates faster than the polar regions, the rotational isocontours vary significantly among them. In particular, the purely HD simulation with a stable layer alone can break the Taylor–Proudman theorem and produce approximately radially oriented rotational isocontours at medium to high latitudes. We trace this effect to the buildup of a significant latitudinal temperature gradient in the stable fluid immediately beneath the convection zone, which imprints itself on the lower convection zone. It develops naturally in our simulations as a consequence of convective overshoot and rotational influence of rotation on convective energy fluxes. This favors the establishment of a thermal wind balance that allows evading the Taylor–Proudman constraint. A much smaller latitudinal temperature gradient develops in the companion MHD simulation that includes a stable fluid layer, reflecting the tapering of deep convective overshoot that occurs at medium to high latitudes, which is caused by the strong magnetic fields that accumulate across the base of the convection zone. The stable fluid layer also has a profound impact on the large-scale magnetic cycles developing in the two MHD simulations. Even though both simulations operate in the same convective parameter regime, the simulation that includes a stable layer eventually loses cyclicity and transits to a non-solar, steady quadrupolar state.

  11. Ectotherm thermal stress and specialization across altitude and latitude.

    PubMed

    Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G

    2013-10-01

    Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.

  12. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis.

    PubMed

    Hua, Xia

    2016-07-27

    Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data. © 2016 The Author(s).

  13. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands.

    PubMed

    Youngsteadt, Elsa; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2017-04-01

    Biological effects of climate change are expected to vary geographically, with a strong signature of latitude. For ectothermic animals, there is systematic latitudinal variation in the relationship between climate and thermal performance curves, which describe the relationship between temperature and an organism's fitness. Here, we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid- and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment consisting of a series of urban warming gradients at different latitudes. Specifically, we sampled arthropods from a single common street tree species across temperature gradients in four US cities, located from 35.8 to 42.4° latitude. We captured 6746 arthropods in 34 families from 111 sites that varied in summer average temperature by 1.7-3.4 °C within each city. Arthropod responses to warming within each city were characterized as Poisson regression coefficients describing change in abundance per °C for each family. Family responses in the two midlatitude cities were heterogeneous, including significantly negative and positive effects, while those in high-latitude cities varied no more than expected by chance within each city. We expected high-latitude taxa to increase in abundance with warming, and they did so in one of the two high-latitude cities; in the other, Queens (New York City), most taxa declined with warming, perhaps due to habitat loss that was correlated with warming in this city. With the exception of Queens, patterns of family responses to warming were consistent with predictions based on known latitudinal patterns in arthropod physiology relative to regional climate. Heterogeneous responses in midlatitudes may be ecologically disruptive if interacting taxa respond oppositely to warming. © 2016 John Wiley & Sons Ltd.

  14. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient

    PubMed Central

    Acuña-Rodríguez, Ian S.; Torres-Díaz, Cristian; Hereme, Rasme

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species’ physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread. PMID:28948096

  15. Modern and Interglacial Marine Ostracode Species Diversity Patterns off Eastern North America

    NASA Astrophysics Data System (ADS)

    Chiu, W. T. R.; Yasuhara, M.; Cronin, T. M.; Hunt, G.; Gemery, L.

    2016-02-01

    Latitudinal species diversity gradients (LSDGs) are a major feature of various marine groups. However, the detailed shape of LSDG in each marine taxonomic group and the causes of the diversity patterns, notably climatic factors, are still controversial due to limited sampling of many taxa in the world's oceans. We analyzed benthic podocopid ostracode faunal assemblages on the continental shelf regions from Arctic to tropical regions off eastern North America to determine biodiversity patterns and their relationships to oceanographic conditions (temperature, productivity, etc). Our database consists of 200 ostracode species from more than 100 bottom sediment samples. Preliminary results suggest that biodiversity, as measured using simple diversity (S), rarefaction, Shannon and α-Fisher indices, show strong latitudinal diversity gradients in which diversity is 2 to 3 times higher in tropical and subtropical regions that in northern high latitude areas. These modern ostracode diversity patterns will be compared with those from past interglacial periods of global warmth during the Pliocene and Pleistocene to assess the impact of warmer-than- present climate conditions on diversity.

  16. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    PubMed

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  17. A meridional structure of static stability and ozone vertical gradient around the tropopause in the Southern Hemisphere extratropics

    NASA Astrophysics Data System (ADS)

    Tomikawa, Y.; Yamanouchi, T.

    2010-08-01

    An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.

  18. Plant species invasions along the latitudinal gradient in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Kartesz, J.; Peterjohn, B.

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation index), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county; radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a significant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of nonnative plant species, the spread and subsequent distributions of nonnative species are controlled largely by biotic and environmental factors.

  19. The latitudinal gradient of the NO peak density

    NASA Technical Reports Server (NTRS)

    Fesen, C. G.; Rusch, D. W.; Gerard, J.-C.

    1990-01-01

    Results are presented from SME observations of the latitudinal gradients of peak NO densities at about 110-km altitude during the solstice and equinox periods from 1982 through 1985. It is shown that the response of the peak NO densities to the declining level of solar activity varies with latitude, with the polar regions exhibiting low sensitivity and the low-latitude regions responding strongly. The SME data also revealed marked asymmetries in the latitudinal structure of the two hemispheres for each season and considerable day-to-day variations in the NO densities. The solar cycle minimum data for June were simulated using a two-dimensional model; results of sensitivity studies performed with varied quenching rate and eddy diffusion coefficient are presented.

  20. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans.

    PubMed

    Zhang, Yichun; Payne, Jonathan L

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.

  1. Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans

    PubMed Central

    Zhang, Yichun; Payne, Jonathan L.

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade. PMID:22685590

  2. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

    USGS Publications Warehouse

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

  3. Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis

    NASA Astrophysics Data System (ADS)

    Cardoso, Ricardo S.; Defeo, Omar

    2004-11-01

    Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.

  4. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.

    PubMed

    Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T

    2017-07-01

    Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.

  5. The smallest Gliders in the Ocean- Temperature Recordings from Pteropods using SIMS

    NASA Astrophysics Data System (ADS)

    Keul, N.; Orland, I. J.; Valley, J. W.; Kozdon, R.; deMenocal, P. B.

    2016-02-01

    During the last few decades, the development, refinement and application of geochemical methods have lead to the establishment of new proxies to estimate global change. The oxygen isotope composition of carbonate shells formed by marine organisms is a widely used proxy for past ocean temperatures. Secondary ion mass spectrometry (SIMS) is a high spatial-resolution in situ technique, allowing oxygen isotope measurements on very small samples (down to 3 μm spot size). Pteropods are pelagic mollusks, producing shells made out of aragonite, which is more soluble than calcite in seawater, making them one of the first responders to climate change. They calcify closely at the aragonite- seawater equilibrium and are therefor ideal candidates to reconstruct temperatures based on their d18O. The oxygen isotopic composition of pteropod shells from sediment traps, net tows and a culture study from the Fram Strait will be presented. Specimens travelled in the Westspitsbergen Current prior to sinking into the sediment. During this transport specimens continue to grow, sequentially adding aragonite to the shell. We show that when using traditional (whole shell) δ18O measurements, the isotopic signatures of whole shells reflect the latitudinal gradient. Combining this with SIMS-derived δ18O measurements on individual shell parts, however, reveals that this is only half the story: Comparing δ18O of earlier (produced further South) and later shell parts (produced further North) shows that pteropods calcify in sequentially shallower water depths, overriding the latitudinal South to North temperature gradient. Combining traditional and novel δ18O measurements can potentially not only allow the reconstruction of temperature/ global warming, but also to assess ecological key parameters, such as habitat depth, at the same time.

  6. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  7. Influence of changing surface temperature gradients on mid-latitudinal circulation and western hemispheric summer temperature extremes

    NASA Astrophysics Data System (ADS)

    Kornhuber, Kai; Hoffmann, Peter; Coumou, Dim

    2017-04-01

    Many recent summers in the Northern hemisphere (NH) mid-latitudes have seen severe heatwaves (2003, 2004, 2009, 2010, 2012, 2015, (Black et al. 2004; Diffenbaugh & Scherer 2013; Russo et al. 2014; Hoy et al. 2016)). During many of those extremes the mid-latitudinal tropospheric circulation was characterized by an amplified, quasi-stationary and hemispheric wave pattern with a dominant influence of wavenumber seven (Coumou et al. 2014; Petoukhov et al. 2016; Kornhuber et al. 2016). Analyzing NH summer reanalysis data we show that the position where these heat extremes occur is not arbitrary. If the amplitude of wave seven is large, the wave gets "locked" in a specific preferred phase position. As a consequence of this phase-locking behavior some regions are more likely to experience extreme weather during high-amplitude events. Meridional wind speeds associated with the preferred phase are particularly strong over longitudes of the western hemisphere (180°W - 40°E) leading to positive temperature anomalies over the US and Western Europe. Using a widely-used blocking-index we demonstrate that longitudes over these regions experience an increased probability of blocking during high amplitude wave seven events. We show that during the above mentioned extreme summers, amplified waves were locked in their preferred phase-position creating the right dynamical background condition for severe heatwaves to occur. Further, regression analyses reveal that a pronounced Ocean - Land temperature contrast (Tdiff) and weak poleward surface temperature gradient (dT/dy) are associated with an amplified wave seven in its preferred phase-position. Our study suggests that the observed positive trend in Tdiff and negative trend in dT/dy favors the occurrence of high-amplitude, quasi-stationary wave seven in its preferred phase position and therefore persistent heatwaves in the US and western Europe.

  8. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition.

    PubMed

    Hedwall, Per-Ola; Brunet, Jörg; Rydin, Håkan

    2017-01-01

    Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes. Increased natural disturbances of the tree layer due to, for example, pathogens or climate is a predicted outcome of climate change. Hence, these results may have important implications for predictions of long-term effects of increased temperature on peatland vegetation. © 2016 by the Ecological Society of America.

  9. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods

    NASA Astrophysics Data System (ADS)

    Morinière, Jérôme; van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F. A.; Balke, Michael

    2016-05-01

    The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients.

  10. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods

    PubMed Central

    Morinière, Jérôme; Van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F.A.; Balke, Michael

    2016-01-01

    The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients. PMID:27215956

  11. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization.

    PubMed

    Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.

  12. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    PubMed

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  13. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China.

    PubMed

    Zhang, Hui; Guo, Weihong; Yu, Mukui; Wang, G Geoff; Wu, Tonggui

    2018-03-15

    Latitudinal patterns of leaf stoichiometry and nutrient resorption were not consistent among published studies, likely due to confounding effects from taxonomy (e.g., plant distribution and community composition), and environment, which is also influenced by altitude and longitude. Thus, the latitudinal patterns and environmental mechanism could be best revealed by testing a given species along a latitude gradient with similar altitude and longitude. We determined nitrogen (N) and phosphorus (P) concentrations of green (leaf) and senesced leaves (litter) from eight Metasequoia glyptostroboides forests along the eastern coastline of China, with similar altitude and longitude. Leaf N, P concentrations increased along latitude, mainly driven by mean annual temperature (MAT), mean annual precipitation (MAP), annual evaporation (AE), aridity index (AI), and annual total solar radiation (ATSR); While leaf N:P ratio was stable with no latitudinal pattern. Nitrogen resorption efficiency (NRE) increased along latitude, and was also mainly influenced by MAT, MAP, AE, and AI. Phosphorus resorption efficiency (PRE) first increased and then decreased with latitude, which was impacted by soil available P. These results indicated that only climate (such as heat, water, and light) controlled the shift in leaf stoichiometry and NRE, while soil nutrient was likely responsible for the shift in PRE along eastern China. Our findings also suggested that leaf N, P stoichiometry and NRE displayed similar latitudinal patterns at regional scale when studied for a given species (this study) or multi-species (previous studies). Copyright © 2017. Published by Elsevier B.V.

  14. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  15. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.

    PubMed

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-19

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  16. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  17. Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly

    PubMed Central

    Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael

    2014-01-01

    Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771

  18. Assessment of tannin variation in Tamarisk foliage across a latitudinal gradient

    USGS Publications Warehouse

    Hussey, A.M.; Kimball, B.A.; Friedman, J.M.

    2011-01-01

    Certain phenotypic traits of plants vary with latitude of origin. To understand if tannin concentration varies among populations of tamarisk (Tamarix spp.) according to a latitudinal gradient, an analytical method was adapted from an enological tannin assay. The tannin content (wet basis) of tamarisk foliage collected from 160 plants grown in a common garden ranged from 8.26 to 62.36 mg/g and was not correlated with the latitude of the original North American plant collection site. Tannins do not contribute to observed differences in herbivory observed among these tamarisk populations.

  19. Biogeographic patterns of soil diazotrophic communities across six forests in the North America.

    PubMed

    Tu, Qichao; Deng, Ye; Yan, Qingyun; Shen, Lina; Lin, Lu; He, Zhili; Wu, Liyou; Van Nostrand, Joy D; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert B; Brown, James H; Zhou, Jizhong

    2016-06-01

    Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2)  > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2)  < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities. © 2016 John Wiley & Sons Ltd.

  20. Latitudinal trends and temporal shifts in the catch composition of bottom trawls conducted on the eastern Bering Sea shelf

    NASA Astrophysics Data System (ADS)

    Stevenson, Duane E.; Lauth, Robert R.

    2012-06-01

    Latitudinal species diversity gradients are well known in both terrestrial and aquatic ecosystems throughout the world. However, trends in relative abundance and other shifts in community structure with latitude, which can be more sensitive to environmental shifts such as climate change, have received less attention. Here we investigate latitudinal trends in the seafloor community of the eastern Bering Sea using catches of fishes and epibenthic invertebrates in bottom trawl surveys conducted from 1982 to 2010. Our results indicate that the overall biomass of the epibenthic community declines with increasing latitude in the eastern Bering Sea. This latitudinal trend is primarily driven by declining fish catches in the northern Bering Sea, which in turn reflects changes in the structure of the fish community. The fish fauna in northern latitudes is increasingly dominated by gadids, though the species composition of the gadid fauna also changes with latitude, with smaller species becoming more common in the north. The biomass of the invertebrate megafauna remains relatively consistent throughout the eastern Bering Sea, but invertebrates make up a larger proportion of the catch in bottom trawls conducted at higher latitudes. The epibenthic invertebrate megafauna in the eastern Bering Sea is composed primarily of sea stars (Asteriidae) and oregoniid crabs (Chionoecetes and Hyas), though no clear latitudinal trends in the invertebrate community are evident. Limited trawl data from the eastern Chukchi Sea indicate that the fish community farther north is even more heavily dominated by gadids, and the epibenthic invertebrate community is dominated by asteriid sea stars. Temperature data from bottom trawl surveys in the southeastern Bering Sea over the past decade indicate that there was a distinct temperature shift around 2005, and the relatively warm years of 2001-2005 were followed by five relatively cold years. This shift in the summer temperature regime of the Bering Sea has resulted in lower fish catches, particularly in the "cold pool" region (58-61°N), and a higher proportion of epibenthic invertebrates in the bottom trawl catches of the past 5 years.

  1. Elevational gradient in the cyclicity of a forest-defoliating insect

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson

    2012-01-01

    Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth...

  2. Mammalian Biogeography and the Latitudinal Climatic Gradient in Western North America During the Paleocene Evolutionary Radiation of Mammals (Invited)

    NASA Astrophysics Data System (ADS)

    Fox, D. L.; Rose, P.

    2010-12-01

    We use the middle Paleocene (ca. 63-58) mammalian fossil record of western North America to examine the latitudinal gradients in both species richness and body size of mammals during their evolutionary radiation following the Cretaceous-Paleogene mass extinction. Decreasing species richness with latitude is a biogeographic pattern common to most clades today, including mammals, and is linked to climatic gradients; an inverse relationship between body size and environmental temperature (Bergmann’s rule) is well-known both within and among species of living endothermic vertebrates, including diverse clades of mammals. Despite the frequency among mammals of these patterns today, their long-term histories in the fossil record is not well documented. We compiled mammalian taxonomic occurrence data from published literature, online museum collection databases, and the Paleobiology Database for roughly 160 Torrejonian (To, ca. 63-60 Ma) and Tiffanian (Ti, ca. 60-58 Ma) North American Land Mammal Age fossil localities in western North America from Texas to Alberta. These localities were binned into nine geographic regions based on paleolatitude, and the centroids of the regions span ca. 28° of latitude. For the faunas from these regions, we compiled body size data from the literature for 170 Paleocene (Torrejonian and Tiffanian) mammal species, using lower first molar area (m1 LxW) as a proxy for body mass. The phosphate oxygen isotope composition of teeth from species of a single clade of herbivorous mammals (Phenacodontidae) indicates that mid-Paleocene latitudinal climate gradients were broadly similar to modern gradients in the region, so we treat paleolatitude as a proxy for temperature. Slopes of separate least squares linear regressions of rarefied To and Ti species richness on paleolatitude are not significantly different from zero, and the regressions explain only a small fraction of the variances in richness. For all species, m1 area has a statistically significant negative relationship with paleolatitude. For both analyses, results are similar at the genus levels. In eight species that occur in four or more regions, none demonstrate a statistically significant increase in m1 area with latitude. Thus, despite climatic gradients in the mid-Paleocene that were similar to modern gradients, mammals in the region during the Paleocene appear to violate two essentially canonical biogeographic patterns seen in modern mammals and diverse other organisms, potentially ruling out climate as a long-term control on these patterns. The contrasts between the biogeography of modern and mid-Paleocene mammals in the region could result from distinct community ecology of faunas dominated by extinct “archaic” clades of mammals, ongoing ecological recovery after the Cretaceous-Paleogene extinction, and/or the modern biogeographic patterns being geologically recent or episodic phenomenon and not long-term characteristics of the geographic distribution of mammalian species richness or body size.

  3. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    PubMed

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  4. Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale".

    PubMed

    LaManna, Joseph A; Mangan, Scott A; Alonso, Alfonso; Bourg, Norman A; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B; Clay, Keith; Cordell, Susan; Davies, Stuart J; Furniss, Tucker J; Giardina, Christian P; Gunatilleke, I A U Nimal; Gunatilleke, C V Savitri; He, Fangliang; Howe, Robert W; Hubbell, Stephen P; Hsieh, Chang-Fu; Inman-Narahari, Faith M; Janík, David; Johnson, Daniel J; Kenfack, David; Korte, Lisa; Král, Kamil; Larson, Andrew J; Lutz, James A; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sun, I-Fang; Tello, J Sebastián; Thomas, Duncan W; Turner, Benjamin L; Vela Díaz, Dilys M; Vrška, Tomáš; Weiblen, George D; Wolf, Amy; Yap, Sandra; Myers, Jonathan A

    2018-05-25

    Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance. Copyright © 2018, American Association for the Advancement of Science.

  5. Altitudinal variation of demographic life-history traits does not mimic latitudinal variation in natterjack toads (Bufo calamita).

    PubMed

    Oromi, Neus; Sanuy, Delfi; Sinsch, Ulrich

    2012-02-01

    In anuran amphibians, age- and size-related life-history traits vary along latitudinal and altiudinal gradients. In the present study, we tested the hypothesis that altitudinal and latitudinal effects cause similar responses by assessing demographic life-history traits in nine Bufo calamita populations inhabiting elevations from sea level to 2270 m. Skeletochronologically determined age at maturity and longevity increased at elevations exceeding 2000 m, but female potential reproductive lifespan (PRLS) did not increase with altitude, as it did with latitude. Integrating the available evidence, it was found that lifetime fecundity of natterjacks decreased at the upper altitudinal range because PRLS was about the same as in lowland populations but females were smaller. In contrast, small size of northern females was compensated for by increased PRLS which minimised latitudinal variation of lifetime fecundity. Thus, this study provides evidence that altitudinal effects on life-history traits do not mimic latitudinal effects. Life-history trait variation along the altitudinal gradient seems to respond directly to the shortening of the annual activity period. As there is no evidence for increasing mortality in highland populations, reduced lifetime fecundity may be the ultimate reason for the natterjacks' inability to colonise elevations exceeding 2500 m. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Latitudinal Dependence of the Radial IMF Component: Coronal Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.

    1996-01-01

    Measurements by Ulysses have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,) of the interplanetary magnetic field. In the corona, the plasma, beta is much less than 1, except directly above streamers, so longitudinal and latitudinal gradients in field strength will relax due to the transverse magnetic pressure gradient force as the solar wind carries magnetic flux away from the Sun. This happens quickly enough so that the field is essentially uniform by 5 - 10 solar radius, apparently remaining so as it is carried to beyond 1 AU. Here, we illustrate the coronal relaxation with a qualitative physical argument and by reference to a detailed Magneto HydroDynamics (MHD) simulation.

  7. Vertical structure of tropospheric winds on gas giants

    NASA Astrophysics Data System (ADS)

    Scott, R. K.; Dunkerton, T. J.

    2017-04-01

    Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere. The sense of the associated mean meridional circulation in the upper troposphere is discussed, and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.

  8. Temperature and circulation in the stratospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.; Gierasch, Peter J.; Leroy, Stephen S.

    1989-01-01

    A zonally symmetric, linear radiative-dynamical model is compared with observations of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas opacities are accounted for but aerosols are omitted. Horizontal temperature gradients are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but are weak even in these cases, because the latitudinal gradient of radiative heating is weak. Seasonal effects on Uranus are extremely weak because the radiative time constant is longer that the orbital period. One free parameter in the model is the frictional time constant. Comparison with observed temperature perturbations over zonal currents in the troposphere shows that the frictional time constant is on the same order as the radiative time constant for all these objects. Vertical motions predicted by the model are extremely weak. They are much smaller than one scale height per orbital period, except in the immediate neighborhood of tropospheric and zonal currents.

  9. Biogeography of seabirds within a high-latitude ecosystem: Use of a data-assimilative ocean model to assess impacts of mesoscale oceanography

    NASA Astrophysics Data System (ADS)

    Santora, Jarrod A.; Eisner, Lisa B.; Kuletz, Kathy J.; Ladd, Carol; Renner, Martin; Hunt, George L., Jr.

    2018-02-01

    We assessed the biogeography of seabirds within the Bering Sea Large Marine Ecosystem (LME), a highly productive and extensive continental shelf system that supports important fishing grounds. Our objective was to investigate how physical ocean conditions impact distribution of seabirds along latitudinal gradients. We tested the hypothesis that seabird biogeographic patterns reflect differences in ocean conditions relating to the boundary between northern and southern shelf ecosystems. We used a grid-based approach to develop spatial means (1975-2014) of summertime seabird species' abundance, species' richness, and a multivariate seabird assemblage index to examine species composition. Seabird indices were linked to ocean conditions derived from a data-assimilative oceanographic model to quantify relationships between physics (e.g., temperature, salinity, and current velocity), bathymetry and seabirds along latitudinal gradients. Species assemblages reflected two main sources of variation, a mode for elevated richness and abundance, and a mode related to partitioning of inner/middle shelf species from outer shelf-slope species. Overall, species richness and abundance increased markedly at higher latitudes. We found that latitudinal changes in species assemblages, richness and abundance indicates a major shift around 59-60°N within inner and middle shelf regions, but not in the outer shelf. Within the middle shelf, latitudinal shifts in seabird assemblages strongly related to hydrographic structure, as opposed to the inner and outer shelf waters. As expected, elevated species richness and abundance was associated with major breeding colonies and within important coastal foraging areas. Our study also indicates that seabird observations supported the conclusion that the oceanographic model captured mesoscale variability of ocean conditions important for understanding seabird distributions and represents an important step for evaluating modeling and empirical studies. Biogeographic assessments of LMEs that integrate top predator distributions resolve critical habitat requirements and will benefit assessment of climate change impacts (e.g., sea-ice loss) predicted to affect high-latitude marine ecosystems.

  10. A General, Synthetic Model for Predicting Biodiversity Gradients from Environmental Geometry.

    PubMed

    Gross, Kevin; Snyder-Beattie, Andrew

    2016-10-01

    Latitudinal and elevational biodiversity gradients fascinate ecologists, and have inspired dozens of explanations. The geometry of the abiotic environment is sometimes thought to contribute to these gradients, yet evaluations of geometric explanations are limited by a fragmented understanding of the diversity patterns they predict. This article presents a mathematical model that synthesizes multiple pathways by which environmental geometry can drive diversity gradients. The model characterizes species ranges by their environmental niches and limits on range sizes and places those ranges onto the simplified geometries of a sphere or cone. The model predicts nuanced and realistic species-richness gradients, including latitudinal diversity gradients with tropical plateaus and mid-latitude inflection points and elevational diversity gradients with low-elevation diversity maxima. The model also illustrates the importance of a mid-environment effect that augments species richness at locations with intermediate environments. Model predictions match multiple empirical biodiversity gradients, depend on ecological traits in a testable fashion, and formally synthesize elements of several geometric models. Together, these results suggest that previous assessments of geometric hypotheses should be reconsidered and that environmental geometry may play a deeper role in driving biodiversity gradients than is currently appreciated.

  11. Coral reef monitoring in the Iles Eparses, Mozambique Channel (2011-2013)

    NASA Astrophysics Data System (ADS)

    Chabanet, P.; Bigot, L.; Nicet, J.-B.; Durville, P.; Massé, L.; Mulochau, T.; Russo, C.; Tessier, E.; Obura, D.

    2016-04-01

    Monitoring of coral reefs has become a major tool for understanding how they are changing, and for managing them in a context of increasing degradation of coastal ecosystems. The Global Coral Reef Monitoring Network (GCRMN) has near-global coverage, but there are few remote sites free of direct human impact that can serve as reference sites. This study provides baseline data for the French Iles Eparses in the Mozambique Channel, Western Indian Ocean (WIO), whose coral reefs are little known owing to their limited accessibility, and have been free from fishing pressure for over 20 years. Surveys of coral reef health and fish community structure were undertaken at four of the islands (Europa, Bassas da India, Juan de Nova and Glorieuses) in 2011-2013. Monitoring was conducted using standardized GCRMN methods for benthos and fish communities, at the highest taxonomic level. Benthic cover showed a latitudinal gradient, with higher coral cover and conversely lower algae cover (60% and 14% respectively) in the south of the Mozambique Channel. This could be due to the geomorphology of the islands, the latitudinal temperature gradient, and/or the history of chronic stress and bleaching events during the last decades. Fish also showed a latitudinal gradient with higher diversity in the north, in a center of diversity for the western Indian Ocean already recognized for corals. An exceptional biomass fish was recorded (approximately 3500 kg/ha excluding sharks, compared to a maximum of 1400 kg/ha elsewhere in the WIO). The presence of large predators and sharks in all the islands as well as the absence of fleshy benthic algae were indicators of the good health of the reef systems. Nevertheless, these islands are beginning to experience illegal fishing, particularly in the north of the Mozambique Channel, demonstrating their vulnerability to exploitation and the need to protect them as reference sites for coral reef studies, including of climate change impacts, for the region and globally.

  12. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient.

    PubMed

    Del-Castillo-Alonso, María Ángeles; Castagna, Antonella; Csepregi, Kristóf; Hideg, Éva; Jakab, Gabor; Jansen, Marcel A K; Jug, Tjaša; Llorens, Laura; Mátai, Anikó; Martínez-Lüscher, Johann; Monforte, Laura; Neugart, Susanne; Olejnickova, Julie; Ranieri, Annamaria; Schödl-Hummel, Katharina; Schreiner, Monika; Soriano, Gonzalo; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Zipoli, Gaetano; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2016-11-23

    Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.

  13. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  14. Evolutionary origin of the latitudinal diversity gradient in liverworts.

    PubMed

    Laenen, Benjamin; Patiño, Jairo; Hagborg, Anders; Désamoré, Aurélie; Wang, Jian; Jonathan Shaw, A; Goffinet, Bernard; Vanderpoorten, Alain

    2018-06-08

    A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35±39.65 Ma and 39.57±49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms. Copyright © 2018. Published by Elsevier Inc.

  15. Playing by the rules? Phenotypic adaptation to temperate environments in an American marsupial

    PubMed Central

    Harrigan, Ryan J.; Wayne, Robert K.

    2018-01-01

    Phenotypic variation along environmental gradients can provide evidence suggesting local adaptation has shaped observed morphological disparities. These differences, in traits such as body and extremity size, as well as skin and coat pigmentation, may affect the overall fitness of individuals in their environments. The Virginia opossum (Didelphis virginiana) is a marsupial that shows phenotypic variation across its range, one that has recently expanded into temperate environments. It is unknown, however, whether the variation observed in the species fits adaptive ecogeographic patterns, or if phenotypic change is associated with any environmental factors. Using phenotypic measurements of over 300 museum specimens of Virginia opossum, collected throughout its distribution range, we applied regression analysis to determine if phenotypes change along a latitudinal gradient. Then, using predictors from remote-sensing databases and a random forest algorithm, we tested environmental models to find the most important variables driving the phenotypic variation. We found that despite the recent expansion into temperate environments, the phenotypic variation in the Virginia opossum follows a latitudinal gradient fitting three adaptive ecogeographic patterns codified under Bergmann’s, Allen’s and Gloger’s rules. Temperature seasonality was an important predictor of body size variation, with larger opossums occurring at high latitudes with more seasonal environments. Annual mean temperature predicted important variation in extremity size, with smaller extremities found in northern populations. Finally, we found that precipitation and temperature seasonality as well as low temperatures were strong environmental predictors of skin and coat pigmentation variation; darker opossums are distributed at low latitudes in warmer environments with higher precipitation seasonality. These results indicate that the adaptive mechanisms underlying the variation in body size, extremity size and pigmentation are related to the resource seasonality, heat conservation, and pathogen-resistance hypotheses, respectively. Our findings suggest that marsupials may be highly susceptible to environmental changes, and in the case of the Virginia opossum, the drastic phenotypic evolution in northern populations may have arisen rapidly, facilitating the colonization of seasonal and colder habitats of temperate North America. PMID:29607255

  16. Baroclinic instability in the solar tachocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter; Dikpati, Mausumi, E-mail: gilman@ucar.edu, E-mail: dikpati@ucar.edu

    2014-05-20

    The solar tachocline is likely to be close to a geostrophic 'thermal wind', for which the Coriolis force associated with differential rotation is closely balanced by a latitudinal pressure gradient, leading to a tight relation between the vertical gradient of rotation and the latitudinal entropy gradient. Using a hydrostatic but nongeostrophic spherical shell model, we examine baroclinic instability of the tachocline thermal wind. We find that both the overshoot and radiative parts of the tachocline should be baroclinicly unstable at most latitudes. Growth rates are roughly five times higher in middle and high latitudes compared to low latitudes, and muchmore » higher in the overshoot than in the radiative tachocline. They range in e-folding amplification from 10 days in the high latitude overshoot tachocline, down to 20 yr for the low latitude radiative tachocline. In the radiative tachocline only, longitudinal wavenumbers m = 1, 2 are unstable, while in the overshoot tachocline a much broader range of m are unstable. At all latitudes and with all stratifications, the longitudinal scale of the most unstable mode is comparable to the Rossby deformation radius, while the growth rate is set by the local latitudinal entropy gradient. Baroclinic instability in the tachocline competing with instability of the latitude rotation gradient established in earlier studies should be important for the workings of the solar dynamo and should be expected to be found in most stars that contain an interface between radiative and convective domains.« less

  17. The AGCE related studies of baroclinic flows in spherical geometry

    NASA Technical Reports Server (NTRS)

    Hyun, J. M.

    1983-01-01

    Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.

  18. Genetic and environmental influences on cold hardiness of native and introduced riparian trees

    Treesearch

    Jonathan M. Friedman; James E. Roelle; Brian S. Cade

    2012-01-01

    To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix...

  19. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    PubMed Central

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  20. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  1. Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian

    PubMed Central

    Day, Michael O.; Rubidge, Bruce S.; Fröbisch, Jörg

    2017-01-01

    The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes. PMID:28381616

  2. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles

    PubMed Central

    Slatyer, Rachel A.; Schoville, Sean D.

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311

  3. North-South Gradients in Carbon Isotopic Compositions of Atlantic Ocean Black Shales: Evidence for Paleohydrologic Influences on Mid-Cretaceous Black Shale Deposition

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2013-12-01

    Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.

  4. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China

    PubMed Central

    Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min

    2017-01-01

    Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains. PMID:28323909

  5. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China.

    PubMed

    Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min

    2017-01-01

    Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains.

  6. Compensation and climate: Latitudinal variation in ecototherm response to environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, C.G.

    1995-06-01

    Thermal preference measured in a laboratory thermal gradient, and field body temperatures in a field enclosure, contrast the fundamental and realized thermal niches of ornate box turtles (Terrapene ornata) from northern, central, and southern locations. The relatively warmer thermal preference of southern turtles appears to result in lower body temperatures and relatively shorter activity periods. Variation in thermal constraints are input into computer simulations of ectotherm response to climate to assess latitudinal variation in turtle response to microclimate cooling (4{degrees} C), current climate (1970-1990), and climatic warming (3-5{degrees} C). Climatic warming is calculated to lead to a northward shift inmore » turtle range and distribution with increases in northern and declines in southern populations. Microclimate cooling is estimated to result in declines in northern areas and in the core of the box turtle range. The local changes in microclimate, such as can result from shifts in land-use, can be greater than those resulting from large scale changes in climate. Suggesting that land managers and conservation biologists need to focus greater attention on the impact of changes in within patch structure of plant associations and its implications for alteration of microclimate and species life history.« less

  7. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming

    USGS Publications Warehouse

    Mowll, Whitney; Blumenthal, Dana M.; Cherwin, Karie; Smith, Anine; Symstad, Amy J.; Vermeire, Lance; Collins, Scott L.; Smith, Melinda D.; Knapp, Alan K.

    2015-01-01

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7-14 °C) and mean annual precipitation (MAP; ~250-500 mm) gradients. Weused regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities.

  8. DISPERSAL AS A MECHANISM LIMITING DIVERSITY OF HIGH LATITUDES

    EPA Science Inventory

    The pervasiveness acress taxa, space, and time of the latitudinal gradient in species diversity is conventionally thought to suggest a common cause that is not yet identified. Conventionally, the cause of the gradient is thought to originate in the tropics where diversity is hig...

  9. Thermospheric wind effects on the global distribution of helium in the earth's upper atmosphere. Ph.D. Thesis - Michigan Univ., Ann Arbor

    NASA Technical Reports Server (NTRS)

    Reber, C. A.

    1973-01-01

    The momentum and continuity equations for a minor gas are combined with the momentum equation for the major constituents to obtain the time dependent continuity equation for the minor species reflecting a wind field in the background gas. This equation is used to study the distributions of helium and argon at times of low, medium, and high solar activity for a variety of latitudinal-seasonal wind cells. For helium, the exospheric return flow at the higher thermospheric temperatures dominates the distribution to the extent that much larger latitudinal gradients can be maintained during periods of low solar activity than during periods of high activity. By comparison to the exospheric flow, the smoothing effect of horizontal diffusion is almost negligible. The latitudinal variation of helium observed by satellite mass spectrometers can be reproduced by the effect of a wind system of air rising in the summer hemisphere, flowing across the equator with speeds on the order of 100 to 200 m/sec, and descending in the winter hemisphere. Argon, being heavier than the mean mass in the lower thermosphere, reacts oppositely to helium in that it is enhanced in the summer hemisphere and depleted in the winter.

  10. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2016-05-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.

  11. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: implications for susceptibility to climate change.

    PubMed

    Monteiro, Nuno; Cunha, Mário; Ferreira, Lídia; Vieira, Natividade; Antunes, Agostinho; Lyons, David; Jones, Adam G

    2017-09-01

    While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold-water pipefish as model. We found that populations differed with respect to body size, length of the breeding season, fecundity, and sexual dimorphism across a wide latitudinal gradient. We encountered two types of latitudinal patterns, either linear, when related to body size, or parabolic in shape when considering variables related to sexual selection intensity, such as sexual dimorphism and reproductive investment. Our results suggest that sexual selection intensity increases toward both edges of the distribution and that the large differences in temperature likely play a significant role. Shorter breeding seasons in the north and reduced periods for gamete production in the south certainly have the potential to alter mating systems, breeding synchrony, and mate monopolization rates. As latitude and water temperature are tightly coupled across the European coasts, the observed patterns in traits related to sexual selection can lead to predictions regarding how sexual selection should change in response to climate change. Based on data from extant populations, we can predict that as the worm pipefish moves northward, a wave of decreasing selection intensity will likely replace the strong sexual selection at the northern range margin. In contrast, the southern populations will be followed by heightened sexual selection, which may exacerbate the problem of local extinction at this retreating boundary. © 2017 John Wiley & Sons Ltd.

  12. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient.

    PubMed

    Pinceel, Tom; Vanschoenwinkel, Bram; Hawinkel, Wouter; Tuytens, Karen; Brendonck, Luc

    2017-05-01

    Climate change does affect not only average rainfall and temperature but also their variation, which can reduce the predictability of suitable conditions for growth and reproduction. This situation is problematic for inhabitants of temporary waters whose reproductive success depends on rainfall and evaporation that determine the length of the aquatic phase. For organisms with long-lived dormant life stages, bet hedging models suggest that a fraction of these should stay dormant during each growing season to buffer against the probability of total reproductive failure in variable environments. Thus far, however, little empirical evidence supports this prediction in aquatic organisms. We study geographic variation in delayed hatching of dormant eggs in natural populations of two crustaceans, Branchinella longirostris and Paralimnadia badia, that occur in temporary rock pools along a 725 km latitudinal aridity gradient in Western Australia. Consistent with bet hedging theory, populations of both species were characterised by delayed hatching under common garden conditions and hatching fractions decreased towards the drier end of the gradient where the probability of reproductive success was shown to be lower. This decrease was most pronounced in the species with the longer maturation time, presumably because it is more sensitive to the higher prevalence of short inundations. Overall, these findings illustrate that regional variation in climate can be reflected in differential investment in bet hedging and hints at a higher importance of delayed hatching to persist when the climate becomes harsher. Such strategies could become exceedingly relevant as determinants of vulnerability under climate change.

  13. Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environment change

    USGS Publications Warehouse

    Middleton, B.A.; McKee, K.L.

    2004-01-01

    Aim: Predictions of vegetation change with global warming require models that accurately reflect physiological processes underlying growth limitations and species distributions. However, information about environmental controls on physiology and consequent effects on species boundaries and ecosystem functions such as production is limited, especially for forested wetlands that are potentially important carbon sinks. Location: The bald cypress (Taxodium distichum) region of the south-eastern United States was studied to examine how production of an important forested wetland varies with latitude and temperature as well as local hydrology. Methods: We used published data to analyse litter production across a latitudinal gradient from 26.2 to 37.8?? N to determine how bald cypress swamps might respond to alternate climate conditions and what changes might occur throughout the distributional range. Results: Litterfall rates followed a bell shaped curve, indicating that production was more limited at the distributional boundaries (c. 225 g/m2 year-1) compared to the mid-range (795-1126 g/m2 year-1). This pattern suggests that conditions are sub-optimal near both boundaries and that the absence of populations outside this latitudinal range may be largely due to physiological constraints on the carbon balance of dominant species. While dispersal limitations cannot be totally discounted, competition with other wetland types at the extremes of the range does not seem likely to be important because the relative basal area of bald cypress does not decrease near the edges of the range. Impaired hydrology depressed production across the entire range, but more in the south than the north. Main conclusions: Our findings suggest that (1) physiological limitations constrain biotic boundaries of bald cypress swamps; (2) future changes in global temperature would affect litter production in a nonlinear manner across the distributional range; (3) local changes in hydrology may interact with climate to further reduce litter production, particularly at lower latitudes; and (4) southernmost forests could be extirpated if environmental conditions compromise carbon balance and water-use efficiency of trees. ?? 2004 Blackwell Publishing Ltd.

  14. Oceanographic variation influences spatial genomic structure in the sea scallop, Placopecten magellanicus.

    PubMed

    Van Wyngaarden, Mallory; Snelgrove, Paul V R; DiBacco, Claudio; Hamilton, Lorraine C; Rodríguez-Ezpeleta, Naiara; Zhan, Luyao; Beiko, Robert G; Bradbury, Ian R

    2018-03-01

    Environmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, Placopecten magellanicus , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency. Using a large environmental dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we identified a suite of SNPs (285-621, depending on analysis and environmental dataset) potentially under selection through correlations with environmental variation. Principal components analysis of different outlier SNPs and environmental datasets revealed similar northern and southern clusters, with significant associations between the first axes of each ( R 2 adj  = .66-.79). Multivariate redundancy analysis of outlier SNPs and the environmental principal components indicated that environmental factors explained more than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis identified winter average and minimum ocean temperatures as significant parameters in the link between genetic and environmental variation. This work indicates that oceanographic variation is associated with the observed genomic cline in this species and that seasonal periods of extreme cold may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. Incorporating this finding into management may improve accuracy of management strategies and future predictions.

  15. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be the dominant factor responsible for the existence of this chlorophyll gradient.

  16. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi

    2010-01-01

    We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.

  17. Molecular evolution and the latitudinal biodiversity gradient.

    PubMed

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  18. Sex-biased transcriptome divergence along a latitudinal gradient.

    PubMed

    Allen, Scott L; Bonduriansky, Russell; Sgro, Carla M; Chenoweth, Stephen F

    2017-03-01

    Sex-dependent gene expression is likely an important genomic mechanism that allows sex-specific adaptation to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female-biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales. © 2017 John Wiley & Sons Ltd.

  19. Polar symmetric flow of a viscous compressible atmosphere; an application to Mars

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.

    1974-01-01

    The atmosphere is assumed to be driven by a polar symmetric temperature field and the equations of motion in pressure ratio coordinates are linearized by considering the zero order in terms of a thermal Rossby number R delta I/(2a omega) sq where delta T is a measure of the latitudinal temperature gradient. When the eddy viscosity is greater than 1 million sq cm/sec, the boundary layer extends far up into the atmosphere, making the geostrophic approximation invalid for the bulk of the atmosphere. A temperature model for Mars was used which was based on Mariner 9 infrared spectral data with a 30% increase in the depth averaged temperature from the winter pole to the subsolar point. The results obtained for the increase in surface pressure from the subsolar point to the winter pole, as a function of eddy viscosity and with no-slip conditions imposed at the surface, are given.

  20. Radial evolution of the solar wind from IMP 8 to Voyager 2

    NASA Technical Reports Server (NTRS)

    Richardson, John D.; Paularena, Karolen I.; Lazarus, Alan J.; Belcher, John W.

    1995-01-01

    Voyager 2 and Interplanetary Monitoring Platform (IMP) 8 data from 1977 through 1994 are presented and compared. Radial velocity and temperature structures remain intact over the distance from 1 to 43 AU, but density structures do not. Temperature and velocity changes are correlated and nearly in phase at 1 AU, but in the outer heliosphere temperature changes lead velocity changes by tens of days. Solar cycle variations are detected by both spacecraft, with minima in flux density and dynamic pressure near solar maxima. Differences between Voyager 2 and IMP 8 observations near the solar minimum in 1986-1987 are attributed to latitudinal gradients in solar wind properties. Solar rotation variations are often present even at 40 AU. The Voyager 2 temperature profile is best fit with a R(exp -0.49 +/- 0.01) decrease, much less steep than an adiabatic profile.

  1. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  2. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography.

    PubMed

    Jablonski, David; Huang, Shan; Roy, Kaustuv; Valentine, James W

    2017-01-01

    An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)-the most pervasive large-scale biotic pattern on Earth-has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where possible, we review paleobiologic and biogeographic support for two supposedly opposing views, that the LDG is shaped primarily by (a) local environmental factors that determine the number of species and higher taxa at a given latitude (in situ hypotheses) or (b) the entry of lineages arising elsewhere into a focal region (spatial dynamics hypotheses). Support for in situ hypotheses includes the fit of present-day diversity trends in many clades to such environmental factors as temperature and the correlation of extinction intensities in Pliocene bivalve faunas with net regional temperature changes. Support for spatial dynamics hypotheses includes the age-frequency distribution of bivalve genera across latitudes, which is consistent with an out-of-the-tropics dynamic, as are the higher species diversities in temperate southeastern Australia and southeastern Japan than in the tropical Caribbean. Thus, both in situ and spatial dynamics processes must shape the bivalve LDG and are likely to operate in other groups as well. The relative strengths of the two processes may differ among groups showing similar LDGs, but dissecting their effects will require improved methods of integrating fossil data with molecular phylogenies. We highlight several potential research directions and argue that many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers.

  3. Phenological models to predict the main flowering phases of olive ( Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Aguilera, Fátima; Fornaciari, Marco; Ruiz-Valenzuela, Luis; Galán, Carmen; Msallem, Monji; Dhiab, Ali Ben; la Guardia, Consuelo Díaz-de; del Mar Trigo, María; Bonofiglio, Tommaso; Orlandi, Fabio

    2015-05-01

    The aim of the present study was to develop pheno-meteorological models to explain and forecast the main olive flowering phenological phases within the Mediterranean basin, across a latitudinal and longitudinal gradient that includes Tunisia, Spain, and Italy. To analyze the aerobiological sampling points, study periods from 13 years (1999-2011) to 19 years (1993-2011) were used. The forecasting models were constructed using partial least-squares regression, considering both the flowering start and full-flowering dates as dependent variables. The percentages of variance explained by the full-flowering models (mean 84 %) were greater than those explained by the flowering start models (mean 77 %). Moreover, given the time lag from the North African areas to the central Mediterranean areas in the main olive flowering dates, the regional full-flowering predictive models are proposed as the most useful to improve the knowledge of the influence of climate on the olive tree floral phenology. The meteorological parameters related to the previous autumn and both the winter and the spring seasons, and above all the temperatures, regulate the reproductive phenology of olive trees in the Mediterranean area. The mean anticipation of flowering start and full flowering for the future period from 2081 to 2100 was estimated at 10 and 12 days, respectively. One question can be raised: Will the olive trees located in the warmest areas be northward displaced or will they be able to adapt their physiology in response to the higher temperatures? The present study can be considered as an approach to design more detailed future bioclimate research.

  4. Theoretical predictions of latitude dependencies in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.

  5. Latitudinal gradients in tertiary molluscan faunas of the Pacific coast

    USGS Publications Warehouse

    Addicott, W.O.

    1970-01-01

    Tertiary molluscan faunas of the middle latitudes of the marginal eastern North Pacific are characterized by warm-water taxa whose descendants now live in more southerly latitudes. A series of profiles in which cumulative percentages of warm-water faunal elements are plotted against latitude show progressive northward decreases in the percentage of these elements in the faunas of Pacific coast Tertiary stages. Systematic changes in the relative position of these latitudinal gradients during the Middle and Late Tertiary are related to climatic change in the Pacific Basin. Widespread tropical marine climate in the middle latitudes of the eastern North Pacific during the Eocene is indicated by widespread faunal units characterized by high levels of taxonomic diversity. Succeeding Early Oligocene faunas are less diverse, suggesting cooler climatic conditions. Unusually low representations of warm-water genera characterize the molluscan faunas of the Acila shumardi Zone in central California (latitude 34??-37??N). The anomalously cool-water aspect of these faunas may record the occurrence of upwelling along a bold linear segment of the Pacific coast. During the Late Oligocene or the Early Miocene, they are replaced by faunas of unusually warm-water aspect resulting in positive anomalies in Miocene latitudinal faunal gradients in central California. The Miocene anomalies seem to result from the development of an irregular Neogene coastline with extensive, newly established shallow-water embayments. ?? 1970.

  6. The cosmic radiation in the heliosphere at successive solar minima

    NASA Technical Reports Server (NTRS)

    Mcdonald, Frank B.; Moraal, Harm; Reinecke, J. P. L.; Lal, Nand; Mcguire, Robert E.

    1992-01-01

    Cosmic ray observations at 1 AU are compared for the last three solar minimum periods along with the 1977/1989 and 1987 Pioneer 10 and Voyager 1 and 2 data from the outer heliosphere. There is good agreement between the 1965 and 1987 Galactic cosmic ray H and He spectra at 1 AU. Significant and complex differences are found between the 1977/1978 and 1987 measurements of the Galactic and anomalous cosmic ray components at 1 and 15 AU. In the outer heliosphere there are negative latitudinal gradients that reach their maximum magnitude when the inclination of the outer heliosphere current sheet is at a minimum. The radial gradients decrease with heliocentric distance as about 1/r exp 0.7 and do not differ significantly at the successive solar minima. The measured radial and latitudinal gradients are used to estimate the particle transport parameters in the outer heliosphere. Using the local interstellar He spectrum of Webber et al. (1987), it is estimated that the modulation boundary is of the order of 160 AU.

  7. Northern Hemisphere Nitrous Oxide Morphology during the 1989 AASE and the 1991-1992 AASE 2 Campaigns

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan; Chan, K. Roland

    1993-01-01

    Nitrous oxide vertical profiles and latitudinal distributions for the 1989 AASE and 1992 AASE II northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occurring poleward of the polar jet. The AASE II morphology shows a mid latitude 'surf zone,' characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.

  8. Northern hemisphere nitrous oxide morphology during the 1989 AASE and the 1991-1992 AASE 2 campaigns

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan E.; Chan, K. Roland

    1993-01-01

    Nitrous oxide vertical profiles and latitudinal distributions for the 1989 Airborne Antarctic Ozone Experiment (AASE) and 1992 AASE 2 northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occuring poleward of the polar jet. The AASE 2 morphology shows a mid latitude 'surf zone', characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.

  9. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  10. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  11. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  12. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  13. Role of Boreal Vegetation in Controlling Ecosystem Processes and Feedbacks to Climate

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; Hooper, D. U.; Hobbie, S. E.; Verville, J. H.

    1997-01-01

    In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary.

  14. Anatomy of small-scale mixing along a Northeast Atlantic transect

    NASA Astrophysics Data System (ADS)

    Jurado, Elena; Dijkstra, Henk A.; van der Woerd, Hans; Brussaard, Corina

    2010-05-01

    The study of turbulence occurring at the smallest scales, in the energy dissipation range, is required when evaluating interrelations between turbulent mixing and phytoplankton distribution. To derive microturbulent parameters, microstructure profiler surveys, consisting in high resolution temperature, salinity or velocity vertical profiles have been performed in localized regions of the open ocean. However, they are very localized and based on few datasets, difficult to extrapolate to other regions due to the dependence on the local background conditions. During the STRATIPHYT-I cruise (July-August 2009) from Las Palmas (Gran Canaria) to Reykjavik (Iceland), high resolution measurements of both turbulent mixing (with a Self Contained Autonomous Micro Profiler, SCAMP) and phytoplankton have been carried out in the top 100 m of the ocean. With these data, the gradient from a more stratified, warmer surface water tropical environment to a less stratified subpolar ocean environment is covered. Adding up a total of 15 stations and 148 profiles, it constitutes the most extensive dataset of directly derived vertical mixing coefficients in a latitudinal transect of the Northeast Atlantic. In the presentation, the focus is on the explanation of the changes in turbulent mixing along the cruise section, recalling in its latitudinal gradient and presenting parameters that can further help to evaluate effects in the phytoplankton distribution. Side issues such as the encountered disagreement between heat and density eddy diffusivities and an analysis of the main source of instabilities through GOTM model and an internal wave analysis, are also treated in detail.

  15. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients

    USGS Publications Warehouse

    Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X.

    2003-01-01

    Aim: This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location: East Asia from the Arctic to tropical regions, an area crossing over 50?? of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods: East Asia is divided into forty-five geographical regions. Based on the similarity of their world-wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50??-long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10??. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty-five regional floras. Results: Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi-Pacific tropical, palaeotropical, tropical Asia-tropical Australia, tropical Asia-tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20??N and for c. 0% at latitude 55-60??N. In contrast, temperate genera (including holarctic, eastern Asia-North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55-60??N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55-60??N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions: The large-scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.

  16. The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile

    PubMed Central

    2012-01-01

    Background The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S. Methods We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods. Results While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period. Conclusions There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes. PMID:23148597

  17. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe.

    PubMed

    Díaz, Mario; Møller, Anders Pape; Flensted-Jensen, Einar; Grim, Tomáš; Ibáñez-Álamo, Juan Diego; Jokimäki, Jukka; Markó, Gábor; Tryjanowski, Piotr

    2013-01-01

    All animals flee from potential predators, and the distance at which this happens is optimized so the benefits from staying are balanced against the costs of flight. Because predator diversity and abundance decreases with increasing latitude, and differs between rural and urban areas, we should expect escape distance when a predator approached the individual to decrease with latitude and depend on urbanization. We measured the distance at which individual birds fled (flight initiation distance, FID, which represents a reliable and previously validated surrogate measure of response to predation risk) following a standardized protocol in nine pairs of rural and urban sites along a ca. 3000 km gradient from Southern Spain to Northern Finland during the breeding seasons 2009-2010. Raptor abundance was estimated by means of standard point counts at the same sites where FID information was recorded. Data on body mass and phylogenetic relationships among bird species sampled were extracted from the literature. An analysis of 12,495 flight distances of 714 populations of 159 species showed that mean FID decreased with increasing latitude after accounting for body size and phylogenetic effects. This decrease was paralleled by a similar cline in an index of the abundance of raptors. Urban populations had consistently shorter FIDs, supporting previous findings. The difference between rural and urban habitats decreased with increasing latitude, also paralleling raptor abundance trends. Overall, the latitudinal gradient in bird fear was explained by raptor abundance gradients, with additional small effects of latitude and intermediate effects of habitat. This study provides the first empirical documentation of a latitudinal trend in anti-predator behavior, which correlated positively with a similar trend in the abundance of predators.

  18. Latitudinal Gradients in Tree Ring Stable Carbon and Oxygen Isotopes Reveal Differential Climate Influences of the North American Monsoon System.

    NASA Astrophysics Data System (ADS)

    Szejner, P.; Wright, W. E.; Babst, F.; Belmecheri, S.; Trouet, V.; Leavitt, S. W.; Ehleringer, J. R.; Monson, R. K.

    2016-12-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  19. Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Szejner, Paul; Wright, William E.; Babst, Flurin; Belmecheri, Soumaya; Trouet, Valerie; Leavitt, Steven W.; Ehleringer, James R.; Monson, Russell K.

    2016-07-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  20. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  1. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  2. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.

    PubMed

    Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart L

    2011-01-01

    Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.

  3. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces

    DOE PAGES

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...

    2016-04-12

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  4. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    PubMed Central

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  5. The Genetic Content of Chromosomal Inversions across a Wide Latitudinal Gradient

    PubMed Central

    Simões, Pedro; Calabria, Gemma; Picão-Osório, João; Balanyà, Joan; Pascual, Marta

    2012-01-01

    There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection. PMID:23272126

  6. Solar wind velocity and temperature in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  7. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.

  8. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  9. Hydrothermal extremes at the South-West Pribaikalie during the current climate changes

    NASA Astrophysics Data System (ADS)

    Voropay, Nadezhda

    2017-04-01

    Climatic extremes of air temperature and precipitation were analyzed for the Tunka Intermountain Depression (South-West Pribaikalie, Buryatia, Russian Federation). Intermountain depressions occupy a quarter of the territory of the Baikal region. The specific climatic conditions in the depressions are formed due to the geographic location and the influence of latitudinal zonation and altitudinal gradients. Air temperature and precipitation data records from at weather stations for the period 1940-2015 were analyzed. Long-term average annual temperature is negative and varies from -0.8 °C to -2.4 °C. Air temperature absolute minimum is -48 °C, absolute maximum is +36 °C. The long-term average annual precipitation is 370-480 mm, but in some years annual precipitation reach 760 mm. The summer months have about 70% of the total annual precipitation, in July and August the sum may reach 340 mm. Maximum daily sum of rainfalls is 80 mm. The contribution of the global and regional circulation characteristics into the variability of regional climatic characteristics was estimated.

  10. Atmospheric Results from the MGS Horizon Science Experiment

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Murphy, J. R.; Hollingsworth, J. L.

    1999-01-01

    The Horizon Science Experiment (HORSE) utilizes the Mars Horizon Sensor Assembly (MHSA) on the Mars Global Surveyor (MGS) orbiter to measure 15-micron band thermal emission from the Martian atmosphere. During the first two phases of aerobraking, from September 1997 to May 1998, and from September 1998 to March 1999, one of the four MGS quadrants was pointed well onto the planet consistently during the near-periapsis aerobraking passes, allowing the device to obtain data on the latitudinal variation of middle atmospheric temperature (0.2 - 2.0 mbar). Of particular interest during the first phase (L(sub s) = 182 - 300 deg) were the effects of a prominent dust storm at L(sub s) =224 deg, and wavelike behavior in the strong temperature gradient near the north polar cap. Additional information is contained in the original extended abstract.

  11. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  12. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    PubMed

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  14. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  15. Solar wind temperature observations in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  16. Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest

    PubMed Central

    Inza, Maria V; Zelener, Noga; Fornes, Luis; Gallo, Leonardo A

    2012-01-01

    Cedrela lilloi C. DC. (cedro coya, Meliaceae), an important south American timber species, has been historically overexploited through selective logging in Argentine Yungas Rainforest. Management and conservation programs of the species require knowledge of its genetic variation patterns; however, no information is available. Molecular genetic variability of the species was characterized to identify high-priority populations for conservation and domestication purposes. Fourteen native populations (160 individuals) along a latitudinal gradient and with different logging's intensities were assessed by 293 polymorphic AFLP (amplified fragment length polymorphism) markers. Genetic diversity was low (Ht = 0.135), according to marginal location of the species in Argentina. Most of the diversity was distributed within populations (87%). Northern populations showed significant higher genetic diversity (R2= 0.69) that agreed with latitudinal pattern of distribution of taxonomic diversity in the Yungas. Three clusters were identified by Bayesian analysis in correspondence with northern, central, and southern Yungas. An analysis of molecular variance (AMOVA) revealed significant genetic differences among latitudinal clusters even when logging (ΦRT = 0.07) and unlogging populations (ΦPT = 0.10) were separately analyzed. Loss of genetic diversity with increasing logging intensity was observed between neighboring populations with different disturbance (ΦPT = 0.03–0.10). Bottlenecks in disturbed populations are suggested as the main cause. Our results emphasize both: the necessity of maintaining the genetic diversity in protected areas that appear as possible long-term refuges of the species; and to rescue for the national system of protected areas some high genetic diversity populations that are on private fields. PMID:23170208

  17. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests.

    PubMed

    Marshall, Katie E; Baltzer, Jennifer L

    2015-02-01

    The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions.

  18. Train-borne Measurements of Enhanced Wet Season Methane Emissions in Northern Australia - Implications for Australian Tropical Wetland Emissions

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W.; Paton-Walsh, C.

    2008-12-01

    We present the first transect measurements of CH4, CO2, CO and N2O taken on the Ghan railway travelling on a N-S transect of the Australian continent between Adelaide (34.9°S, 138.6°E) and Darwin (12.5°S, 130.9°E). The Ghan crosses Australia from the mainly agricultural mid-latitude south through the arid interior to the wet-dry tropical savannah south of and around Darwin. In the 2008 wet season (February) we observed a significant latitudinal gradient of CH4 increasing towards the north. The same pattern was observed in the late 2008 wet season (March-April), with a smaller latitudinal gradient. These will be compared with a dry season transect, to be undertaken in September/October 2008. The Air Pollution Model (TAPM), a regional scale prognostic meteorological model, is used to estimate the surface methane source strength required to explain the observed latitudinal gradient in CH4 in the wet season, and investigate the source type. Fluxes from cattle and termites together contribute up to 25% of the enhancements seen, leaving wetlands as the major source of wet season methane in the Australian tropics. Wetlands are the largest natural source of methane to the atmosphere, and tropical wetlands are responsible for the majority of the interannual variation in methane source strength. We attempt to quantify the annual methane flux contributed by anaerobic organic breakdown due to wet- season flooding in tropical Northern Territory.

  19. Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America

    NASA Astrophysics Data System (ADS)

    Barros, Diego; Takahashi, Hisao; Wrasse, Cristiano M.; Figueiredo, Cosme Alexandre O. B.

    2018-01-01

    A ground-based network of GNSS receivers has been used to monitor equatorial plasma bubbles (EPBs) by mapping the total electron content (TEC map). The large coverage of the TEC map allowed us to monitor several EPBs simultaneously and get characteristics of the dynamics, extension and longitudinal distributions of the EPBs from the onset time until their disappearance. These characteristics were obtained by using TEC map analysis and the keogram technique. TEC map databases analyzed were for the period between November 2012 and January 2016. The zonal drift velocities of the EPBs showed a clear latitudinal gradient varying from 123 m s-1 at the Equator to 65 m s-1 for 35° S latitude. Consequently, observed EPBs are inclined against the geomagnetic field lines. Both zonal drift velocity and the inclination of the EPBs were compared to the thermospheric neutral wind, which showed good agreement. Moreover, the large two-dimensional coverage of TEC maps allowed us to study periodic EPBs with a wide longitudinal distance. The averaged values observed for the inter-bubble distances also presented a clear latitudinal gradient varying from 920 km at the Equator to 640 km at 30° S. The latitudinal gradient in the inter-bubble distances seems to be related to the difference in the zonal drift velocity of the EPB from the Equator to middle latitudes and to the difference in the westward movement of the terminator. On several occasions, the distances reached more than 2000 km. Inter-bubble distances greater than 1000 km have not been reported in the literature.

  20. Broad-scale latitudinal variation in female reproductive success contributes to the maintenance of a geographic range boundary in bagworms (Lepidoptera: Psychidae).

    PubMed

    Rhainds, Marc; Fagan, William F

    2010-11-30

    Geographic range limits and the factors structuring them are of great interest to biologists, in part because of concerns about how global change may shift range boundaries. However, scientists lack strong mechanistic understanding of the factors that set geographic range limits in empirical systems, especially in animals. Across dozens of populations spread over six degrees of latitude in the American Midwest, female mating success of the evergreen bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) declines from ∼100% to ∼0% near the edge of the species range. When coupled with additional latitudinal declines in fecundity and in egg and pupal survivorship, a spatial gradient of bagworm reproductive success emerges. This gradient is associated with a progressive decline in local abundance and an increased risk of local population extinction, up to a latitudinal threshold where extremely low female fitness meshes spatially with the species' geographic range boundary. The reduction in fitness of female bagworms near the geographic range limit, which concords with the abundant centre hypothesis from biogeography, provides a concrete, empirical example of how an Allee effect (increased pre-reproductive mortality of females in sparsely populated areas) may interact with other demographic factors to induce a geographic range limit.

  1. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  2. Static stability and thermal wind in an atmosphere of variable composition Applications to Mars

    NASA Technical Reports Server (NTRS)

    Hess, S. L.

    1979-01-01

    Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.

  3. Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas.

    PubMed

    Tepolt, Carolyn K; Somero, George N

    2014-04-01

    As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine heat and cold tolerance and acclimatory plasticity. We found that, overall, the species is highly tolerant of both heat and cold, and that it survives higher temperatures than co-occurring native marine crustaceans. Further, we found that both heat and cold tolerance are plastic in response to short-term acclimation (18-31 days at either 5 or 25°C). Comparing patterns within ranges, we found latitudinal gradients in thermal tolerance in the native European range and in the invasive range in eastern North America. This pattern is strongest in the native range, and likely evolved there. Because of a complicated invasion history, the latitudinal pattern in the eastern North American invasive range may be due either to rapid adaptation post-invasion or to adaptive differences between the ancestral populations that founded the invasion. Overall, the broad thermal tolerance ranges of green crabs, which may facilitate invasion of novel habitats, derive from high inherent eurythermality and acclimatory plasticity and potentially adaptive differentiation among populations. The highly flexible physiology that results from these capacities may represent the hallmark of a successful invasive species, and may provide a model for success in a changing world.

  4. Decoding the Secrets of Carbon Preservation and GHG Flux in Lower-Latitude Peatlands

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Flanagan, N. E.; Wang, H.; Ho, M.; Hodgkins, S. B.; Cooper, W. T.; Chanton, J.; Winton, S.

    2017-12-01

    The mechanisms regulating peat decomposition and C carbon storage in peatlands are poorly understood, particularly with regard to the importance of the biochemical compounds produced by different plant species and in turn peat quality controls on C storage and GHG flux. To examine the role of carbon quality in C accretion in northern compared to tropical peatlands we completed field and lab studies on bog peats collected in Minnesota, North Carolina, Florida and Peru to answer three fundamental questions; 1) is tropical peat more recalcitrant than northern peat 2) does the addition of aromatic and phenolic C compounds increase towards the tropics 3) do differences in the chemical structure of organic matter explain variances in carbon storage and GHG flux in tropical versus northern peatlands? Our main hypothesize is that high concentrations of phenolics and aromatic C compounds produced in shrub and tree plant communities in peatlands coupled with the fire production of biochar aromatics in peatlands may provide a dual biogeochemical latch mechanism controlling microbial decomposition of peat even under higher temperatures and seasonal drought. By comparing the peat bog soil cores collected from the MN peat bogs, NC Pocosins, FL Everglades and Peru palm swamps we find that the soils in the shrub-dominant Pocosin contain the highest phenolics, which microbial studies indicate have the strongest resistance to microbial decomposition. A chemical comparison of plant driven peat carbon quality along a north to south latitudinal gradient indicates that tropical peatlands have higher aromatic compounds, and enhanced phenolics, especially after light fires, which enhances C storage and affect GHG flux across the latitudinal gradient.

  5. CO2 and CH4 fluxes along a latitudinal transect in Northern Alaska using eddy covariance technique in challenging conditions: first results of a long term experiment in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Oechel, W. C.; Losacco, S.; McEwing, R.; Murphy, P.; Zona, D.

    2013-12-01

    Being one of the most sensitive regions on earth, the Arctic is likely to be one of the most affected by global change. Physical changes (drying, snow cover, active layer depth, permafrost thawing, etc.) could create feedbacks in the release of greenhouse gas to the atmosphere. Correlated to the significant increase in air temperature, changes in trace gas balance have already been reported (Oechel et al. 1998). Carbon (C) is currently trapped as organic matter in the permafrost that underlies much of the Arctic. C represents about 30-50% of the global belowground organic carbon pool (Tarnocai et al.2009, Zona et al. 2012). Stored organic matter can form the substrate for significant release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Ubiquitous arctic wetlands are additional sources of CH4 and CO2 to the atmosphere (Melton et al. 2013). CO2 is important because of the magnitude of its fluxes, and CH4 is of interest since its global warming potential is 23 times higher than the CO2 over a 100-year time horizon. CH4 is produced by the decomposition of dead plant material in anaerobic soils, especially in tundra ponds. Methane release is mostly influenced by temperature, water table, and active layer depth. The spatial and temporal variability results in very large uncertainties of current CH4 fluxes from the Arctic. The sporadic studies available create a generally inadequate baseline from which to determine a change in emissions from this critical and sensitive environment. Here we initiate a large scale, continuously monitored, study of CO2 and CH4 budgets from tundra ecosystems across a latitudinal gradient of more than 400 km. Our main questions for this study are: (i) does the release of CO2 and CH4 from biological and geothermal processes exceed the sink of greenhouse gases from active vegetation and surface organisms? (ii) How does this balance behave over latitudinal and environmental gradients? The observations presented are the result of the first year of a new long-term study that includes the results of the upgrading of 5 sites in Northern Alaska across a latitudinal transect (Barrow, Atqasuk, and Ivotuk) and across a moisture gradient (Barrow) in the Arctic. These sites are equipped with different eddy covariance systems to follow CO2 and CH4 fluxes, combined with a full data set of meteorological and soil measurements. The study summarizes a full analysis of energy balance, CO2 and CH4 fluxes correlated to changes in meteorological and soil conditions on the 5 sites of the transect. Based on the results available, CH4 fluxes averaged approximatively 8 mgC m-2 d-1 in the north (Barrow) to 13 mgC m-2 d-1 in the south (Ivotuk). In between these two sites, a daily value of about 20 mgC m-2 d-1 in the wetter, vegetated drained lake basin was observed. Surprisingly, from our preliminary data investigation, the southernmost and warmer site (Ivotuk) did not present the highest CH4 emission, which instead was the highest in the 200 km north site (Atqasuk) with a mean daily value of 25 mgC m-2 d-1. The importance of fall season CH4 emissions will also be presented and their importance relative to summertime emissions.

  6. Climate constrains the evolutionary history and biodiversity of crocodylians.

    PubMed

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  7. Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Beldade, R.; Chabanet, P.; Bigot, L.; O'Donnell, J. L.; Bernardi, G.

    2015-12-01

    Individual exposure to stressors can induce changes in physiological stress responses through modulation of the hypothalamic-pituitary-interrenal (HPI) axis. Despite theoretical predictions, little is known about how individuals will respond to unpredictable short-lived stressors, such as thermal events. We examine the primary neuroendocrine response of coral reef fish populations from the Îles Eparses rarely exposed to anthropogenic stress, but that experienced different thermal histories. Skunk anemonefish, Amphiprion akallopisos, showed different cortisol responses to a generic stressor between islands, but not along a latitudinal gradient. Those populations previously exposed to higher maximum temperatures showed greater responses of their HPI axis. Archive data reveal thermal stressor events occur every 1.92-6 yr, suggesting that modifications to the HPI axis could be adaptive. Our results highlight the potential for adaptation of the HPI axis in coral reef fish in response to a climate-induced thermal stressor.

  8. Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2013-01-01

    Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigate percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitationmore » functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. CO2 fertilization during the last three decades, was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.« less

  9. CO2 Ice Formation and CO2 Gas Depletion in the Polar Winter Atmosphere of Mars from Mars Climate Sounder Measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Patel, P. K.; Schofield, J. T.; Kass, D. M.; Hayne, P. O.; McCleese, D. J.

    2016-12-01

    Temperatures in the martian lower atmosphere commonly reach the frost point of CO2 in the polar winter vortices over an extended vertical range. New retrievals from the Mars Climate Sounder (MCS) instrument on Mars Reconnaissance Orbiter allow the characterization of the winter polar regions with improved accuracy. MCS is a passive infrared sounder with 5 mid-infrared, 3 far infrared, and one broadband visible/near-infrared channels. Each spectral channel uses a linear detector array consisting of 21 elements, which provides -10 to 90 km altitude coverage when pointed at the Mars limb. From the infrared measurements, vertical profiles of temperature and aerosols are retrieved with an altitude resolution of about 5 km. Due to their long optical path through the atmosphere, limb measurements are susceptible to horizontal gradients in temperature or absorber amount in their line-of-sight, an effect that is particularly important in polar winter regions due to strong latitudinal temperature gradients in the atmosphere. The new retrievals take horizontal gradients in temperature and aerosols into account by means of a two-dimensional radiative transfer scheme. The resulting temperature profiles reveal that temperatures in the south winter polar region repeatedly drop several degrees below the frost point of CO2. This behavior is consistent with the removal of CO2 from the atmosphere through condensation, resulting in an atmosphere that is depleted in gaseous CO2 and enhanced in non-condensable gases like N2 and Ar. In these regions emission features at 22 μm are often found in MCS limb measurements, consistent with the presence of CO2 ice in the polar vortex. We will map these depletions of CO2 gas and show correlations with the occurrence of CO2 ice. We will provide comparisons of these effects between the southern and the northern polar winter vortices.

  10. Structure of the Mesosphere of Venus from the reanalized Venera 15 IR-spectrometry data

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. V.

    1998-09-01

    The results of IR-spectromerty on board VENERA-15 have been reanalyzed. The new data concerned temperature, aerosol, water vapor and thermal zonal wind profiles have been obtained and the latitudinal and local time related variations have been investigated. The cyclostrophic zonal wind fields show the presence of mid-latitudinal jet which changes its position with solar time, so that its altitude and wind speed are correlated and indicated the conservation of angular momentum. The connection between altitude of jet and its velocity shows the flux conservation. The wind velocity in the midlatitudinal jet is correlated with temperature inversion in the "cold collar". The low-latitudinal jet (at about 80 km near 20 deg.) is also connected with inversion in temperature profile observed there.

  11. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  12. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    NASA Astrophysics Data System (ADS)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  13. Large-Scale Spatial Distribution Patterns of Echinoderms in Nearshore Rocky Habitats

    PubMed Central

    Iken, Katrin; Konar, Brenda; Benedetti-Cecchi, Lisandro; Cruz-Motta, Juan José; Knowlton, Ann; Pohle, Gerhard; Mead, Angela; Miloslavich, Patricia; Wong, Melisa; Trott, Thomas; Mieszkowska, Nova; Riosmena-Rodriguez, Rafael; Airoldi, Laura; Kimani, Edward; Shirayama, Yoshihisa; Fraschetti, Simonetta; Ortiz-Touzet, Manuel; Silva, Angelica

    2010-01-01

    This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (<1–5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m2 quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m−2. In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m2 quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m−2. Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult. PMID:21079760

  14. Large-scale spatial distribution patterns of echinoderms in nearshore rocky habitats.

    PubMed

    Iken, Katrin; Konar, Brenda; Benedetti-Cecchi, Lisandro; Cruz-Motta, Juan José; Knowlton, Ann; Pohle, Gerhard; Mead, Angela; Miloslavich, Patricia; Wong, Melisa; Trott, Thomas; Mieszkowska, Nova; Riosmena-Rodriguez, Rafael; Airoldi, Laura; Kimani, Edward; Shirayama, Yoshihisa; Fraschetti, Simonetta; Ortiz-Touzet, Manuel; Silva, Angelica

    2010-11-05

    This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (<1-5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m(2) quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(-2). In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2) quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(-2). Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult.

  15. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  16. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  17. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  18. An empirical examination of consumer effects across twenty degrees of latitude.

    PubMed

    Lavender, James T; Dafforn, Katherine A; Bishop, Melanie J; Johnston, Emma L

    2017-09-01

    The strength and importance of consumer effects are predicted to increase toward low latitudes, but this hypothesis has rarely been tested using a spatially consistent methodology. In a consumer-exclusion experiment spanning twenty degrees of latitude along the east Australian coast, the magnitude of consumer effects on sub-tidal sessile assemblage composition was not greater at low than high latitudes. Across caged and control assemblages, Shannon's diversity, Pielou's evenness, and richness of functional groups decreased with increasing latitude, but the magnitude of consumer effects on these metrics did not display consistent latitudinal gradients. Instead, latitudinal gradients in consumer effects were apparent for individual functional groups. Solitary ascidians displayed the pattern consistent with predictions of greater direct effects of predators at low than high latitude. As consumers reduced the biomass of this and other competitive dominants, groups less prone to predation (e.g., hydroids, various groups of bryozoans) were able to take advantage of freed space in the presence of consumers and show increased abundances there. This large-scale empirical study demonstrates the complexity of species interactions, and the failure of assemblage-level metrics to adequately capture consumer effects over large spatial gradients. © 2017 by the Ecological Society of America.

  19. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  20. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast. PMID:26308521

  1. Uniform Temperature Dependency in the Phenology of a Keystone Herbivore in Lakes of the Northern Hemisphere

    PubMed Central

    Straile, Dietmar; Adrian, Rita; Schindler, Daniel E.

    2012-01-01

    Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems. PMID:23071520

  2. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals. PMID:25754672

  3. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  4. Speciation and the Latitudinal Diversity Gradient: Insights from the Global Distribution of Endemic Fish.

    PubMed

    Hanly, Patrick J; Mittelbach, Gary G; Schemske, Douglas W

    2017-06-01

    The nearly universal pattern that species richness increases from the poles to the equator (the latitudinal diversity gradient [LDG]) has been of intense interest since its discovery by early natural-history explorers. Among the many hypotheses proposed to explain the LDG, latitudinal variation in (1) productivity, (2) time and area available for diversification, and (3) speciation and/or extinction rates have recently received the most attention. Because tropical regions are older and were formerly more widespread, these factors are often intertwined, hampering efforts to distinguish their relative contributions to the LDG. Here we examine the global distribution of endemic lake fishes to determine how lake age, area, and latitude each affect the probability of speciation and the extent of diversification occurring within a lake. We analyzed the distribution of endemic fishes worldwide (1,933 species and subspecies from 47 families in 2,746 lakes) and find that the probability of a lake containing an endemic species and the total number of endemics per lake increase with lake age and area and decrease with latitude. Moreover, the geographic locations of endemics in 34 of 41 families are found at lower latitudes than those of nonendemics. We propose that the greater diversification of fish at low latitudes may be driven in part by ecological opportunities promoted by tropical climates and by the coevolution of species interactions.

  5. Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies

    PubMed Central

    Mullen, Sean P.; Savage, Wesley K.; Wahlberg, Niklas; Willmott, Keith R.

    2011-01-01

    Latitudinal gradients in species richness are among the most well-known biogeographic patterns in nature, and yet there remains much debate and little consensus over the ecological and evolutionary causes of these gradients. Here, we evaluated whether two prominent alternative hypotheses (namely differences in diversification rate or clade age) could account for the latitudinal diversity gradient in one of the most speciose neotropical butterfly genera (Adelpha) and its close relatives. We generated a multilocus phylogeny of a diverse group of butterflies in the containing tribe Limenitidini, which has both temperate and tropical representatives. Our results suggest there is no relationship between clade age and species richness that could account for the diversity gradient, but that instead it could be explained by a significantly higher diversification rate within the predominantly tropical genus Adelpha. An apparent early larval host-plant shift to Rubiaceae and other plant families suggests that the availability of new potential host plants probably contributed to an increase in diversification of Adelpha in the lowland Neotropics. Collectively, our results support the hypothesis that the equatorial peak in species richness observed within Adelpha is the result of increased diversification rate in the last 10–15 Myr rather than a function of clade age, perhaps reflecting adaptive divergence in response to the dramatic host-plant diversity found within neotropical ecosystems. PMID:21106589

  6. Dew Worms in the White Nights

    USDA-ARS?s Scientific Manuscript database

    Lumbricus terrestris L. (the dew worm) forages, mates and migrates on the soil surface during the night. Its distribution covers a broad latitudinal gradient and variation in day length conditions. Since soil-surface activity is crucial for the survival and reproduction of dew worms, it is conceivab...

  7. Disease Ecology, Biodiversity, and the Latitudinal Gradient in Income

    PubMed Central

    Bonds, Matthew H.; Dobson, Andrew P.; Keenan, Donald C.

    2012-01-01

    While most of the world is thought to be on long-term economic growth paths, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The majority of the extremely poor live in the tropics. The latitudinal gradient in income is highly suggestive of underlying biophysical drivers, of which disease conditions are an especially salient example. However, conclusions have been confounded by the simultaneous causality between income and disease, in addition to potentially spurious relationships. We use a simultaneous equations model to estimate the relative effects of vector-borne and parasitic diseases (VBPDs) and income on each other, controlling for other factors. Our statistical model indicates that VBPDs have systematically affected economic development, evident in contemporary levels of per capita income. The burden of VBDPs is, in turn, determined by underlying ecological conditions. In particular, the model predicts it to rise as biodiversity falls. Through these positive effects on human health, the model thus identifies measurable economic benefits of biodiversity. PMID:23300379

  8. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa

    NASA Astrophysics Data System (ADS)

    Kuechler, Rony R.; Dupont, Lydie M.; Schefuß, Enno

    2018-01-01

    The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0-4.6 Ma, 3.6-3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.

  9. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H2 from Cassini Far-IR Spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, Leigh N.; Irwin, P. G. J; Achterberg, R. K.; Orton, G. S.; Flasar, F. M.

    2015-01-01

    Far-IR 16-1000 micrometer spectra of Saturn's hydrogen-helium continuum measured by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a near-continuous record of upper tropospheric (70-700 mbar) temperatures and para-H2 fraction as a function of latitude, pressure and time for a third of a saturnian year (2004-2014, from northern winter to northern spring). The thermal field reveals evidence of reversing summertime asymmetries superimposed onto the belt/zone structure. The temperature structure is almost symmetric about the equator by 2014, with seasonal lag times that increase with depth and are qualitatively consistent with radiative climate models. Localised heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation to the temperature profile that shifts in magnitude and location, declining in the autumn hemisphere and growing in the spring. Changes in the para-H2 (f(sub p)) distribution are subtle, with a 0.02-0.03 rise over the spring hemisphere (200-500 mbar) perturbed by (i) low-f(sub p) air advected by both the springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of high-f(sub p) air at northern high latitudes, responsible for a developing north-south asymmetry in f(sub p). Conversely, the shifting asymmetry in the para-H2 disequilibrium primarily reflects the changing temperature structure (and hence the equilibrium distribution of f(sub p)), rather than actual changes in f(sub p) induced by chemical conversion or transport. CIRS results interpolated to the same point in the seasonal cycle as re-analysed Voyager-1 observations (early northern spring) show qualitative consistency from year to year (i.e., the same tropospheric asymmetries in temperature and f(sub p)), with the exception of the tropical tropopause near the equatorial zones and belts, where downward propagation of a cool temperature anomaly associated with Saturn's stratospheric oscillation could potentially perturb tropopause temperatures, para-H2 and winds. Quantitative differences between the Cassini and Voyager epochs suggest that the oscillation is not in phase with the seasonal cycle at these tropospheric depths (i.e., it should be described as quasi-periodic rather than 'semi annual'). Variability in the zonal wind field derived from latitudinal thermal gradients is small (less than 10 m/s per scale height near the tropopause) and mostly affects the broad retrograde jets, with the notable exception of large variability on the northern flank of the equatorial jet. The meridional potential vorticity (PV) gradient, and hence the 'staircase of PV' associated with spatial variations in the vigour of vertical mixing, has varied over the course of the mission but maintained its overall shape. PV gradients in latitude and altitude are used to estimate the atmospheric refractive index for the propagation of stationary planetary (Rossby) waves, predicting that such wave activity would be confined to regions of real refractivity (tropical regions plus bands at 35-45 in both hemispheres). The penetration depth of these regions into the upper troposphere is temporally variable (potentially associated with stratification changes), whereas the latitudinal structure is largely unchanged over time (associated with the zonal jet system).

  11. Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; UeNo, S.

    2017-09-01

    A very slight rotation-induced latitudinal temperature variation (presumably on the order of several kelvin) on the solar surface is theoretically expected. While recent high-precision solar brightness observations reported its detection, confirmation by an alternative approach using the strengths of spectral lines is desirable, for which reducing the noise due to random fluctuation caused by atmospheric inhomogeneity is critical. Toward this difficult task, we carried out a pilot study of spectroscopically investigating the relative variation of temperature (T) at a number of points in the solar circumference region near to the limb (where latitude dependence should be detectable, if any exists) based on the equivalent widths (W) of 28 selected lines in the 5367 - 5393 Å and 6075 - 6100 Å regions. We paid special attention to i) clarifying which types of lines should be employed and ii) how much precision is attainable in practice. We found that lines with strong T-sensitivity (|log W/log T|) should be used and that very weak lines should be avoided because they inevitably suffer strong relative fluctuations (Δ W/W). Our analysis revealed that a precision of Δ T/T ≈ 0.003 (corresponding to ≈ 15 K) can be achieved at best by a spectral line with comparatively large |log W/log T|, although this can possibly be further improved When a number of lines are used all together. Accordingly, if many such favorable lines could be measured with subpercent precision of Δ W/W and by averaging the resulting Δ T/T from each line, the random noise would eventually be reduced to ≲ 1 K and detection of a very subtle amount of global T-gradient might be possible.

  12. EVIDENCE FOR FIRST YEAR METAMORPHOSIS OF BULLFROGS IN AN EPHEMERAL POND

    EPA Science Inventory

    It is widely accepted that bullfrog ( R catesbeiana) tadpoles in the Pacific Northwest require more than one year for metamorphosis. Often time to metamorphosis increases along a latitudinal gradient. During our pond surveys at the EE Wilson Reserve, we found evidence of first ...

  13. LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES

    EPA Science Inventory

    The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...

  14. Explaining geographic gradients in winter selection of landscapes by boreal caribou with implications under global changes in Eastern Canada.

    PubMed

    Beguin, Julien; McIntire, Eliot J B; Fortin, Daniel; Cumming, Steven G; Raulier, Frédéric; Racine, Pierre; Dussault, Claude

    2013-01-01

    Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.

  15. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed Central

    Lakeman-Fraser, Poppy; Ewers, Robert M.

    2014-01-01

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at highmore » latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.« less

  17. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast.

    PubMed

    Wu, Jihua; Chen, Huili; Zhang, Youzheng

    2016-11-01

    To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Sixteen wetland locations along the Pacific coast of China, from 20°N to 40°N. Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on " c - p " colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species.

  18. Predicting species richness and distribution ranges of centipedes at the northern edge of Europe

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Elisavet; Djursvoll, Per; Simaiakis, Stylianos M.

    2016-07-01

    In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.

  19. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation.

    PubMed

    Conover, David O; Duffy, Tara A; Hice, Lyndie A

    2009-06-01

    Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.

  20. Seasonal Variations Preserved in an Extinct Neogene Scallop, Chesapecten, from Florida to Delaware, USA and its Implications for Paleobiogeography

    NASA Astrophysics Data System (ADS)

    Goewert, A. E.; Surge, D.

    2007-12-01

    High-resolution records of climate variability on deep-time scales are needed to advance our understanding of the impact of a warming climate on seasonality and ecological change along a latitudinal gradient. The Middle Pliocene Warm Interval (MPWI: 3.2-2.8 Ma) provides insight into a globally warmer world, in which, relative to today, continental and oceanic configurations and atmospheric CO2 levels were similar; sea and continental ice were reduced; and interiors of continents were arid. Accretionary hard parts of marine organisms serve as physical (growth lines and increments) and chemical (87Sr/86Sr, δ18 O and δ13C) archives of life history, ecology, and environmental conditions during the life of the animal. Our goal was to examine variations in seasonality across latitudinal (~27° to37°N) and biogeographic (tropical to cold-­temperate) gradients of the Middle Atlantic Coastal Plain (MACP) during two intervals of warming: the Middle Miocene Climate Optimum (MMCO: 17-­15 Ma) and the Middle Pliocene Warm Interval (MPWI: 3.2-2.8 Ma). We analyzed variations in annual shell growth and isotope ratios (87Sr/86Sr, δ18O and δ13C) of 12 Chesapecten shells from the extremes of their biogeographic range (tropical to warm- temperate) (MMCO: Florida and Delaware; and MPWI: Florida and Virginia). Today, Florida is warm-temperate, and Delaware and Virginia are cold-temperate. Chesapecten are an extinct genus of scallop commonly preserved in MAPC deposits. They inhabited subtidal marine environments during the Miocene and Pliocene. We used 87Sr/86Sr ratios to tightly refine the timing and modeled age of the MMCO and MPWI. Modeled ages across Chesapecten's biogeographic extremes include: Florida (MMCO) 15.5 to 14.1±0.6 Ma; Delaware (MMCO) 18.0 to 17.5±0.4 Ma; Florida (MPWI) 3.75 to 2.05±0.9 Ma; and Virginia (MPWI) 2.45 to 1.65±0.4 Ma. We estimated seasonal temperature from the δ18O time series assuming interglacial δ18OSEAWATER values of -0.05‰ and -0.35‰ for the MMCO (Florida and Delaware, respectively) and 0.96‰ and -0.50‰ for the MPWI (Florida and Virginia, respectively), accounting for latitudinal effects. Temperatures during the MMCO from Florida shells ranged from 19.7 to 31.4°C, and from Delaware shells ranged from 13.3 to 26.1°C. These data reflect diminished seasonality from Florida to Delaware at that time. Prominant annual growth lines were not apparent in these shells, a common characteristic in tropical shells. Like the MMCO temperature estimates, temperature recorded in MPWI shells from Florida lacked seasonal variability, as expected from low latitudes, with temperatures ranging from 15.6 to 21.3°C. Furthermore, like the MMCO shells, prominent annual growth lines were not evident. MPWI shells from Virginia displayed seasonal temperatures from 2.7 to 20.1°C indicating warm- temperate conditions. We predicted annual growth line formation during summer months based on studies that show modern warm-temperate bivalves inhabiting mid to high latitudes form annual growth lines during summer months. However, isotope sclerochronology revealed that these scallops produced winter growth lines. These findings have important implications for paleoceanographic and atmospheric circulation during the MPWI.

  1. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  2. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

    PubMed

    Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T

    2008-10-10

    Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.

  3. Latitudinal gradients in oceanic and watershed nitrogen sources to Pacific coast estuaries of North America

    EPA Science Inventory

    To assess the relative importance of terrestrial versus oceanic nutrient sources, we assembled natural abundance nitrogen stable isotope (δ15N) data for nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast o...

  4. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  5. Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Hou, Xuewei; Zhu, Bin; Kang, Hanqing; Gao, Jinhui

    2014-09-01

    The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the northwestern Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.

  6. Measurements of atmospheric carbonyl sulfide during the NASA Chemical Instrumentation Test and Evaluation Project: Implications for the global COS budget

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bandy, Alan R.; Thornton, Donald C.; Bates, Timothy S.

    1993-01-01

    Atmospheric carbonyl sulfide COS concentrations were measured by three analytical systems during the Chemical Instrumentation Test and Evaluation (CITE 3) project. The three systems all used cryogenic sample preconcentration and gas chromatographic (GC) separation but differed in the method of detection. The FPD system used a flame photometric detector, the MS system used a mass selective detector, and the ECD-S system used a fluorinating catalyst followed by an electron capture detector. With the FPD system, we found a mean COS concentration of 510 ppt over the North Atlantic and 442 ppt over the Tropical Atlantic. With the ECD-S system, we found a mean COS concentration of 489 ppt over the North Atlantic and 419 ppt over the Tropical Atlantic. All three systems registered a latitudinal gradient in atmospheric COS of between 1.6 and 2.0 ppt per degree of latitude, with increasing COS concentrations northward which was similar to the gradient measured by Bingemer et al. (1990). It is difficult to reconcile the measured latitudinal concentration gradient with present theories of the global COS budget since the largest sink of COS is thought to be a flux to land plants, most of which are in the northern hemisphere.

  7. Diversity and distribution of freshwater testate amoebae (protozoa) along latitudinal and trophic gradients in China.

    PubMed

    Ju, Lihua; Yang, Jun; Liu, Lemian; Wilkinson, David M

    2014-11-01

    Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P < 0.05). The relationship of diversity and latitude is, we suspect, an artifact of the altitudinal distribution of our sites. Furthermore, biomass-based Shannon-Wiener index and species richness of testate amoebae were significantly unimodally related to trophic status (P < 0.05). This is the first large-scale study showing the effects of latitude and trophic status on diversity and distribution of testate amoebae in China. Therefore, our results provide valuable baseline data on testate amoebae and contribute to lake management and our understanding of the large-scale global patterns in microorganism diversity.

  8. Remote sensing of wetland parameters related to carbon cycling

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  9. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    PubMed

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30-31°S.

  10. Latitudinal gradient of nitrous oxide: inferring source distribution from global measurements and model

    NASA Astrophysics Data System (ADS)

    Ishijima, K.; Kort, E. A.; Crotwell, A. M.; Dlugokencky, E. J.; Patra, P. K.; Tans, P. P.; Wofsy, S. C.

    2010-12-01

    Nitrous oxide (N2O) plays major role in the earth’s climate system through global warming and stratospheric ozone depletion. Recent observations from the HIPPO (Hiaper Pole to Pole Observations) campaign suggest enhanced N2O concentrations in lower and middle troposphere over tropical latitudes. However, the Atmospheric general circulation model-based Chemistry Transport model (ACTM) failed to simulate such features as in the measured N2O. We confirmed no systematic differences in ACTM and HIPPO latitudinal gradients exist for other long-lived species in the troposphere, e.g., sulfur hexafluoride (SF6), methane (CH4) and carbon dioxide (CO2). Further, we use measurements of all species from discrete samples collected at Earth's surface from NOAA/ESRL's global cooperative air sampling network to identify potential deficiencies in N2O simulations alone, which is unlikely to be arising from model transport error. We find that ACTM simulation is successfully capturing the increase in N2O by ~2 ppb from 30S to 30N, but always overestimate for the latitudes north of 30N. The latitudinal distributions of N2O emissions from all-anthropogenic, natural soil and ocean show the largest anthropogenic emission at 45-60N, which is based on the emission database developed in the 1990s. A net decrease in N2O emission in the mid-/high latitude region might have occurred in the past couple of years or earlier emission inventories overestimated the northern high latitude N2O emission.

  11. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes

    PubMed Central

    Morote, Elvira; Kochzius, Marc; Garcia-Vazquez, Eva

    2016-01-01

    Mid-trophic pelagic fish are essential components of marine ecosystems because they represent the link between plankton and higher predators. Moreover, they are the basis of the most important fisheries resources; for example, in African waters. In this study, we have sampled pelagic fish larvae in the Eastern Atlantic Ocean along a latitudinal gradient between 37°N and 2°S. We have employed Bongo nets for plankton sampling and sorted visually fish and fish larvae. Using the cytochrome oxidase I gene (COI) as a DNA barcode, we have identified 44 OTUs down to species level that correspond to 14 families, with Myctophidae being the most abundant. A few species were cosmopolitan and others latitude-specific, as was expected. The latitudinal pattern of diversity did not exhibit a temperate-tropical cline; instead, it was likely correlated with environmental conditions with a decline in low-oxygen zones. Importantly, gaps and inconsistencies in reference DNA databases impeded accurate identification to the species level of 49% of the individuals. Fish sampled from tropical latitudes and some orders, such as Perciformes, Myctophiformes and Stomiiformes, were largely unidentified due to incomplete references. Some larvae were identified based on morphology and COI analysis for comparing time and costs employed from each methodology. These results suggest the need of reinforcing DNA barcoding reference datasets of Atlantic bathypelagic tropical fish that, as main prey of top predators, are crucial for ecosystem-based management of fisheries resources. PMID:27761307

  12. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  13. Poster 16: Eclipse-induced changes of Titan's meteorology at equinox

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2016-06-01

    Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.

  14. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  15. Climate constrains the evolutionary history and biodiversity of crocodylians

    PubMed Central

    Mannion, Philip D.; Benson, Roger B. J.; Carrano, Matthew T.; Tennant, Jonathan P.; Judd, Jack; Butler, Richard J.

    2015-01-01

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A ‘modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. PMID:26399170

  16. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  17. Poleward displacement of coastal upwelling-favorable winds through the 21st century

    NASA Astrophysics Data System (ADS)

    Rykaczewski, R. R.; Dunne, J. P.; Sydeman, W. J.; Garcia-Reyes, M.; Black, B.; Bograd, S. J.

    2016-02-01

    Coastal upwelling is a critical factor influencing the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A leading conceptual hypothesis projects that the winds that induce coastal upwelling will intensify in response to increased land-sea temperature differences associated with anthropogenic global warming. We examine this hypothesis using an ensemble of coupled, ocean-atmosphere models and find limited evidence for intensification of upwelling-favorable winds or atmospheric pressure gradients in response to increasing land-sea temperature differences. However, our analyses reveal consistent latitudinal and seasonal dependencies of projected changes in wind intensity associated with poleward migration of major atmospheric high-pressure cells. Summertime winds near poleward boundaries of climatological upwelling zones are projected to intensify, while winds near equatorward boundaries are projected to weaken. Developing a better understanding of future changes in upwelling winds is essential to identifying portions of the oceans susceptible to increased hypoxia, ocean acidification, and eutrophication under climate change.

  18. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway.

    PubMed

    Cronk, Quentin; Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is presented to willow-feeding herbivores across Europe. It is anticipated that further papers will examine the insect fauna collected from these sites as part of this study.

  19. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway

    PubMed Central

    Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Abstract Background Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. New information To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is presented to willow-feeding herbivores across Europe. It is anticipated that further papers will examine the insect fauna collected from these sites as part of this study. PMID:26696761

  20. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    PubMed Central

    Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity. PMID:29449859

  1. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events.

    PubMed

    Soissons, Laura M; Haanstra, Eeke P; van Katwijk, Marieke M; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G; Cardoso, Patricia G; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M J; Bouma, Tjeerd J

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity.

  2. Soil fauna and plant litter decomposition in tropical and subalpine forests

    Treesearch

    G. Gonzalez; T.R. Seastedt

    2001-01-01

    The decomposition of plant residues is influenced by their chemical composition, the physical-chemical environment, and the decomposer organisms. Most studies interested in latitudinal gradients of decomposition have focused on substrate quality and climate effects on decomposition, and have excluded explicit recognition of the soil organisms involved in the process....

  3. A view of Antarctic ice-sheet evolution from sea-level and deep-sea Isotope Changes During the Late Cretaceous-Cenozoic

    USGS Publications Warehouse

    Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.

    2007-01-01

    18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.

  4. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  5. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing.

    PubMed

    Thompson, Fabiano L; Bruce, Thiago; Gonzalez, Alessandra; Cardoso, Alexander; Clementino, Maysa; Costagliola, Marcela; Hozbor, Constanza; Otero, Ernesto; Piccini, Claudia; Peressutti, Silvia; Schmieder, Robert; Edwards, Robert; Smith, Mathew; Takiyama, Luis Roberto; Vieira, Ricardo; Paranhos, Rodolfo; Artigas, Luis Felipe

    2011-02-01

    The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.

  6. Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?

    PubMed

    Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle

    2009-08-01

    Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.

  7. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-05-01

    The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.

  8. Latitudinal Gradient in Otolith Shape among Local Populations of Atlantic Herring (Clupea harengus L.) in Norway

    PubMed Central

    Libungan, Lísa Anne; Slotte, Aril; Husebø, Åse; Godiksen, Jane A.; Pálsson, Snæbjörn

    2015-01-01

    Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway. PMID:26101885

  9. Lunar fingerprints in the modulated incoming solar radiation: In situ insolation and latitudinal insolation gradients as two important interpretative metrics for paleoclimatic data records and theoretical climate modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.

    2018-01-01

    We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.

  10. Progenesis in Proctoeces lintoni (Fellodistomidae), a parasite of Fissurella crassa (Archaeogastropoda) in a latitudinal gradient in the Pacific Coast of South America.

    PubMed

    Oliva, M E; Huaquin, L G

    2000-08-01

    The fellodistomid Proctoeces lintoni is a common parasite of the gonads of key-hole limpets Fissurella spp. (Archaeogastropoda). It has also been found in the mantle of Octopus vulgaris and as an intestinal parasite of haemulid and gobiesocid fishes. Fissurella crassa, a host for progenetic P. lintoni, can be found from Huarmey, Peni (10 degrees S) to Chiloé, Chile (42 degrees S). Proctoeces lintoni has been found parasitizing fishes and molluscs from Callao, Peni (12 degrees S) to Valdivia, Chile (39 degrees S). Progenesis is thought to be a latitude-dependent phenomenon, and high progenesis is expected at higher latitude. In the present article, the association between latitude and progenesis was examined over a latitudinal gradient of about 3,000 km. Data suggest that progenesis of P. lintoni infecting F. crassa was not associated with latitude. Low levels of progenesis found in the Peruvian population could be a consequence of parasite-induced mortality rather than of low latitude, as would be predicted by the latitude dependence hypothesis.

  11. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  12. Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe

    NASA Astrophysics Data System (ADS)

    Acharya, Kamal Prasad; De Frenne, Pieter; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A. O.; Diekmann, Martin; Hermy, Martin; Kolb, Annette; Lemke, Isgard; Plue, Jan; Verheyen, Kris; Graae, Bente Jessen

    2017-05-01

    Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34‧N) to Norway (63°40‧N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.

  13. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  14. Diverse elevational diversity gradients in Great Smoky Mountains National Park, U.S.A.: Chapter 10

    USGS Publications Warehouse

    Sanders, Nathan J.; Dunn, Robert R.; Fitzpatrick, Matthew C.; Carlton, Christopher E.; Pogue, Michael R.; Parker, Charles R.; Simons, Theodore R.

    2009-01-01

    Why does the number of species vary geographically? The earliest naturalists puzzled over this question, as do many biogeographers and macroecologists today. Over the last 200-plus years, the most striking geographic pattern in species richness – the decline in species richness with increasing latitude – has received the most attention. Thanks to many recent theoretical developments, coupled with global-scale databases and satellite technology, the number of candidate mechanisms that shape the latitudinal diversity gradient has been whittled down to a manageable number.

  15. Ionosphere total electron content and its horizontal gradients, measured on the basis of satellite signal recordings at scattered points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misyura, V.A.; Podnos, V.A.; Kapanin, I.I.

    1973-01-01

    Translated from Kosm. Issled.; 11: No. 4, 581-585(1973). The integrated electron content of the ionosphere up to the level of the recording satellite, and the horizontal gradients of the integrated electron content (total, latitudinal, and longitudinal components), was obtained at scattered observation points located at medium and high latitudes, on the basis of recordings made of Doppler and Faraday effects on coherent signals from the satellites Explorer-22, Explorer-27, Interkosmos-2, Kosmos321, Kosmos-356, and Kosmos-381. (auth)

  16. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    PubMed

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  17. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new information on how climate change may affect temporal and geographic trends of Hg bioaccumulation in the Arctic.

  18. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    PubMed

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  19. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  20. Application of Lacustrine Biomarkers to Reconstruct Late Holocene Temperature Change in the Saskatchewan Prairies.

    NASA Astrophysics Data System (ADS)

    Cavazzin, B.; Toney, J. L.; Pearson, E. J.; Schouten, S.; Leavitt, P.; Haig, H.

    2016-12-01

    Extreme hydrological events such as prolonged droughts are among Canada's costliest natural calamities resulting in disastrous impacts on agriculture, forestry, industry, and ecosystems. Investigations into climate variations prior to significant anthropogenic modification are essential to build effective projection models and adaptation strategies needed to reduce economic, social and environmental vulnerability within the prairies eco-region. In this study we use organic geochemical analysis of lipids produced by bacteria, archaea and algae in lake and catchment sediments. These organic compounds are highly resistant to degradation and accumulate in the sediments as geochemical fossils or biomarkers. In particular we focus on Glycerol Dialkyl Glycerol Tetraethers (GDGT) biomarkers which are ubiquitous in soils and lacustrine environments and can be applied as quantitative temperature proxies in regions of the world where other proxies cannot be used. The aim of this study is to examine the relationship between GDGT distribution and temperature and assess the potential for establishing a GDGT-based paleothermometer for the Canadian prairies lakes. Our training set includes GDGT data from core-top sediments from 105 lakes across spanning a 5° latitudinal gradient and spring surface water temperature gradient of about 9°C. We identified 30 known bacterial and archaeal GDGTs, including the novel archaeal tetraether lipids with a cyclohexyl ring. These compounds are present in varying proportions in all the lakes investigated, suggesting a broad range of GDGT inputs and also potential in-situ production. We analysed the relationships between individual GDGT compounds against temperature, pH, conductivity, water depth and other environmental variables. We also examined previously published GDGT-environment indices in order to test the applicability of previously developed GDGT-based paleotemperature calibrations to the prairies lakes and assess whether a new calibration is needed specifically for this region.

  1. Hotspots and key periods of Greenland climate change during the past six decades

    NASA Astrophysics Data System (ADS)

    Abermann, J.; Hansen, B. U.; Lund, M.; Wacker, S.; Karami, M.; Cappelen, J.

    2016-12-01

    We investigate spatial gradients of air temperature and pressure and their trends in Greenland and compare these considering varying time window lengths since 1958. Both latitudinal temperature and pressure gradients are strongest during winter. An overall temperature increase of up to 0.15°C yr-1 has been observed for 1996-2014. The strongest warming happened during February at the West Coast (up to 0.6°C/yr), weaker but significant warming occurred during summer months (up to 0.3°C/yr) both in West and in East Greenland. Pressure trends are mainly negative if at all, but largely not significant. We discuss the relevance of these findings in an upscaling context of an extensive ecosystem monitoring program that was established in 1996 in Northeast Greenland (Zackenberg, www.g-e-m.dk). Improving the understanding of the interaction between the individual components of the ecosystem is its core idea, climate being the main driver. A series of studies highlights trends and variability for biotic and abiotic parameters for this period on a point scale. In order to expand trend assessments to a Greenland-wide scale, local climate trends in Zackenberg have to be put into a larger spatio-temporal context. We find that temperature trends in Northeast Greenland and the area around Zackenberg follow the general pattern but are smaller than the average in Greenland. Compared with other time windows in the past 6 decades, the study period 1996 - 2014 marks an above average warming trend; peak warming however occurred half a decade earlier. We therefore conclude that temperature-driven ecosystem changes observed in Zackenberg mark a lower boundary for environmental changes in Greenland.

  2. Thermal biology of the sub-polar–temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae)

    PubMed Central

    Cumillaf, Juan P.; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E.; Vásquez, Jorge; Rosas, Carlos

    2016-01-01

    ABSTRACT Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34–36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5–6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. PMID:26879464

  3. Carboniferous paleogeographic and paleoclimatic reconstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scotese, C.R.; Raymond, A.

    1992-01-01

    The Carboniferous was an important transitional period in earth history. The Paleozoic oceans separating the continents of Gondwana, Laurentia, Baltica, Kazakhstan, and Siberia had closed by the late Carboniferous forming the late Paleozoic supercontinent of Pangea. Plate motions which appear to have been rapid during the Early Carboniferous (6--10 cm/yr), slowed to a temperature gradient increased as the Earth's climate changed from hot-house to ice-house conditions. Sea level, which stood high during the Early Carboniferous, fell as a result of continental collision and mountain-building, and then began to rise and fall rhythmically as the South Polar ice-cap waxed and waned.more » These environmental changes intersected important evolutionary events, namely, the explosive colonization of the emergent land areas by plants and the rise of terrestrial vertebrates. In this paper the authors present paleogeographic reconstructions for 6 intervals during the Carboniferous. These maps illustrate the latitudinal position of the continents deduced from paleomagnetic data and the distribution of climatically restricted lithofacies (coal, bauxite, evaporite, calcrete, and tillite), the inferred location of active plate boundaries, and the changing configuration of mountains, land, shallow seas, and deep ocean basins. For each of these paleogeographic maps a climatic simulation was run using the Parametric Climate Model. These simulations predict the distribution of high and low pressure cells, prevailing wind directions, pole-to-equator temperature gradient, relative wetness/dryness, as well as zones of coastal upwelling.« less

  4. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.

  5. Elevational range shifts in four mountain ungulate species from the Swiss Alps

    Treesearch

    Ulf Büntgen; Lucie Greuter; Kurt Bollmann; Hannes Jenny; Andrew Liebhold; J. Diego Galván; Nils C. Stenseth; Carrie Andrew; Atle Mysterud

    2017-01-01

    Warming-induced range shifts along elevational and latitudinal gradients have been observed in several species from various taxa. The mobility and behavioral plasticity of large endothermic mammals, however, complicate the detection of climatic effects on their spatial distributions. Here, we analyzed 230,565 hunting locations of the four most abundant ungulate species...

  6. Soil organic nitrogen mineralization across a global latitudinal gradient

    Treesearch

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  7. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+

    Treesearch

    Jack W. McFarland; Roger W. Ruess; Knut Kielland; Kurt Pregitzer; Ronald Hendrick; Michael Allen

    2010-01-01

    Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal...

  8. Genetic variation in heat-stress tolerance among South American Drosophila populations.

    PubMed

    Fallis, Lindsey C; Fanara, Juan Jose; Morgan, Theodore J

    2011-10-01

    Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.

  9. Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile

    PubMed Central

    Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30–32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4–10 years at 15 sites between 28–35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30–31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30–31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30–31°S. PMID:25334020

  10. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    NASA Astrophysics Data System (ADS)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  11. Latitudinal variation in seasonal activity and mortality in ratsnakes (Elaphe obsoleta).

    PubMed

    Sperry, Jinelle H; Blouin-Demers, Gabriel; Carfagno, Gerardo L F; Weatherhead, Patrick J

    2010-06-01

    The ecology of ectotherms should be particularly affected by latitude because so much of their biology is temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will have to modify their behavior in response to climate change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio-tracked in Ontario, Illinois, and Texas, a latitudinal distance of >1500 km, to test predictions about how seasonal patterns of activity and mortality should vary with latitude. Despite pronounced differences in temperatures among study locations, and despite ratsnakes in Texas not hibernating and switching from diurnal to nocturnal activity in the summer, seasonal patterns of snake activity were remarkably similar during the months that snakes in all populations were active. Rather than being a function of temperature, activity may be driven by the timing of reproduction, which appears similar among populations. Contrary to the prediction that mortality should be highest in the most active population, overall mortality did not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent with temperature limiting the northern distribution of ratsnakes. This result was opposite that found in the only previous study of latitudinal variation in winter mortality in reptiles, which may be a consequence of whether or not the animals exhibit true hibernation. Collectively, these results suggest that, at least in the northern part of their range, ratsnakes should be able to adjust easily to, and may benefit from, a warmer climate, although climate-based changes to the snakes' prey or habitat, for example, could alter that prediction.

  12. Two-dimensional modeling of thermal inversion layers in the middle atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Theodore, B.; Chassefiere, E.

    1993-01-01

    There is some evidence that the thermal structure of the martian middle atmosphere may be altered in a significant way by the general circulation motions. Indeed, while it is well known that the circulation in the meridional plane is responsible for the reversal of the latitudinal thermal gradient at the solstice through the adiabatic heating due to sinking motions above the winter pole, here we want to emphasize that a likely by-product effect could be the formation of warm layers, mainly located in the winter hemisphere, and exhibiting an inversion of the vertical thermal gradient.

  13. Longwave emission trends over Africa and implications for Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  14. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  15. Biogeography and Change among Regional Coral Communities across the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Ateweberhan, Mebrahtu; Darling, Emily S.; Graham, Nicholas A. J.; Muthiga, Nyawira A.

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions. PMID:24718371

  16. Biogeography and change among regional coral communities across the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.

  17. Analysis of the Latitudinal Variability of Tropospheric Ozone in the Arctic Using the Large Number of Aircraft and Ozonesonde Observations in Early Summer 2008

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Tarasick, David; Hair, Jonathan; Quennehen, Boris; Ravetta, Francois; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; hide

    2016-01-01

    The goals of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55oN during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6-15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0-4 km and 4-8 km. For Canada, the model CO distribution and the weak correlation ( 30) of O3 and PV suggests that stratosphere-troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70oN, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation ( 40) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient -6 to -8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65oN, while STE contribution is more homogeneous in the latitude range 55oN to 70oN. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77oN).

  18. CRETACEOUS CLIMATE SENSITIVITY STUDY USING DINOSAUR & PLANT PALEOBIOGEOGRAPHY

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Main, D. J.; Noto, C. R.; Moore, T. L.; Scotese, C.

    2009-12-01

    The Early Cretaceous was characterized by cool poles and moderate global temperatures (~16° C). During the mid and late Cretaceous, long-term global warming (~20° - 22° C) was driven by increasing levels of CO2, rising sea level (lowering albedo) and the continuing breakup of Pangea. Paleoclimatic reconstructions for four time intervals during the Cretaceous: Middle Campanian (80 Ma), Cenomanian/Turonian (90 Ma), Early Albian (110 Ma) and Barremian-Hauterivian (130Ma) are presented here. These paleoclimate simulations were prepared using the Fast Ocean and Atmosphere Model (FOAM). The simulated results show the pattern of the pole-to-Equator temperature gradients, rainfall, surface run-off, the location of major rivers and deltas. In order to investigate the effect of potential dispersal routes on paleobiogeographic patterns, a time-slice series of maps from Early - Late Cretaceous were produced showing plots of dinosaur and plant fossil distributions. These Maps were created utilizing: 1) plant fossil localities from the GEON and Paleobiology (PBDB) databases; and 2) dinosaur fossil localities from an updated version of the Dinosauria (Weishampel, 2004) database. These results are compared to two different types of datasets, 1) Paleotemperature database for the Cretaceous and 2) locality data obtained from GEON, PBDB and Dinosauria database. Global latitudinal mean temperatures from both the model and the paelotemperature database were plotted on a series of latitudinal graphs along with the distributions of fossil plants and dinosaurs. It was found that most dinosaur localities through the Cretaceous tend to cluster within specific climate belts, or envelopes. Also, these Cretaceous maps show variance in biogeographic zonation of both plants and dinosaurs that is commensurate with reconstructed climate patterns and geography. These data are particularly useful for understanding the response of late Mesozoic ecosystems to geographic and climatic conditions that differed markedly from the present. Studies of past biotas and their changes may elucidate the role of climatic and geographic factors in driving changes in species distributions, ecosystem organization, and evolutionary dynamics over time.

  19. BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2016-11-01

    English oak (Quercus robur) and European beech (Fagus sylvatica) are amongst the most common tree species growing in Europe, influencing the annual biogenic volatile organic compound (BVOC) budget in this region. Studies have shown great variability in the emissions from these tree species, originating from both genetic variability and differences in climatic conditions between study sites. In this study, we examine the emission patterns for English oak and European beech in genetically identical individuals and the potential variation within and between sites. Leaf scale BVOC emissions, net assimilation rates and stomatal conductance were measured at the International Phenological Garden sites of Ljubljana (Slovenia), Grafrath (Germany) and Taastrup (Denmark). Sampling was conducted during three campaigns between May and July 2014. Our results show that English oak mainly emitted isoprene whilst European beech released monoterpenes. The relative contribution of the most emitted compounds from the two species remained stable across latitudes. The contribution of isoprene for English oak from Grafrath and Taastrup ranged between 92 and 97 % of the total BVOC emissions, whilst sabinene and limonene for European beech ranged from 30.5 to 40.5 and 9 to 15 % respectively for all three sites. The relative contribution of isoprene for English oak at Ljubljana was lower (78 %) in comparison to the other sites, most likely caused by frost damage in early spring. The variability in total leaf-level emission rates from the same site was small, whereas there were greater differences between sites. These differences were probably caused by short-term weather events and plant stress. A difference in age did not seem to affect the emission patterns for the selected trees. This study highlights the significance of within-genotypic variation of BVOC emission capacities for English oak and European beech, the influence of climatic variables such as temperature and light on emission intensities and the potential stability in relative compound contribution across a latitudinal gradient.

  20. Life history attributes of fishes along the latitudinal gradient of the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Guy, C.S.

    2002-01-01

    Populations of two short-lived species (emerald shiner Notropis atherinoides and sicklefin chub Macrhybopsis meeki) and three long-lived species (freshwater drum Aplodinotus grunniens, river carpsucker Carpiodes carpio, and sauger Stizostedion canadense) were studied in the Missouri River to examine spatial variations in life history characteristics across a latitudinal and thermal gradient (38??47???N to 48??03???N). The life history characteristics included longevity (maximum age), the rate at which asymptotic length was approached (K from the von Bertalanffy growth equation), the mean back-calculated length at age, and growth rates during the first year of life (mm/degree-day and mm/d). The mean water temperature and number of days in the growing season averaged 1.3 times greater in the southern than in the northern latitudes, while degree-days averaged twice as great. The longevity of all species except freshwater drum increased significantly from south to north, but the relationships between maximum age and latitude were curvilinear for short-lived species and linear for long-lived species. The von Bertalanffy growth coefficient for river carpsuckers and saugers increased from north to south, as indicated by significant negative relationships between K and latitude. Mean back-calculated length at age was negatively related to latitude for freshwater drums (???age 4) and saugers (ages 1-5) but positively related to latitude for river carpsuckers (???age 6). One of the growth rates examined (mm/degree-day) increased significantly from low to high latitudes for emerald shiners, sicklefin chubs, freshwater drums, and river carpsuckers during the first growing season. The other growth rate (mm/d) increased significantly from low to high latitudes for emerald shiners but was inversely related to latitude for saugers. These results suggest that the thermal regime related to latitude influences the life history characteristics of fishes in the Missouri River.

  1. Rhizosphere effect on phosphorus availability in forest soils at different altitudes.

    NASA Astrophysics Data System (ADS)

    De Feudis, Mauro; Cardelli, Valeria; Massaccesi, Luisa; Bol, Roland; Willbold, Sabine; Cocco, Stefania; Corti, Giuseppe; Agnelli, Alberto

    2016-04-01

    Phosphorus (P) is an essential nutrient for plants but it is one of the least available mineral nutrients, and can substantially limit plant growth. Although plants are able to respond to the P shortage, the global warming might modify the soil-plant-microorganisms system and reduce P availability. We evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of the Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results suggested that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m a.s.l., as the soils at higher altitude showed greater TOC, organic and available P contents, and alkaline mono-phosphatases activity than the soils at 800 m a.s.l. Compared to the soils at lower altitude, a marked rhizosphere effect was found at 1000 m a.s.l., and it was mainly attributed to the release of labile organics through rhizodeposition processes. These labile organic compounds were considered able to induce a "priming effect" that fostered the mineralization of the soil organic matter. The enhanced organic carbon cycling, in turn, likely promoted the mineralization of the organic P forms. This was supported by the smaller proportion of orthophosphate monoesters found in the P pool of the rhizosphere than in that of the soil far from the roots, with a consequent increase of the amount of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community promotes the rhizospheric biochemical processes and, in particular, P cycling.

  2. Growth rate responses of Missouri and lower Yellowstone river fishes to a latitudinal gradient

    USGS Publications Warehouse

    Pegg, M.A.; Pierce, C.L.

    2001-01-01

    Growth rate coefficients estimated for channel catfish Ictalurus punctatus, emerald shiners Notropis atherinoides, freshwater drums Aplodinotus grunniens, river carpsuckers Carpiodes carpio and saugers Stizostedion canadense collected in 1996-1998 from nine river sections of the Missouri and lower Yellowstone rivers at two life-stages (young-of-the-year and age 1 + years) were significantly different among sections. However, they showed no river-wide latitudinal trend except for age 1 + years emerald shiners that did show a weak negative relation between growth and both latitude and length of growing season. The results suggest growth rates of fishes along the Missouri River system are complex and could be of significance in the management and conservation of fish communities in this altered system. ?? 2001 The Fisheries Society of the British Isles.

  3. The role of the winter residual circulation in the summer mesopause regions in WACCM

    NASA Astrophysics Data System (ADS)

    Sanne Kuilman, Maartje; Karlsson, Bodil

    2018-03-01

    High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.

  4. Mountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United States

    Treesearch

    Barbara Bentz; James Vandygriff; Camille Jensen; Tom Coleman; Patricia Maloney; Sheri Smith; Amanda Grady; Greta Schen-Langenheim

    2014-01-01

    Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of...

  5. Plasticity in physiological traits in conifers: implications for response to climate change in the western U.S

    Treesearch

    NE Grulke

    2010-01-01

    Population variation in ecophysiological traits of four co-occurring montane conifers was measured on a large latitudinal gradient to quantitatively assess their potential for response to environmental change. White fir (Abies concolor) had the highest variability, gross photosynthetic rate (Pg), and foliar carbon (C) and nitrogen (N) content. Despite low water use...

  6. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed Central

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y.; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-01-01

    Background and Aims The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity–area and diversity–age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Methods Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. Key Results The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Conclusions Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens. PMID:20237117

  7. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  8. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient.

    PubMed

    Reynolds, Lorien L; Johnson, Bart R; Pfeifer-Meister, Laurel; Bridgham, Scott D

    2015-01-01

    Soil respiration is expected to increase with rising global temperatures but the degree of response may depend on soil moisture and other local factors. Experimental climate change studies from single sites cannot discern whether an observed response is site-dependent or generalizable. To deconvolve site-specific vs. regional climatic controls, we examined soil respiration for 18 months along a 520 km climate gradient in three Pacific Northwest, USA prairies that represents increasingly severe Mediterranean conditions from north to south. At each site we implemented a fully factorial combination of 2.5-3 °C warming and 20% added precipitation intensity. The response of soil respiration to warming was driven primarily by the latitudinal climate gradient and not site-specific factors. Warming increased respiration at all sites during months when soil moisture was not limiting. However, these gains were offset by reductions in respiration during seasonal transitions and summer drought due to lengthened periods of soil moisture limitation. The degree of this offset varied along the north-south climate gradient such that in 2011 warming increased cumulative annual soil respiration 28.6% in the northern site, 13.5% in the central site, and not at all in the southern site. Precipitation also stimulated soil respiration more frequently in the south, consistent with an increased duration of moisture limitation. The best predictors of soil respiration in nonlinear models were the Normalized Difference Vegetation Index (NDVI), antecedent soil moisture, and temperature but these models provided biased results at high and low soil respiration. NDVI was an effective integrator of climate and site differences in plant productivity in terms of their combined effects on soil respiration. Our results suggest that soil moisture limitation can offset the effect of warming on soil respiration, and that greater growing-season moisture limitation would constrain cumulative annual responses to warming. © 2014 John Wiley & Sons Ltd.

  9. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    PubMed

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  11. The Effect of Latitudinal Variation on Shrimp Reproductive Strategies.

    PubMed

    van de Kerk, Madelon; Jones Littles, Chanda; Saucedo, Omar; Lorenzen, Kai

    2016-01-01

    Reproductive strategies comprise the timing and frequency of reproductive events and the number of offspring per reproductive event, depending on factors such as climate conditions. Therefore, species that exhibit plasticity in the allocation of reproductive effort can alter their behavior in response to climate change. Studying how the reproductive strategy of species varies along the latitudinal gradient can help us understand and predict how they will respond to climate change. We investigated the effects of the temporal allocation of reproductive effort on the population size of brown shrimp (Farfantepenaeus aztecus) along a latitudinal gradient. Multiple shrimp species exhibit variation in their reproductive strategies, and given the economic importance of brown shrimp to the commercial fishing sector of the Unites States, changes in the timing of their reproduction could have significant economic and social consequences. We used a stage-based, density-dependent matrix population model tailored to the life history of brown shrimp. Shrimp growth rates and environmental carrying capacity were varied based on the seasonal climate conditions at different latitudes, and we estimated the population size at equilibrium. The length of the growing season increased with decreasing latitude and the reproductive strategy leading to the highest population size changed from one annual birth pulse with high reproductive output to continuous low-output reproduction. Hence, our model confirms the classical paradigm of continuous reproduction at low latitudes, with increased seasonality of the breeding period towards the poles. Our results also demonstrate the potential for variation in climate to affect the optimal reproductive strategy for achieving maximum population sizes. Certainly, understanding these dynamics may inform more comprehensive management strategies for commercially important species like brown shrimp.

  12. Chromosome number variation in two antipodean floras.

    PubMed

    Peruzzi, Lorenzo; Dawson, Murray I; Bedini, Gianni

    2011-01-01

    We compared chromosome number (CN) variation in the nearly antipodean Italian and New Zealand floras to verify (i) whether patterns of variation reflect their similar latitudinal ranges or their different biogeographic/taxonomic contexts, (ii) if any differences are equally distributed across major taxa/lineages and (iii) if the frequency, number and taxonomic distribution of B-chromosomes differ between the two countries. We compared two datasets comprising 3426 (Italy) and 2525 (New Zealand) distinct cytotypes. We also compared a subset based on taxonomic orders and superimposed them onto a phylogeny of vascular plants. We used standard statistics, histograms, and either analysis of variance or Kruskal-Wallis tests to analyse the data. Mean CN of the vascular New Zealand flora is about twice that of Italy. For most orders, mean CN values for New Zealand are higher than those of the Italian flora and the differences are statistically significant. Further differences in CN variation among the orders and main clades that we studied, irrespective of geographical distinctions, are revealed. No correlation was found between chromosome and B-chromosome number. Mean CN of the whole New Zealand dataset is about twice that of the Italian flora. This suggests that extensive polyploidization played a major role in the evolution of the New Zealand vascular flora that is characterized by a rate of high endemism. Our results show that the hypothesis of a polyploid increase proportional to distance from the Equator cannot be applied to territories with the same latitudinal ranges but placed in different hemispheres. We suggest that bioclimatic gradients, rather than or in addition to latitudinal gradients, might account for a polyploidy increase. Our data also suggest that any adaptive role of B-chromosomes at geographic scale may be sought in their frequency rather than in their number.

  13. Chromosome number variation in two antipodean floras

    PubMed Central

    Peruzzi, Lorenzo; Dawson, Murray I.; Bedini, Gianni

    2011-01-01

    Background and aims We compared chromosome number (CN) variation in the nearly antipodean Italian and New Zealand floras to verify (i) whether patterns of variation reflect their similar latitudinal ranges or their different biogeographic/taxonomic contexts, (ii) if any differences are equally distributed across major taxa/lineages and (iii) if the frequency, number and taxonomic distribution of B-chromosomes differ between the two countries. Methodology We compared two datasets comprising 3426 (Italy) and 2525 (New Zealand) distinct cytotypes. We also compared a subset based on taxonomic orders and superimposed them onto a phylogeny of vascular plants. We used standard statistics, histograms, and either analysis of variance or Kruskal–Wallis tests to analyse the data. Principal results Mean CN of the vascular New Zealand flora is about twice that of Italy. For most orders, mean CN values for New Zealand are higher than those of the Italian flora and the differences are statistically significant. Further differences in CN variation among the orders and main clades that we studied, irrespective of geographical distinctions, are revealed. No correlation was found between chromosome and B-chromosome number. Conclusions Mean CN of the whole New Zealand dataset is about twice that of the Italian flora. This suggests that extensive polyploidization played a major role in the evolution of the New Zealand vascular flora that is characterized by a rate of high endemism. Our results show that the hypothesis of a polyploid increase proportional to distance from the Equator cannot be applied to territories with the same latitudinal ranges but placed in different hemispheres. We suggest that bioclimatic gradients, rather than or in addition to latitudinal gradients, might account for a polyploidy increase. Our data also suggest that any adaptive role of B-chromosomes at geographic scale may be sought in their frequency rather than in their number. PMID:22476490

  14. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    USGS Publications Warehouse

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  15. Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    PubMed Central

    Sanborn, Allen F.; Heath, James E.; Phillips, Polly K.; Heath, Maxine S.; Noriega, Fernando G.

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors. PMID:22242117

  16. Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae).

    PubMed

    Cumillaf, Juan P; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E; Vásquez, Jorge; Rosas, Carlos

    2016-02-15

    Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34-36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5-6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. © 2016. Published by The Company of Biologists Ltd.

  17. Global correlation between surface heat fluxes and insolation in the 11-year solar cycle: The latitudinal effect

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2014-12-01

    Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.

  18. Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World

    PubMed Central

    Anderson, Alexander S.; Storlie, Collin J.; Shoo, Luke P.; Pearson, Richard G.; Williams, Stephen E.

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity. PMID:23936005

  19. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.

    PubMed

    Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.

  20. Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2003-12-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.

  1. Methane from the Tropospheric Emission Spectrometer (TES)

    NASA Technical Reports Server (NTRS)

    Payne, Vivienne; Worden, John; Kulawik, Susan; Frankenberg, Christian; Bowman, Kevin; Wecht, Kevin

    2012-01-01

    TES V5 CH4 captures latitudinal gradients, regional variability and interannual variation in the free troposphere. V5 joint retrievals offer improved sensitivity to lower troposphere. Time series extends from 2004 to present. V5 reprocessing in progress. Upper tropospheric bias. Mitigated by N2O correction. Appears largely spatially uniform, so can be corrected. How to relate free-tropospheric values to surface emissions.

  2. White oak growth after 23 Years in a three-site provenance/progeny trial on a latitudinal gradient in Indiana

    Treesearch

    Yen-Ning Huang; Hao Zhang; Scott Rogers; Mark Coggeshall; Keith Woeste

    2015-01-01

    To increase the availability of improved, adapted white oak (Quercus alba L.) for midwestern United States landowners, we analyzed data from three 23-year-old provenance/progeny tests of 70 open-pollinated progenies from 17 provenances. Our goal was to estimate the heritability of height growth and range of adaptation and ultimately to determine...

  3. The North-South Asymmetry of the Heliospheric Current Sheet: Results of an MHD Simulation

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.

    2013-01-01

    A displacement of the heliospheric current sheet (HCS) south of the helioequator by approx.10deg was proposed by Simpson et al. (1996) as a possible explanation of the north-south asymmetry in the galactic cosmic rays observed by Ulysses during its first fast transit in 1994-1995. The idea was not supported by magnetic field measurements on Ulysses and, on this ground, was dismissed by Simpson et al. (1996). In addition, Erdos & Balogh (1998) argued that any north-south symmetry was unlikely as there should be flux balance between the magnetic sectors of opposite polarity. Nonetheless, many in the scientific community have accepted the original suggestion of Simpson et al. (1996) that a displacement of the HCS was responsible for the cosmic ray asymmetry. In this paper, using a magnetohydrodynamic model of the solar corona and solar wind that includes both dipole and quadrupole magnetic source terms, we show that a north-south asymmetry of the magnetic field on the Sun does not give rise to a displacement of the HCS. The lack of displacement of the HCS results from a latitudinal redistribution of magnetic flux near the Sun where the plasma beta much < 1. The latitudinal redistribution is a direct consequence of the magnetic field gradient between pole and equator. Near the Sun, the latitudinal gradient in magnetic field generates meridional flows directed equatorward that tend to relax the gradient in the magnetic field (to make it more latitude-independent) as heliocentric distance increases. If there is an asymmetry between north and south magnetic field strength then the meridional flows are also asymmetric (i.e., stronger in the hemisphere of stronger magnetic field). Because the magnetic fluxes (positive and negative) in the hemispheres must be equal, the redistribution shifts the HCS into balance by approx. 16 R(solar mass). At larger distances, where the magnetic field is relatively weak (beta much > 1), the HCS can be displaced if there is a difference in total pressure between the hemispheres.

  4. Ostracod body size trends do not follow either Bergmann's rule or Cope's rule during periods of constant temperature increase

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.

    2013-12-01

    Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.

  5. An isotopic comparison of cross-latitudinal horse hair data

    NASA Astrophysics Data System (ADS)

    Thompson, Elisabeth; Ramsey, Christopher

    2017-04-01

    This study explores whether the Rayleigh distillation process latitude effect, of depleted δ18O in precipitation toward the poles, can be observed in horse hair. This study specifically compares δ18O values in horse hair with meteorological variables, and examines whether regional changes in global climate can be observed. The sampling sites and the pony breeds used in this study will add to the increasing network of isotopic horse hair data and will create an even better understanding of the intra-species variation within the δ18O values of horse hair. By directly correlating the meteorological variables to δ18O variations, the effects of specific weather events at different latitudes can also be explored at a very high resolution. 24 horses were sampled within approximately 24 hours on the 7th March 2016 from Thordale Stud in Shetland; the Icelandic Food And Veterinary Authority in Iceland; the Exmoor Pony Centre in Exmoor; and the Pigeon House Equestrian Centre in Oxfordshire. Starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. Preliminary results confirm the hypothesis, demonstrating that a study of oxygen isotope ratios in horse hair from Oxfordshire to Iceland shows a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures.

  6. Analysis of spatial patterns underlying the linkage between solar irradiance and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Balling, Robert C.; Roy, Shouraseni Sen

    2005-06-01

    Many scientists have noted that global temperature anomalies were highly correlated with solar irradiance values until sometime in the 1970s, but since that time, the pronounced warming in the near-surface temperature record is not explained by variations or trends in solar receipt. In this investigation, spatial dimensions are explored in the relationship between irradiance and near-surface air temperatures. At the scale of individual 5° by 5° grid cells, the solar control on annual temperature variations is not statistically significant. When the temperature data are aggregated by 5° latitudinal bands, the solar - temperature connect is generally significant, and in every band, there is substantial evidence that a non-solar control has become dominant in recent decades. The buildup of greenhouse gases and/or some other global-scale feedback, such as widespread changes in atmospheric water vapor, emerge as potential explanations for the recent residual warming found in all latitudinal bands.

  7. Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Seghieri, Josiane; Vescovo, Aude; Padel, Karine; Soubie, Remy; Arjounin, Marc; Boulain, Nicolas; de Rosnay, Patricia; Galle, Sylvie; Gosset, Marielle; Mouctar, Abakar H.; Peugeot, Christophe; Timouk, Franck

    2009-08-01

    SummaryThe study quantifies the relationships at local scale between phenology and determinants of climate and soil water resources at two sites located along the latitudinal gradient of West Africa, one in the central Sahel (Mali), the other in the Sudanian bioclimatic zone (Benin). The aim is to improve our knowledge on possible vegetation response to possible climate change. Within the Sudanian site, average annual rainfall is 1200 mm, extending from April to October, while, in the Sahelian site, it is 370 mm, occurring from June to September. Physical data were collected from the African Monsoon Multidisciplinary Analysis research programme. The phenology of the dominant species was monitored in four types of vegetation cover at the wetter site, and in three types of vegetation cover at the drier site. For each sampled plant, leafing, flowering and fruiting were recorded as binary variables in terms of the presence/absence of phenophases. A small proportion of the variability of each phenophase occurrence is explained by the logit models. However, rainfall rise is significantly linked to leafing probability increase in the Sahelian site but not in the Sudanian site. Day length extension and temperature decrease are significantly correlated with an increase in leafing in the Sudanian site, but not in the Sahelian. On both sites, the increase in cumulative rainfall is not found to be linked to an increased probability of reproductive phenophases (negative or non-significant relationships). Air temperature is positively correlated with flowering rate in the Sudanian site, but, all other factors being constant, no climate factors are found to be highly significant of flowering occurrence in the Sahel. Fruiting probability is positively correlated mainly with temperature within the Sahelian site. Leafing occurrence is positively correlated with soil moisture in the 0-1 m layer for the Sudanian site, but not for the Sahelian site. Significant relationships between fruiting occurrence and soil moisture may reflect a prior selection of plants on fruiting period that maximizes seed dispersion and germination differently at the two sites. While vegetative and reproduction schedules may be determined by specific genetic factors, the physical environment controls the possibility of their expression. Reduction of the rainfall amount and intensity may increase reproduction rates in wet areas. Although this factor should decrease leafing rate, it does not influence reproduction at dry sites, except through the decrease in air humidity. In wetter areas, increasing temperature may reduce leafing, but may increase reproduction rates. Cover reduction may have an impact on local physical factors and, consequently, probably also affects vegetation phenology.

  8. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. Copyright © 2015, American Association for the Advancement of Science.

  9. Comparaison of last centuries variability in the eastern and central Pacific reconstructed from massive coral geochemical tracers

    NASA Astrophysics Data System (ADS)

    Moreau, Melanie; Corrège, Thierry; Cole, Julie; Le Cornec, Florence; Edwards, Lawrence; Cheng, Hai; Charlier, Karine

    2014-05-01

    The tropical Pacific is under the influence of different climate modes (from the seasonal to the decadal scale) and, through teleconnections, affects the global climate. At the seasonal scale the latitudinal migration of the Intertropical Convergence Zone (ITCZ) drive the hydrological dynamic of the tropical zone. The tropical Pacific is also a place of strong and variable zonal gradients due to the El Niño Southern Oscillation phenomenon (ENSO) at the interannual scale. A good amount of data is available in the western and the central part of the Pacific to reconstruct climatic parameters such as sea surface temperature (SST) and sea surface salinity (SSS) while there is a striking lack of data in the eastern part. To better estimate the zonal gradients in the tropical Pacific and the different climatic processes in the last two centuries, we present geochemical results (Sr/Ca and δ18O) obtained from aragonitic coral skeletons (Porites genus) from Clipperton atoll (10° N, 109° W) and the Marquesas Islands (10° S, 140° W). Clipperton being the only atoll located in the northern part of the ITCZ latitudinal migration area, information about eastern Pacific hydrological cycle and advection can be obtained. On the other hand, the precise chronology of the Clipperton coral and the comparaison with the records from the Marquesas Islands allows us to calculate SST gradients between the eastern and central Pacific. We will discuss about the recent theory of an El Niño-like condition triggered by a slowdown of the equatorial Walker circulation under global warming. We will also discuss about the evolution (frequency and intensity) of the two differents 'flavours' of El Niño (e.g. the canonical eastern El Niño and the central El Niño Modoki) through the 20thcentury. Indeed the canonical El Niño is characterised by a maximum SST anomaly in the eastern Pacific while the El Niño Modoki is characterised by a maximum SST anomaly persisting in the central Pacific. A better comprehension of the evolution of the both kind of El Niño is a major issue because each of them have distinct global impacts.

  10. Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ardyna, Mathieu; Claustre, Hervé; Sallée, Jean-Baptiste; D'Ovidio, Francesco; Gentili, Bernard; van Dijken, Gert; D'Ortenzio, Fabrizio; Arrigo, Kevin R.

    2017-05-01

    The Southern Ocean (SO), an area highly sensitive to climate change, is currently experiencing rapid warming and freshening. Such drastic physical changes might significantly alter the SO's biological pump. For more accurate predictions of the possible evolution of this pump, a better understanding of the environmental factors controlling SO phytoplankton dynamics is needed. Here we present a satellite-based study deciphering the complex environmental control of phytoplankton biomass (PB) and phenology (PH; timing and magnitude of phytoplankton blooms) in the SO. We reveal that PH and PB are mostly organized in the SO at two scales: a large latitudinal scale and a regional scale. Latitudinally, a clear gradient in the timing of bloom occurrence appears tightly linked to the seasonal cycle in irradiance, with some exceptions in specific light-limited regimes (i.e., well-mixed areas). Superimposed on this latitudinal scale, zonal asymmetries, up to 3 orders of magnitude, in regional-scale PB are mainly driven by local advective and iron supply processes. These findings provide a global understanding of PB and PH in the SO, which is of fundamental interest for identifying and explaining ongoing changes as well as predicting future changes in the SO biological pump.

  11. Analysis of the Latitudinal Variability of Tropospheric Ozone in the Arctic Using the Large Number of Aircraft and Ozonesonde Observations in Early Summer 2008

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Quennehen, Boris; Ravetta, Francois; Hair, Jonathan; Tarasick, David; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; hide

    2016-01-01

    The goal of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55oN during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6-15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0-4 km and 4-8 km. For Canada, the model CO distribution and the weak correlation (less than 30%) of O3 and PV suggests that stratosphere troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70 deg N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation (greater than 40%) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient -6 to -8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65 deg N, while STE contribution is more homogeneous in the latitude range 55 deg N to 70 deg N. A positive ozone latitudinal gradient of 12 ppbv is 1 observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77 deg N).

  12. Understanding Extreme Precipitation Behaviour in British Columbia's Lower Mainland Using Historical and Proxy Records

    NASA Astrophysics Data System (ADS)

    Spry, Christina

    In British Columbia, Pineapple Express storms can lead to flooding, slope failures and negative impacts to water quality. Mitigating the impacts of extreme weather events in a changing climate requires an understanding of how local climate responds to regional-toglobal climate forcing patterns. In this study, I use historical and proxy data to identify the distinguishing characteristics of Pineapple Express storms and to develop a tree ring oxygen isotope record (1960--1995) of local climate conditions in the Lower Mainland of British Columbia. I found that high magnitude Pineapple Express storms have significantly higher precipitation and streamflow than other storms types, which result in relatively high contributions of Pineapple Express storms to the annual water budget. As well, Pineapple Express precipitation is characterized by an enriched delta18O isotopic signature when compared to precipitation originating from the North Pacific Ocean. However, differences in source water do not appear to be driving the variability in tree ring delta18O ratios. Instead, tree ring isotopic values exhibit a regional climate pattern that is strongly driven by latitudinal temperature gradients and the Rayleigh distillation effect. Therefore, future warmer conditions may decrease the temperature gradient between the equator and the poles, which can be recorded in the tree ring isotope record. The results also suggest that warmer temperatures due to climate change could result in more active Pineapple Express storm seasons, with multiple PE storms happening over a short period of time. Concurrent storms significantly increase the risk to society because the resulting antecedent saturated soil conditions can trigger precipitationinduced natural hazards. Keywords: extreme weather; stable isotopes; Pineapple Express; British Columbia; climate change; tree rings.

  13. Variation in Thermal Sensitivity and Thermal Tolerances in an Invasive Species across a Climatic Gradient: Lessons from the Land Snail Cornu aspersum

    PubMed Central

    Gaitán-Espitia, Juan Diego; Belén Arias, María; Lardies, Marco A.; Nespolo, Roberto F.

    2013-01-01

    The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species’ distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the “hotter is better” and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints (“hotter is better”) and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery. PMID:23940617

  14. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.

    PubMed

    Gaitán-Espitia, Juan Diego; Belén Arias, María; Lardies, Marco A; Nespolo, Roberto F

    2013-01-01

    The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better") and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.

  15. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed.

    PubMed

    Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver

    2014-03-01

    Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.

  16. Temporal and spatial patterns in fire occurrence during the establishment of mixed-oak forests in eastern North America

    Treesearch

    Ryan W. McEwan; Todd F. Hutchinson; Robert P. Long; Robert D. Ford; Brian C. McCarthy

    2007-01-01

    What was the role of fire during the establishment of the current overstory (ca. 1870-1940) in mixed-oak forests of eastern North America? Nine sites representing a 240-km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Basal cross-sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire...

  17. Niche overlap of competing carnivores across climatic gradients and the conservation implications of climate change at geographic range margins

    Treesearch

    William J. Zielinski; Jody M. Tucker; Kerry M. Rennie

    2017-01-01

    There is considerable interest in factors controlling “warm-edge” limits – the lower elevation and latitudinal edges of a species' range. Understanding whether conservation measures can mitigate anticipated change in climate requires consideration of future climate as well as species interactions. We explored niche relations of martens and fishers at their...

  18. Levels, trends and health concerns of atmospheric PAHs in Europe

    NASA Astrophysics Data System (ADS)

    Garrido, Adrián; Jiménez-Guerrero, Pedro; Ratola, Nuno

    2014-12-01

    Changes in climate can affect the concentration patterns of polycyclic aromatic hydrocarbons (PAHs) by altering the dispersion (wind speed, mixing layer height, convective fronts), deposition by precipitation, dry deposition, photochemistry, natural emissions and background concentrations. This means the evolution trends of these pollutants have to be studied under a multi-scale perspective, allowing the establishment of transport patterns and distribution of PAHs. In this sense, this work tries to unveil the atmospheric behaviour of these pollutants using temporal data series collected in different stations from the European Monitoring and Evaluation Programme (EMEP) air sampling network. These sites are thought to avoid the direct influence of emitting areas (background stations), allowing the study of long-range transport effects, intra- and trans-annual variability, relationships between concentrations patterns and meteorological variables and latitudinal gradients of PAH levels in Europe. Overall, a typical high concentration pattern was found for the colder months (and an opposite behaviour is found for summertime). Negative trends were detected over high latitudes, for instance, in Svalbard (Norway), whereas for the United Kingdom the pattern is the inverse. Also, negative latitudinal gradients were observed in 4 of the 15 PAHs studied. Finally, air quality parameters revealed concern over human health issues, given the recent increase of BaP levels in Europe.

  19. Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems.

    PubMed

    Martin, Leanne M; Polley, H Wayne; Daneshgar, Pedram P; Harris, Mary A; Wilsey, Brian J

    2014-06-01

    Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36-38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.

  20. Latitude delineates patterns of biogeography in terrestrial Streptomyces.

    PubMed

    Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H

    2016-12-01

    The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  2. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  3. Plasticity in physiological traits in conifers: implications for response to climate change in the western U.S.

    PubMed

    Grulke, N E

    2010-06-01

    Population variation in ecophysiological traits of four co-occurring montane conifers was measured on a large latitudinal gradient to quantitatively assess their potential for response to environmental change. White fir (Abies concolor) had the highest variability, gross photosynthetic rate (Pg), and foliar carbon (C) and nitrogen (N) content. Despite low water use efficiency (WUE), stomatal conductance (gs) of fir was the most responsive to unfavorable environmental conditions. Pinus lambertiana exhibited the least variability in Pg and WUE, and is likely to be the most vulnerable to environmental changes. Pinus ponderosa had an intermediate level of variability, and high needle growth at its higher elevational limits. Pinus Jeffreyi also had intermediate variability, but high needle growth at its southern latitudinal and lower elevational limits. The attributes used to assess tree vigor were effective in predicting population vulnerability to abiotic (drought) and biotic (herbivore) stresses. Published by Elsevier Ltd.

  4. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.

    PubMed

    Dani, K G Srikanta; Loreto, Francesco

    2017-05-01

    Marine phytoplankton emit volatile organic compounds (VOCs) such as dimethyl sulfide (DMS) and isoprene that influence air quality, cloud dynamics, and planetary albedo. We show that globally (i) marine phytoplankton taxa tend to emit either DMS or isoprene, and (ii) sea-water surface concentration and emission hotspots of DMS and isoprene have opposite latitudinal gradients. We argue that a convergence of antioxidant functions between DMS and isoprene is possible, driven by potential metabolic competition for photosynthetic substrates. Linking phytoplankton emission traits to their latitudinal niches, we hypothesize that natural selection favors DMS emission in cold (polar) waters and isoprene emission in warm (tropical) oceans, and that global warming may expand the geographic range of marine isoprene-emitters. A trade-off between DMS and isoprene at metabolic, organismal, and geographic levels may have important consequences for future marine biosphere-atmosphere interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phenological response of sea turtles to environmental variation across a species' northern range.

    PubMed

    Mazaris, Antonios D; Kallimanis, Athanasios S; Pantis, John D; Hays, Graeme C

    2013-01-22

    Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25-39° 'N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently.

  6. The Secret to Successful Deep-Sea Invasion: Does Low Temperature Hold the Key?

    PubMed Central

    Smith, Kathryn E.; Thatje, Sven

    2012-01-01

    There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients. PMID:23227254

  7. The secret to successful deep-sea invasion: does low temperature hold the key?

    PubMed

    Smith, Kathryn E; Thatje, Sven

    2012-01-01

    There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.

  8. Phenological response of sea turtles to environmental variation across a species' northern range

    PubMed Central

    Mazaris, Antonios D.; Kallimanis, Athanasios S.; Pantis, John D.; Hays, Graeme C.

    2013-01-01

    Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25–39° ′N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently. PMID:23193130

  9. Latitudinal variability of the dynamic linkage between temperature and atmospheric carbon dioxide concentrations - Latitudinal variability

    NASA Astrophysics Data System (ADS)

    Triacca, Umberto; Di Iorio, Francesca

    2018-06-01

    In this paper, a novel data-driven approach is used to investigate the presence of spatial differences in the dynamic linkage between temperature and atmospheric carbon dioxide concentrations. This linkage seems to be latitude dependent. The main findings of the study are as follows. In the latitude belts surrounding the equator (0°- 24° N and 0°- 24° S), the link seems very similar. On the opposite, the patterns of the temperature CO2 link in the Arctic is very distant from those concerning the equatorial regions and other latitude bands in the South Hemisphere. This big distance is consistent with the so-called Arctic amplification phenomenon. Further, it is important to underline that this observational data-based analysis provides an independent statistical confirmation of the results from global circulation modelling.

  10. Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.

    2016-12-01

    Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.

  11. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  12. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential.

    PubMed

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.

  13. Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, Ianthella basta

    PubMed Central

    Luter, Heidi M.; Whalan, Steve; Webster, Nicole S.

    2012-01-01

    Background Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Methodology/Principal Findings Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Conclusions/Significance Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species. PMID:22745827

  14. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta.

    PubMed

    Luter, Heidi M; Whalan, Steve; Webster, Nicole S

    2012-01-01

    Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species.

  15. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides.

    PubMed

    Wu, Hao; Ismail, Mohannad; Ding, Jianqing

    2017-01-01

    Global warming could accelerate the spread of invasive species to higher latitudes and intensify their effects on native species. Here, we report results of two years of field surveys along a latitudinal gradient (21°N to 31°N) in southern China, to determine the species structure of the invasive plant Alternanthera philoxeroides community. We also performed a replacement series experiment (mono and mixed) to evaluate the effects of elevated temperature on the competitiveness of A. philoxeroides with the native co-occurring species Digitaria sanguinalis. In the field survey, we found that the dominance of A. philoxeroides increased with increasing of latitude gradient while cover of D. sanguinalis decreased. In monospecific plantings, artificial warming reduced the length of D. sanguinalis roots. In mixed plantings, warming reduced both A. philoxeroides abundance and D. sanguinalis stem length when A. philoxeroides was more prevalent in the planting. Warming also significantly reduced D. sanguinalis biomass, but increased that of A. philoxeroides. In addition, elevated temperatures significantly reduced the relative yield (RY) of D. sanguinalis, particularly when A. philoxeroides was planted in higher proportion in the plot. These results suggest that the invasiveness of A. philoxeroides increased with increasing latitude, and that warming may increase the effectiveness of its interspecific competition with D. sanguinalis. Hence, under global warming conditions, the harm to native species from A. philoxeroides would increase at higher latitudes. Our findings are critical for predicting the invasiveness of alien species under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tree-Ring Stable Isotopes Reveal Twentieth-Century Increases in Water-Use Efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains

    PubMed Central

    Tognetti, Roberto; Lombardi, Fabio; Lasserre, Bruno; Cherubini, Paolo; Marchetti, Marco

    2014-01-01

    Changes in intrinsic water use efficiency (iWUE) were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI) along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration), iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration) and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations. PMID:25398040

  17. Climate change and the middle atmosphere. II - The impact of volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Rind, D.; Balachandran, N. K.; Suozzo, R.

    1992-01-01

    The response of the middle atmosphere to an increase in stratospheric aerosols, normally associated with increased volcanic activity, is investigated. The aerosols are found to induce a direct stratospheric response, with warming in the tropical lower stratosphere, and cooling at higher latitudes. On the shorter time scales, this radiative effect increases tropospheric static stability at low- to midlatitudes, which reduces the intensity of the Hadley cell and Ferrel cell. There is an associated increase in tropospheric standing wave energy and a decrease in midlatitude west winds, which result in additional wave energy propagation into the stratosphere at lower midlatitudes in both hemispheres. On the longer time scale, a strong hemispheric asymmetry arises. In the Northern Hemisphere eddy energy decreases, as does the middle-atmosphere residual circulation, and widespread stratospheric cooling results. In the Southern Hemisphere, the large increase in sea ice increases the tropospheric latitudinal temperature gradient, leading to increased eddy energy, an increased middle-atmosphere residual circulation, and some high-latitude stratospheric warming.

  18. Seasonal variations in body melanism and size of the wolf spider Pardosa astrigera (Araneae: Lycosidae).

    PubMed

    Yang, Jinjian; Wu, Qijia; Xiao, Rong; Zhao, Jupeng; Chen, Jian; Jiao, Xiaoguo

    2018-04-01

    Variations in species morphology and life-history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera , as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.

  19. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    PubMed

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.

  20. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages.

    PubMed

    Kleisner, Kristin M; Fogarty, Michael J; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A; Lucey, Sean M; McGuire, Christopher; Odell, Jay; Saba, Vincent S; Smith, Laurel; Weaver, Katherine J; Pinsky, Malin L

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.

  1. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages

    PubMed Central

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A.; Lucey, Sean M.; McGuire, Christopher; Odell, Jay; Saba, Vincent S.; Smith, Laurel; Weaver, Katherine J.; Pinsky, Malin L.

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf. PMID:26901435

  2. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs.

  3. Decadal record of monsoon dynamics across the Himalayas using tree ring data

    NASA Astrophysics Data System (ADS)

    Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels

    2017-04-01

    The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between tree growth and precipitation, confirming the sensitivity of the trees to water availability. A set of cores from at least 20 individual trees was collected at each site. Dating revealed records with lengths from 80 to 500 years. Tree-ring width measurements were detrended to minimize the ecological influence on growth, and analyzed against local climate parameters such as temperature and precipitation. The site chronologies were compared to highlight the propagation of the monsoonal events along the latitudinal transect. Additionally, 80-year tree-ring oxygen isotope records from the lowest site (Lete, 2500 m a.s.l.) of the transect were compared with precipitation patterns derived from historical rain gauge and satellite data. This study provides first insights into the relationship among tree-ring width, cellulose isotopes and monsoon signature, shedding light on decadal variations of precipitation in the high-elevated arid area of the High Himalayas.

  4. Neutral winds and electric fields from model studies using reduced ionograms

    NASA Technical Reports Server (NTRS)

    Baran, D. E.

    1974-01-01

    A relationship between the vertical component of the ion velocity and electron density profiles derived from reduced ionograms is developed. Methods for determining the horizontal components of the neutral winds and electric fields by using this relationship and making use of the variations of the inclinations and declinations of the earth's magnetic field are presented. The effects that electric fields have on the neutral wind calculations are estimated to be small but not second order. Seasonal and latitudinal variations of the calculated neutral winds are presented. From the calculated neutral winds a new set of neutral pressure gradients is determined. The new pressure gradients are compared with those generated from several static neutral atmospheric models. Sensitivity factors relating the pressure gradients and neutral winds are calculated and these indicate that mode coupling and harmonic generation are important to studies which assume linearized theories.

  5. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  6. Thermally tolerant corals have limited capacity to acclimatize to future warming.

    PubMed

    Rodolfo-Metalpa, Riccardo; Hoogenboom, Mia O; Rottier, Cécile; Ramos-Esplá, Alfonso; Baker, Andrew C; Fine, Maoz; Ferrier-Pagès, Christine

    2014-10-01

    Thermal stress affects organism performance differently depending on the ambient temperature to which they are acclimatized, which varies along latitudinal gradients. This study investigated whether differences in physiological responses to temperature are consistent with regional differences in temperature regimes for the stony coral Oculina patagonica. To resolve this question, we experimentally assessed how colonies originating from four different locations characterized by >3 °C variation in mean maximum annual temperature responded to warming from 20 to 32 °C. We assessed plasticity in symbiont identity, density, and photosynthetic properties, together with changes in host tissue biomass. Results show that, without changes in the type of symbiont hosted by coral colonies, O. patagonica has limited capacity to acclimatize to future warming. We found little evidence of variation in overall thermal tolerance, or in thermal optima, in response to spatial variation in ambient temperature. Given that the invader O. patagonica is a relatively new member of the Mediterranean coral fauna, our results also suggest that coral populations may need to remain isolated for a long period of time for thermal adaptation to potentially take place. Our study indicates that for O. patagonica, mortality associated with thermal stress manifests primarily through tissue breakdown under moderate but prolonged warming (which does not impair symbiont photosynthesis and, therefore, does not lead to bleaching). Consequently, projected global warming is likely to cause repeat incidents of partial and whole colony mortality and might drive a gradual range contraction of Mediterranean corals. © 2014 John Wiley & Sons Ltd.

  7. Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Baker, Matthew R.; Hollowed, Anne B.

    2014-11-01

    Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.

  8. Narrow-field imaging of the lunar sodium exosphere

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Flynn, Brian C.

    1995-01-01

    We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.

  9. The Value of Georeferenced Collection Records for Predicting Patterns of Mosquito Species Richness and Endemism in the Neotropics

    DTIC Science & Technology

    2008-01-01

    and insect- pollinated plants in Britain and the Netherlands . Science , 313 , 351 – 354 . Belkin , J.N . ( 1962 ) The Mosquitoes of the South...monitoring of biodiversity change . Trends in Ecology and Evolution , 21 , 123 – 129 . Qu , F.-Y. & Qian , G.-Z. ( 1989 ) Faunistic...Trends in Ecology and Evolution , 18 , 306 – 314 . Weir , J.T. & Schluter , D . ( 2007 ) The latitudinal gradient in recent spe- ciation and

  10. Measurements of selected C2-C5 hydrocarbons in the troposphere - Latitudinal, vertical, and temporal variations

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Viezee, William; Salas, Louis J.

    1988-01-01

    The tropospheric distribution of 1077 C2-C5 hydrocarbon samples was determined. Shipboard measurements obtained over the eastern Pacific Ocean reveal large north-to-south gradients for most nonmethane hydrocarbons (NMHCs). The results show that NMHC concentrations can decrease by a factor of two or more during the passage of cold fronts in winter and spring, and that upper tropospheric concentrations were lower than those in the lower troposphere.

  11. Geography of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Jablonski, David

    1993-01-01

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  12. Seasonal variation in the spatial distribution of aerosol black carbon over Bay of Bengal: A synthesis of multi-campaign measurements

    NASA Astrophysics Data System (ADS)

    Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash

    2013-01-01

    Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.

  13. Extinction risk escalates in the tropics.

    PubMed

    Vamosi, Jana C; Vamosi, Steven M

    2008-01-01

    The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature. Presently, the high level of extinction of tropical species, referred to as the "tropical biodiversity crisis", has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists, these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher or lower in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change) are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction) and we discuss mechanisms that may reconcile this apparent contradiction.

  14. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    PubMed

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  15. Community Compensatory Trend Prevails from Tropical to Temperate Forest

    PubMed Central

    Xiao, Lin; Yu, Shixiao; Li, Mingguang; Wang, Yongfan

    2012-01-01

    Community compensatory trend (CCT) is thought to facilitate persistence of rare species and thus stabilize species composition in tropical forests. However, whether CCT acts over broad geographical ranges is still in question. In this study, we tested for the presence of negative density dependence (NDD) and CCT in three forests along a tropical-temperate gradient. Inventory data were collected from forest communities located in three different latitudinal zones in China. Two widely used methods were used to test for NDD at the community level. The first method considered relationships between the relative abundance ratio and adult abundance. The second method emphasized the effect of adult abundance on abundance of established younger trees. Evidence for NDD acting on different growth forms was tested by using the first method, and the presence of CCT was tested by checking whether adult abundance of rare species affected that of established younger trees less than did abundance of common species. Both analyses indicated that NDD existed in seedling, sapling and pole stages in all three plant communities and that this effect increased with latitude. However, the extent of NDD varied among understory, midstory and canopy trees in the three communities along the gradient. Additionally, despite evidence of NDD for almost all common species, only a portion of rare species showed NDD, supporting the action of CCT in all three communities. So, we conclude that NDD and CCT prevail in the three recruitment stages of the tree communities studied; rare species achieve relative advantage through CCT and thus persist in these communities; CCT clearly facilitates newly established species and maintains tree diversity within communities across our latitudinal gradient. PMID:22701682

  16. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    PubMed

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  17. Palynofacies assemblages reflect sources of organic matter in New Zealand fjords

    NASA Astrophysics Data System (ADS)

    Prebble, Joseph G.; Hinojosa, Jessica L.; Moy, Christopher M.

    2018-02-01

    Understanding sources and transport pathways of organic carbon in fjord systems is important to quantify carbon cycling in coastal settings. Provenance of surficial sediment organic carbon in Fiordland National Park (southwestern New Zealand) has previously been estimated using a range of techniques, including mixing models derived from stable isotopes and lipid biomarker distributions. Here, we present the first application of palynofacies to explore the sources of particulate organic carbon to five fjords along the SW margin of New Zealand, to further discriminate the provenance of organic carbon in the fjords. We find good correlation between isotopic-and biomarker-derived proxies for organic carbon provenance and our new palynofacies observations. We observe strong down-fjord gradients of decreasing terrestrially derived organic carbon further from the river inflow at fjord heads. Fjords with small catchments and minor fresh water inflow exhibit reversed gradients, indicating that volume of freshwater entering at the fjord head is a primary mechanism to transport particulates down fjord rather than local transport from fjord sides. The palynofacies data also confirmed previously recorded latitudinal trends (i.e. between fjords), of less frequent and more weathered terrestrially derived organic carbon in the southern fjords, consistent with enhanced marine inflow and longer transport times in the southern catchments. Dinocyst assemblages also exhibit a strong latitudinal gradient, with assemblages dominated by heterotrophic forms in the north. In addition to providing support for previous studies, this approach allows finer discrimination of terrestrial organic carbon than previously, for example variation of leaf material. This study demonstrates that visual palynofacies analysis is a valuable tool to pinpoint origins of organic carbon in fjord systems, providing different but complementary information to other proxies.

  18. Latitudinal Gradients in the Stable Carbon and Oxygen Isotopes of Tree-Ring Cellulose Reveal Differential Climate Influences of the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Szejner, P.; Wright, W. E.; Babst, F.; Belmecheri, S.; Trouet, V.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2015-12-01

    Summer rainfall plays an important role sustaining different types of ecosystems in the Southwestern US. The arrival of the monsoon breaks the early summer hyper-arid period in the region providing unique seasonal conditions for these ecosystems to thrive. It is unknown to what extent monsoon rainfall is used by Ponderosa pine forests, which occupy many mountain ecosystems in the Western US. While these forests clearly rely on winter snowpack to drive much of their annual net primary productivity, the extent to which they supplement winter moisture, with summer monsoon moisture needs to be clarified. It is likely that there are north-south gradients in the degree to which forests rely on monsoon moisture, as the summer monsoon system tends to become diminished as it moves progressively northward. We addressed these gaps in our knowledge about the monsoon by studying stable Carbon and Oxygen isotopes in earlywood and latewood α-cellulose from cores taken from trees in eleven sites along a latitudinal gradient extending from Southern Arizona and New Mexico toward Utah. Here we show evidence that Ponderosa pine trees from most of these sites use monsoon water to support growth during the late summer, and the fractional use of monsoon precipitation is strongest in the southernmost sites. This study provides new physiological evidence on the influence of the North American monsoon and winter precipitation on tree growth in montane ecosystems of the Western US. Using these results, we predict differences in the susceptibility of southern and northern montane forests to future climate change. ACKNOWLEDGMENTS: This work was funded by an NSF Macrosystems Grant #1065790

  19. Oxygen Isotopes in Fresh Water Biogenic Opal: Northeastern US Alleroed-Younger Dryas Temperature Shift

    NASA Technical Reports Server (NTRS)

    Shemesh, Aldo; Peteet, Dorothy

    1997-01-01

    The first oxygen isotope analysis of biogenic opal from lake sediments, from the Allerod/Younger Dryas transition in a core from Linsley Pond, Connecticut, gives an average estimate of a 6 C drop in temperature during the Younger Dryas. This shift represents temperatures during the bloom season, and may be less than the winter temperature drop. The sharp transition itself, with a duration of about 200 years, suggests that the temperature decrease may have been as large as 12 C. Previous estimates of the Allerod/Younger Dryas temperature shifts are controversial, and range from 3-20 C, suggesting that further interdisciplinary research on the same samples is warranted. One way that global climate change manifests itself is by redistributing energy throughout the globe. The Northern Hemisphere latitudinal temperature gradient during the late-glacial is at present a controversial topic. The magnitude of air temperature shifts during the Allerod/Younger Dryas (YD) oscillation are estimated from mid-latitude pollen records surrounding the North Atlantic to be 3-5 C in Europe [Lowe et al., 19941 and 3-4 C in the eastern US [Peteet et al., 1993]. In contrast, lake temperatures estimates derived from aquatic midge larvae in the Canadian eastern maritimes and Maine range from 6-20 C, with larger shifts at more southern sites [Levesque et al., 1997]. The magnitude of YD cooling in Greenland ice cores ranges from at least 7 C from the Bolling warming [Dansgaard et al., 1989] to 15 C - a more recent estimate from borehole temperatures [Cuffey et al., 1995]. The ice core geochemical records reveal that massive frequent and short-term (decadal or less) changes in atmospheric composition occurred throughout this event, suggesting a very dynamic circulation [Mayewski et al., 1993).

  20. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod

    PubMed Central

    Wallace, Gemma T.; Kim, Tiffany L.; Neufeld, Christopher J.

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change. PMID:27293662

  1. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.

    PubMed

    Wallace, Gemma T; Kim, Tiffany L; Neufeld, Christopher J

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.

  2. Developing a chironomid training set for western South America (South-Central Chile): potential for quantitative temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Araneda, A.; Larocque-Tobler, I.; Torrejon, F.; Grosjean, M.; Jana-Pinninghoff, P.; Ortega, C.; Urrutia, R.

    2012-12-01

    Quantitative climate reconstructions of the last two millennia are a fundamental issue in order to compare the current trends in climate observed nowadays. At global scale most of the climate reconstructions have been developed for the Northern Hemisphere, while for the Southern Hemisphere quantitative reconstructions are very rare and very limited geographically. The recognition of such disparity has generated among other research initiatives the LOTRED-SA Long-Term climate Reconstruction and Dynamics of (southern) South America, a collaborative, high-resolution multi-proxy approach within the framework of the IGBP-PAGES program. In this context our work presents the results of a 50-lakes training set in Central-Southern Chile developed with the aim to generate a basis for quantitative chironomid-inferred temperature reconstructions for this part of the continent. Chironomids (Insecta: Diptera) are aquatic insects that develop a great proportion of their life cycle as larvae in aquatic ecosystems. Several studies, developed mainly in the Northern Hemisphere, have proven their usefulness in reconstructing past climate due to the larvae's relationship to temperature. The training set developed here includes lakes located between 34 and 48 S, covering a broad temperature (as latitudinal) gradient. The surface (0-1 cm) sediment of each lake was sampled and chironomids, organic matter and nutrient were analyzed. Water analyses included the measurement of 10 variables (AirT, WBT, WST, N-tot, P-tot, Fe, Na, pH among others). In order to identify the most important variables explaining the highest variance in the chironomid assemblages, ordinations analyses were performed. A preliminary DCA analysis indicated, according to the length of gradients smaller than 3 STD, that a linear model was more appropriate for further analysis. Hence a RDA analysis was applied to the environmental and species data, indicating that the most important variables to determine chironomid assemblages are water temperature (WST) and organic matter (OM). The statistical performances of the first model evaluated for WST were relatively weak (r2boot = 0.46, RMSEP=0.79) compared with other models. Nevertheless, the results indicate that temperature is still an important predictor of chironomid distribution and that by increasing the number of lakes in the environmental gradient will further increase the predictive performance and contribute to climate reconstruction in the region. Funding for this research is from Fondecyt project No. 11080158 and from de cooperation project CONICYT-SER-01 and CJRP 1001 between Switzerland and Chile. Partial funding of Fondecyt projects 1120765 and 1120807, is also acknowledged.

  3. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  4. Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s

    NASA Astrophysics Data System (ADS)

    Hoeksema, Bert W.

    2015-11-01

    Based on a study of mushroom coral species of eastern Australia, a decrease in species richness can be discerned from north to south. Eastern Australia, including the Great Barrier Reef (GBR), is one of only few coral reef areas suitable for studies on large-scale latitudinal biodiversity patterns. Such patterns may help to recognize biogeographic boundaries and factors regulating biodiversity. Owing to the eastern Australian long coastline, such studies are a logistic challenge unless reliable distribution data are already available, as in museum collections. A large coral collection predominantly sampled from this area in the 1970s is present in the Museum of Tropical Queensland (MTQ). The scleractinian family Fungiidae (mushroom corals), representing about 10% of Indo-Pacific reef coral species, was selected as proxy. It was represented by 1289 specimens belonging to 34 species with latitudinal ranges between 09°09‧S and 31°28‧S. The fauna of the northernmost reefs in the Gulf of Papua and the Torres Strait, and north of the Great Barrier Reef Marine Park (GBRMP), was represented by a maximum of 30 fungiids. From here a southward decline in species number was observed, down to Lord Howe Island with only one species. Together with previous records, the mushroom coral fauna of eastern Australia consists of 37 species, which is more diverse than hitherto known and similar to numbers found in the Coral Triangle. Future field surveys in the GBR should specifically target rarely known species, which are mainly small and found at depths >25 m. In the light of global climate change, they may also show whether previously recorded species are still present and whether their latitudinal ranges have shifted, using the 1970s records as a baseline.

  5. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity.

    PubMed

    Demko, Alyssa M; Amsler, Charles D; Hay, Mark E; Long, Jeremy D; McClintock, James B; Paul, Valerie J; Sotka, Erik E

    2017-09-01

    Long-standing theory predicts that the intensity of consumer-prey interactions declines with increasing latitude, yet for plant-herbivore interactions, latitudinal changes in herbivory rates and plant palatability have received variable support. The topic is of growing interest given that lower-latitude species are moving poleward at an accelerating rate due to climate change, and predicting local interactions will depend partly on whether latitudinal gradients occur in these critical biotic interactions. Here, we assayed the palatability of 50 seaweeds collected from polar (Antarctica), temperate (northeastern Pacific; California), and tropical (central Pacific; Fiji) locations to two herbivores native to the tropical and subtropical Atlantic, the generalist crab Mithraculus sculptus and sea urchin Echinometra lucunter. Red seaweeds (Rhodophyta) of polar and temperate origin were more readily consumed by urchins than were tropical reds. The decline in palatability with decreasing latitude is explained by shifts in tissue organic content along with the quantity and quality of secondary metabolites, degree of calcification or both. We detected no latitudinal shift in palatability of red seaweeds to crabs, nor any latitudinal shifts in palatability of brown seaweeds (Phaeophyta) to either crabs or urchins. Our results suggest that evolutionary pressure from tropical herbivores favored red seaweeds with lower palatability, either through the production of greater levels of chemical defenses, calcification, or both. Moreover, our results tentatively suggest that the "tropicalization" of temperate habitats is facilitated by the migration of tropical herbivores into temperate areas dominated by weakly defended and more nutritious foods, and that the removal of these competing seaweeds may facilitate the invasion of better-defended tropical seaweeds. © 2017 by the Ecological Society of America.

  6. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  7. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects

    Treesearch

    C.W. Woodall; G.C. Liknes

    2008-01-01

    Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks...

  8. Large-Scale Structure of Subauroral Polarization Streams During the Main Phase of a Severe Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    He, Fei; Zhang, Xiao-Xin; Wang, Wenbin; Liu, Libo; Ren, Zhi-Peng; Yue, Xinan; Hu, Lianhuan; Wan, Weixing; Wang, Hui

    2018-04-01

    In this study, we present multisatellite observations of the large-scale structures of subauroral polarization streams (SAPS) during the main phase of a severe geomagnetic storm that occurred on 31 March 2001. Observations by the Defense Meteorological Satellite Program F12 to F15 satellites indicate that the SAPS were first generated around the dusk sector at the beginning of the main phase. The SAPS channel then expanded toward the midnight sector and moved to lower latitudes as the main phase progressed. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channel were highly dynamic during the storm main phase. The large westward velocities of the SAPS were located in the region of low electron densities, associated with low ionospheric conductivity. The large-scale structures of the SAPS also corresponded closely to those of the region-2 field-aligned currents, which were mainly determined by the azimuthal pressure gradient of the ring current.

  9. Female turtles from hot nests: is it duration of incubation or proportion of development at high temperatures that matters?

    PubMed

    Georges, Arthur

    1989-11-01

    Mean daily temperature in natural nests of freshwater turtles with temperature-dependent sex determination is known to be a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a model was developed on the assumption that females will emerge from eggs when more than half of embryonic development occurs above the threshold temperature for sex determination rather than from eggs that spend more than half their time above the threshold. The model is consistent with previously published data and in particular explains the phenomenon whereby the mean temperature that best distinguishes between male and female nests decreases with increasing variability in nest temperature. The model, if verified by controlled experiments, has important implications for our understanding of temperature-dependent sex determination in natural nests. Both mean nest temperature and "hours spent above the threshold" will be poor predictors of hatchling sex ratios. Studies designed to investigate latitudinal trends and inter-specific differences in the threshold temperature will need to consider latitudinal and inter-specific variation in the magnitude of diel fluctuations in nest temperature, and variation in factors influencing the magnitude of those fluctuations, such as nest depth. Furthermore, any factor that modifies the relationship between developmental rate and temperature can be expected to influence hatchling sex ratios in natural nests, especially when nest temperatures are close to the threshold.

  10. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  11. Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record

    USGS Publications Warehouse

    Fleming, Michael D.; Chapin, F. Stuart; Cramer, W.; Hufford, Gary L.; Serreze, Mark C.

    2000-01-01

    Data from a sparse network of climate stations in Alaska were interpolated to provide 1-km resolution maps of mean monthly temperature and precipitation-variables that are required at high spatial resolution for input into regional models of ecological processes and resource management. The interpolation model is based on thin-plate smoothing splines, which uses the spatial data along with a digital elevation model to incorporate local topography. The model provides maps that are consistent with regional climatology and with patterns recognized by experienced weather forecasters. The broad patterns of Alaskan climate are well represented and include latitudinal and altitudinal trends in temperature and precipitation and gradients in continentality. Variations within these broad patterns reflect both the weakening and reduction in frequency of low-pressure centres in their eastward movement across southern Alaska during the summer, and the shift of the storm tracks into central and northern Alaska in late summer. Not surprisingly, apparent artifacts of the interpolated climate occur primarily in regions with few or no stations. The interpolation model did not accurately represent low-level winter temperature inversions that occur within large valleys and basins. Along with well-recognized climate patterns, the model captures local topographic effects that would not be depicted using standard interpolation techniques. This suggests that similar procedures could be used to generate high-resolution maps for other high-latitude regions with a sparse density of data.

  12. A Reconstruction of Sea Surface Temperature Gradients and an Assessment of the Suspected Presence of Continental Ice During the Cold Mid-Paleocene (61-57 Ma)

    NASA Astrophysics Data System (ADS)

    Bijl, P.; Cramwinckel, M.; Frieling, J.; Peterse, F.

    2016-12-01

    The early Eocene `hothouse' climate experienced paratropical vegetation on high latitudes and high (>1100 ppmv) atmospheric CO2 concentrations. It is generally considered as analogous to the endmember climate state should we use up all available fossil fuels. However, we do not know exactly through which processes this long-term warm episode came to be nor do we understand what the initial climate state was at the onset of this long-term climate. Deep-sea warming towards early Eocene hothouse conditions started in the mid-Paleocene, ending a 2 Myr time interval of relatively cold deep ocean temperatures. Reconstructed pCO2 concentrations of the mid-Paleocene seem to have been close to those of present-day, although data is scarce. The mid-Paleocene is notoriously sparsely represented in shelf sedimentary records, as most records show a conspicuous hiatus between 58 and 60 Mys. This gives the suggestion of a major global low in sea level, which is inconsistent with estimates of global ocean spreading rates, which suggest a relatively high sea level on long time scales for the Cretaceous-early Paleogene. The cold deep-sea temperatures, the conspicuously low sea level and low atmospheric CO2 during the mid-Paleocene have stimulated suggestions of the presence of major ice sheets on the poles, yet the absence of any trace for continental ice, either direct ice-proximal evidence or from benthic foraminiferal oxygen isotope records, calls the presence of such ice sheets into question. I will present a number of high resolution sea surface temperature records (based mostly on organic geochemical biomarker proxies) which start to reveal a latitudinal temperature gradient for the mid-Paleocene. Reconstructions come from shelf sediments from Tasmania, Australia, Tanzania, Tropical Atlantic Ocean, New Jersey). With these new records, I put Paleogene climate evolution into context. I will further present a review of shelf sedimentary records across the mid-paleocene to assess the sea level variability in this time, to verifiy the suspected presence of continental ice, and speculate on possible alternative mechanisms for sea level change.

  13. Is the number and size of scales in Liolaemus lizards driven by climate?

    PubMed

    José Tulli, María; Cruz, Félix B

    2018-05-03

    Ectothermic vertebrates are sensitive to thermal fluctuations in the environments where they occur. To buffer these fluctuations, ectotherms use different strategies, including the integument, which is a barrier that minimizes temperature exchange between the inner body and the surrounding air. In lizards, this barrier is constituted by keratinized scales of variable size, shape and texture, and its main function is protection, water loss avoidance and thermoregulation. The size of scales in lizards has been proposed to vary in relation to climatic gradients; however, it has also been observed that in some groups of Iguanian lizards could be related to phylogeny. Thus, here, we studied the area and number of scales (dorsal and ventral) of 61 species of Liolaemus lizards distributed in a broad latitudinal and altitudinal gradient to determine the nature of the variation of the scales with climate, and found that the number and size of scales are related to climatic variables, such as temperature and geographical variables as altitude. The evolutionary process that better explained how these morphological variables evolved was the Ornstein-Uhlenbeck model. The number of scales seemed to be related to common ancestry, whereas dorsal and ventral scale areas seemed to vary as a consequence of ecological traits. In fact, the ventral area is less exposed to climate conditions such as ultraviolet radiation or wind and is thus under less pressure to change in response to alterations in external conditions. It is possible that scale ornamentation such as keels and granulosity may bring some more information in this regard. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  15. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  16. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.

    2017-12-01

    Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.

  17. Latitudinal variation in carbon storage can help predict changes in swamps affected by global warming

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  18. Higher predation risk for insect prey at low latitudes and elevations.

    PubMed

    Roslin, Tomas; Hardwick, Bess; Novotny, Vojtech; Petry, William K; Andrew, Nigel R; Asmus, Ashley; Barrio, Isabel C; Basset, Yves; Boesing, Andrea Larissa; Bonebrake, Timothy C; Cameron, Erin K; Dáttilo, Wesley; Donoso, David A; Drozd, Pavel; Gray, Claudia L; Hik, David S; Hill, Sarah J; Hopkins, Tapani; Huang, Shuyin; Koane, Bonny; Laird-Hopkins, Benita; Laukkanen, Liisa; Lewis, Owen T; Milne, Sol; Mwesige, Isaiah; Nakamura, Akihiro; Nell, Colleen S; Nichols, Elizabeth; Prokurat, Alena; Sam, Katerina; Schmidt, Niels M; Slade, Alison; Slade, Victor; Suchanková, Alžběta; Teder, Tiit; van Nouhuys, Saskya; Vandvik, Vigdis; Weissflog, Anita; Zhukovich, Vital; Slade, Eleanor M

    2017-05-19

    Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution. Copyright © 2017, American Association for the Advancement of Science.

  19. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity

    USGS Publications Warehouse

    Isaak, Daniel J.; Young, Michael K; Luce, Charles H; Hostetler, Steven W.; Wengerd, Seth J.; Peterson, Erin E.; Ver Hoef, Jay; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.

    2016-01-01

    The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.

  20. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity

    PubMed Central

    Isaak, Daniel J.; Young, Michael K.; Luce, Charles H.; Hostetler, Steven W.; Wenger, Seth J.; Peterson, Erin E.; Ver Hoef, Jay M.; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.

    2016-01-01

    The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century. PMID:27044091

  1. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Technical Reports Server (NTRS)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  2. Examining Environmental Gradients with satellite data in permafrost regions - the current state of the ESA GlobPermafrost initative

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Bartsch, A.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C. R.; Seifert, F. M.; Obu, J.; Nitze, I.; Heim, B.; Haas, A.; Widhalm, B.

    2017-12-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with spaceborne Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014, hdl:10013/epic.45648.d001). These transects have been revised and adjusted within the DUE GlobPermafrost initiative of the European Space Agency. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The status of the Permafrost Information System and first results will be presented. Prototypes of GlobPermafrost datasets include: Modelled mean annual ground temperature by use of land surface temperature and snow water equivalent from satellites Land surface characterization including shrub height, land cover and parameters related to surface roughness Trends from Landsat time-series over selected transects For selected sites: subsidence, ground fast lake ice, land surface features and rock glacier monitoring

  3. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  4. Does oxygen exposure time control the extent of organic matter decomposition in peatlands?

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.

  5. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential

    PubMed Central

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts. PMID:24454547

  6. Range-wide parallel climate-associated genomic clines in Atlantic salmon

    PubMed Central

    Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.

    2017-01-01

    Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123

  7. The global distribution of diet breadth in insect herbivores

    PubMed Central

    Forister, Matthew L.; Novotny, Vojtech; Panorska, Anna K.; Baje, Leontine; Basset, Yves; Butterill, Philip T.; Cizek, Lukas; Coley, Phyllis D.; Dem, Francesca; Diniz, Ivone R.; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E.; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P.; Kaman, Ondrej; Kozubowski, Tomasz J.; Kursar, Thomas A.; Lewis, Owen T.; Lill, John; Marquis, Robert J.; Miller, Scott E.; Morais, Helena C.; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A.; Ricklefs, Robert E.; Singer, Michael S.; Smilanich, Angela M.; Stireman, John O.; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L.; Walla, Thomas; Weiblen, George D.; Dyer, Lee A.

    2015-01-01

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization. PMID:25548168

  8. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.

    PubMed

    Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon

    2016-01-01

    Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.

  9. Ross Sea Mollusca from the Latitudinal Gradient Program: R/V Italica 2004 Rauschert dredge samples

    PubMed Central

    Ghiglione, Claudio; Alvaro, Maria Chiara; Griffiths, Huw J.; Linse, Katrin; Schiaparelli, Stefano

    2013-01-01

    Abstract Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V “Italica” in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species. Considering this dataset in terms of occurrences, it corresponds to 505 discrete distributional records (incidence data). Of these, in order of abundance, 5,965 specimens were Gastropoda (accounting for 113 species), 1,323 were Bivalvia (accounting for 36 species), 949 were Aplacophora (accounting for 7 species), 74 specimens were Scaphopoda (3 species), 38 were Monoplacophora (1 species) and, finally, 10 specimens were Polyplacophora (1 species). This data set represents the first large-scale survey of benthic micro-molluscs for the area and provides important information about the distribution of several species, which have been seldom or never recorded before in the Ross Sea. All vouchers are permanently stored at the Italian National Antarctic Museum (MNA), Section of Genoa, enabling future comparison and crosschecking. This material is also currently under study, from a molecular point of view, by the barcoding project “BAMBi” (PNRA 2010/A1.10). PMID:24146597

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  11. Equinoctial asymmetry in the zonal distribution of scintillation as observed by GPS receivers in Indonesia

    NASA Astrophysics Data System (ADS)

    Abadi, P.; Otsuka, Y.; Shiokawa, K.; Husin, A.; Liu, Huixin; Saito, S.

    2017-08-01

    We investigate the azimuthal distribution of amplitude scintillation observed by Global Positioning System (GPS) ground receivers at Pontianak (0.0°S, 109.3°E; magnetic latitude: 9.8°S) and Bandung (6.9°S, 107.6°E; magnetic latitude: 16.7°S) in Indonesia in March and September from 2011 to 2015. The scintillation is found to occur more to the west than to the east in March at both stations, whereas no such zonal difference is found in September. We also analyze the zonal scintillation drift as estimated using three closely spaced single-frequency GPS receivers at Kototabang (0.2°S, 100.3°E; magnetic latitude: 9.9°S) in Indonesia during 2003-2015 and the zonal thermospheric neutral wind as measured by the CHAMP satellite at longitudes of 90°-120°E during 2001-2008. We find that the velocities of both the zonal scintillation drift and the neutral wind decrease with increasing latitudes. Interestingly, the latitudinal gradients of both the zonal scintillation drift and the neutral wind are steeper in March than in September. These steeper March gradients may be responsible for the increased westward altitudinal and latitudinal tilting of plasma bubbles in March. This equinoctial asymmetry could be responsible for the observed westward bias in scintillation in March, because the scintillation is more likely to occur when radio waves pass through longer lengths of plasma irregularities in the plasma bubbles.

  12. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  13. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary differently with altitude in the NH and SH but add up to similar trends at mesospheric cloud heights.

  14. Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.

    2017-12-01

    Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

  15. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale.

    PubMed

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.

  16. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale

    PubMed Central

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines. PMID:24146668

  17. Northward shifts of the distributions of Spanish reptiles in association with climate change.

    PubMed

    Moreno-Rueda, Gregorio; Pleguezuelos, Juan M; Pizarro, Manuel; Montori, Albert

    2012-04-01

    It is predicted that climate change will drive extinctions of some reptiles and that the number of these extinctions will depend on whether reptiles are able to change their distribution. Whether the latitudinal distribution of reptiles may change in response to increases in temperature is unknown. We used data on reptile distributions collected during the 20th century to analyze whether changes in the distributions of reptiles in Spain are associated with increases in temperature. We controlled for biases in sampling effort and found a mean, statistically significant, northward shift of the northern extent of reptile distributions of about 15.2 km from 1940-1975 to 1991-2005. The southern extent of the distributions did not change significantly. Thus, our results suggest that the latitudinal distributions of reptiles may be changing in response to climate change. ©2011 Society for Conservation Biology.

  18. Examination of elevation dependency in observed and projected temperature change in the Upper Indus Basin and Western Himalaya

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.

    2013-12-01

    We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate Model (GCM) perturbed physics ensemble (PPE) of transient (130-year) simulations using a moderate resolution (25km) regional climate model (RCM). The GCM ensemble is the17-member QUMP (Quantifying Uncertainty in Model Projections) ensemble and the downscaling is done using HadRM3P, part of the PRECIS regional climate modelling system. Both the RCM and GCMs are models developed the UK Met Office Hadley Centre and are based on the HadCM3 GCM. Use of the multi-member PPE enables quantification of uncertainty in projected temperature change while the spatial resolution of RCM improves insight into the role of elevation in projected rates of change. Furthermore comparison with the results of the remote sensing analysis component - considered to provide an 'observed climatology' - permits evaluation of individual ensemble members with regards to biases in spatial gradients in temperature as well timing and magnitude of annual cycles.

  19. Tomato GOLDEN2-LIKE Transcription Factors Reveal Molecular Gradients That Function during Fruit Development and Ripening[W][OPEN

    PubMed Central

    Nguyen, Cuong V.; Vrebalov, Julia T.; Gapper, Nigel E.; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J.

    2014-01-01

    Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits. PMID:24510723

  20. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits.

    PubMed

    Ross, Claire L; Schoepf, Verena; DeCarlo, Thomas M; McCulloch, Malcolm T

    2018-05-30

    High-latitude coral reefs provide natural laboratories for investigating the mechanisms and limits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a long-term (2-year) study of seasonal changes in calcification rates, photo-physiology and calcifying fluid (cf) chemistry (using boron isotope systematics and Raman spectroscopy) for the coral Turbinaria reniformis growing near its latitudinal limits (34.5° S) along the southern coast of Western Australia. In contrast with tropical corals, calcification rates were found to be threefold higher during winter (16 to 17° C) compared with summer (approx. 21° C), and negatively correlated with light, but lacking any correlation with temperature. These unexpected findings are attributed to a combination of higher chlorophyll a, and hence increased heterotrophy during winter compared with summer, together with the corals' ability to seasonally modulate pH cf , with carbonate ion concentration [Formula: see text] being the main controller of calcification rates. Conversely, calcium ion concentration [Ca 2+ ] cf declined with increasing calcification rates, resulting in aragonite saturation states Ω cf that were stable yet elevated fourfold above seawater values. Our results show that corals growing near their latitudinal limits exert strong physiological control over their cf in order to maintain year-round calcification rates that are insensitive to the unfavourable temperature regimes typical of high-latitude reefs. © 2018 The Author(s).

  1. The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Sector

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2011-12-01

    The Pacific sector of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Variations in upper ocean water hydrography, planktonic production, pelagic-benthic coupling and sediment carbon cycling are all influenced by sea ice and temperature changes. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. Several regionally critical marine sites in the Pacific Arctic sector that have very high biomass and are focused foraging points for apex predators have been re-occupied during multiple international cruises. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. To more systematically track the broad biological response to sea ice retreat and associated environmental change, an international consortium of scientists are developing a "Distributed Biological Observatory" (DBO) that includes selected biological measurements at multiple trophic levels. The DBO currently focuses on five regional biological "hotspot" locations along a latitudinal gradient. Hydrographic transects occupied from spring to fall in 2010 and 2011 at two pilot sites in the SE Chukchi Sea and Barrow Canyon provide repeat collections of water parameters over the seasons that are unavailable from single cruises. This sampling indicates freshening and warming as Pacific seawater transits northward over the spring to fall seasons, with impacts on both plankton and benthic prey bases for larger marine mammals and seabirds. The intent of the DBO is to serve as a change detection array for the identification and consistent monitoring of biophysical responses. This network of spatially explicit DBOs is being organized through the Pacific Arctic Group (PAG), a collaborative network endorsed by the International Arctic Science Committee. Our presentation will provide new information to evaluate the status and developing trends of the marine biological system as it responds to the rapid environmental change.

  2. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.

  3. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia.

    PubMed

    Tamma, Krishnapriya; Ramakrishnan, Uma

    2015-02-04

    Little is known about the patterns and correlates of mammal diversity gradients in Asia. In this study, we examine patterns of species distributions and phylogenetic diversity in Asia and investigate if the observed diversity patterns are associated with differences in diversification rates between the tropical and non-tropical regions. We used species distribution maps and phylogenetic trees to generate species and phylogenetic diversity measures for 1° × 1° cells across mainland Asia. We constructed lineage-through-time plots and estimated diversification shift-times to examine the temporal patterns of diversifications across orders. Finally, we tested if the observed gradients in Asia could be associated with geographical differences in diversification rates across the tropical and non-tropical biomes. We estimated speciation, extinction and dispersal rates across these two regions for mammals, both globally and for Asian mammals. Our results demonstrate strong latitudinal and longitudinal gradients of species and phylogenetic diversity with Southeast Asia and the Himalayas showing highest diversity. Importantly, our results demonstrate that differences in diversification (speciation, extinction and dispersal) rates between the tropical and the non-tropical biomes influence the observed diversity gradients globally and in Asia. For the first time, we demonstrate that Asian tropics act as both cradles and museums of mammalian diversity. Temporal and spatial variation in diversification rates across different lineages of mammals is an important correlate of species diversity gradients observed in Asia.

  4. Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.

    2009-04-01

    Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.

  5. Ion temperature of low-latitude and mid-latitude topside ionosphere for high solar activity

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Zhang, Donghe; Hao, Yongqiang; Xiao, Zuo

    The International Reference Ionosphere (IRI) describes the day and night latitudinal variation of ion temperature at 430 km with two functions using AEROS satellite measurements. The ion temperature at this height as one of the boundary parameters is used to make the ion temperature profile represented by a Booker-function. Since the low-latitude and mid-latitude topside ionospheric ion temperature has been measured with the Ionopsheric Plasma and Elec-trodynamics Instrument (IPEI) onboard Rocsat-1 satellite at about 600 km during the high solar activity years from 2000 to 2002, a new boundary at 600 km can be set for the ion temperature modeling. The latitudinal variation of ion temperature could be approximated by Epstein family of functions for different local time sectors. Furthermore, the longitudinal and seasonal variations are also taken into account to decide the fitting parameters. Only the magnetic quiet time data (Kp <3) are used for the statistical study. The results are compared with IRI-2007 model. In addition, events when Kp >4 are also analyzed to feature the ion temperature characteristic during the magnetic disturbance time condition. Combined with the IPEI field-aligned ion flow velocities and the plasma temperatures measured by the Special Sensors-Ions, Electrons, and Scintillation (SSIES) thermal plasma analysis package on board the DMSP F13 and F15 satellites, several feasible ion heating and heat loss mechanisms are summarized to interpret the ion temperature crests and toughs for different local time sectors, seasonal and longitudinal variations.

  6. Geographic coincidence of richness, mass, conservation value, and response to climate of U.S. land birds

    USGS Publications Warehouse

    Grundel, Ralph; Frohnapple, Krystal; Zaya, David N.; Glowacki, Gary A.; Weiskerger, Chelsea J.; Patterson, Tamatha A.; Pavlovic, Noel B.

    2014-01-01

    Distributional patterns across the United States of five avian community breeding-season characteristics—community biomass, richness, constituent species' vulnerability to extirpation, percentage of constituent species' global abundance present in the community (conservation index, CI), and the community's position along the ecological gradient underlying species composition (principal curve ordination score, PC)—were described, their covariation was analyzed, and projected effects of climate change on the characteristics and their covariation were modeled. Higher values of biomass, richness, and CI were generally preferred from a conservation perspective. However, higher values of these characteristics often did not coincide geographically; thus regions of the United States would differ in their value for conservation depending on which characteristic was chosen for setting conservation priorities. For instance, correlation patterns between characteristics differed among Landscape Conservation Cooperatives. Among the five characteristics, community richness and the ecological gradient underlying community composition (PC) had the highest correlations with longitude, with richness declining from east to west across the contiguous United States. The ecological gradient underlying composition exhibited a demarcation near the 100th meridian, separating the contiguous United States grossly into two similar-sized avian ecological provinces. The combined score (CS), a measure of species' threat of decline or extirpation, exhibited the strongest latitudinal pattern, declining from south to north. Over ∼75% of the lower United States, projected changes in June temperature and precipitation to year 2080 were associated with decreased averaged values of richness, biomass, and CI, implying decreased conservation value for birds. The two ecological provinces demarcated near the 100th meridian diverged from each other, with projected changes in June temperatures and precipitation from the year 2000 to 2080 suggesting increased ecological dissimilarity between the eastern and western halves of the lower United States with changing climate. Anticipated climate-related changes in the five characteristics by 2080 were more weakly correlated with latitude or longitude then the responses themselves, indicating less distinct geographic patterns of characteristic change than in the characteristics themselves. Climate changes projected for 2080 included geographic shifts in avian biomass, CS, and PC values, a moderate overall decline in CI, and general decline in species richness per site.

  7. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    USGS Publications Warehouse

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  8. Climatic signals registered as Carbon isotopic values in Metasequoia leaf tissues: A statistical analysis

    NASA Astrophysics Data System (ADS)

    Yang, H.; Blais, B.; Perez, G.; Pagani, M.

    2006-12-01

    To examine climatic signals registered as carbon isotopic values in leaf tissues of C3 plants, we collected mature leaf tissues from sun and shade leaves of Metasequoia trees germinated from the 1947 batch of seeds from China and planted along a latitudinal gradient of the United States. Samples from 40 individual trees, along with fossilized material from the early Tertiary of the Canadian Arctic, were analyzed for C and concentration and isotopic values using EA-IRMS after the removal of free lipids. The generated datasets were then merged with climate data compiled from each tree site recorded as average values over the past thirty years (1971-2002, NOAA database). When the isotope data were cross plotted against each geographic and climatic indicator, Latitude, Mean Annual Temperature (MAT), Average Summer Mean Temperature (ASMT)(June-August), Mean Annual Precipitation (MAP), and Average Summer Mean Precipitation (ASMP) respectively correlation patterns were revealed. The best correlating trend was obtained between temperature parameters and C isotopic values, and this correlation is stronger in the northern leaf samples than the southern samples. We discovered a strong positive correlation between latitude and the offset of C isotopic values between shade and sun leaves. This investigation represents a comprehensive examination on climatic signals registered as C isotopic values on a single species that is marked by single genetic source. The results bear implications on paleoclimatic interpretations of C isotopic signals obtained from fossil plant tissues.

  9. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  10. Middle Atmosphere Program. Handbook for MAP, Volume 5

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    The variability of the stratosphere during the winter in the Northern Hemisphere is considered. Long term monthly mean 30-mbar maps are presented that include geopotential heights, temperatures, and standard deviations of 15 year averages. Latitudinal profiles of mean zonal winds and temperatures are given along with meridional time sections of derived quantities for the winters 1965/66 to 1980/81.

  11. New results on the mid-latitude midnight temperature maximum

    NASA Astrophysics Data System (ADS)

    Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.

    2018-04-01

    Fabry-Perot interferometer (FPI) measurements of thermospheric temperatures and winds show the detection and successful determination of the latitudinal distribution of the midnight temperature maximum (MTM) in the continental mid-eastern United States. These results were obtained through the operation of the five FPI observatories in the North American Thermosphere Ionosphere Observing Network (NATION) located at the Pisgah Astronomic Research Institute (PAR) (35.2° N, 82.8° W), Virginia Tech (VTI) (37.2° N, 80.4° W), Eastern Kentucky University (EKU) (37.8° N, 84.3° W), Urbana-Champaign (UAO) (40.2° N, 88.2° W), and Ann Arbor (ANN) (42.3° N, 83.8° W). A new approach for analyzing the MTM phenomenon is developed, which features the combination of a method of harmonic thermal background removal followed by a 2-D inversion algorithm to generate sequential 2-D temperature residual maps at 30 min intervals. The simultaneous study of the temperature data from these FPI stations represents a novel analysis of the MTM and its large-scale latitudinal and longitudinal structure. The major finding in examining these maps is the frequent detection of a secondary MTM peak occurring during the early evening hours, nearly 4.5 h prior to the timing of the primary MTM peak that generally appears after midnight. The analysis of these observations shows a strong night-to-night variability for this double-peaked MTM structure. A statistical study of the behavior of the MTM events was carried out to determine the extent of this variability with regard to the seasonal and latitudinal dependence. The results show the presence of the MTM peak(s) in 106 out of the 472 determinable nights (when the MTM presence, or lack thereof, can be determined with certainty in the data set) selected for analysis (22 %) out of the total of 846 nights available. The MTM feature is seen to appear slightly more often during the summer (27 %), followed by fall (22 %), winter (20 %), and spring (18 %). Also seen is a northwestward propagation of the MTM signature with a latitude-dependent amplitude. This behavior suggests either a latitudinal dependence of thermosphere tidal dissipation or a night-to-night variation of the composition of the higher-order tidal modes that contribute to the production of the MTM peak at mid-latitudes. Also presented in this paper is the perturbation on the divergence of the wind fields, which is associated with the passage of each MTM peak analyzed with the 2-D interpolation.

  12. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    PubMed

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  13. Estuaries of the northeastern United States: Habitat and land use signatures

    USGS Publications Warehouse

    Roman, C.T.; Jaworski, N.; Short, F.T.; Findlay, S.; Warren, R.S.

    2000-01-01

    Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the dominant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure function, and processes of estuaries along latitudinal gradients.

  14. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  15. Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights from the Dimensionality of Biodiversity

    PubMed Central

    Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID:23451099

  16. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    NASA Astrophysics Data System (ADS)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    Dealing with 87 articles and using a Geographical Information System, Masure and Vrielynck (2009) have mapped worldwide biogeography of 38 Late Albian dinoflagellate cysts and have demonstrated Cretaceous oceanic bioclimatic belts. For comparison 30 Aptian species derived from 49 studies (Masure et al., 2013) and 49 Cenomanian species recorded from 33 articles have been encountered. Tropical, Subtropical, Boreal, Austral, bipolar and cosmopolitan species have been identified and Cretaceous dinoflagellate biomes are introduced. Asymmetric distribution of Aptian and Late Albian/Cenomanian subtropical Tethyan species, from 40°N to 70°S, demonstrates asymmetric Aptian and Late Albian/Cenomanian Sea Surface Temperature (SST) gradients with warm water masses in high latitudes of Southern Ocean. The SST gradients were stronger in the Northern Hemisphere than in the Southern Hemisphere. We note that Aptian and Late Albian/Cenomanian dinoflagellates restricted to subtropical and subpolar latitudes met and mixed at 35-40°N, while they mixed from 30°S to 70°S and from 50°S to 70°S respectively in the Southern Hemisphere. Mixing belts extend on 5° in the Northern Hemisphere and along 40° (Aptian) and 20° (Late Albian/Cenomanian) in the Southern one. The board southern mixing belt of Tethyan and Austral dinoflagellates suggest co-occurrence of warm and cold currents. We record climatic changes such as the Early Aptian cooler period and Late Aptian and Albian warming through the poleward migration of species constrained to cool water masses. These species sensitive to temperature migrated from 35°N to 55°N through the shallow Greenland-Norwergian Seaway connecting the Central Atlantic and the Arctic Ocean. While Tethyan species did not migrate staying at 40°N. We suggest that the Greenland-Norwergian Seaway might has been a barrier until Late Albian/Cenomanian for oceanic Tethyan dinoflagellates stopped either by the shallow water column or temperature and salinity constraints. In the Northern Hemisphere the oceanic heat transport was stopped by continental masses located between the Tethys, Central Atlantic and Arctic Oceans while the heat transport in the Southern Hemisphere was not limited in the Tethys Ocean. Late Albian Boreal dinoflagellates inhabited the Western Interior Sea Way, with the warming and the sea level rise Late Cenomanian Tethyan species have been recorded up to 45°N. The estimation of temperatures requirements of dinoflagellates is modelled by combining the latitudinal distribution of species, with the estimated temperatures from δ18O or TEX86 ratios related to latitude. The Early Aptian subtropical dinoflagellates inhabited water masses with temperatures higher than 22°C. Late Albian subtropical dinoflagellates lived in water masses with temperatures of 24°C and tropical species in those in temperature up to 28°C. The Late Albian arctic dinoflagellates lived in water masses with temperature lower than 19°C. Biogeography of planktonic micro-organisms coupled with temperatures estimated from δ18O or TEX86 ratios increases their potential as palaeo-oceanographic proxies for a qualitative estimation of sea-surface temperatures and palaeo-biodiversity of world water masses and improves precision in biochronology. Masure E, Vrielynck B. 2009. Late Albian dinoflagellate cyst paleobiogeography as indicator of asymmetric sea surface temperature gradient on both hemispheres with southern high latitudes warmer than northern ones. Marine Micropaleontology 70, 120-133. Masure E, Aumar A-M, Vrielynck B. 2013. World palaeogeography of Aptian and Late Albian dinoflagellates cysts: Implications for sea surface temperature gradient and palaeoclimate in Lewis, JM, Marret F, Bradley L (eds). Biological and Geological Perspectives of Dinoflagellates. The Micropalaeontological Society, Special Publications. Geological Society, London, 97-125.

  17. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby

    2014-07-01

    Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential interplay and thereby highlights the complexity of contaminant effects on predator-prey interactions being differentially temperature-dependent pending on the trophic level. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  19. Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival.

    PubMed

    Sørensen, Christina; Munday, Philip L; Nilsson, Göran E

    2014-03-01

    The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32-33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. © 2013 John Wiley & Sons Ltd.

  20. Factors Affecting the Latitudinal Location of the Intertropical Convergence Zone in a GCM

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2002-01-01

    The dominant role of the latitudinal peak of the sea surface temperature (SST) in determining the latitudinal location of the intertropical convergence zone (ITCZ) is well-known. However, the roles of the other factors are less well-known and are the topic of this study. These other factors include the inertial stability, the interaction between convection and surface fluxes and the interaction between convection and radiation. Since these interactions involve convection, in a model they involve the cumulus parameterization scheme. These factors are studied with a general circulation model with uniform SST and solar angle. Under the aforementioned model settings, the latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. Directly related to the Coriolis parameter, the first type pulls the ITCZ toward the equator and is not sensitive to model design changes. Related to the convective circulation, the second type pulls the ITCZ poleward and is sensitive to model design changes. Due to the shape and the magnitude of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  1. Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change

    PubMed Central

    Hurlbert, Allen H.; Liang, Zhongfei

    2012-01-01

    A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3–6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing. PMID:22384050

  2. Formation of the bulge of Iapetus through long-wavelength folding of the lithosphere

    NASA Astrophysics Data System (ADS)

    Kay, Jonathan P.; Dombard, Andrew J.

    2018-03-01

    Previous models that attempted to explain the formation of the pronounced oblate shape of Iapetus suggested that it was a preserved rotational bulge. These models found that heating was provided by short-lived radioactive isotopes that decayed rapidly and allowed the excess flattening of the lithosphere to be locked in by a thickening lithosphere, but placed severe timing constraints on the formation of Iapetus and its bulge. Here, we show that finite element simulations with an elastic-viscous-plastic rheology indicate it is possible to form the bulge through long-wavelength folding of the lithosphere of Iapetus during an epoch of contraction combined with a latitudinal surface temperature gradient. In contrast to models of a frozen rotational bulge, heat generated by long-lived radioactive isotopes warms the interior, which causes porosity loss and forces Iapetus to compact by ∼10%. Our simulations are most successful when there is a 30 K temperature difference between the pole and the equator. Tectonic growth of the bulge is not sensitive to the time scale over which the moon contracts, and lithospheric thickness primarily controls whether a fold can form, not fold wavelength. In addition, long term simulations show that when no stress is applied, the mechanical lithosphere is strong enough to support the bulge, with negligible relaxation over billion year time scales.

  3. The numerical design of a spherical baroclinic experiment for Spacelab flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Roberts, G. O.

    1982-01-01

    The near-zero G environment of Spacelab is the basis of a true spherical experimental model of synoptic scale baroclinic atmospheric processes, using a radial dielectric body force analogous to gravity over a volume of liquid within two concentric spheres. The baroclinic motions are generated by corotating the spheres and imposing thermal boundary conditions, such that the liquid is subjected to a stable radial gradient and a latitudinal gradient. Owing to mathematical difficulties associated with the spherical geometry, quantitative design criteria can be acquired only by means of numerical models. The procedure adopted required the development of two computer codes based on the Navier-Stokes equations. The codes, of which the first calculates axisymmetric steady flow solutions and the second determines the growth or decay rates of linear wave perturbations with different wave numbers, are combined to generate marginal stability curves.

  4. A Earth Outgoing Longwave Radiation Climate Model

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Keng

    An Earth outgoing longwave radiation (OLWR) climate model has been constructed for radiation budget study. The model consists of the upward radiative transfer parameterization of Thompson and Warren (1982), the cloud cover model of Sherr et al. (1968) and a monthly average climatology defined by the data from Crutcher and Meserve (1971) and Taljaard et al. (1969). Additional required information is provided by the empirical 100mb water vapor mixing ratio equation of Harries (1976), and the mixing ratio interpolation scheme of Briegleb and Ramanathan (1982). Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesia and the Congo. There are regions in the tropics such that their OLWR is as large as that of the subtropics. In the high latitudes, where cold air contains less water vapor, OLWR is basically modulated by the surface temperature. Thus, the topographical heat capacity becomes a dominant factor in determining the distribution. Clouds enhance water vapor modulation of OLWR. Tropical clouds have the coldest cloud top temperatures. This again increases the longitudinal variation in the region. However, in the polar region, where temperature inversion is prominent, cloud top temperature is warmer than the surface. Hence, cloud has the effect of increasing OLWR. The implication of this cloud mechanism is that the latitudinal gradient of net radiation is thus further increased, and the forcing of the general atmospheric circulation is substantially different due to the increased additional available energy. The analysis of the results also suggests that to improve the performance of the Budyko-Sellers type energy balance climate model in the tropical region, the parameterization of the longwave cooling should include a water vapor absorbing term.

  5. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators' foraging areas in the Southern Ocean.

    PubMed

    Jaeger, Audrey; Lecomte, Vincent J; Weimerskirch, Henri; Richard, Pierre; Cherel, Yves

    2010-12-15

    Stable isotopes are increasingly being used to trace wildlife movements. A fundamental prerequisite of animal isotopic tracking is a good knowledge of spatial isotopic variations in the environment. Few accessible reference maps of the isotopic landscape ("isoscapes") are available for marine predators. Here, we validate for the first time an isotopic gradient for higher trophic levels by using a unique combination of a large number of satellite-tracks and subsequent blood plasma isotopic signatures from a wide-ranging oceanic predator. The plasma δ(13)C and δ(15)N values of wandering albatrosses (n = 45) were highly and positively correlated to the Southern Ocean latitudes at which the satellite-tracked individuals foraged. The well-defined latitudinal baseline carbon isoscapes in the Southern Ocean is thus reflected in the tissue of consumers, but with a positive shift due to the cumulative effect of a slight (13)C-enrichment at each trophic level. The data allowed us to estimate the carbon isotopic position of the main oceanic fronts in the area, and thus to delineate robust isoscapes of the main foraging zones for top predators. The plasma δ(13)C and δ(15)N values were positively and linearly correlated, thus suggesting that latitudinal isoscapes also occur for δ(15)N at the base of the food web in oceanic waters of the Southern Ocean. The combination of device deployments with sampling of relevant tissues for isotopic analysis appears to be a powerful tool for investigating consumers' isoscapes at various spatio-temporal scales. Copyright © 2010 John Wiley & Sons, Ltd.

  6. The role of merged interaction regions and drafts in the heliospheric modulation of cosmic rays beyond 20 AU - A computer simulation

    NASA Technical Reports Server (NTRS)

    Potgieter, M. S.; Le Roux, J. A.; Burlaga, L. F.; Mcdonald, F. B.

    1993-01-01

    Voyager 2 magnetic field measurements are used to simulate merged interaction and rarefaction regions (MIRs and RRs) for 1985-1989 via numerical solutions of the time-dependent, axially symmetric transport equation of cosmic rays in the heliosphere, together with the concurrent use of the wavy neutral sheet as a time-dependent drift parameter. This drift approach was found to be more successful, because it was able to reproduce the intensity levels, the factor modulation, and latitudinal gradients for 1 GeV protons at 23 AU.

  7. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  8. Latitudinal variation of freeze tolerance in intertidal marine snails of the genus Melampus (Gastropoda: Ellobiidae).

    PubMed

    Dennis, A B; Loomis, S H; Hellberg, M E

    2014-01-01

    Abstract Low temperatures limit the poleward distribution of many species such that the expansion of geographic range can only be accomplished via evolutionary innovation. We have tested for physiological differences among closely related species to determine whether their poleward latitudinal ranges are limited by tolerance to cold. We measured lower temperature tolerance (LT50) among a group of intertidal pulmonate snails from six congeneric species and nine locales. Differences in tolerance are placed in the context of a molecular phylogeny based on one mitochondrial (cytochrome oxidase subunit I) and two nuclear (histone 3 and a mitochondrial phosphate carrier protein) markers. Temperate species from two separate lineages had significantly lower measures of LT50 than related tropical species. Range differences within the temperate zone, however, were not explained by LT50. These results show that multiple adaptations to cold and freezing may have enabled range expansions out of the tropics in Melampus. However, northern range limits within temperate species are not governed by cold tolerance alone.

  9. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  10. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.

    PubMed

    Doi, Hideyuki

    2012-09-01

    Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.

  11. A Reassessment of Bergmann's Rule in Modern Humans

    PubMed Central

    Foster, Frederick; Collard, Mark

    2013-01-01

    It is widely accepted that modern humans conform to Bergmann's rule, which holds that body size in endothermic species will increase as temperature decreases. However, there are reasons to question the reliability of the findings on which this consensus is based. One of these is that the main studies that have reported that modern humans conform to Bergmann's rule have employed samples that contain a disproportionately large number of warm-climate and northern hemisphere groups. With this in mind, we used latitudinally-stratified and hemisphere-specific samples to re-assess the relationship between modern human body size and temperature. We found that when groups from north and south of the equator were analyzed together, Bergmann's rule was supported. However, when groups were separated by hemisphere, Bergmann's rule was only supported in the northern hemisphere. In the course of exploring these results further, we found that the difference between our northern and southern hemisphere subsamples is due to the limited latitudinal and temperature range in the latter subsample. Thus, our study suggests that modern humans do conform to Bergmann's rule but only when there are major differences in latitude and temperature among groups. Specifically, groups must span more than 50 degrees of latitude and/or more than 30°C for it to hold. This finding has important implications for work on regional variation in human body size and its relationship to temperature. PMID:24015229

  12. Regional and seasonal response of a West Nile virus vector to climate change.

    PubMed

    Morin, Cory W; Comrie, Andrew C

    2013-09-24

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.

  13. A Review of Spatial and Seasonal Changes in Condensation Clouds Observed During Aerobraking by MGS TES

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg

  14. Using climate, energy, and spatial-based hypotheses to interpret macroecological patterns of North America chelonians

    USGS Publications Warehouse

    Ennen, Joshua R.; Agha, Mickey; Matamoros, Wilfredo A.; Hazzard, Sarah C.; Lovich, Jeffrey E.

    2016-01-01

    Our study investigates how factors, such as latitude, productivity, and several environmental variables, influence contemporary patterns of the species richness in North American turtles. In particular, we test several hypotheses explaining broad-scale species richness patterns on several species richness data sets: (i) total turtles, (ii) freshwater turtles only, (iii) aquatic turtles, (iv) terrestrial turtles only, (v) Emydidae, and (vi) Kinosternidae. In addition to spatial data, we used a combination of 25 abiotic variables in spatial regression models to predict species richness patterns. Our results provide support for multiple hypotheses related to broad-scale patterns of species richness, and in particular, hypotheses related to climate, productivity, water availability, topography, and latitude. In general, species richness patterns were positively associated with temperature, precipitation, diversity of streams, coefficient of variation of elevation, and net primary productivity. We also found that North America turtles follow the general latitudinal diversity gradient pattern (i.e., increasing species richness towards equator) by exhibiting a negative association with latitude. Because of the incongruent results among our six data sets, our study highlights the importance of considering phylogenetic constraints and guilds when interpreting species richness patterns, especially for taxonomic groups that occupy a myriad of habitats.

  15. INFLUENCE OF GEOGRAPHICAL ORIGIN ON SENSITIVITY TO LOW OXYGEN FOR THREE SALTWATER ANIMALS

    EPA Science Inventory

    It has been hypothesized that for species with broad latitudinal distribution, northern and southern populations may differ in their sensitivities to low dissolved oxygen. These differences, if they exist, may be due to generally higher temperatures experienced by the southern po...

  16. Patterns and controlling factors of species diversity in the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.

    2012-01-01

    Aim  The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location  Arctic Ocean.Methods  We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results  Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions  On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.

  17. Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Gómez, Juan J.; Comas-Rengifo, María J.; Goy, Antonio

    2016-05-01

    One of the main controversial themes in palaeoclimatology involves elucidating whether climate during the Jurassic was warmer than the present day and if it was the same over Pangaea, with no major latitudinal gradients. There has been an abundance of evidence of oscillations in seawater temperature throughout the Jurassic. The Pliensbachian (Early Jurassic) constitutes a distinctive time interval for which several seawater temperature oscillations, including an exceptional cooling event, have been documented. To constrain the timing and magnitude of these climate changes, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biochronostratigraphical purposes, and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded latest Sinemurian, Pliensbachian and Early Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes that are likely of a global extent. A warming interval partly coinciding with a δ13Cbel negative excursion was recorded at the Late Sinemurian. After a "normal" temperature interval, with temperatures close to average values of the Late Sinemurian-Early Toarcian period, a new warming interval containing a short-lived positive δ13Cbel peak, developed during the Early-Late Pliensbachian transition. The Late Pliensbachian represents an outstanding cooling interval containing a δ13Cbel positive excursion interrupted by a small negative δ13Cbel peak. Finally, the Early Toarcian represented an exceptional warming period, which has been pointed out as being responsible for the prominent Early Toarcian mass extinction.

  18. Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year

    NASA Astrophysics Data System (ADS)

    Pearl, John C.; Smith, Michael D.; Conrath, Barney J.; Bandfield, Joshua L.; Christensen, Philip R.

    2001-06-01

    Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997 (Ls=184°), has permitted extensive observations over more than a Martian year. Initially, thin (normal optical depth <0.06 at 825 cm-1) ice clouds and hazes were widespread, showing a distinct latitudinal gradient. With the onset of a regional dust storm at Ls=224°, ice clouds vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The zonally averaged cloud opacities show little difference between the beginning and end of the first Martian year. A broad low-latitude cloud belt with considerable longitudinal structure was present in early northern summer. Apparently characteristic of the northern summer season, it vanished between Ls=140° and 150°. The latitudinal extent of this feature is apparently controlled by the ascending branch of the Hadley circulation. The most opaque clouds (optical depth ~0.6) were found above the summits of major volcanic features; these showed spatial structure possibly associated with wave activity. Variety among low-lying late morning clouds suggests localized differences in circulation and microclimates. Limb observations showed extensive optically thin (optical depth <0.04) stratiform clouds at altitudes up to 55 km. Considerable latitude and altitude variations were evident in ice clouds in early northern spring (Ls=25°) near 30 km, thin clouds extended from just north of the equator to ~45°N, nearly to the north polar vortex. A water ice haze was present in the north polar night (Ls=30°) at altitudes up to 40 km. Because little dust was present this probably provided heterogeneous nucleation sites for the formation of CO2 clouds and snowfall at altitudes below ~20 km, where atmospheric temperatures dropped to the CO2 condensation point. The relatively invariant spectral shape of the water ice cloud feature over space and time indicates that ice particle radii are generally between 1 and 4 μm.

  19. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods

    USGS Publications Warehouse

    Martin, Thomas E.; Riordan, Margaret M.; Repin, Rimi; Mouton, James C.; Blake, William M.

    2017-01-01

    AimAdult survival is central to theories explaining latitudinal gradients in life history strategies. Life history theory predicts higher adult survival in tropical than north temperate regions given lower fecundity and parental effort. Early studies were consistent with this prediction, but standard-effort netting studies in recent decades suggested that apparent survival rates in temperate and tropical regions strongly overlap. Such results do not fit with life history theory. Targeted marking and resighting of breeding adults yielded higher survival estimates in the tropics, but this approach is thought to overestimate survival because it does not sample social and age classes with lower survival. We compared the effect of field methods on tropical survival estimates and their relationships with life history traits.LocationSabah, Malaysian Borneo.Time period2008–2016.Major taxonPasseriformes.MethodsWe used standard-effort netting and resighted individuals of all social and age classes of 18 tropical songbird species over 8 years. We compared apparent survival estimates between these two field methods with differing analytical approaches.ResultsEstimated detection and apparent survival probabilities from standard-effort netting were similar to those from other tropical studies that used standard-effort netting. Resighting data verified that a high proportion of individuals that were never recaptured in standard-effort netting remained in the study area, and many were observed breeding. Across all analytical approaches, addition of resighting yielded substantially higher survival estimates than did standard-effort netting alone. These apparent survival estimates were higher than for temperate zone species, consistent with latitudinal differences in life histories. Moreover, apparent survival estimates from addition of resighting, but not from standard-effort netting alone, were correlated with parental effort as measured by egg temperature across species.Main conclusionsInclusion of resighting showed that standard-effort netting alone can negatively bias apparent survival estimates and obscure life history relationships across latitudes and among tropical species.

  20. Soilscapes in the dynamic tropical environments: The case of Sierra Madre del Sur

    NASA Astrophysics Data System (ADS)

    Krasilnikov, P. V.; García-Calderón, N. E.; Ibáñez-Huerta, A.; Bazán-Mateos, M.; Hernández-Santana, J. R.

    2011-12-01

    The paper gives an analysis of the pattern of soil cover of the Sierra Madre del Sur, one of the most complex physiographic regions of Mexico. It presents the results of the study of four latitudinal traverses across the region. We show that the distribution of soils in the Sierra Madre del Sur is associated with major climatic gradients, namely by vertical bioclimatic zonality in the mountains and by the effect of mountain shadow. Altitudinal distribution of soil-bioclimatic belts is complex due to non-uniform gradients of temperature and rainfall, and varies with the configuration of the mountain range. The distribution of soils is associated with the erosion and accumulation rates both on mountain slopes and in river valleys. The abundance of poorly developed soils in (semi)arid areas was ascribed to high erosion rate rather than to low pedogenetic potential. The formation of soil mosaic at a larger scale might be ascribed to the complex net of gully erosion and to the system of seismically triggered landslides of various ages. In the valleys, the distribution of soils depends upon the dynamics of sedimentation and erosion, which eventually exposes paleosols. Red-colored clayey sediments are remains of ancient weathering and pedogenesis. Their distribution is associated mainly with the intensity of recent slope processes. The soil cover pattern of the Sierra Madre del Sur cannot be explained by simplified schemes of bioclimatic zonality. The soil ranges can be explained by the distribution of climates, lithology, complex geological history of the region, and recent geomorphological processes.

  1. A modelling study of the seasonal snowpack energy balance at three sites along the Andes Cordillera. Regional climate and local effects.

    NASA Astrophysics Data System (ADS)

    McPhee, James; Mengual, Sebastian; MacDonell, Shelley

    2017-04-01

    Seasonal snowpack melt constitutes the main water source for large portions of extratropical South America, including central Chile and Western Argentina. The properties and distribution of snow in the Andes are threatened by rapid climate change, characterised by warming and drying. This study provides a first attempt at detailed description of the energy balance of the seasonal snowpack and its variability along a latitudinal gradient, which is also correlated with an elevation and precipitation gradient, in the Andes Cordillera. The Snowpack model was validated at semi-arid, Mediterranean and temperate humid sites, where meteorological and snowpack properties have been observed since year 2013. Site elevations decrease from north to south, whereas precipitation climatology increases with latitude. Results show that turbulent energy exchange becomes relatively more important in periods of low snow accumulation, with sensible heat fluxes having a greater effect in cooling the snowpack at the high-altitude, low latitude site. Likewise, daily melt-freeze cycles are important in maintaining positive cold contents throughout the accumulation season at this site, and contribute to extending the duration of snow cover despite low accumulation and high radiation loads. In contrast, the southernmost, lowest elevation site shows smaller daily temperature amplitude and a much more preponderant radiation component to the energy balance. This modelling exercise highlights the nonlinearities of snow dynamics at different geographical settings in a sparsely monitored mountain area of the world, as well as the need for further understanding in order to evaluate the sensitivity of snow-dominated watersheds to global warming and climate change.

  2. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats.

    PubMed

    Pöhlmann, Kevin; Koenigstein, Stefan; Alter, Katharina; Abele, Doris; Held, Christoph

    2011-11-01

    Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.

  3. Latitudinal Diversity Gradients in New World Bats: Are They a Consequence of Niche Conservatism?

    PubMed Central

    Ramos Pereira, Maria João; Palmeirim, Jorge M.

    2013-01-01

    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism. PMID:23935963

  4. Evaluating population expansion of black bears using spatial capture-recapture

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.

    2017-01-01

    The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses. 

  5. Development of an atmospheric N2O isotopocule model and optimization procedure, and application to source estimation

    NASA Astrophysics Data System (ADS)

    Ishijima, K.; Takigawa, M.; Sudo, K.; Toyoda, S.; Yoshida, N.; Röckmann, T.; Kaiser, J.; Aoki, S.; Morimoto, S.; Sugawara, S.; Nakazawa, T.

    2015-07-01

    This paper presents the development of an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model (ACTM). We also describe a simple method to optimize the model and present its use in estimating the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model. This optimization successfully reproduced realistic spatial and temporal variations of atmospheric N2O isotopocules throughout the atmosphere from the surface to the stratosphere. The very small gradients associated with vertical profiles through the troposphere and the latitudinal and vertical distributions within each hemisphere were also reasonably simulated. The results of the isotopic characterization of the global total sources were generally consistent with previous one-box model estimates, indicating that the observed atmospheric trend is the dominant factor controlling the source isotopic signature. However, hemispheric estimates were different from those generated by a previous two-box model study, mainly due to the model accounting for the interhemispheric transport and latitudinal and vertical distributions of tropospheric N2O isotopocules. Comparisons of time series of atmospheric N2O isotopocule ratios between our model and observational data from several laboratories revealed the need for a more systematic and elaborate intercalibration of the standard scales used in N2O isotopic measurements in order to capture a more complete and precise picture of the temporal and spatial variations in atmospheric N2O isotopocule ratios. This study highlights the possibility that inverse estimation of surface N2O fluxes, including the isotopic information as additional constraints, could be realized.

  6. Development of an atmospheric N2O isotopocule model and optimization procedure, and application to source estimation

    NASA Astrophysics Data System (ADS)

    Ishijima, K.; Takigawa, M.; Sudo, K.; Toyoda, S.; Yoshida, N.; Röckmann, T.; Kaiser, J.; Aoki, S.; Morimoto, S.; Sugawara, S.; Nakazawa, T.

    2015-12-01

    This work presents the development of an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model (ACTM). We also describe a simple method to optimize the model and present its use in estimating the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model. This optimization successfully reproduced realistic spatial and temporal variations of atmospheric N2O isotopocules throughout the atmosphere from the surface to the stratosphere. The very small gradients associated with vertical profiles through the troposphere and the latitudinal and vertical distributions within each hemisphere were also reasonably simulated. The results of the isotopic characterization of the global total sources were generally consistent with previous one-box model estimates, indicating that the observed atmospheric trend is the dominant factor controlling the source isotopic signature. However, hemispheric estimates were different from those generated by a previous two-box model study, mainly due to the model accounting for the interhemispheric transport and latitudinal and vertical distributions of tropospheric N2O isotopocules. Comparisons of time series of atmospheric N2O isotopocule ratios between our model and observational data from several laboratories revealed the need for a more systematic and elaborate intercalibration of the standard scales used in N2O isotopic measurements in order to capture a more complete and precise picture of the temporal and spatial variations in atmospheric N2O isotopocule ratios. This study highlights the possibility that inverse estimation of surface N2O fluxes, including the isotopic information as additional constraints, could be realized.

  7. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    NASA Astrophysics Data System (ADS)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a warming climate.

  8. Abundance and activity of soil microorganisms in Cedrus atlantica forests are more related to land use than to altitude or latitude

    NASA Astrophysics Data System (ADS)

    Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos

    2016-04-01

    Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.

  9. Latitudinal diversity gradients in New World bats: are they a consequence of niche conservatism?

    PubMed

    Ramos Pereira, Maria João; Palmeirim, Jorge M

    2013-01-01

    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism.

  10. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.

    PubMed

    Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe

    2007-11-01

    Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.

  11. Zooplankton seasonality across a latitudinal gradient in the Northeast Atlantic Shelves Province

    NASA Astrophysics Data System (ADS)

    Fanjul, Alvaro; Iriarte, Arantza; Villate, Fernando; Uriarte, Ibon; Atkinson, Angus; Cook, Kathryn

    2018-05-01

    Zooplankton seasonality and its environmental drivers were studied at four coastal sites within the Northeast Atlantic Shelves Province (Bilbao35 (B35) and Urdaibai35 (U35) in the Bay of Biscay, Plymouth L4 (L4) in the English Channel and Stonehaven (SH) in the North Sea) using time series spanning 1999-2013. Seasonal community patterns were extracted at the level of broad zooplankton groups and copepod and cladoceran genera using redundancy analysis. Temperature was generally the environmental factor that explained most of the taxa seasonal variations at the four sites. However, between-site differences related to latitude and trophic status (i.e. from oligotrophic to mesotrophic) were observed in the seasonality of zooplankton community, mainly in the pattern of taxa that peaked in spring-summer as opposed to late autumn-winter zooplankton, which were linked primarily to differences in the seasonal pattern of phytoplankton. The percentage of taxa variations explained by environmental factors increased with latitude and trophic status likely related to the increase in the co-variation of temperature and chlorophyll a, as well as in the increase in regularity of the seasonal patterns of both temperature and chlorophyll a from south to north, and of chlorophyll a with trophic status. Cladocerans and cirripede larvae at B35 and U35, echinoderm larvae at L4 and decapod larvae at SH made the highest contribution to shape the main mode of seasonal pattern of zooplankton community, which showed a seasonal delay with latitude, as well as with the increase in trophic status.

  12. A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock

    2017-01-01

    The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.

  13. Geographic variation in the response of Culex pipiens life history traits to temperature.

    PubMed

    Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm

    2016-02-29

    Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.

  14. Role of Equatorial Anomaly in Earthquake time precursive features: A few strong events over West Pacific zone

    NASA Astrophysics Data System (ADS)

    Devi, Minakshi; Patgiri, S.; Barbara, A. K.; Oyama, Koh-Ichiro; Ryu, K.; Depuev, V.; Depueva, A.

    2018-03-01

    The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M > 5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the 'EQ time modification in density gradient' defined by δ = (foF2 max - foF2 min)/τmm, where τmm - time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices.

  15. Physiological disturbances and overwinter mortality of largemouth bass from different latitudes.

    PubMed

    VanLandeghem, Matthew M; Wagner, Curtis P; Wahl, David H; Suski, Cory D

    2013-01-01

    Thermal conditions associated with winter can influence the distribution of a species. Because winter severity varies along latitudes, populations of temperate fish located along a latitudinal gradient may display variation in both sublethal and lethal responses to cold stressors. Sublethal physiological disturbances were quantified in age 1 largemouth bass (Micropterus salmoides) from populations originating from Alabama and Illinois but raised in a common environment. Fish were exposed to 6 h of rapid cold shock from 20° to 8°C (controls were held at 20°C) and then sampled for white muscle, whole blood, and plasma. After cold shock, glucose concentrations were elevated in Alabama but not Illinois fish. Sodium was lower and chloride was higher in Alabama largemouth bass, but fish from Illinois had a greater propensity for potassium loss during cold shock. In Illinois ponds, Alabama largemouth bass exhibited lower overwinter survival (adult: 10%; age 0: 22%) than did those from Illinois (adult: 80%; age 0: 82%). Latitudinal variation in physiological responses to cold stressors may therefore influence overwinter survival of largemouth bass and the ability of a fish species to exist over large geographic areas.

  16. Riparian plant litter quality increases with latitude.

    PubMed

    Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G

    2017-09-05

    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.

  17. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations.

    PubMed

    Pegoraro, Mirko; Zonato, Valeria; Tyler, Elizabeth R; Fedele, Giorgio; Kyriacou, Charalambos P; Tauber, Eran

    2017-04-01

    Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    PubMed

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological communities requires incorporating context-dependent biotic interactions into species range models. © 2013 John Wiley & Sons Ltd.

  19. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  20. Networked web-cameras monitor congruent seasonal development of birches with phenological field observations

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Kubin, Eero; Linkosalmi, Maiju; Melih Tanis, Cemal; Nadir Arslan, Ali

    2017-04-01

    Ecosystems' potential to provide services, e.g. to sequester carbon is largely driven by the phenological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support various analyses of ecosystem functioning. We established a network of cameras for automated monitoring of phenological activity of vegetation in boreal ecosystems of Finland. Cameras were mounted on 14 sites, each site having 1-3 cameras. In this study, we used cameras at 11 of these sites to investigate how well networked cameras detect phenological development of birches (Betula spp.) along the latitudinal gradient. Birches are interesting focal species for the analyses as they are common throughout Finland. In our cameras they often appear in smaller quantities within dominant species in the images. Here, we tested whether small scattered birch image elements allow reliable extraction of color indices and changes therein. We compared automatically derived phenological dates from these birch image elements to visually determined dates from the same image time series, and to independent observations recorded in the phenological monitoring network from the same region. Automatically extracted season start dates based on the change of green color fraction in the spring corresponded well with the visually interpreted start of season, and field observed budburst dates. During the declining season, red color fraction turned out to be superior over green color based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with gradients based on phenological field observations from the same region. We conclude that already small and scattered birch image elements allow reliable extraction of key phenological dates for birch species. Devising cameras for species specific analyses of phenological timing will be useful for explaining variation of time series of satellite based indices, and it will also benefit models describing ecosystem functioning at species or plant functional type level. With the contribution of the LIFE+ financial instrument of the European Union (LIFE12 ENV/FI/000409 Monimet, http://monimet.fmi.fi)

  1. Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait.

    PubMed

    Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir

    2017-01-01

    A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical concentration of zooplankton. Our results indicate that regional hydrography plays a primary role in shaping zooplankton variability in the WSC on the way to the Arctic Ocean, with additional effects caused by biological factors related to seasonality in pelagic ecosystem development, resulting in regional differences in food availability or biological production between the continental slope and the deep ocean regions.

  2. Prolateness of the Solar Tachocline Inferred from Latitudinal Force Balance in a Magnetohydrodynamic Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-05-01

    Motivated by recent helioseismic observations concerning solar tachocline shape and thickness and by the theoretical development of MHD shallow-water equations for the tachocline, we compute the prolateness of the tachocline using an MHD shallow-water model, in which the shape and thickness are determined from the latitudinal force balance equation. We show that a strong toroidal magnetic field stored at or below the overshoot part of the tachocline leads to a pileup of fluid at high latitude, owing to the poleward magnetic curvature stress which has to be balanced by an equatorward latitudinal hydrostatic pressure gradient. For toroidal fields of solar amplitude (~100 kG), results for differentially rotating and uniformly rotating tachoclines are almost the same. In contrast, the unmagnetized differentially rotating tachocline would always be weakly oblate. We propose that a strong toroidal field in the overshoot part of the tachocline should tend to suppress the overshooting, thereby increasing the magnetic storage capacity of the layer since the stratification there should become more subadiabatic. We illustrate the effect of this process on the shape and thickness of the layer by assuming its effective gravity is a function of field strength. If toroidal fields are concentrated in relatively narrow bands which migrate toward the equator with the advance of the sunspot cycle, then they should be accompanied by a ``thickness front'' advancing at the same rate. Applying our model to the prolateness estimate of Charbonneau et al. yields toroidal fields of 60-150 kG in the overshoot layer, consistent with other considerations. Their prolateness in the radiative part of the tachocline would require ~600 kG fields to be present.

  3. Helioseismic Constraints on the Gradient of Angular Velocity at the Base of the Solar Convection Zone

    NASA Technical Reports Server (NTRS)

    Kosovichev, A. G.

    1996-01-01

    The layer of transition from the nearly rigid rotation of the radiative interior to the latitudinal differential rotation of the convection zone plays a significant role in the internal dynamics of the Sun. Using rotational splitting coefficients of the p-mode frequencies, obtained during 1986-1990 at the Big Bear Solar Observatory, we have found that the thickness of the transitional layer is 0.09 +/- 0.04 solar radii (63 +/- 28 Mm), and that most of the transition occurs beneath the adiabatically stratified part of the convection zone, as suggested by the dynamo theories of the 22 yr solar activity cycle.

  4. Examining mechanisms in the final stages of the elimination of boreal tree species on vulnerable sites in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.

    2015-12-01

    The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.

  5. A Spatio-Temporal Model of Phenotypic Evolution in the Atlantic Silverside (Menidia menidia) and Its Implications for Size-Selective Fishing in a Warmer World

    NASA Astrophysics Data System (ADS)

    Sbrocco, E. J.

    2016-02-01

    A pervasive phenotypic pattern observed across marine fishes is that vertebral number increases with latitude. Jordan's Rule, as it is known, holds true both within and across species, and like other ecogeographic principles (e.g., Bergmann's Rule), it is presumed to be an adaptive response to latitudinal gradients in temperature. As such, future ocean warming is expected to impact not only the geographic range limits of marine fishes that conform to Jordan's Rule, but also their phenotype, with warmer waters selecting for fish with fewer vertebrae at any given latitude. Here I present a model of phenotypic evolution over space and time for the Atlantic silverside (Menidia menidia), a common marine fish found in coastal waters along the western North Atlantic. This species has long served as a model organism for the study of fisheries-induced selection and exhibits numerous latitudinal clines in phenotypic and life-history traits, including vertebral number. Common garden experiments have shown that vertebral number is genetically determined in this species, but correlative models of observed vertebral counts and climate reveal that SST is the single strongest predictor of phenotype, even after accounting for gene flow. This result indicates that natural selection is responsible for maintaining vertebral clines in the silverside, and allows for the prediction of phenotypic responses to ocean warming. By integrating genetic estimates of population connectivity, species distribution models, and statistical models, I find that by the end of the 21st century, ocean warming will select for silversides with up to 8% fewer vertebrae. Mid-Atlantic populations are the most mal-adapted for future conditions, but may be rescued by migration from small-phenotype southern neighbors or by directional selection. Despite smaller temperature anomalies, the strongest impacts of warming will be felt at both northern and southern edges of the distribution, where genetic rescue from neighboring populations is not predicted to occur and in situ directional selection is less likely due to low phenotypic variation. This study has important implications for marine fisheries, since climate-induced phenotypic evolution may compound issues that already exist as a result of size-selective harvest of large, fast-growing fish.

  6. Urbanization disrupts latitude-size rule in 17-year cicadas.

    PubMed

    Beasley, DeAnna E; Penick, Clint A; Boateng, Nana S; Menninger, Holly L; Dunn, Robert R

    2018-03-01

    Many ectotherms show a decrease in body size with increasing latitude due to changes in climate, a pattern termed converse Bergmann's rule. Urban conditions-particularly warmer temperatures and fragmented landscapes-may impose stresses on development that could disrupt these body size patterns. To test the impact of urbanization on development and latitudinal trends in body size, we launched a citizen science project to collect periodical cicadas ( Magicicada septendecim ) from across their latitudinal range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects whose distribution spans a broad latitudinal range covering both urban and rural habitats. We used a geometric morphometric approach to assess body size and developmental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas followed converse Bergmann's rule, but this pattern was disrupted in urban habitats. In the north, urban cicadas were larger than their rural counterparts, while southern populations showed little variation in body size between habitats. We detected no evidence of differences in developmental stress due to urbanization. To our knowledge, this is the first evidence that urbanization disrupts biogeographical trends in body size, and this pattern highlights how the effects of urbanization may differ over a species' range.

  7. Cusp-related Pc3-5 Wave Activity

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Engebretson, M. J.; Kozlovsky, A.; Belakhovsky, V.; Lessard, M.; Yeoman, T. K.

    2009-12-01

    Pc3-5 pulsations were found to be an ubiquitous element of dayside ULF wave activity at the cusp region. We examine observations of Pc3-5 wave activity by search coil and flux-gate magnetometers at three locations on Svalbard, covering geomagnetic latitudes 74o-76o. To identify the ionospheric projections of the cusp, we use the width of the return signal from the SuperDARN Finland radar covering the Svalbard archipelago. The ULF meridional spatial structure is examined using the amplitude-phase gradient technique. This analysis shows no specific mode conversion pattern near the cusp region. The amplitude gradient mainly has the same direction at all frequencies, and only during periods when the cusp is shifted to very high latitudes, the gradient may change sign. The phase delay is chaotic and does not show any consistent pattern. This behavior corresponds to the occurrence of a localized peak in the latitudinal distribution of Pc3-5 power, but not under the cusp proper as was previously thought, but about several degrees southward from the equatorward cusp boundary. We suppose that compressional Pc3 fluctuations leaking from the magnetosheath into the entry layer of the magnetosphere can modulate the precipitating electron fluxes, which produce the ground response.

  8. Preliminary map of temperature gradients in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffanti, M.; Nathenson, M.

    1980-09-01

    Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less

  9. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Drought causes reduced growth of trembling aspen in western Canada.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  11. Northern hemisphere jet stream positions indices as diagnostic tools for climate and ecosystem dynamics

    USGS Publications Warehouse

    Belmecheri, Soumaya; Babst, Flurin; Hudson, Amy R.; Betancourt, Julio L.; Trouet, Valerie

    2017-01-01

    The latitudinal position of the Northern Hemisphere jet stream (NHJ) modulates the occurrence and frequency of extreme weather events. Precipitation anomalies in particular are associated with NHJ variability; the resulting floods and droughts can have considerable societal and economic impacts. This study develops a new climatology of the 300-hPa NHJ using a bottom-up approach based on seasonally explicit latitudinal NHJ positions. Four seasons with coherent NHJ patterns were identified (January–February, April–May, July–August, and October–November), along with 32 longitudinal sectors where the seasonal NHJ shows strong spatial coherence. These 32 longitudinal sectors were then used as NHJ position indices to examine the influence of seasonal NHJ position on the geographical distribution of NH precipitation and temperature variability and their link to atmospheric circulation pattern. The analyses show that the NHJ indices are related to broad-scale patterns in temperature and precipitation variability, in terrestrial vegetation productivity and spring phenology, and can be used as diagnostic/prognostic tools to link ecosystem and socioeconomic dynamics to upper-level atmospheric patterns.

  12. Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics

    PubMed Central

    Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R

    2014-01-01

    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466

  13. Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.

    PubMed

    Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R

    2014-03-01

    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.

  14. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  15. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  16. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  17. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  18. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  19. Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China.

    PubMed

    Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K; Dong, Ming; Cornelissen, Johannes H C

    2016-06-01

    The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.

  20. The seasonal effect in one-dimensional Daisyworld.

    PubMed

    Biton, Eli; Gildor, Hezi

    2012-12-07

    We have studied the effects of seasonal Solar Radiation Forcing (SRF) on the climate self-regulatory capability of life, using a latitudinal-dependent Daisyworld model. Because the seasonal polarity of SRF increases poleward, habitable conditions exist in the equatorial regions year round, whereas, in the high latitudes, harsh winters cause annual extinction of life, and only the summers are inhabited or regulated by life. Seasonality affects climate regulation by two major mechanisms: (1) the cold winter conditions in the high latitudes reduce the global temperature below the optimal temperature; (2) during summer, life experiences higher SRF anomalies and, therefore, shifts to higher albedo when compared to annual mean SRF. In turn, a full capacity for temperature regulation is reached at lower SRF, and the range of SRF over which life regulates climate is significantly reduced. Lastly, initiation/extinction of life at low/highly-perturbed SRF occurs at the poles. Therefore, an irreversible global extinction occurs once life passes its regulatory capacity in the poles. We conduct extensive sensitivity analyses on various model parameters (latitudinal heat diffusion, heat capacity, and population death rate), strengthening the generality/robustness of the above net seasonal effects. Applications to other SRF fluctuation, as Milankovitch cycles are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

Top