Science.gov

Sample records for lattice gas simulations

  1. Lattice Boltzmann simulation of rarefied gas flows in microchannels

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghao; Qin, Rongshan; Emerson, David R.

    2005-04-01

    For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach number is negligibly small. Since the Knudsen number of the gas flow in a long microchannel can vary widely and the Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1, an alternative method that can be applicable to continuum, slip and transition flow regimes is highly desirable. The lattice Boltzmann equation (LBE) approach has recently been expected to have such potential. However, some hurdles need to be overcome before it can be applied to simulate rarefied gas flows. The first major hurdle is to accurately model the gas molecule and wall surface interactions. In addition, the Knudsen number needs to be clearly defined in terms of LBE properties to ensure that the LBE simulation results can be checked against experimental measurements and other simulation results. In this paper, the Maxwellian scattering kernel is adopted to address the gas molecule and surface interactions with an accommodation coefficient (in addition to the Knudsen number) controlling the amount of slip motion. The Knudsen number is derived consistently with the macroscopic property based definition. The simulation results of the present LBE model are in quantitative agreement with the established theory in the slip flow regime. In the transition flow regime, the model captures the Knudsen minimum phenomenon qualitatively. Therefore, the LBE can be a competitive method for simulation of rarefied gas flows in microdevices.

  2. Lattice gas simulations of dynamical geometry in two dimensions

    NASA Astrophysics Data System (ADS)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A.; Love, Peter J.

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett.PRLTAO0031-9007 56, 1505 (1986)]10.1103/PhysRevLett.56.1505 and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]10.1098/rsta.2001.0933. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t1/3 , in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  3. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  4. Thermodynamic consistency of liquid-gas lattice Boltzmann simulations.

    PubMed

    Wagner, A J

    2006-11-01

    Lattice Boltzmann simulations have been very successful in simulating liquid-gas and other multiphase fluid systems. However, the underlying second-order analysis of the equation of motion has long been known to be insufficient to consistently derive the fourth-order terms that are necessary to represent an extended interface. These same terms are also responsible for thermodynamic consistency--i.e., to obtain a true equilibrium solution with both a constant chemical potential and a constant pressure. In this article we present an equilibrium analysis of nonideal lattice Boltzmann methods of sufficient order to identify those higher-order terms that lead to a lack of thermodynamic consistency. We then introduce a thermodynamically consistent forcing method.

  5. Simulation of non-resonant gas-optical lattice interaction

    NASA Astrophysics Data System (ADS)

    Kungurtsev, P. V.; Shevyrin, A. A.; Bondar, Ye. A.; Kashkovsky, A. V.; Gimelshein, S. F.; Shneider, M. N.

    2016-10-01

    Self-consistent interaction of a non-resonant optical lattice with a gas of polarizable particles is considered. We investigate periodic modulations of gas density in the field of high-intensity laser radiation from two opposing sources and potential's evolution due to intense Bragg reflection. The self-consistent model of laser field and gas interaction is developed and implemented into the SMILE++ software system based on the Direct Simulation Monte Carlo method. We observed noticeable variation of the force acting on the particles in the interaction region, especially in its central part. Taking into account the arising spatial inhomogeneity of the optical potential we demonstrated noticeable effects on the evolution of the self-consistent system if the interaction region has a macroscopic size.

  6. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Virnau, Peter

    2016-12-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  7. Overview: Understanding nucleation phenomena from simulations of lattice gas models.

    PubMed

    Binder, Kurt; Virnau, Peter

    2016-12-07

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  8. Lattice gas simulation of experimentally studied evacuation dynamics.

    PubMed

    Helbing, Dirk; Isobe, Motonari; Nagatani, Takashi; Takimoto, Kouhei

    2003-06-01

    We study the evacuation process from a classroom by means of experiments and simulations. The evacuation of students from a classroom is observed by video cameras, and the escape time of each student is measured. Our experimental results are compared with simulations based on a lattice gas model of pedestrian flows. We find that the empirically identified inefficiencies of the evacuation process can be well reproduced. Our particular focus is on the spatial dependence of the escape times on the initial positions, which is highly significant. The escape time distribution turns out to be rather broad due to a jamming (queuing) of the students at the exit, which determines not only the saturation flow (capacity) but also the temporal characteristics of the evacuation dynamics.

  9. Lattice gas simulations of dynamical geometry in one dimension.

    PubMed

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  10. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations

    NASA Astrophysics Data System (ADS)

    Di Staso, G.; Clercx, H. J. H.; Succi, S.; Toschi, F.

    2016-11-01

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  11. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    PubMed

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  12. Simulation of two-phase flow using lattice gas automata methods

    SciTech Connect

    Tsumaya, Akira; Ohashi, Hirotada; Akiyama, Mamoru

    1996-08-01

    Two-phase flow simulation has been primarily based on experimental data in the sense that constitutive relations necessary for solving fundamental equations are experimentally determined. This assures validity of simulation of two-phase flow within the experimental conditions, but it is difficult to predict the behavior of two-phase flow under extreme or complex conditions which occur, for example, in severe accidents of nuclear reactors. Lattice gas automaton (LGA) simulation has recently attracted attention as a method for numerical simulation of multi phase flow. The authors extend phase-separation LGA models and develop methods for two-phase flow simulation. First, they newly added a flow model to the immiscible lattice gas model and applied it to two-dimensional Poiseuille flow. They obtained a result looking like lubricated pipelining of crude oil with water. Also, considering the gravity effect, they introduced a buoyancy force into the liquid-gas model. As a result, they demonstrated that gas bubbles of various diameters rise and gradually coalesce each other turning into larger bubbles. Using these newly developed LGA models, they succeeded in simulating various flow patterns of two-phase flow.

  13. Pair interaction lattice gas simulations: Flow past obstacles in two and three dimensions

    SciTech Connect

    Vogeler, A.; Wolf-Gladrow, D.A. )

    1993-04-01

    Apart from the FCHC (face-centered hypercube), Nasilowski's pair interaction lattice gas (PI) is the only known lattice gas automaton for three-dimensional hydrodynamic simulations. Unfortunately, the viscosity of PI is not isotropic. In order to determine the degree anisotropy, the authors derive fluid dynamic equations for the regime of compressible viscid flow. From relaxation measurements of waves propagating in various directions they compute the physically relevant dissipation coefficients and compare their results with theoretical predictions. Although PI shows a high degree of anisotropy, they define the mean value of the dissipation tensor as effective shear viscosity. Using this value of v[sub eff][sup 2D] = 0.35, two-dimensional simulations of flow past a cylinder yield drag coefficients in quantitative agreement with wind tunnel measurements over a range of Reynolds numbers of 5-50. Three-dimensional simulations of flow past a sphere yield qualitative agreement with various references. A fit of the results to a semi-empirical curve provides an effective value of v[sub eff][sup 2D] = 0.21 for a range of Reynolds numbers from 0.19 to 40. In order to check for finite-size effects, the authors measured the mean free path [lambda] and computed the Knudsen numbers. They obtained [lambda] [approx]1 lattice unit, corresponding to Kn = 0.01 (2D) and Kn = 0.1 (3D). They found no significant finite-size effects. 44 refs., 10 figs.

  14. Lattice gas hydrodynamics of one and two-phase fluids in two and three dimensions: Theory and simulation

    SciTech Connect

    Diemer, K.L.

    1992-01-01

    Lattice gas automata models for hydrodynamics offer a method for simulating fluids in between the standard molecular dynamic models and finite difference schemes. The algorithm is especially suited to low Mach number flow around complex boundaries and can be implemented in a fully parallelizable, memory efficient manner using only boolean operations. The simplest lattice gas automata is reviewed. The modification of the standard Chapmann-Enskog expansion lattice gas case is reviewed. In the long wavelength and long time limit, the incompressible Navier-Stokes equation is derived. Analytic calculations of shear viscosity [eta], mean free path [lambda], and a reduced Reynolds number R are presented for a number of 2D and 3D lattice gas models. Comparisons of lattice gas results with analytical predictions and other numerical methods are reviewed. This is followed by a discussion of the zero velocity limit used in deriving the above analytic results. Lattice gas hydrodynamic models for flows through porous media in two and three dimensions are described. The computational method easily handles arbitrary boundaries and a large range of Reynolds numbers. Darcy's law is confirmed for Poiseuille flow and for complicated boundary flows. Lattice gas simulation results for permeability for one geometry are compared with experimental results and found to agree to within 10%. Lattice gas hydrodynamic models for two dimensional binary fluids are described. The scaling of the correlation function during late stage growth is examined. The domain growth kinetics during this period is also explored and compared with the work of Furukawa. A local lattice gas model for binary fluids with an adjustable parameter [lambda] which allows degree of miscibility is introduced. For [lambda] < [lambda][sub c] the fluids are immiscible while for [lambda] > [lambda][sub c] the fluids are miscible. Theoretical and numerical studies on the diffusive properties of this lattice gas are presented.

  15. Simulating the time-dependent Schr"odinger equation with a quantum lattice-gas algorithm

    NASA Astrophysics Data System (ADS)

    Prezkuta, Zachary; Coffey, Mark

    2007-03-01

    Quantum computing algorithms promise remarkable improvements in speed or memory for certain applications. Currently, the Type II (or hybrid) quantum computer is the most feasible to build. This consists of a large number of small Type I (pure) quantum computers that compute with quantum logic, but communicate with nearest neighbors in a classical way. The arrangement thus formed is suitable for computations that execute a quantum lattice gas algorithm (QLGA). We report QLGA simulations for both the linear and nonlinear time-dependent Schr"odinger equation. These evidence the stable, efficient, and at least second order convergent properties of the algorithm. The simulation capability provides a computational tool for applications in nonlinear optics, superconducting and superfluid materials, Bose-Einstein condensates, and elsewhere.

  16. Lattice Boltzmann simulation of shale gas transport in organic nano-pores.

    PubMed

    Zhang, Xiaoling; Xiao, Lizhi; Shan, Xiaowen; Guo, Long

    2014-05-02

    Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale.

  17. Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Xiao, Lizhi; Shan, Xiaowen; Guo, Long

    2014-05-01

    Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale.

  18. Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores

    PubMed Central

    Zhang, Xiaoling; Xiao, Lizhi; Shan, Xiaowen; Guo, Long

    2014-01-01

    Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale. PMID:24784022

  19. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  20. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  1. Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Chen, L.; Tao, W. Q.

    2015-11-01

    A two-dimensional lattice Boltzmann (LB) approach was established to implement kinetic concentration boundary conditions in interfacial mass-transfer processes and to simulate the adsorption process in porous media at pore scale and mesoscopic levels. A general treatment was applied to conduct three types of concentration boundary conditions effectively and accurately. Applicability for adsorption was verified by two benchmark examples, which were representative of the interparticle mass transport and intraparticle mass transport in the adsorption system, respectively. The gas-solid adsorption process in reconstructed porous media at the pore scale level was numerically investigated. Mass-transfer processes of the adsorption reaction were simulated by executing Langmuir adsorption kinetics on surfaces of adsorbent particles. Meanwhile, the homogeneous solid diffusion model (HSDM) was used for mass transport in interior particles. The transient adsorbed amount was obtained in detail, and the impact of flow condition, porosity, and adsorbent particle size on the entire dynamic adsorption performance was investigated. The time needed to approach steady state decreased with increased fluid velocity. Transient adsorption capability and time consumption to equilibrium were nearly independent of porosity, whereas increasing pore size led to a moderating adsorption rate and more time was consumed to approach the saturation adsorption. Benefiting from the advantages of the LB method, both bulk and intraparticle mass transfer performances during adsorption can be obtained using the present pore scale approach. Thus, interparticle mass transfer and intraparticle mass transfer are the two primary segments, and intraparticle diffusion has the dominant role.

  2. Biological Lattice Gas Models

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Kiskowski, Maria; Jiang, Yi; Newman, Stuart

    Modelling pattern formation and morphogenesis are fundamental problems in biology. One useful approach is lattice gas cellular automata (LGCA) model. This paper reviews several stochastic lattice gas models for pattern formation in myxobacteria fruiting body morphogenesis and vertebrate limb skeletogenesis. The fruiting body formation in myxobacteria is a complex morphological process that requires the organized, collective effort of tens of thousands of cells. It provides new insight into collective microbial behavior since myxobacteria morphogenic pattern formation is governed by cell-cell interactions rather than chemotaxis. We describe LGCA models for the aggregation stage of the fruiting body formation. Limb bud precartilage mesenchymal cells in micromass culture undergo chondrogenic pattern formation, which results in the formation of regularly-spaced "islands" of cartilage analogous to the cartilage primordia of the developing limb skeleton. An LGCA model, based on reaction-diffusion coupling and cell-matrix adhesion, is described for this process.

  3. Simulation of pore scale porous media flow using lattice gas methods

    NASA Astrophysics Data System (ADS)

    Eggert, K.; Chen, Shiyi; Travis, B.; Grunau, D.; Loh, E.; Kovarik, F.

    Carbon dioxide-foam injection is an important technique for improving the recovery of oil from porous rocks. Huh, et. al. (1989) recently presented results of two-dimensional laboratory micromodel studies conducted to better understand this process for improved oil recovery. These experimental results indicate that the introduction of CO2 foam may be expected to have a substantial effect on the relative permeability curves that would be used to model improved oil recovery in a reservoir. However, in order to determine expected changes in relative permeability a computational technique is required to quantify the experimental results, and to help determine the appropriate relative permeability curves for reservoir scale calculation. Two computational methodologies are needed to utilize the experimental information to improve reservoir simulations. First, a method is needed for quantitatively describing the phenomena observed in the micromodel geometry. Second, a method is needed to extend these effects to the different scales of heterogeneity that may be expected to exist between the laboratory and the field. The focus is on the first of these methods, and although it does not yet fully solve the problem of representing these fluid systems in the laboratory, it presents a promising approach to this problem. The application of the lattice gas method is discussed for solution of the nondimensional Navier-Stokes equations for flow of fluids through the complex microscopic geometry of porous media. In particular, the approach presented allows the simulation not only of single fluids through the media, but of systems of two or more fluids ranging from fully miscible to completely immiscible.

  4. Simulation of pore scale porous media flow using lattice gas methods

    SciTech Connect

    Eggert, K.; Chen, Shiyi; Travis, B.; Grunau, D. ); Loh, E. ); Kovarik, F. . Inst. for Improved Oil Recovery Research)

    1991-01-01

    Carbon dioxide-foam injection is an important technique for improving the recovery of oil from porous rocks. Huh, et. al. (1989) recently presented results of two-dimensional laboratory micromodel studies conducted to better understand this process for improved oil recovery. These experimental results indicate that the introduction of CO{sub 2} foam may be expected to have a substantial effect on the relative permeability curves that would be used to model improved oil recovery in a reservoir. However, in order to determine expected changes in relative permeability a computational technique is require to quantify the experimental results, and to help determine the appropriate relative permeability curves for reservoir scale calculation. Two computational methodologies are needed to utilize the experimental information to improve reservoir simulations. First, a method is needed for quantitatively describing the phenomena observed in the micromodel geometry. Second, a method is needed to extend these effects to the different scales of heterogeneity that may be expected to exist between the laboratory and the field. This paper is focused on the first of these methods, and although it does not yet fully solve the problem of representing these fluid systems in the laboratory, it presents a promising approach to this problem. The paper briefly discusses the application of the lattice gas method for solution of the nondimensional Navier-Stokes equations for flow of fluids through the complex microscopic geometry of porous media. In particular, the approach presented herein allows the simulation not only of single fluids through the media, but of systems of two or more fluids ranging from fully miscible to completely immiscible. 11 refs., 4 figs.

  5. Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad

    2015-01-01

    Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.

  6. Lattice Boltzmann simulations of incompressible liquid-gas systems on partial wetting surfaces.

    PubMed

    Shih, Ching-Hsiang; Wu, Cheng-Long; Chang, Li-Chen; Lin, Chao-An

    2011-06-28

    A three-dimensional Lattice Boltzmann two-phase model capable of dealing with large liquid and gas density ratios and with a partial wetting surface is introduced. This is based on a high density ratio model combined with a partial wetting boundary method. The predicted three-dimensional droplets at different partial wetting conditions at equilibrium are in good agreement with analytical solutions. Despite the large density ratio, the spurious velocity around the interface is not substantial, and is rather insensitive to the examined liquid and gas density and viscosity ratios. The influence of the gravitational force on the droplet shape is also examined through the variations of the Bond number, where the droplet shape migrates from spherical to flattened interface in tandem with the increase of the Bond number. The predicted interfaces under constant Bond number are also validated against measurements with good agreements.

  7. ``SAFFMAN-TAYLOR'' Finger in 2d Parallel Viscous: BGK Lattice Gas Simulations

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Rakotomalala, Nicole; Watzky, Philippe

    1996-11-01

    We study the displacement of miscible fluids between two parallel plates for different values of the Peclet number Pe and of the viscosity ratio M. The full Navier-Stokes problem is addressed. We use the BGK lattice gas method, which is well suited for miscible fluids and allows to introduce molecular diffusion at the microscopic scale of the lattice. This numerical experiment leads to a symmetric concentration profile about the middle of the gap between the plates. At Pe numbers of the order of 1, mixing involves diffusion and advection in the flow direction. At large Pe, the fluids do not mix and an interface between them can be defined. Moreover, above M ~ 10, the interface becomes a well defined finger, the reduced width of which tends to λ_∞=0.56 at large values of M. Assuming that miscible fluids at high Pe numbers are similar to immiscible fluids at high capillary numbers, we find the analytical shape of the finger, using an extrapolation of the Reinelt-Saffman calculations for a Stokes immiscible flow. Surprisingly, the result is that our finger can be deduced from the celebrated Saffman-Taylor' s one, obtained in a potential flow, by a streching in the flow direction by a numerical factor of 2.125.

  8. Counting Lattice-Gas Invariants

    DTIC Science & Technology

    2007-11-02

    Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet . Lattice gas hydrodynamics in two and three dimensions...177. Springer -Verlag, Februrary 1989. Proceedings of the Winter School, Les Houches, France. 6

  9. The Classical Lattice-Gas Method

    DTIC Science & Technology

    1999-02-01

    also be fixed obstacles with which the particles have perfectly elastic collisions. For example, one can simulate vortex shedding in a fluid flowing ...cause an attractive force between particles giving rise to an athermal liquid-gas phase transition.4 To simulate the correct macroscopic dynamics , the...rheology of mul- tiphase dynamics is driven by low Reynolds number flows . The rheology of droplets (for example 3 The first lattice Boltzmann simulations

  10. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Dorari, Elaheh; Saffar-Avval, Majid; Mansoori, Zohreh

    2015-12-01

    In microfluidics, two important factors responsible for the differences between the characteristics of the flow and heat transfer in microchannels and conventional channels are rarefaction and surface roughness which are studied in the present work. An incompressible gas flow in a microchannel is simulated two dimensionally using the lattice Boltzmann method. The flow is in the slip regime and surface roughness is modeled by both regular and Gaussian random distribution of rectangular modules. The effects of relative surface roughness height and Knudsen number on gaseous flow and heat transfer are studied. It was shown that as the relative roughness height increases, the Poiseuille number increases and the Nusselt number has a decreasing or increasing trend, depending on the degree of rarefaction. A comparison between the flow and heat transfer characteristics in regular and random distribution of surface roughness demonstrates that in regular roughness, circular flows are more pronounced; Poiseuille number is higher and Nusselt number is lower than that of its equivalent random roughness.

  11. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method.

    PubMed

    Dorari, Elaheh; Saffar-Avval, Majid; Mansoori, Zohreh

    2015-12-01

    In microfluidics, two important factors responsible for the differences between the characteristics of the flow and heat transfer in microchannels and conventional channels are rarefaction and surface roughness which are studied in the present work. An incompressible gas flow in a microchannel is simulated two dimensionally using the lattice Boltzmann method. The flow is in the slip regime and surface roughness is modeled by both regular and Gaussian random distribution of rectangular modules. The effects of relative surface roughness height and Knudsen number on gaseous flow and heat transfer are studied. It was shown that as the relative roughness height increases, the Poiseuille number increases and the Nusselt number has a decreasing or increasing trend, depending on the degree of rarefaction. A comparison between the flow and heat transfer characteristics in regular and random distribution of surface roughness demonstrates that in regular roughness, circular flows are more pronounced; Poiseuille number is higher and Nusselt number is lower than that of its equivalent random roughness.

  12. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  13. Lattice Simulations and Infrared Conformality

    DOE PAGES

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; ...

    2011-09-01

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less

  14. A non-thermal lattice gas model for a dimer trimer reaction on a catalytic surface: A computer simulation study

    NASA Astrophysics Data System (ADS)

    Ahmad, Waqar; Parvez, M.; Baloach, Musa Kaleem; Qaisrani, A. U.; Khalid, M.

    2006-11-01

    The kinetics of an irreversible dimer-trimer reaction of the type 3A 2 + 2B 3 → 6AB have been studied using a non-thermal (precursor mechanism) model on a square as well as on a hexagonal lattice surface by Monte Carlo simulation. When the range of the precursors (A atoms) is increased, the model gives production rates (reactive window widths) that are quite large as compared with those for thermal (Langmuir-Hanshelwood mechanism) model. The phase diagrams qualitatively resemble with the standard ZGB model except that the continuous transition point is eliminated when the range of the precursors is extended up to the third nearest neighbourhood. The diffusion of A atoms on the surface as well as their desorption from the surface with a certain probability is also considered to see their effects on the reaction mechanism.

  15. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice.

    PubMed

    Oliveira, Tiago J; Stilck, Jürgen F; Barbosa, Marco Aurélio A

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  16. Solution of an associating lattice-gas model with density anomaly on a Husimi lattice

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.

    2010-11-01

    We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.

  17. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  18. Experimentally observed field–gas interaction in intense optical lattices

    SciTech Connect

    Graul, Jacob S.; Cornella, Barry M.; Ketsdever, Andrew D.; Lilly, Taylor C.; Shneider, Mikhail N.

    2013-12-09

    When a gas perturbed by a laser interference pattern, an optical lattice, exhibits a periodic modulation of its refractive index, strong Bragg diffraction of the perturbing light can occur. This scattering reduces the field's ability to further manipulate the gas. Experimental observations of Bragg scattering, evidence of a two-way coupling, are compared to the evolution of the light fields calculated by solutions to the wave equation. Comparison indicates momentum deposition as a prime contributor to the shape of the scattering function vs. lattice velocity, a rationale further supported through additional direct simulation Monte Carlo simulation.

  19. Neutral gas heating via non-resonant optical lattices

    NASA Astrophysics Data System (ADS)

    Cornella, Barry Michael

    The influence of intense optical lattices on atoms or molecules offers a particularly useful method for energy and momentum deposition into a non-resonant gas. In this investigation, a proof-of-concept experiment was conducted to validate high intensity pulsed optical lattices as a means of creating high temperature gases for a myriad of aerospace, basic physics, and nanotechnology applications. Traditional methods for creating these flows have either involved altering the chemical composition of the initial gas sample through combustion or ionization or relied on laser resonant interactions with internal energy modes through laser pyrolysis. Due to its non-resonant nature, the use of optical lattices might be beneficial compared to existing methods since it provides an arbitrary, localized, high temperature gas that is tunable and does not introduce unwanted chemical species or high ionization concentrations. As an intermediate step toward verifying optical lattice gas heating, a coherent Rayleigh-Brillouin scattering (CRBS) study was also performed to verify the presented methodology. CRBS is a gas diagnostic technique used for non-intrusive probing of gas thermodynamic properties. In addition to the experimental investigation, a complementary numerical study was conducted using a direct simulation Monte Carlo approach. The numerical study used a modified version of SMILE to predict the gas phenomena within the strong optical potential fields. The goal of substantiating optical lattice heating was accomplished by detecting the acoustic wave generated from the heated volume. The magnitude of the resulting acoustic wave was shown to vary with the optical lattice phase velocity, peaking on the order of the gas' most probable speed. The trend with lattice velocity is consistent with both theory and the numerical study and eliminates other possible heating mechanisms such as laser-induced ionization or molecular dissociation. Limitations for the investigated heating

  20. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  1. Lattice gas methods for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1995-01-01

    This paper presents the lattice gas solution to the category 1 problems of the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics. The first and second problems were solved for Delta t = Delta x = 1, and additionally the second problem was solved for Delta t = 1/4 and Delta x = 1/2. The results are striking: even for these large time and space grids the lattice gas numerical solutions are almost indistinguishable from the analytical solutions. A simple bug in the Mathematica code was found in the solutions submitted for comparison, and the comparison plots shown at the end of this volume show the bug. An Appendix to the present paper shows an example lattice gas solution with and without the bug.

  2. Noise and compressibility in lattice-gas fluids

    NASA Technical Reports Server (NTRS)

    Dahlburg, Jill P.; Montgomery, David; Doolen, Gary D.

    1987-01-01

    Computations are reported in which the hexagonal lattice gas is used to simulate two-dimensional Navier-Stokes shear flows. Limitations associated with noise in the initial loading and compressible effects associated with a velocity-dependent equation of state arise and interact with each other. A relatively narrow window in density and flow speed exhibits physical behavior.

  3. Simulation of the spreading of a gas-propelled micro-droplet upon impact on a dry surface using a lattice-Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Ebrahim, Mahsa; Ortega, Alfonso; Delbosc, Nicolas; Wilson, Mark C. T.; Summers, Jonathan L.

    2017-07-01

    Spray cooling is one of the most promising methods of cooling high heat flux electronics. Depending on the type of the nozzle, spray cooling can be categorized as single-phase or two-phase. In the latter, which is known to be more effective, a secondary gas is used to further pressurize the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the spreading phase by imposing normal and tangential forces on the droplet free surface which adds to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of droplet size in spray cooling is 10-6 m, thereby introducing a low Weber and Reynolds numbers' impact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was implemented to simulate the impact of a single micro-droplet on a dry surface both in ambient air and under a stagnation gas flow. Two cases were closely compared and correlations were proposed for the instantaneous spreading diameter. Contrary to recent findings at higher impact Weber and Reynolds numbers, it was found that a stagnation flow only significantly affects the spreading phase for Ca* ≥ 0.35 but has little influence on the receding physics.

  4. Observing dynamical SUSY breaking with lattice simulation

    SciTech Connect

    Kanamori, Issaku

    2008-11-23

    On the basis of the recently developed lattice formulation of supersymmetric theories which keeps a part of the supersymmetry, we propose a method of observing dynamical SUSY breaking with lattice simulation. We use Hamiltonian as an order parameter and measure the ground state energy as a zero temperature limit of the finite temperature simulation. Our method provides a way of obtaining a physical result from the lattice simulation for supersymmetric theories.

  5. Multisite Interactions in Lattice-Gas Models

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  6. A lattice gas model for thermohydrodynamics

    SciTech Connect

    Chen, Shiyi; Chen, Hudong; Doolen, G.D.; Gutman, S.; Lee, M.

    1990-05-03

    The FHP lattice gas model is extended to include a temperature variable in order to study thermohydrodynamics. The compressible Navier-Stokes equations are derived using a Chapman-Enskog expansion. Heat conduction and convention problems are investigated, including Benard convention. It is shown that the usual FHP rescaling procedure can be avoided by controlling the temperature. 20 refs., 12 figs.

  7. Lattice gas models with long range interactions

    NASA Astrophysics Data System (ADS)

    Aristoff, David; Zhu, Lingjiong

    2017-02-01

    We study microcanonical lattice gas models with long range interactions, including power law interactions. We rigorously obtain a variational principle for the entropy. In a one dimensional example, we find a first order phase transition by proving the entropy is non-differentiable along a certain curve.

  8. An Overview of Lattice-Gas Dynamics

    DTIC Science & Technology

    1997-11-01

    irreversible. There- fore, the CAM-8 dissipates heat like any conventional computer even though the Szilard entropy of the lattice gas is unchanged, but an...Reviews of Modern Physics, 49(3):435–479, 1977. [37] Leo P. Kadanoff and Jack Swift. Transport coefficients near the critical point: A master-equation

  9. Quantum lattice gas algorithm for the telegraph equation.

    PubMed

    Coffey, Mark W; Colburn, Gabriel G

    2009-06-01

    The telegraph equation combines features of both the diffusion and wave equations and has many applications to heat propagation, transport in disordered media, and elsewhere. We describe a quantum lattice gas algorithm (QLGA) for this partial differential equation with one spatial dimension. This algorithm generalizes one previously known for the diffusion equation. We present an analysis of the algorithm and accompanying simulation results. The QLGA is suitable for simulation on combined classical-quantum computers.

  10. Lattice gas hydrodynamics in two and three dimensions

    SciTech Connect

    Frisch, U.; d'Humieres, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.P.

    1986-01-01

    Hydrodynamical phenomena can be simulated by discrete lattice gas models obeing cellular automata rules (U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505, (1986); D. d'Humieres, P. Lallemand, and U. Frisch, Europhys. Lett. 2, 291, (1986)). It is here shown for a class of D-dimensional lattice gas models how the macrodynamical (large-scale) equations for the densities of microscopically conserved quantities can be systematically derived from the underlying exact ''microdynamical'' Boolean equations. With suitable restrictions on the crystallographic symmetries of the lattice and after proper limits are taken, various standard fluid dynamical equations are obtained, including the incompressible Navier-Stokes equations in two and three dimensions. The transport coefficients appearing in the macrodynamical equations are obtained using variants of fluctuation-dissipation and Boltzmann formalisms adapted to fully discrete situations.

  11. Non-resonant gas-optical lattice interaction with feedback from the gas to the laser radiation

    NASA Astrophysics Data System (ADS)

    Kungurtsev, P. V.; Shevyrin, A. A.; Bondar, Ye. A.; Kashkovsky, A. V.; Shneider, M. N.; Gimelshein, S. F.

    2016-11-01

    Non-resonant interaction of polarized gas molecules with optical lattices is studied. Transient processes of gas particle optical trapping and wave propagation and refraction are considered, with the impact of gas density inhomogeneity on laser radiation taken into account. The computations are performed using SMILE++ Direct Simulation Monte Carlo code modified to incorporate lattice-gas interaction and a thin layer model. The influence of the size of the interaction region on the evolution of the optical field to steady state is demonstrated for a self-consistent interaction between the optical lattice and the gas. The proposed method will be useful for studying gas - laser field interaction under realistic experimental conditions.

  12. Lattice gas dynamics under continuous measurement

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequences quantum systems. While this backaction has so far been discussed as being a limitation on the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful and versatile means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. Here, we show how spatially designed measurement landscapes can be used to realize entropy segregation in lattice gases. This presents an alternate path to the longstanding challenge of realizing lattice gases with sufficiently low entropy to access regimes of correlated quantum behavior such as Néel ordered states. This work is supported by the ARO MURI on non-equilibrium dynamics.

  13. Direct measurement of correlation functions in a lattice Lorentz gas

    NASA Technical Reports Server (NTRS)

    Binder, P.-M.; Frenkel, D.

    1990-01-01

    Simulations of a two-dimensional ballistic Lorentz gas on a lattice are reported. A moment-propagation technique allows direct measurements of the velocity correlation function and its moments with low relative errors for all times. The predicted 1/t-sq algebraic tails in the velocity correlation function are observed at all studied scatterer densities, unlike what has been reported for continuous systems. In the square lattice a fast oscillation is observed, consistent with the existence of staggered density modes. For the second-rank tensor correlation function, an extremely slow approach to the expected 1/t exp 3 tail is found.

  14. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows.

    PubMed

    Wang, Peng; Wang, Lian-Ping; Guo, Zhaoli

    2016-10-01

    The main objective of this work is to perform a detailed comparison of the lattice Boltzmann equation (LBE) and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods for direct numerical simulation (DNS) of the decaying homogeneous isotropic turbulence and the Kida vortex flow in a periodic box. The flow fields and key statistical quantities computed by both methods are compared with those from the pseudospectral method at both low and moderate Reynolds numbers. The results show that the LBE is more accurate and efficient than the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number flows. In addition, we conclude that the DUGKS can adequately resolve the flow when the minimum spatial resolution parameter k_{max}η>3, where k_{max} is the maximum resolved wave number and η is the flow Kolmogorov length. This resolution requirement can be contrasted with the requirements of k_{max}η>1 for the pseudospectral method and k_{max}η>2 for the LBE. It should be emphasized that although more validations should be conducted before the DUGKS can be called a viable tool for DNS of turbulent flows, the present work contributes to the overall assessment of the DUGKS, and it provides a basis for further applications of DUGKS in studying the physics of turbulent flows.

  15. Commissioning Simulations for the APS Upgrade Lattice

    SciTech Connect

    Sajaev, V.; Borland, M.

    2015-01-01

    A hybrid seven-bend-achromat lattice that features very strong focusing elements and a relatively small vacuum chamber has been proposed for the APS upgrade. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe start-to-end simulation of the machine commissioning beginning from first-turn trajectory correction, progressing to orbit and lattice correction, and culminating in evaluation of the nonlinear performance of the corrected lattice

  16. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Da-Jiang; Evans, James W.

    2013-12-01

    A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (1 0 0) or M(1 0 0) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(1 0 0) and O/M(1 0 0), as well as the interaction and reaction between different reactant species in mixed adlayers, such as (CO + O)/M(1 0 0). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(1 0 0) and O/M(1 0 0) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(1 0 0) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental

  17. A lattice-gas model for amyloid fibril aggregation

    PubMed Central

    Hong, Liu; Qi, Xianghong; Zhang, Yang

    2012-01-01

    A simple lattice-gas model, with two fundamental energy terms —elongation and nucleation effects, is proposed for understanding the mechanisms of amyloid fibril formation. Based on the analytical solution and Monte Carlo simulation of 1D system, we have thoroughly explored the dependence of mass concentration, number concentration of amyloid filaments and the lag-time on the initial protein concentration, the critical nucleus size, the strengths of nucleation and elongation effects, respectively. We also found that thickening process (self-association of filaments into multi-strand fibrils) is not essential for the modeling of amyloid filaments through simulations on 2D lattice. Compared with the kinetic model recently proposed by Knowles et al., highly quantitative consistency of two models in the calculation of mass fraction of filaments is found. Moreover our model can generate a better prediction on the number fraction, which is closer to experimental values when the elongation strength gets stronger. PMID:23275684

  18. A Lattice Boltzmann Method for Turbomachinery Simulations

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Lopez, I.

    2003-01-01

    Lattice Boltzmann (LB) Method is a relatively new method for flow simulations. The start point of LB method is statistic mechanics and Boltzmann equation. The LB method tries to set up its model at molecular scale and simulate the flow at macroscopic scale. LBM has been applied to mostly incompressible flows and simple geometry.

  19. Gradient Driven Flow: Lattice Gas, Diffusion Equation and Measurement Scales

    DTIC Science & Technology

    2001-01-01

    03-200 1 Journal Article (refereed) 2001 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Gradient Driven Flow : Lattice Gas, Diffusion Equation and...time regime, the collective motion exhibits an onset of oscillation. 15. SUBJECT TERMS Diffusion; Fick’s Law; Gradient Driven Flow ; Lattice Gas 16...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 20010907 062 Gradient driven flow : lattice gas, diffusion equation and measurement scales R.B

  20. Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions.

    PubMed

    Micci, Michael M; Yepez, Jeffrey

    2015-09-01

    Presented are quantum simulation results using a measurement-based quantum lattice gas algorithm for Navier-Stokes fluid dynamics in 2+1 dimensions. Numerical prediction of the kinematic viscosity was measured by the decay rate of an initial sinusoidal flow profile. Due to local quantum entanglement in the quantum lattice gas, the minimum kinematic viscosity in the measurement-based quantum lattice gas is lower than achievable in a classical lattice gas. The numerically predicted viscosities precisely match the theoretical predictions obtained with a mean field approximation. Uniform flow profile with double shear layers, on a 16K×8K lattice, leads to the Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that eventually merge via vortex fusion and dissipate because of the nonzero shear viscosity.

  1. Lattice QCD simulations of the Zc+ channel

    NASA Astrophysics Data System (ADS)

    Prelovsek, Sasa; Lang, C. B.; Leskovec, Luka; Mohler, Daniel

    2016-01-01

    We discuss the lattice QCD simulations that search for the Zc+ with the unconventional quark content c ¯c d ¯u in the channel IG(JPC) = 1+(1+-). The major challenge is due to the two-meson states J /Ψ π , Ψ2 Sπ , Ψ1 Dπ , D D¯*, D *D¯*, ηcρ that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates, but no additional eigenstate as a candidate for Zc+ . This is in a striking contrast to the lattice results in the flavour non-exotic channels, where additional states are found in relation to most of the known resonances and bound states.

  2. Filter-matrix lattice Boltzmann model for microchannel gas flows.

    PubMed

    Zhuo, Congshan; Zhong, Chengwen

    2013-11-01

    The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.

  3. A (reactive) lattice-gas approach to economic cycles

    NASA Astrophysics Data System (ADS)

    Ausloos, Marcel; Clippe, Paulette; Miśkiewicz, Janusz; Peķalski, Andrzej

    2004-12-01

    A microscopic approach to macroeconomic features is intended. A model for macroeconomic behavior under heterogeneous spatial economic conditions is reviewed. A birth-death lattice gas model taking into account the influence of an economic environment on the fitness and concentration evolution of economic entities is numerically and analytically examined. The reaction-diffusion model can also be mapped onto a high-order logistic map. The role of the selection pressure along various dynamics with entity diffusion on a square symmetry lattice has been studied by Monte-Carlo simulation. The model leads to a sort of phase transition for the fitness gap as a function of the selection pressure and to cycles. The control parameter is a (scalar) “business plan”. The business plan(s) allows for spin-offs or merging and enterprise survival evolution law(s), whence bifurcations, cycles and chaotic behavior.

  4. Dynamic lattice-gas model of underpotential deposition

    NASA Astrophysics Data System (ADS)

    Brown, Gregory; Rikvold, Per Arne; Novotny, M. A.; Wieckowski, Andrzej

    1998-03-01

    Underpotential deposition (UPD) is the process by which a monolayer or less of one metal is adsorbed onto the surface of another at electrode potentials more positive than those at which bulk deposition occurs. For particular combinations of metals, lattice-gas models have been formulated and studied using both analytical and numerical techniques. Dynamic Monte Carlo simulations of a lattice-gas model of UPD of copper onto Au(111) in the presence of sulfuric acid are presented. The simulations include adsorption, desorption, and lateral diffusion and span timescales from 10-9 to 10^1 s. The results reproduce the strong asymmetry seen in experimental current profiles that occur after a sudden potential change.(M. H. Hölzle, et al.), J. Electroanal. Chem. \\underbar371, 101 (1994). The simulation technique can also be used to understand features in cyclic-voltammetry profiles, where the applied potential is changed continuously.

  5. Lattice-Boltzmann-based Simulations of Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Castigliego, Joshua; Kreft Pearce, Jennifer

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.

  6. Long-Range Lattice-Gas Algorithm

    DTIC Science & Technology

    2007-11-02

    lattice-gases, and therefore inherits exact computabil- ity on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that...gases, and therefore inherits exact computability on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that allow us to

  7. Theory of multicolor lattice gas - A cellular automaton Poisson solver

    NASA Technical Reports Server (NTRS)

    Chen, H.; Matthaeus, W. H.; Klein, L. W.

    1990-01-01

    The present class of models for cellular automata involving a quiescent hydrodynamic lattice gas with multiple-valued passive labels termed 'colors', the lattice collisions change individual particle colors while preserving net color. The rigorous proofs of the multicolor lattice gases' essential features are rendered more tractable by an equivalent subparticle representation in which the color is represented by underlying two-state 'spins'. Schemes for the introduction of Dirichlet and Neumann boundary conditions are described, and two illustrative numerical test cases are used to verify the theory. The lattice gas model is equivalent to a Poisson equation solution.

  8. One-dimensional lattices topologically equivalent to three-dimensional lattices within the context of the lattice gas model

    NASA Astrophysics Data System (ADS)

    Costanza, E. F.; Costanza, G.

    2017-09-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion on a cubic lattice within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to a cubic three-dimensional lattice is described in detail using a successive ;unfolding; process. This example shows some new features that possess the procedure and extensions are also suggested in order to provide some another uses of the present approach.

  9. Quantum learning for a quantum lattice gas computer

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    2015-03-01

    Quantum lattice gas is the logical generalization of quantum cellular automata. In low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.

  10. Quantum learning in a quantum lattice gas computer

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    2015-04-01

    Quantum lattice gas is the logical generalization of quantum cellular automata. At low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.

  11. Euclidean lattice simulation for dynamical supersymmetry breaking

    SciTech Connect

    Kanamori, Issaku; Suzuki, Hiroshi; Sugino, Fumihiko

    2008-05-01

    The global supersymmetry is spontaneously broken if and only if the ground-state energy is strictly positive. We propose to use this fact to observe the spontaneous supersymmetry breaking in Euclidean lattice simulations. For lattice formulations that possess a manifest fermionic symmetry, there exists a natural choice of a Hamiltonian operator that is consistent with a topological property of the Witten index. We confirm validity of our idea in models of the supersymmetric quantum mechanics. We then examine a possibility of a dynamical supersymmetry breaking in the two-dimensional N=(2,2) super Yang-Mills theory with the gauge group SU(2), for which the Witten index is unknown. Differently from a recent conjectural claim, our numerical result tempts us to conclude that supersymmetry is not spontaneously broken in this system.

  12. Dynamic behavior of multirobot systems using lattice gas automata

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Cameron, Stewart M.; Robinett, Rush D., III; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems (or swarms). Our group has been studying the collective, autonomous behavior of these such systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi- agents architectures. Our goal is to coordinate a constellation of point sensors using unmanned robotic vehicles (e.g., RATLERs, Robotic All-Terrain Lunar Exploration Rover- class vehicles) that optimizes spatial coverage and multivariate signal analysis. An overall design methodology evolves complex collective behaviors realized through local interaction (kinetic) physics and artificial intelligence. Learning objectives incorporate real-time operational responses to environmental changes. This paper focuses on our recent work understanding the dynamics of many-body systems according to the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's rate of deformation, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent nonlinearity of the dynamical equations describing large ensembles, stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots maneuvering past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  13. Modified Lattice Boltzmann method for compressible fluid simulations

    SciTech Connect

    Hinton, F. L.; Rosenbluth, M. N.; Wong, S. K.; Lin-Liu, Y. R.; Miller, R. L.

    2001-06-01

    A modified lattice Boltzmann algorithm is shown to have much better stability to growing temperature perturbations, when compared with the standard lattice Boltzmann algorithm. The damping rates of long-wavelength waves, which determine stability, are derived using a collisional equilibrium distribution function which has the property that the Euler equations are obtained exactly in the limit of zero time step. Using this equilibrium distribution function, we show that our algorithm has inherent positive hyperviscosity and hyperdiffusivity, for very small values of viscosity and thermal diffusivity, which are lacking in the standard algorithm. Short-wavelength modes are shown to be stable for temperatures greater than a lower limit. Results from a computer code are used to compare these algorithms, and to confirm the damping rate predictions made analytically. Finite amplitude sound waves in the simulated fluid steepen, as expected from gas dynamic theory.

  14. High-performance multiprocessor architecture for a 3-D lattice gas model

    NASA Technical Reports Server (NTRS)

    Lee, F.; Flynn, M.; Morf, M.

    1991-01-01

    The lattice gas method has recently emerged as a promising discrete particle simulation method in areas such as fluid dynamics. We present a very high-performance scalable multiprocessor architecture, called ALGE, proposed for the simulation of a realistic 3-D lattice gas model, Henon's 24-bit FCHC isometric model. Each of these VLSI processors is as powerful as a CRAY-2 for this application. ALGE is scalable in the sense that it achieves linear speedup for both fixed and increasing problem sizes with more processors. The core computation of a lattice gas model consists of many repetitions of two alternating phases: particle collision and propagation. Functional decomposition by symmetry group and virtual move are the respective keys to efficient implementation of collision and propagation.

  15. A lattice gas cellular automaton approach to model volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Shcherbakov, R.

    2011-12-01

    Volcanic eruptions are the result of complex mechanisms that operate in a magma chamber within the crust. In a previous study, we showed that the dynamics of eruptions on Earth are the same and are quite independent of the location and type of volcanism. The goal of this study is to test the universality of volcanism by designing a simple, general model to simulate processes occurring within a magma chamber. We aim at reproducing the threshold behavior that operates in the magma chamber when pressure increase leads to an eruption. To simulate volcanic eruptions, we propose to use a lattice gas cellular automata (LGCA), which have been proven efficient to simulate fluid flow behavior. This type cellular automaton is a discrete dynamical model in space and time, where the fluid is represented at the microscopic level by discrete particles. We start with the simplest LGCA: the 2-dimensional HPP model (proposed in 1973 by Hardy, de Pazzis and Pomeau), which consists of a square lattice where particles interact with one another mimicking the fluid flow and conserving mass and momentum. We also consider the model on a hexagonal lattice to take anisotropy into account. In this model, magma propagates through a heterogeneous medium, and deformation and fracturing occurs on the walls of the chamber up until a pressure threshold is reached and an eruption or a cascade of eruptions occur. We record the size of each event and the number of time steps between consecutive events (or interevent time). The model simulation results for a large number of realizations are compared with observed data. The observations come from eruption records of 13 individual volcanoes located around the world as well as 11 groups of volcanoes located in various regions surrounded by different tectonic settings. From these, we computed the frequency-size distribution of eruptions and the interevent time distributions for a large number of active volcanoes on Earth. This model allows us to study a

  16. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model, III. The hexagonal lattice

    NASA Astrophysics Data System (ADS)

    Costanza, E. F.; Costanza, G.

    2017-02-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.

  17. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model. II The triangular lattice

    NASA Astrophysics Data System (ADS)

    Costanza, E. F.; Costanza, G.

    2016-12-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.

  18. Towards the simplest hydrodynamic lattice-gas model.

    PubMed

    Boghosian, Bruce M; Love, Peter J; Meyer, David A

    2002-03-15

    It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.

  19. Quantum simulations with ultracold atoms in optical lattices.

    PubMed

    Gross, Christian; Bloch, Immanuel

    2017-09-08

    Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom-based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Simulations of lattice animals and trees

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Nadler, Walter; Grassberger, Peter

    2005-01-01

    The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the animal (tree) ensemble, and prune or branch the further growth according to a heuristic fitness function. In contrast to previous applications of PERM, this fitness function is not the weight with which the actual configuration would contribute to the partition sum, but is closely related to it. We obtain high statistics of animals with up to several thousand sites in all dimension 2 <= d <= 9. In addition to the partition sum (number of different animals) we estimate gyration radii and numbers of perimeter sites. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4 and >=8. In addition, we present the hitherto most precise estimates for growth constants in d >= 3. For clusters with one site attached to an attractive surface, we verify for d >= 3 the superuniversality of the cross-over exponent phgr at the adsorption transition predicted by Janssen and Lyssy, but not for d = 2. There, we find phgr = 0.480(4) instead of the conjectured phgr = 1/2. Finally, we discuss the collapse of animals and trees, arguing that our present version of the algorithm is also efficient for some of the models studied in this context, but showing that it is not very efficient for the 'classical' model for collapsing animals.

  1. Nonequilibrium quantum magnetism in a dipolar lattice gas.

    PubMed

    de Paz, A; Sharma, A; Chotia, A; Maréchal, E; Huckans, J H; Pedri, P; Santos, L; Gorceix, O; Vernac, L; Laburthe-Tolra, B

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites.

  2. Flow of Gas Through Turbine Lattices

    NASA Technical Reports Server (NTRS)

    Deich, M E

    1956-01-01

    This report is concerned with fluid mechanics of two-dimensional cascades, particularly turbine cascades. Methods of solving the incompressible ideal flow in cascades are presented. The causes and the order of magnitude of the two-dimensional losses at subsonic velocities are discussed. Methods are presented for estimating the flow and losses at high subsonic velocities. Transonic and supersonic flows in lattices are then analyzed. Some three-dimensional features of the flow in turbines are noted.

  3. Transport of a lattice gas under continuous measurement

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequence on a quantum system. While this backaction has hitherto been discussed as a limitation to the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. By suitably designing measurement landscapes we can control the transport properties of the lattice gas. We describe a quantitative study of lattice gas dynamics under continuous quantum measurement in the context of a quantum to classical transition where the atom dynamics goes from a quantum walk at low measurement strengths to classical diffusion at high measurement strengths. We further discuss the prospect of using disorder measurement landscapes to realize a new form of Anderson localization. This work is supported by the ARO MURI on non-equilibrium dynamics.

  4. Lattice Boltzmann simulations of lymphatic pumping

    NASA Astrophysics Data System (ADS)

    Kunert, Christian; Padera, Tim P.; Munn, Lance L.

    2012-02-01

    Lymphatic flow plays an important role in the progress of many diseases, including lymphedema and metastasis. However lymphatic pumping and flow is poorly understood. Here, we present a computer model that is based on biological observations of lymphatic pumping. Fluid flow is simulated by a D2Q9 lattice Boltzmann model. The boundary of the vessels moves according to shear-induced nitric oxide production, and wall motion transfers momentum to the fluid to induce flow. Because the model only includes local properties, it can be highly parallelized. In our case we utilize graphic processors (GPU) to achieve high performance computation. We show that the model provides stable pumping over a wide range of parameter values, with optimum flow achieved in the biological ranges. Furthermore, we investigate the efficiency by analyzing the flow rate and pumping frequency in order to compare the behavior of the model with existing in vivo data.

  5. Simulation of Ultrasonic-driven Gas Separations

    SciTech Connect

    Rector, David R.; Greenwood, Margaret S.; Ahmed, Salahuddin; Doctor, Steven R.; Posakony, Gerald J.; Stenkamp, Victoria S.

    2007-06-01

    The separation of components in a gas mixture is important for a wide range of applications. One method for achieving this separation is by passing a traveling acoustic wave through the gas mixture, which creates a flux of the lighter components away from the transducer. A series of simulation were performed to assess the effectiveness of this method for separating a binary mixture of argon and helium using the lattice kinetics method. The energy transport equation was modified to account for adiabatic expansion and compression. The species transport equation was modified to include a barodiffusion term. Simulations were performed on two different scales; detailed acoustic wave simulations to determine the net component flux as a function of local concentration, pressure, etc., and device scale simulations to predict the gas composition as a function of time inside a gas separation cylinder. The method is first validated using data from literature and then applied to mixtures of argon and helium. Results are presented and discussed.

  6. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  7. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.

  8. Thermodynamics of a lattice gas with linear attractive potential

    SciTech Connect

    Pirjol, Dan; Schat, Carlos

    2015-01-15

    We study the equilibrium thermodynamics of a one-dimensional lattice gas with interaction V(|i−j|)=−1/(μn) (ξ−1/n |i−j|) given by the superposition of a universal attractive interaction with strength −1/(μn) ξ<0, and a linear attractive potential 1/(μn{sup 2}) |i−j|. The interaction is rescaled with the lattice size n, such that the thermodynamical limit n → ∞ is well-behaved. The thermodynamical properties of the system can be found exactly, both for a finite size lattice and in the thermodynamical limit n → ∞. The lattice gas can be mapped to a system of non-interacting bosons which are placed on known energy levels. The exact solution shows that the system has a liquid-gas phase transition for ξ > 0. In the large temperature limit T ≫ T{sub 0}(ρ) = ρ{sup 2}/(4μ) with ρ the density, the system becomes spatially homogeneous, and the equation of state is given to a good approximation by a lattice version of the van der Waals equation, with critical temperature T{sub c}{sup (vdW)}=1/(12μ) (3ξ−1)

  9. Enantiomeric phase separation in a lattice gas model: Guggenheim approximation

    NASA Astrophysics Data System (ADS)

    Huckaby, Dale A.; Shinmi, Masato; Ausloos, Marcel; Clippe, Paulette

    1986-05-01

    We consider a lattice gas in which the two enantiomeric forms of a tetrahedral molecule, consisting of a central carbon atom bonded to four different groups A, B, G, and H, are adsorbed onto a triangular lattice, such that the carbon atom is above a lattice site, the three bonds to A, B, and G point toward neighboring lattice sites, and the bond to H points perpendicular to and away from the plane of the lattice. For a certain choice of intermolecular interactions, such as may exist between the zwitterion forms of an amino acid, the phase diagram was investigated using a Guggenheim approximation with two order parameters. Enantiomeric phase separation into two symmetric condensed phases occurs at low temperatures. These condensed phases become a single racemic condensed phase at a critical line, and they are in equilibrium with a racemic gas phase along a line of triple points. These two lines coincide at a critical endpoint. The racemic condensed and gas phases are in equilibrium along a two phase coexistence line which begins at the critical endpoint and ends at a critical point. No tricritical point was found in the model for the special choice of interactions studied.

  10. High-density equation of state for a lattice gas.

    PubMed

    Ushcats, M V

    2015-05-01

    For the lattice gas models of arbitrary geometry and dimensions with absolute repulsion between particles at zero distance (a hard core identical to a single lattice site) and arbitrary repulsion or attraction at other distances, the "hole-particle" symmetry of the system potential energy has been stated and an equation of state has been derived on the basis of the classical Gibbs statistics. The equation is completely analogous to the well-known virial equation of state, except that it is more accurate at high-density states, while the virial equation has the low-density limitation. Both equations contain the common set of the so-called irreducible integrals, related to the corresponding virial coefficients, and can be used together to describe the behavior of a lattice gas in a wide range of densities.

  11. Local lattice-gas model for immiscible fluids

    NASA Technical Reports Server (NTRS)

    Chen, S.; Doolen, G. D.; Eggert, K.; Grunau, D.; Loh, E. Y.

    1991-01-01

    A lattice-gas model is presented for two-dimensional immiscible fluid flows with surface tension that uses strictly local collision rules. Instead of using a local total color flux as Somers and Rem (1991), local colored holes are used to be the memory of particles of the same color. Interactions between walls and fluids are included that produce arbitrary contact angles.

  12. Lattice Monte Carlo simulations of polymer melts

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping

    2014-12-01

    We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.

  13. Dynamics of a lattice gas system of three species

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; Wu, Hong; Liang, Junhao

    2016-10-01

    This paper considers a mutualism system of three species in which each species provides resource for the next one in a one-directional loop, while there exists spatial competition among them. The system is characterized by a lattice gas model and the cases of obligate mutualisms, obligate-facultative mutualisms and facultative mutualisms are considered. Using dynamical systems theory, it is shown that (i) the mutualisms can lead to coexistence of species; (ii) A weak mutualism or an extremely strong mutualism will result in extinction of species, while even the superior facultative species will be driven into extinction by its over-strong mutualism on the next one; (iii) Initial population density plays a role in the coexistence of species. It is also shown that when there exists weak mutualism, an obligate species can survive by providing more benefit to the next one, and the inferior facultative species will not be driven into extinction if it can strengthen its mutualism on the next species. Moreover, Hopf bifurcation, saddle-node bifurcation and bifurcation of heteroclinic cycles are shown in the system. Projection method is extended to exhibit bistability in the three-dimensional model: when saddle-node bifurcation occurs, stable manifold of the saddle-node point divides intR+3 into two basins of attraction of two equilibria. Furthermore, Lyapunov method is applied to exhibit unstability of heteroclinic cycles. Numerical simulations confirm and extend our results.

  14. Multiple phase transitions in extended hard-core lattice gas models in two dimensions.

    PubMed

    Nath, Trisha; Rajesh, R

    2014-07-01

    We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition.

  15. Lattice QCD simulation with the overlap Dirac operator

    NASA Astrophysics Data System (ADS)

    Howard, Joseph

    A complete understanding of the predictions of Quantum Chromodynamics (QCD) will be an important part of moving particle physics beyond the current Standard Model. At the energy scales relevant to bound QCD systems, such as the pion and the proton, non-perturbative techniques must be used to estimate QCD predictions. The non-perturbative method used to investigate QCD is lattice QCD, or QCD on a discrete spacetime lattice. One aspect of continuum QCD that should be preserved in lattice QCD is chiral symmetry. The inability of maintaining such symmetry in the discretization of the Dirac equation has for years been a shortcoming of lattice QCD. Recently, however, Neuberger has introduced the overlap Dirac operator, which preserves exact chiral symmetry, even at finite lattice spacing. This dissertation describes a simulation of lattice QCD using the Wilson gauge action and the overlap Dirac operator, performed on two separate lattices. The first was an 183 x 64 lattice (where the first number represents the spatial extent and the second the extent in time) with coupling beta = 6.0 (lattice spacing a-1 ≃ 2.0 GeV), and the second a 143 x 48 lattice with coupling beta = 5.85 (lattice spacing a-1 ≃ 1.5 GeV). The finer 183 x 64 lattice size was chosen in order to allow a large enough extent in time for prediction of QCD observables that previous investigations using smaller lattices were unable to predict. The coarser 143 x 48 lattice was chosen to have roughly the same physical volume as the finer lattice, allowing for an investigation into scaling effects. The dissertation begins with a review of the basics of QCD and lattice QCD, including descriptions of the overlap Dirac operator and chiral symmetry on the lattice. Next, the results from the two simulations are presented. The chiral nature of the overlap Dirac operator is confirmed. The light hadron spectrum is presented, along with decay constants and other observables. An investigation is described on the use

  16. Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow

    SciTech Connect

    Rothman, D.H. ); Zaleski, S. )

    1994-10-01

    Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.

  17. Bulk properties of QCD matter from lattice simulations

    NASA Astrophysics Data System (ADS)

    Ratti, Claudia

    2017-01-01

    A review of the most recent results on QCD thermodynamics, obtained from lattice simulations, is presented. Particular focus is devoted to fluctuations of conserved charges and to their comparison with the experimental results from RHIC Beam Energy Scan.

  18. Beyond the Standard Model Physics with Lattice Simulations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Enrico

    2016-03-01

    Lattice simulations of gauge theories are a powerful tool to investigate strongly interacting systems like Quantum ChromoDynamics (QCD). In recent years, the expertise gathered from lattice QCD studies has been used to explore new extensions of the Standard Model of particle physics that include strong dynamics. This change of gear in lattice field theories is related to the growing experimental search for new physics, from accelerator facilites like the Large Hadron Collider (LHC) to dark matter detectors like LUX or ADMX. In my presentation I will explore different plausible scenarios for physics beyond the standard model where strong dynamics play a dominant role and can be tackled by numerical lattice simulations. The importance of lattice field theories is highlighted in the context of dark matter searches and the search for new resonances at the LHC. Acknowledge the support of the DOE under Contract DE-AC52-07NA27344 (LLNL).

  19. Lattice Boltzmann model for simulating temperature-sensitive ferrofluids.

    PubMed

    Niu, Xiao-Dong; Yamaguchi, Hiroshi; Yoshikawa, Keisuke

    2009-04-01

    In this paper, a lattice Boltzmann model for simulating temperature-sensitive ferrofluids is presented. The lattice Boltzmann equation for modeling the magnetic field is formulated using a scalar magnetic potential. Introducing a time derivative into the original elliptic equation for the scalar potential leads to an advection-diffusion equation, with an effective velocity determined by the temperature gradient. The time derivative is multiplied by an adjustable preconditioning parameter to ensure that the lattice Boltzmann solution remain close to a solution of the original elliptic equation for the scalar potential. To test the present lattice Boltzmann model, numerical simulations for the thermomagnetic nature convection of the ferrofluids in a cubic cavity are carried out. Good agreement between the obtained results and experimental data shows that the present lattice Boltzmann model is promising for studying temperature-sensitive ferrofluid flows.

  20. Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas

    SciTech Connect

    Silva, Fernando Barbosa V. da; Oliveira, Fernando Albuquerque; Barbosa, Marco Aurélio A.

    2015-04-14

    The thermodynamics and kinetics of the one dimensional lattice gas with repulsive interaction are investigated using transfer matrix technique and Monte Carlo simulations. This simple model is shown to exhibit waterlike anomalies in density, thermal expansion coefficient, and self-diffusion. An unified description for the thermodynamic anomalies in this model is achieved based on the ground state residual entropy which appears in the model due to mixing entropy in a ground state phase transition.

  1. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.

    PubMed

    Edison, John R; Monson, Peter A

    2013-06-21

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  2. Dynamics of capillary condensation in lattice gas models of confined fluids: A comparison of dynamic mean field theory with dynamic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Monson, Peter A.

    2013-06-01

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)], 10.1063/1.2837287. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  3. Robust thermal boundary conditions applicable to a wall along which temperature varies in lattice-gas cellular automata.

    PubMed

    Shim, Jae Wan; Gatignol, Renée

    2010-04-01

    We show that the heat exchange between fluid particles and boundary walls can be achieved by controlling the velocity change rate following the particles' collision with a wall in discrete kinetic theory, such as the lattice-gas cellular automata and the lattice Boltzmann method. We derive a relation between the velocity change rate and temperature so that we can control the velocity change rate according to a given temperature boundary condition. This relation enables us to deal with the thermal boundary whose temperature varies along a wall in contrast to the previous works of the lattice-gas cellular automata. In addition, we present simulation results to compare our method to the existing and give an example in a microchannel with a high temperature gradient boundary condition by the lattice-gas cellular automata.

  4. Slow relaxation and aging kinetics for the driven lattice gas.

    PubMed

    Daquila, George L; Täuber, Uwe C

    2011-05-01

    We numerically investigate the long-time behavior of the density-density autocorrelation function in driven lattice gases with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulations. In the one-dimensional asymmetric exclusion process on a ring with half the lattice sites occupied, we find that correlations induce extremely slow relaxation to the asymptotic power law decay. We compare the crossover functions obtained from our simulations with various analytic results in the literature and analyze the characteristic oscillations that occur in finite systems away from half-filling. As expected, in three dimensions correlations are weak and consequently the mean-field description is adequate. We also investigate the relaxation toward the nonequilibrium steady state in the two-time density-density autocorrelations, starting from strongly correlated initial conditions. We obtain simple aging scaling behavior in one, two, and three dimensions, with the expected power laws.

  5. Finite-density corrections to the unitary Fermi gas: A lattice perspective from dynamical mean-field theory

    SciTech Connect

    Privitera, Antonio; Capone, Massimo; Castellani, Claudio

    2010-01-01

    We investigate the approach to the universal regime of the dilute unitary Fermi gas as the density is reduced to zero in a lattice model. To this end we study the chemical potential, superfluid order parameter and internal energy of the attractive Hubbard model in three different lattices with densities of states (DOSs) which share the same low-energy behavior of fermions in three-dimensional free space: a cubic lattice, a 'Bethe lattice' with a semicircular DOS, and a 'lattice gas' with parabolic dispersion and a sharp energy cutoff that ensures the normalization of the DOS. The model is solved using dynamical mean-field theory, that treats directly the thermodynamic limit and arbitrarily low densities, eliminating finite-size effects. At densities on the order of one fermion per site the lattice and its specific form dominate the results. The evolution to the low-density limit is smooth and it does not allow to define an unambiguous low-density regime. Such finite-density effects are significantly reduced using the lattice gas, and they are maximal for the three-dimensional cubic lattice. Even though dynamical mean-field theory is bound to reduce to the more standard static mean field in the limit of zero density due to the local nature of the self-energy and of the vertex functions, it compares well with accurate Monte Carlo simulations down to the lowest densities accessible to the latter.

  6. COMMENT: Comment on 'Transverse fluctuations in the driven lattice gas'

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.

    2004-08-01

    Extensive simulation results of the transverse fluctuations in two driven lattice gases, the classical one with current and a modified version without current, are in agreement with the field theory proposed by Garrido et al (GSM). Based on the facts that results from both models are indistinguishable and they obey excellent scaling only by using GSM exponents, I concluded that the conclusions of the recent letter by Caracciolo et al are flawed.

  7. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  8. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  9. History dependent quantum random walks as quantum lattice gas automata

    SciTech Connect

    Shakeel, Asif E-mail: dmeyer@math.ucsd.edu Love, Peter J. E-mail: dmeyer@math.ucsd.edu; Meyer, David A. E-mail: dmeyer@math.ucsd.edu

    2014-12-15

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

  10. Microscopic reversibility and macroscopic irreversibility: A lattice gas model

    NASA Astrophysics Data System (ADS)

    Pérez-Cárdenas, Fernando C.; Resca, Lorenzo; Pegg, Ian L.

    2016-09-01

    We present coarse-grained descriptions and computations of the time evolution of a lattice gas system of indistinguishable particles, whose microscopic laws of motion are exactly reversible, in order to investigate how or what kind of macroscopically irreversible behavior may eventually arise. With increasing coarse-graining and number of particles, relative fluctuations of entropy rapidly decrease and apparently irreversible behavior unfolds. Although that behavior becomes typical in those limits and within a certain range, it is never absolutely irreversible for any individual system with specific initial conditions. Irreversible behavior may arise in various ways. We illustrate one possibility by replacing detailed integer occupation numbers at lattice sites with particle probability densities that evolve diffusively.

  11. Imaginary time integration method using a quantum lattice gas approach

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Flint, Christopher; Vahala, George; Vahala, Linda; Yepez, Jeffrey; Soe, Min

    2016-02-01

    By modifying the collision operator in the quantum lattice gas (QLG) algorithm one can develop an imaginary time (IT) integration to determine the ground state solutions of the Schrödinger equation and its variants. These solutions are compared to those found by other methods (in particular the backward-Euler finite-difference scheme and the quantum lattice Boltzmann). In particular, the ground state of the quantum harmonic oscillator is considered as well as bright solitons in the one-dimensional (1D) non-linear Schrödinger equation. The dark solitons in an external potential are then determined. An advantage of the QLG IT algorithm is the avoidance of any real/complex matrix inversion and that its extension to arbitrary dimensions is straightforward.

  12. Simulations to study the static polarization limit for RHIC lattice

    NASA Astrophysics Data System (ADS)

    Duan, Zhe; Qin, Qing

    2016-01-01

    A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)

  13. Quantum simulation of decoherence in optical waveguide lattices.

    PubMed

    Longhi, Stefano

    2013-11-15

    We suggest that propagation of nonclassical light in lattices of optical waveguides can provide a laboratory tool to simulate quantum decoherence phenomena with high non-Markovian features. As examples, we study decoherence of optical Schrödinger cats in a lattice that mimics a dissipative quantum harmonic oscillator coupled to a quantum bath, showing fractional decoherence in the strong coupling regime, and Bloch oscillations of optical Schrödinger cats, where damped revivals of the coherence can be observed.

  14. On the coarsening dynamics of a granular lattice gas.

    PubMed

    Opsomer, E; Noirhomme, M; Ludewig, F; Vandewalle, N

    2016-06-01

    We investigated experimentally and theoretically the dynamics of a driven granular gas on a square lattice and discovered two characteristic regimes: Initially, given the dissipative nature of the collisions, particles move erratically through the system and start to gather on selected sites called traps. Later on, the formation of those traps leads to a strong decrease of the grain mobility and slows down dramatically the dynamics of the entire system. We realize detailed measurements linking a trap's stability to the global evolution of the system and propose a model reproducing the entire dynamics of the system. Our work emphasizes the complexity of coarsening dynamics of dilute granular systems.

  15. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  16. A lattice gas of prime numbers and the Riemann Hypothesis

    NASA Astrophysics Data System (ADS)

    Vericat, Fernando

    2013-10-01

    In recent years, there has been some interest in applying ideas and methods taken from Physics in order to approach several challenging mathematical problems, particularly the Riemann Hypothesis. Most of these kinds of contributions are suggested by some quantum statistical physics problems or by questions originated in chaos theory. In this article, we show that the real part of the non-trivial zeros of the Riemann zeta function extremizes the grand potential corresponding to a simple model of one-dimensional classical lattice gas, the critical point being located at 1/2 as the Riemann Hypothesis claims.

  17. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  18. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-09-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.

  19. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  20. Meshless lattice Boltzmann method for the simulation of fluid flows.

    PubMed

    Musavi, S Hossein; Ashrafizaadeh, Mahmud

    2015-02-01

    A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local collision equation remains the same, we rewrite the streaming equation as a pure advection equation and discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless local Petrov-Galerkin scheme based on augmented radial basis functions in space. The meshless feature of the proposed method makes it a more powerful lattice Boltzmann solver, especially for cases in which using meshes introduces significant numerical errors into the solution, or when improving the mesh quality is a complex and time-consuming process. Three well-known benchmark fluid flow problems, namely the plane Couette flow, the circular Couette flow, and the impulsively started cylinder flow, are simulated for the validation of the proposed method. Excellent agreement with analytical solutions or with previous experimental and numerical results in the literature is observed in all the simulations. Although the computational resources required for the meshless method per node are higher compared to that of the standard lattice Boltzmann method, it is shown that for cases in which the total number of nodes is significantly reduced, the present method actually outperforms the standard lattice Boltzmann method.

  1. Quest for More Information from Lattice QCD Simulations

    NASA Astrophysics Data System (ADS)

    de Forcrand, P.; García Pérez, M.; Hashimoto, T.; Hioki, S.; Matsufuru, H.; Miyamura, O.; Umeda, T.; Nakamura, A.; Stamatescu, I.-O.; Tago, Y.; Takaishi, T.

    Lattice QCD is one of the most powerful tools to study the non-perturbative nature of the strong interaction. Although much information has been obtained so far to understand QCD, the computational cost becomes higher and higher as we calculate on finer lattices; simulations near the continuum are still far beyond. We report the progress on (1) renormalization group (RG) improved actions and (2) anisotropic lattice, which QCD-TARO group has developed and studied in order to get more information from the simulations on the present computers. RG improved actions were proposed and studied by Wilson and Iwasaki to remove discretization effects for long distance observables. We have studied 1× 1 + 1× 2 type actions, which includes Wilson, Symanzik and Iwasaki ones, by the strong and weak coupling expansions and Monte Carlo RG method. We have calculated RG flow and obtained a new effective β-function. Anisotropic lattice, where the temporal lattice spacing is smaller than that along the spatial one, makes us possible to perform finer resolution measurements in the temporal direction. This is especially useful at the finite temperature, where the temporal lattice size is limited. We have calculated meson pole and screening masses. We have found they behave in a different manner as a function of T.

  2. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  3. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  4. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.

    2005-08-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (Drel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in Drel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  5. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.

    PubMed

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C

    2005-08-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  6. Fast Off-Lattice Monte Carlo Simulations with Soft Potentials

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Yang, Delian; Yin, Yuhua; Zhang, Xinghua; Wang, Qiang (David)

    2011-03-01

    Fast off-lattice Monte Carlo simulations with soft repulsive potentials that allow particle overlapping give orders of magnitude faster/better sampling of the configurational space than conventional molecular simulations with hard-core repulsions (such as the hard-sphere or Lennard-Jones repulsion). Here we present our fast off-lattice Monte Carlo simulations ranging from small-molecule soft spheres and liquid crystals to polymeric systems including homopolymers and rod-coil diblock copolymers. The simulation results are compared with various theories based on the same Hamiltonian as in the simulations (thus without any parameter-fitting) to quantitatively reveal the consequences of approximations in these theories. Q. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009).

  7. Physical Point Simulation in 2+1 Flavor Lattice QCD

    SciTech Connect

    Aoki, S.; Ishikawa, K.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yamazaki, T.; Yoshie, T.

    2010-04-14

    We present the results of the physical point simulation in 2+1 flavor lattice QCD with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action at {beta} = 1.9 on a 32{sup 3} x 64 lattice. The physical quark masses together with the lattice spacing is determined with m{sub {pi}}, m{sub K} and m{sub {Omega}} as physical inputs. There are two key algorithmic ingredients to make possible the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed HMC algorithm to reduce the computational cost. The other is the reweighting technique to adjust the hopping parameters exactly to the physical point. The physics results include the hadron spectrum, the quark masses and the pseudoscalar meson decay constants. The renormalization factors are nonperturbatively evaluated with the Schroedinger functional method. The results are compared with the previous ones obtained by the chiral extrapolation method.

  8. Lattice Boltzmann modeling and simulation of liquid jet breakup

    NASA Astrophysics Data System (ADS)

    Saito, Shimpei; Abe, Yutaka; Koyama, Kazuya

    2017-07-01

    A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27 versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu-Valocchi-Kang perturbation operator, and a Latva-Kokko-Rothman recoloring operator. A D3Q27 version of an enhanced equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh-Taylor instability, show a good agreement with analytical solutions and numerical simulations. Following these numerical tests, this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as 1.8 ×10-4 , in which case the corresponding Reynolds number is 3.4 ×103 ; the developed lattice Boltzmann model based on the D3Q27 lattice enables us to perform the simulation with parameters directly matched to the experiments. The jet's liquid column transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet. The measured time history of the jet's leading-edge position shows a good agreement with the experiments. Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup, and atomization.

  9. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.

    PubMed

    Bakr, Waseem S; Gillen, Jonathon I; Peng, Amy; Fölling, Simon; Greiner, Markus

    2009-11-05

    Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models. The opposite approach is to build up microscopic quantum systems atom-by-atom, with complete control over all degrees of freedom. The atoms or ions act as qubits and allow the realization of quantum gates, with the goal of creating highly controllable quantum information systems. Until now, the macroscopic and microscopic strategies have been fairly disconnected. Here we present a quantum gas 'microscope' that bridges the two approaches, realizing a system in which atoms of a macroscopic ensemble are detected individually and a complete set of degrees of freedom for each of them is determined through preparation and measurement. By implementing a high-resolution optical imaging system, single atoms are detected with near-unity fidelity on individual sites of a Hubbard-regime optical lattice. The lattice itself is generated by projecting a holographic mask through the imaging system. It has an arbitrary geometry, chosen to support both strong tunnel coupling between lattice sites and strong on-site confinement. Our approach can be used to directly detect strongly correlated states of matter; in the context of condensed matter simulation, this corresponds to the detection of individual electrons in the simulated crystal. Also, the quantum gas microscope may enable addressing and read-out of large-scale quantum information systems based on ultracold atoms.

  10. Lattice Monte Carlo simulation of Galilei variant anomalous diffusion

    SciTech Connect

    Guo, Gang; Bittig, Arne; Uhrmacher, Adelinde

    2015-05-01

    The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well.

  11. Recent Progress in Nuclear Lattice Simulations with Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Lee, D.

    2007-10-01

    This proceedings article summarizes recent work presented at Chiral Dynamics 2006 on nuclear lattice simulations with chiral effective field theory for light nuclei. This work has been done in collaboration with Bubar {gra} Borasoy , Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meißner.

  12. The fundamental constants of nature from lattice gauge theory simulations

    SciTech Connect

    Mackenzie, Paul B.; /Fermilab

    2005-01-01

    The fundamental laws of nature as we now know them are governed the fundamental parameters of the Standard Model. Some of these, such as the masses of the quarks, have been hidden from direct observation by the confinement of quarks. They are now being revealed through large scale numerical simulation of lattice gauge theory.

  13. G2 Gas Cloud Simulation

    NASA Image and Video Library

    This simulation shows the future behavior of the G2 gas cloud now approaching Sgr A*, the supermassive black hole at the center of the Milky Way. X-ray emission from the cloud's tidal interaction w...

  14. Optical Lattice Simulations of Correlated Fermions

    DTIC Science & Technology

    2013-10-04

    Field, Rashba Spin -Orbit Coupled Quantum Gases C. J. Bolech at LPHYS󈧐, Dimensional Crossover and Geometric Quenches in 1D Polarized Attractive Fermi...gas with spin -imbalance in this way. This system features a partially polarized phase which is the 1D analog of the long-sought FFLO state. Current... quantum vortex state in a spin -orbit-coupled Bose-Einstein condensate, Physical Review A, (02 2012): 0. doi: 10.1103/PhysRevA.85.023606 08/16/2012 36.00

  15. Simulation of plume dynamics by the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  16. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.

    PubMed

    Li, Q; Luo, K H; He, Y L; Gao, Y J; Tao, W Q

    2012-01-01

    In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard two-dimensional nine-velocity (D2Q9) lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression work are considered. In the model, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The discrete equilibrium density and total energy distribution functions are obtained from the Hermite expansions of the corresponding continuous equilibrium distribution functions. The pressure given by the equation of state of perfect gases is recovered in the macroscopic momentum and energy equations. The coupling between the momentum and energy transports makes the model applicable for general thermal flows such as non-Boussinesq flows, while the existing DDF LB models on standard lattices are usually limited to Boussinesq flows in which the temperature variation is small. Meanwhile, the simple structure and general features of the DDF LB approach are retained. The model is tested by numerical simulations of thermal Couette flow, attenuation-driven acoustic streaming, and natural convection in a square cavity with small and large temperature differences. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.

  17. Lattice-Boltzmann simulation of coalescence-driven island coarsening

    USGS Publications Warehouse

    Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.

    2004-01-01

    The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.

  18. Measurement-Induced Localization of an Ultracold Lattice Gas

    NASA Astrophysics Data System (ADS)

    Patil, Y. S.; Chakram, S.; Vengalattore, M.

    2015-10-01

    The process of measurement can modify the state of a quantum system and its subsequent evolution. Here, we demonstrate the control of quantum tunneling in an ultracold lattice gas by the measurement backaction imposed by the act of imaging the atoms, i.e., light scattering. By varying the rate of light scattering from the atomic ensemble, we show the crossover from the weak measurement regime, where position measurements have little influence on tunneling dynamics, to the strong measurement regime, where measurement-induced localization causes a large suppression of tunneling—a manifestation of the quantum Zeno effect. Our study realizes an experimental demonstration of the paradigmatic Heisenberg microscope and sheds light on the implications of measurement on the coherent evolution of a quantum system.

  19. Two-dimensional crystals of Rydberg excitations in a resonantly driven lattice gas

    NASA Astrophysics Data System (ADS)

    Petrosyan, David

    2013-10-01

    The competition between resonant optical excitation of Rydberg states of atoms and their strong, long-range van der Waals interaction results in spatial ordering of Rydberg excitations in a two-dimensional lattice gas, as observed in a recent experiment of Schauß [Nature (London)NATUAS0028-083610.1038/nature11596 491, 87 (2012)]. Here we use semiclassical Monte Carlo simulations to obtain stationary states for hundreds of atoms in finite-size lattices. We show the formation of regular spatial structures of Rydberg excitations in a system of increasing size, and find highly sub-Poissonian distribution of the number of Rydberg excitations characterized by a large negative value of the Mandel Q parameter which is nearly independent of the system size.

  20. A simulator for discrete quantum walks on lattices

    NASA Astrophysics Data System (ADS)

    Rodrigues, J.; Paunković, N.; Mateus, P.

    In this paper, we present a simulator for two-particle quantum walks on the line and one-particle on a two-dimensional squared lattice. It can be used to investigate the equivalence between the two cases (one- and two-particle walks) for various boundary conditions (open, circular, reflecting, absorbing and their combinations). For the case of a single walker on a two-dimensional lattice, the simulator can also implement the Möbius strip. Furthermore, other topologies for the walker are also simulated by the proposed tool, like certain types of planar graphs with degree up to 4, by considering missing links over the lattice. The main purpose of the simulator is to study the genuinely quantum effects on the global properties of the two-particle joint probability distribution on the entanglement between the walkers/axis. For that purpose, the simulator is designed to compute various quantities such as: the entanglement and classical correlations, (classical and quantum) mutual information, the average distance between the two walkers, different hitting times and quantum discord. These quantities are of vital importance in designing possible algorithmic applications of quantum walks, namely in search, 3-SAT problems, etc. The simulator can also implement the static partial measurements of particle(s) positions and dynamic breaking of the links between certain nodes, both of which can be used to investigate the effects of decoherence on the walker(s). Finally, the simulator can be used to investigate the dynamic Anderson-like particle localization by varying the coin operators of certain nodes on the line/lattice. We also present some illustrative and relevant examples of one- and two-particle quantum walks in various scenarios. The tool was implemented in C and is available on-line at http://qwsim.weebly.com/.

  1. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices.

  2. Spontaneous formation of large clusters in a lattice gas above the critical point.

    PubMed

    Khain, Evgeniy; Khasin, Michael; Sander, Leonard M

    2014-12-01

    We consider clustering of particles in the lattice gas model above the critical point. We find the probability for large density fluctuations over scales much larger than the correlation length. This fundamental problem is of interest in various biological contexts such as quorum sensing and clustering of motile, adhesive, cancer cells. In the latter case, it may give a clue to the problem of growth of recurrent tumors. We develop a formalism for the analysis of this rare event employing a phenomenological master equation and measuring the transition rates in numerical simulations. The spontaneous clustering is treated in the framework of the eikonal approximation to the master equation.

  3. Spontaneous formation of large clusters in a lattice gas above the critical point

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Khasin, Michael; Sander, Leonard M.

    2014-12-01

    We consider clustering of particles in the lattice gas model above the critical point. We find the probability for large density fluctuations over scales much larger than the correlation length. This fundamental problem is of interest in various biological contexts such as quorum sensing and clustering of motile, adhesive, cancer cells. In the latter case, it may give a clue to the problem of growth of recurrent tumors. We develop a formalism for the analysis of this rare event employing a phenomenological master equation and measuring the transition rates in numerical simulations. The spontaneous clustering is treated in the framework of the eikonal approximation to the master equation.

  4. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.

    PubMed

    Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko

    2007-09-01

    It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.

  5. Simulation of quantum chromodynamics on the lattice with exactly chiral lattice fermions

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Chiu, Ting-Wai; Cossu, Guido; Feng, Xu; Fukaya, Hidenori; Hashimoto, Shoji; Hsieh, Tung-Han; Kaneko, Takashi; Matsufuru, Hideo; Noaki, Jun-Ichi; Onogi, Tetsuya; Shintani, Eigo; Takeda, Kouhei

    2012-09-01

    Numerical simulation of the low-energy dynamics of quarks and gluons is now feasible based on the fundamental theory of strong interaction, i.e. quantum chromodynamics (QCD). With QCD formulated on a 4D hypercubic lattice (called lattice QCD or LQCD), one can simulate the QCD vacuum and hadronic excitations on the vacuum using teraflop-scale supercomputers, which have become available in the last decade. A great deal of work has been done on this subject by many groups around the world; in this article we summarize the work done by the JLQCD and TWQCD collaborations since 2006. These collaborations employ Neuberger's overlap fermion formulation, which preserves the exact chiral and flavor symmetries on the lattice, unlike other lattice fermion formulations. Because of this beautiful property, numerical simulation of the formulation can address fundamental questions on the QCD vacuum, such as the microscopic structure of the quark-antiquark condensate in the chirally broken phase of QCD and its relation to SU(3) gauge field topology. Tests of the chiral effective theory, which is based on the assumption that the chiral symmetry is spontaneously broken in the QCD vacuum, can be performed, including the pion-loop effect test. For many other phenomenological applications, we adopt the all-to-all quark propagator technique, which allows us to compute various correlation functions without substantial extra cost. The benefit of this is not only that the statistical signal is improved but that disconnected quark-loop diagrams can be calculated. Using this method combined with the overlap fermion formulation, we study a wide range of physical quantities that are of both theoretical and phenomenological interest.

  6. Liquid-Gas Mixtures in Contact with Walls: Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Markus Dammer, Stephan

    2005-11-01

    We perform molecular dynamics simulations of liquid-gas mixtures in contact to solid walls. We present results concerning Lennard-Jones systems composed of three particle species, namely liquid, foreign gas, and wall particles, which are frozen on a lattice: (i) Close to the wall we observe a layering of the fluid which becomes more pronounced for increasingly hydrophilic walls. (ii) Close to smooth hydrophobic walls we find a two orders of magnitude increase in the number density of gas, which will favor bubble nucleation. (iii) To characterize the walls, we determined the contact angle by simulations of droplets and compare the result to Laplace's estimate of surface energies.

  7. An Efficient and Accurate Quantum Lattice-Gas Model for the Many-Body Schroedinger Wave Equation

    DTIC Science & Technology

    2002-01-01

    CONTRACT NUMBER AN EFFICIENT AND ACCURATE QUANTUM LATTICE-GAS MODEL FOR THE MANY-BODY SCHROEDINGER WAVE EQUATION 5b. GRANT NUMBER SC. PROGRAM ELEMENT...for simulating the time-dependent evolution of a many-body jiiantum mechanical system of particles governed by the non-relativistic Schroedinger " wave...the numerical dispersion of the simulated wave packets is compared with the analytical solutions. 15. SUBJECT TERM: Schroedinger wave equation

  8. Simulating VIIRS Observed Gas Flare

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.

    2015-12-01

    VIIRS Nightfire (VNF) had been proved being able to effectively detect gas flares at night, and characterize their temperature and source size. [1] However, limited access to generally confidential gas flare operation measurements made it difficult to verify the output. Although flared gas volume is occasionally available, it is not common to log the temperature and flames size which directly links to VNF output. To understand the mechanism of gas flare and how VIIRS perceives the event, a platform is proposed to simulate the gas flare being observed by VIIRS. The methodology can be described in three steps. (1) Use CFD simulation software ISIS-3D to simulate a simple gas flare. [2] Scalar fields of temperature and species concentration related to combustion are extracted from the simulation. The instantaneous scalar can be determined from time-averaging or guess by stochastic time and space series (TASS) from single-point statistics [3]. (2) Model spectral radiance intensity of simulated gas flare using RADCAL. [4] RADCAL developed by NIST can accurately model the spectral radiance emitted on the direction of lineof-sight given the spatial profile of temperature and concentration of species. (3) Use radiative transfer modeling to calculate the energy propagated to VIIRS. The modeled radiation will then be weighted by the MODTRAN [5] modeled transmissivity over predefined atmosphere to the satellite, with geometrical effects considered. Such platform can help understanding how exactly VNF is measuring gas flares, and thus lead to more precise characterization of combustion events. [1] C. D. Elvidge et al, Remote Sensing, 2013[2] IRSN ISIS-3D[3] M. E. Kounalakis et al, ASME J. Heat Transfer, 1991 [4] W. L. Grosshandler, NIST Technical Note 1402, 1993 [5] A. Berk et al, MODTRAN 5.2.0.0 User's Manual

  9. Simulation of binary mixtures with the lattice Boltzman method.

    PubMed

    Arcidiacono, S; Mantzaras, J; Ansumali, S; Karlin, I V; Frouzakis, C; Boulouchos, K B

    2006-11-01

    A lattice Boltzman model for the simulation of binary mixtures is presented. Contrary to previous models, the present formulation is able to simulate mixtures with different Schmidt numbers and arbitrary molecular mass ratio of the components. In the hydrodynamic limit, the Navier-Stokes and the Stefan-Maxwell binary diffusion equations are recovered. The model is used for the simulation of binary diffusion and mixing layers. The results are found to be in good agreement with a derived similarity solution and with the predictions of a transient spectral element code.

  10. Discontinuous phase transition in a dimer lattice gas

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2012-05-01

    I study a dimer model on the square lattice with nearest neighbor exclusion as the only interaction. Detailed simulations using tomographic entropic sampling show that as the chemical potential is varied, there is a strongly discontinuous phase transition, at which the particle density jumps by about 18% of its maximum value, 1/4. The transition is accompanied by the onset of orientational order, to an arrangement corresponding to the {1/2, 0, 1/2} structure identified by Phares et al. [Physica B 409, 1096 (2011)] in a dimer model with finite repulsion at fixed density. Using finite-size scaling and Binder's cumulant, the expected scaling behavior at a discontinuous transition is verified in detail. The discontinuous transition can be understood qualitatively given that the model possesses eight equivalent maximum-density configurations, so that its coarse-grained description corresponds to that of the q = 8 Potts model.

  11. Discontinuous phase transition in a dimer lattice gas.

    PubMed

    Dickman, Ronald

    2012-05-07

    I study a dimer model on the square lattice with nearest neighbor exclusion as the only interaction. Detailed simulations using tomographic entropic sampling show that as the chemical potential is varied, there is a strongly discontinuous phase transition, at which the particle density jumps by about 18% of its maximum value, 1/4. The transition is accompanied by the onset of orientational order, to an arrangement corresponding to the {1/2, 0, 1/2} structure identified by Phares et al. [Physica B 409, 1096 (2011)] in a dimer model with finite repulsion at fixed density. Using finite-size scaling and Binder's cumulant, the expected scaling behavior at a discontinuous transition is verified in detail. The discontinuous transition can be understood qualitatively given that the model possesses eight equivalent maximum-density configurations, so that its coarse-grained description corresponds to that of the q = 8 Potts model.

  12. Accuracy of non-Newtonian Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Daniel; Schneider, Andreas; Böhle, Martin

    2015-11-01

    This work deals with the accuracy of non-Newtonian Lattice Boltzmann simulations. Previous work for Newtonian fluids indicate that, depending on the numerical value of the dimensionless collision frequency Ω, additional artificial viscosity is introduced, which negatively influences the accuracy. Since the non-Newtonian fluid behavior is incorporated through appropriate modeling of the dimensionless collision frequency, a Ω dependent error EΩ is introduced and its influence on the overall error is investigated. Here, simulations with the SRT and the MRT model are carried out for power-law fluids in order to numerically investigate the accuracy of non-Newtonian Lattice Boltzmann simulations. A goal of this accuracy analysis is to derive a recommendation for an optimal choice of the time step size and the simulation Mach number, respectively. For the non-Newtonian case, an error estimate for EΩ in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. With the help of the error functional, the prediction of the global error minimum of the velocity field is excellent in regions where the EΩ error is the dominant source of error. With an optimal simulation Mach number, the simulation is about one order of magnitude more accurate. Additionally, for both collision models a detailed study of the convergence behavior of the method in the non-Newtonian case is conducted. The results show that the simulation Mach number has a major impact on the convergence rate and second order accuracy is not preserved for every choice of the simulation Mach number.

  13. Quantum simulation of frustrated classical magnetism in triangular optical lattices.

    PubMed

    Struck, J; Ölschläger, C; Le Targat, R; Soltan-Panahi, P; Eckardt, A; Lewenstein, M; Windpassinger, P; Sengstock, K

    2011-08-19

    Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

  14. Kinetic lattice Monte Carlo simulation of viscoelastic subdiffusion.

    PubMed

    Fritsch, Christian C; Langowski, Jörg

    2012-08-14

    We propose a kinetic Monte Carlo method for the simulation of subdiffusive random walks on a cartesian lattice. The random walkers are subject to viscoelastic forces which we compute from their individual trajectories via the fractional Langevin equation. At every step the walkers move by one lattice unit, which makes them differ essentially from continuous time random walks, where the subdiffusive behavior is induced by random waiting. To enable computationally inexpensive simulations with n-step memories, we use an approximation of the memory and the memory kernel functions with a complexity O(log n). Eventual discretization and approximation artifacts are compensated with numerical adjustments of the memory kernel functions. We verify with a number of analyses that this new method provides binary fractional random walks that are fully consistent with the theory of fractional brownian motion.

  15. Lattice Boltzmann Simulation of Particle Laden Flows in Microfluidic Systems

    DTIC Science & Technology

    2003-12-01

    wide application and will enable the study of colloidal/macromolecular transport in physiological systems, such as, blood filtration in the kidney... MICROFLUIDIC SYSTEMS DOE/Lawrence Livermore National Laboratory Sponsored by Defense Advanced Research Projects Agency DARPA Order No. E117...Jun 00 – Aug 02 4. TITLE AND SUBTITLE LATTICE BOLTZMANN SIMULATION OF PARTICLE LADEN FLOWS IN MICROFLUIDIC SYSTEMS 6. AUTHOR(S) David S

  16. Large-scale lattice-Boltzmann simulations over lambda networks

    NASA Astrophysics Data System (ADS)

    Saksena, R.; Coveney, P. V.; Pinning, R.; Booth, S.

    Amphiphilic molecules are of immense industrial importance, mainly due to their tendency to align at interfaces in a solution of immiscible species, e.g., oil and water, thereby reducing surface tension. Depending on the concentration of amphiphiles in the solution, they may assemble into a variety of morphologies, such as lamellae, micelles, sponge and cubic bicontinuous structures exhibiting non-trivial rheological properties. The main objective of this work is to study the rheological properties of very large, defect-containing gyroidal systems (of up to 10243 lattice sites) using the lattice-Boltzmann method. Memory requirements for the simulation of such large lattices exceed that available to us on most supercomputers and so we use MPICH-G2/MPIg to investigate geographically distributed domain decomposition simulations across HPCx in the UK and TeraGrid in the US. Use of MPICH-G2/MPIg requires the port-forwarder to work with the grid middleware on HPCx. Data from the simulations is streamed to a high performance visualisation resource at UCL (London) for rendering and visualisation. Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project March 26-28 2007 The George Hotel, Edinburgh, UK

  17. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Gorenstein, Mark I.; Stoecker, Horst

    2017-05-01

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T ˜140 - 190 MeV . For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  18. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.

    PubMed

    Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst

    2017-05-05

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190  MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  19. High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2016-04-01

    We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as Tc/J = 2.39781 ± 0.00005 and that of the dual Penrose lattice as Tc*/J = 2.14987 ± 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh (2J/Tc)sinh (2J/Tc*) = 1.00000 ± 0.00004.

  20. Proposals for quantum simulating simple lattice gauge theory models using optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Unmuth-Yockey, Judah; Bazavov, Alexei; Meurice, Yannick; Tsai, Shan-Wen

    We derive an effective spin Hamiltonian for the (1 +1)-dimensional Abelian Higgs model in the strongly coupled region by integrating out the link variables. With finite spin truncations, the Hamiltonian can be matched with a 1-dimensional two-species Bose Hubbard model in the strong-coupling limit that can be implemented with cold atoms on an optical lattice. We study the phase diagram of the original Abelian Higgs model with Monte Carlo simulation and Tensor Renormalization Group methods. The results show a crossover line which terminates near the Kosterlitz-Thouless transition point. The effective quantum Hamiltonian is also studied with the DMRG method, and we find that they have a similar behavior. We discuss practical experimental implementations for our quantum simulator. Species-dependent optical lattices and ladder systems with double-well potentials are considered. We show how to obtain each of the interaction parameters required in the Bose-Hubbard model that we obtained, and confirm the possibility of tuning these interactions to the region in which our mapping is valid. We emphasize that this proposal for quantum simulating a gauge theory uses a manifestly gauge-invariant formulation and Gauss's Law is therefore automatically satisfied. Supported by DoD ARO under Grant No. W911NF-13-1-0119 and by the NSF under Grants No. DMR-1411345.

  1. Monte Carlo simulations of lattice models for single polymer systems

    SciTech Connect

    Hsu, Hsiao-Ping

    2014-10-28

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10{sup 4}). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  2. Thermal phase transitions in a honeycomb lattice gas with three-body interactions.

    PubMed

    Lohöfer, Maximilian; Bonnes, Lars; Wessel, Stefan

    2013-11-01

    We study the thermal phase transitions in a classical (hard-core) lattice gas model with nearest-neighbor three-body interactions on the honeycomb lattice, based on parallel tempering Monte Carlo simulations. This system realizes incompressible low-temperature phases at fractional fillings of 9/16, 5/8, and 3/4 that were identified in a previous study of a related quantum model. In particular, both the 9/16 and the 5/8 phase exhibit an extensive ground-state degeneracy reflecting the frustrated nature of the three-body interactions on the honeycomb lattice. The thermal melting of the 9/16 phase is found to be a first-order, discontinuous phase transition. On the other hand, from the thermodynamic behavior we obtain indications for a four-states Potts-model thermal transition out of the 5/8 phase. We find that this thermal Potts-model transition relates to the selection of one out of four extensive sectors within the low-energy manifold of the 5/8 phase, which we obtain via an exact mapping of the ground-state manifold to a hard-core dimer model on an embedded honeycomb superlattice.

  3. Nucleation near the eutectic point in a Potts-lattice gas model.

    PubMed

    Agarwal, Vishal; Peters, Baron

    2014-02-28

    We use the Potts-lattice gas model to study nucleation at and near the eutectic composition. We use rare-event methods to compute the free energy landscape for the competing nucleation products, and short trajectories at the barrier top to obtain prefactors. We introduce a procedure to tune the frequency of semigrand Monte Carlo moves so that the dynamics of a small closed system roughly resemble those of an infinite system. The non-dimensionalized nucleation rates follow trends as predicted by the classical nucleation theory. Finally, we develop corrections that convert free energy surfaces from closed (canonical) simulations into free energy surfaces from open (semigrand) simulations. The new corrections extend earlier corrections to now address situations like nucleation at the eutectic point where two products nucleate competitively.

  4. Lattice Boltzmann simulation of chemical dissolution in porous media.

    PubMed

    Kang, Qinjun; Zhang, Dongxiao; Chen, Shiyi; He, Xiaoyi

    2002-03-01

    In this paper, we develop a lattice Boltzmann model for simulating the transport and reaction of fluids in porous media. To simulate such a system, we account for the interaction of forced convection, molecular diffusion, and surface reaction. The problem is complicated by the evolution of the porous media geometry due to chemical reactions, which may significantly and continuously modify the hydrologic properties of the media. The particular application that motivates the present study is acid stimulation, a common technique used to increase production from petroleum reservoirs. This technique involves the injection of acid (e.g., hydrochloric acid, HCl, acetic acid, HAc) into the formation to dissolve minerals comprising the rock. As acid is injected, highly conductive channels or "wormholes" may be formed. The dissolution of carbonate rocks in 0.5M HCl and 0.5M HAc is simulated with the lattice Boltzmann model developed in this study. The dependence of dissolution process and the geometry of the final wormhole pattern on the acid type and the injection rate is studied. The results agree qualitatively with the experimental and theoretical analyses of others and substantiate the previous finding that there exists an optimal injection rate at which the wormhole is formed as well as the number of pore volumes of the injected fluid to break through is minimized. This study also confirms the experimentally observed phenomenon that the optimal injection rate decreases and the corresponding minimized number of pore volumes to break through increases as the acid is changed from HCl to HAc. Simulations suggest that the proposed lattice Boltzmann model may serve as an alternative reliable quantitative approach to study chemical dissolution in porous media.

  5. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  6. Lattice-Gas Automata for the Problem Of Kinetic Theory of Gas During Free Expansion

    NASA Astrophysics Data System (ADS)

    Khotimah, Siti Nurul; Arif, Idam; Liong, The Houw

    The lattice-gas method has been applied to solve the problem of kinetic theory of gas in the Gay-Lussac-Joule experiment. Numerical experiments for a two-dimensional gas were carried out to determine the number of molecules in one vessel (Nr), the ratio between the mean square values of the components of molecule velocity (/line{vx2}//line{v_y^2}), and the change in internal energy (ΔU) as a function of time during free expansion. These experiments were repeated for different sizes of an aperture in the partition between the two vessels. After puncturing the partition, the curve for the particle number in one vessel shows a damped oscillation for about half of the total number. The oscillations do not vanish after a sampling over different initial configurations. The system is in nonequilibrium due to the pressure equilibration, and here the flow is actually compressible. The equilibration time (in time steps) decreases with decreased size of aperture in the partition. For very small apertures (equal or less than 9{√{3}}/{2} lattice units), the number of molecules in one vessel changes with time in a smooth way until it reaches half of the total number; their curves obey the analytical solution for quasi-static processes. The calculations on /line{vx2}//line{v_y^2} and ΔU also support the results that the equilibration time decreases with decreased size of aperture in the partition.

  7. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models.

    PubMed

    Priyanka; Jain, Kavita

    2016-04-01

    We consider several one-dimensional driven lattice-gas models that show a phase transition in the stationary state between a high-density fluid phase in which the typical length of a hole cluster is of order unity and a low-density jammed phase where a hole cluster of macroscopic length forms in front of a particle. Using a hydrodynamic equation for an interface growth model obtained from the driven lattice-gas models of interest here, we find that in the fluid phase, the roughness exponent and the dynamic exponent that, respectively, characterize the scaling of the saturation width and the relaxation time of the interface with the system size are given by the Kardar-Parisi-Zhang exponents. However, at the critical point, we show analytically that when the equal-time density-density correlation function decays slower than inverse distance, the roughness exponent varies continuously with a parameter in the hop rates, but it is one-half otherwise. Using these results and numerical simulations for the density-density autocorrelation function, we further find that the dynamic exponent z=3/2 in all cases.

  8. Accounting for adsorption and desorption in lattice Boltzmann simulations.

    PubMed

    Levesque, Maximilien; Duvail, Magali; Pagonabarraga, Ignacio; Frenkel, Daan; Rotenberg, Benjamin

    2013-07-01

    We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.

  9. Accounting for adsorption and desorption in lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Levesque, Maximilien; Duvail, Magali; Pagonabarraga, Ignacio; Frenkel, Daan; Rotenberg, Benjamin

    2013-07-01

    We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.

  10. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  11. Nucleation in a Potts lattice gas model of crystallization from solution

    NASA Astrophysics Data System (ADS)

    Duff, Nathan; Peters, Baron

    2009-11-01

    Nucleation from solution is important in many pharmaceutical crystallization, biomineralization, material synthesis, and self-assembly processes. Simulation methodology has progressed rapidly for studies of nucleation in pure component and implicit solvent systems; however little progress has been made in the simulation of explicit solvent systems. The impasse stems from the inability of rare events simulation methodology to be combined with simulation techniques which maintain a constant chemical potential driving force (supersaturation) for nucleation. We present a Potts lattice gas (PLG) to aid in the development of new simulation strategies for nucleation from solution. The PLG captures common crystallization phase diagram features such as a eutectic point and solute/solvent melting points. Simulations of the PLG below the bulk solute melting temperature reveal a competition between amorphous and crystalline nuclei. As the temperature is increased toward the bulk melting temperature, the nucleation pathway changes from a one step crystalline nucleation pathway to a two step pathway, where an amorphous nucleus forms and then crystallizes. We explain these results in terms of classical nucleation theory with different size-dependant chemical potentials for the amorphous and crystalline nucleation pathways. The two step pathway may be particularly important when crystallization is favored only at postcritical sizes.

  12. Nucleation in a Potts lattice gas model of crystallization from solution.

    PubMed

    Duff, Nathan; Peters, Baron

    2009-11-14

    Nucleation from solution is important in many pharmaceutical crystallization, biomineralization, material synthesis, and self-assembly processes. Simulation methodology has progressed rapidly for studies of nucleation in pure component and implicit solvent systems; however little progress has been made in the simulation of explicit solvent systems. The impasse stems from the inability of rare events simulation methodology to be combined with simulation techniques which maintain a constant chemical potential driving force (supersaturation) for nucleation. We present a Potts lattice gas (PLG) to aid in the development of new simulation strategies for nucleation from solution. The PLG captures common crystallization phase diagram features such as a eutectic point and solute/solvent melting points. Simulations of the PLG below the bulk solute melting temperature reveal a competition between amorphous and crystalline nuclei. As the temperature is increased toward the bulk melting temperature, the nucleation pathway changes from a one step crystalline nucleation pathway to a two step pathway, where an amorphous nucleus forms and then crystallizes. We explain these results in terms of classical nucleation theory with different size-dependant chemical potentials for the amorphous and crystalline nucleation pathways. The two step pathway may be particularly important when crystallization is favored only at postcritical sizes.

  13. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    SciTech Connect

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the

  14. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  15. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics. © 2015 The Protein Society.

  16. Lattice Boltzmann modeling of directional wetting: Comparing simulations to experiments

    NASA Astrophysics Data System (ADS)

    Jansen, H. Patrick; Sotthewes, Kai; van Swigchem, Jeroen; Zandvliet, Harold J. W.; Kooij, E. Stefan

    2013-07-01

    Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results, which have shown that water droplets on such surfaces adopt an elongated shape due to anisotropic preferential spreading. Details of the contact line motion such as advancing of the contact line in the direction perpendicular to the stripes exhibit pronounced similarities in experiments and simulations. The opposite of spreading, i.e., evaporation of water droplets, leads to a characteristic receding motion first in the direction parallel to the stripes, while the contact line remains pinned perpendicular to the stripes. Only when the aspect ratio is close to unity, the contact line also starts to recede in the perpendicular direction. Very similar behavior was observed in the LBM simulations. Finally, droplet movement can be induced by a gradient in surface wettability. LBM simulations show good semiquantitative agreement with experimental results of decanol droplets on a well-defined striped gradient, which move from high- to low-contact angle surfaces. Similarities and differences for all systems are described and discussed in terms of the predictive capabilities of LBM simulations to model direction wetting.

  17. Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments.

    PubMed

    Jansen, H Patrick; Sotthewes, Kai; van Swigchem, Jeroen; Zandvliet, Harold J W; Kooij, E Stefan

    2013-07-01

    Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results, which have shown that water droplets on such surfaces adopt an elongated shape due to anisotropic preferential spreading. Details of the contact line motion such as advancing of the contact line in the direction perpendicular to the stripes exhibit pronounced similarities in experiments and simulations. The opposite of spreading, i.e., evaporation of water droplets, leads to a characteristic receding motion first in the direction parallel to the stripes, while the contact line remains pinned perpendicular to the stripes. Only when the aspect ratio is close to unity, the contact line also starts to recede in the perpendicular direction. Very similar behavior was observed in the LBM simulations. Finally, droplet movement can be induced by a gradient in surface wettability. LBM simulations show good semiquantitative agreement with experimental results of decanol droplets on a well-defined striped gradient, which move from high- to low-contact angle surfaces. Similarities and differences for all systems are described and discussed in terms of the predictive capabilities of LBM simulations to model direction wetting.

  18. Monte Carlo tests of nucleation concepts in the lattice gas model

    NASA Astrophysics Data System (ADS)

    Schmitz, Fabian; Virnau, Peter; Binder, Kurt

    2013-05-01

    The conventional theory of homogeneous and heterogeneous nucleation in a supersaturated vapor is tested by Monte Carlo simulations of the lattice gas (Ising) model with nearest-neighbor attractive interactions on the simple cubic lattice. The theory considers the nucleation process as a slow (quasistatic) cluster (droplet) growth over a free energy barrier ΔF*, constructed in terms of a balance of surface and bulk term of a critical droplet of radius R*, implying that the rates of droplet growth and shrinking essentially balance each other for droplet radius R=R*. For heterogeneous nucleation at surfaces, the barrier is reduced by a factor depending on the contact angle. Using the definition of physical clusters based on the Fortuin-Kasteleyn mapping, the time dependence of the cluster size distribution is studied for quenching experiments in the kinetic Ising model and the cluster size ℓ* where the cluster growth rate changes sign is estimated. These studies of nucleation kinetics are compared to studies where the relation between cluster size and supersaturation is estimated from equilibrium simulations of phase coexistence between droplet and vapor in the canonical ensemble. The chemical potential is estimated from a lattice version of the Widom particle insertion method. For large droplets it is shown that the physical clusters have a volume consistent with the estimates from the lever rule. Geometrical clusters (defined such that each site belonging to the cluster is occupied and has at least one occupied neighbor site) yield valid results only for temperatures less than 60% of the critical temperature, where the cluster shape is nonspherical. We show how the chemical potential can be used to numerically estimate ΔF* also for nonspherical cluster shapes.

  19. Monte Carlo tests of nucleation concepts in the lattice gas model.

    PubMed

    Schmitz, Fabian; Virnau, Peter; Binder, Kurt

    2013-05-01

    The conventional theory of homogeneous and heterogeneous nucleation in a supersaturated vapor is tested by Monte Carlo simulations of the lattice gas (Ising) model with nearest-neighbor attractive interactions on the simple cubic lattice. The theory considers the nucleation process as a slow (quasistatic) cluster (droplet) growth over a free energy barrier ΔF(*), constructed in terms of a balance of surface and bulk term of a critical droplet of radius R(*), implying that the rates of droplet growth and shrinking essentially balance each other for droplet radius R=R(*). For heterogeneous nucleation at surfaces, the barrier is reduced by a factor depending on the contact angle. Using the definition of physical clusters based on the Fortuin-Kasteleyn mapping, the time dependence of the cluster size distribution is studied for quenching experiments in the kinetic Ising model and the cluster size ℓ(*) where the cluster growth rate changes sign is estimated. These studies of nucleation kinetics are compared to studies where the relation between cluster size and supersaturation is estimated from equilibrium simulations of phase coexistence between droplet and vapor in the canonical ensemble. The chemical potential is estimated from a lattice version of the Widom particle insertion method. For large droplets it is shown that the physical clusters have a volume consistent with the estimates from the lever rule. Geometrical clusters (defined such that each site belonging to the cluster is occupied and has at least one occupied neighbor site) yield valid results only for temperatures less than 60% of the critical temperature, where the cluster shape is nonspherical. We show how the chemical potential can be used to numerically estimate ΔF(*) also for nonspherical cluster shapes.

  20. Lattice-Boltzmann simulations of microswimmer-tracer interactions.

    PubMed

    de Graaf, Joost; Stenhammar, Joakim

    2017-02-01

    Hydrodynamic interactions in systems composed of self-propelled particles, such as swimming microorganisms and passive tracers, have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force-counterforce-based lattice-Boltzmann (LB) algorithm [De Graaf et al., J. Chem. Phys. 144, 134106 (2016)JCPSA60021-960610.1063/1.4944962] in order to validate its ability to capture the relevant low-Reynolds-number physics. We show that the LB algorithm reproduces far-field theoretical results well, both in a system with periodic boundary conditions and in a spherical cavity with no-slip walls, for which we derive expressions here. The force-lattice coupling of the LB algorithm leads to a "smearing out" of the flow field, which strongly perturbs the tracer trajectories at close swimmer-tracer separations, and we analyze how this effect can be accurately captured using a simple renormalized hydrodynamic theory. Finally, we show that care must be taken when using LB algorithms to simulate systems of self-propelled particles, since its finite momentum transport time can lead to significant deviations from theoretical predictions based on Stokes flow. These insights should prove relevant to the future study of large-scale microswimmer suspensions using these methods.

  1. Lattice-Boltzmann simulations of microswimmer-tracer interactions

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Stenhammar, Joakim

    2017-02-01

    Hydrodynamic interactions in systems composed of self-propelled particles, such as swimming microorganisms and passive tracers, have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force-counterforce-based lattice-Boltzmann (LB) algorithm [De Graaf et al., J. Chem. Phys. 144, 134106 (2016), 10.1063/1.4944962] in order to validate its ability to capture the relevant low-Reynolds-number physics. We show that the LB algorithm reproduces far-field theoretical results well, both in a system with periodic boundary conditions and in a spherical cavity with no-slip walls, for which we derive expressions here. The force-lattice coupling of the LB algorithm leads to a "smearing out" of the flow field, which strongly perturbs the tracer trajectories at close swimmer-tracer separations, and we analyze how this effect can be accurately captured using a simple renormalized hydrodynamic theory. Finally, we show that care must be taken when using LB algorithms to simulate systems of self-propelled particles, since its finite momentum transport time can lead to significant deviations from theoretical predictions based on Stokes flow. These insights should prove relevant to the future study of large-scale microswimmer suspensions using these methods.

  2. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  3. Lattice-Boltzmann Simulation of Coalescence-Driven Island Coarsening

    SciTech Connect

    Hakan Basagaoglu; Christopher T. Green; Paul Meakin; Benjamin J. McCoy

    2004-10-01

    A two-dimensional lattice-Boltzmann model (LBM) with fluid-fluid interactions was used to simulate first-order phase separation in a thin fluid film. The intermediate asymptotic time dependence of the mean island size, island number concentration, and polydispersity were determined and compared with the predictions of the distribution-kinetics model. The comparison revealed that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations. However, the overall process is dominated by coalescence, which is independent of island mass. As the phase transition advances, the mean island size increases, the number of islands decrease, and the polydispersity approaches unity, which conforms to the predictions of the distribution-kinetics model. The effects of the domain size on the intermediate asymptotic island size distribution, scaling form of the island size distribution, and the crossover to the long-term asymptotic behavior were elucidated. (C) 2004 American Institute of Physics.

  4. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  5. Abnormal incorporation of amino acids into the gas hydrate crystal lattice.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Ahn, Docheon; Lee, Kun-Hong

    2014-12-28

    Gas hydrates are crystalline ice-like solid materials enclosing gas molecules inside. The possibility of the presence of gas hydrates with amino acids in the universe is of interest when revealing the potential existence of life as they are evidence of a source of water and organic precursors, respectively. However, little is known about how they can naturally coexist, and their crystallization behavior would become far more complex as both crystallize with formation of hydrogen bonds. Here, we report abnormal incorporation of amino acids into the gas hydrate crystal lattice that is contrary to the generally accepted crystallization mode, and this resulted in lattice distortion and expansion. The present findings imply the potential for their natural coexistence by sharing the crystal lattice, and will be helpful for understanding the role of additives in the gas hydrate crystallization.

  6. Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels

    NASA Astrophysics Data System (ADS)

    Yuan, Yudong; Rahman, Sheik

    2016-12-01

    Simulation of rarefied gas flow in micro-channels is of great interest owing to its diverse applications in many engineering fields. In this study, a multiple-relaxation-time lattice Boltzmann (MRT-LB) model with a general second-order slip boundary condition is presented to investigate the behaviour of gas flow with a wide range of Knudsen number in micro-channels. With the aid of a Bosanquet-type effective viscosity, the effective relaxation time is correlated with local Knudsen number (Kn) to account for the varying degree of rarefaction effect. Unlike previous studies, the derived accommodation coefficient r for the combined bounce-back/diffusive reflection (CBBDR) boundary condition is dependent on the local Kn, which allows more flexibility to simulate the slip velocity along the channel walls. When compared with results of other methods, such as linearised Boltzmann equation, experimental data, direct simulation Monte Carlo (DSMC) and Information Preservation DSMC (IP-DSMC), it is found that the LB model is capable of capturing the flow behaviour, including the velocity profile, flow rate, pressure distribution and Knudsen minimum of rarefied gas with Kn up to 10. The effect of Knudsen layer (KL) on the velocity of gas flow with a wide range of Kn is also discussed. It is found that KL effect is negligible in the continuum flow and y-independent in the free molecular flow, while in the intermediate range, especially in transition flow, KL effect is significant and particular efforts should be made to capture this effect.

  7. Simulation of swimming of a flexible filament using the generalized lattice-spring lattice-Boltzmann method.

    PubMed

    Wu, Tai-Hsien; Guo, Rurng-Sheng; He, Guo-Wei; Liu, Ying-Ming; Qi, Dewei

    2014-05-21

    A generalized lattice-spring lattice-Boltzmann model (GLLM) is introduced by adding a three-body force in the traditional lattice-spring model. This method is able to deal with bending deformation of flexible biological bodies in fluids. The interactions between elastic solids and fluid are treated with the immersed boundary-lattice Boltzmann method. GLLM is validated by comparing the present results with the existing theoretical and simulation results. As an application of GLLM, swimming of flagellum in fluid is simulated and propulsive force as a function of driven frequency and fluid structures at various Reynolds numbers 0.15-5.1 are presented in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Catalytic formation of ammonia: a lattice gas non-thermal Langmuir Hinshelwood mechanism

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Ahmad, N.; Albano, E. V.

    2001-11-01

    The catalytic formation of ammonia synthesis through dimers N 2 and H 2 has been studied through Monte-Carlo simulation via a model based on lattice gas non-thermal Langmuir-Hinshelwood mechanism, which involves the precursor motion of H 2 molecule. The most interesting feature of this model is it yields a steady reactive window, which is separated by continuous and discontinuous irreversible phase transitions. The phase diagram is qualitatively similar to well-known ZGB model. The width of the window depends upon the mobility of precursors. The continuous transition disappears when mobility of precursors is extended to third nearest neighbourhood. The dependence of production rate on partial pressure of hydrogen is predicted by simple mathematical equations in our model. Some more interesting results are observed when reaction between precursors and chemisorbed hydrogen atoms is considered.

  9. Crackling sound generation during the formation of liquid bridges: A lattice gas model

    NASA Astrophysics Data System (ADS)

    Almeida, Alexandre B.; Buldyrev, Sergey V.; Alencar, Adriano M.

    2013-08-01

    Due to abnormal mechanical instabilities, liquid bridges may form in the small airways blocking airflow. Liquid bridge ruptures during inhalation are the major cause of the crackling adventitious lung sound, which can be heard using a simple stethoscope. Recently, Vyshedskiy and colleagues (2009) [1] described and characterized a crackle sound originated during expiration. However, the mechanism and origin of the expiratory crackle are still controversial. Thus, in this paper, we propose a mechanism for expiratory crackles. We hypothesize that the expiratory crackle sound is a result of the energy released in the form of acoustic waves during the formation of the liquid bridge. The magnitude of the energy released is proportional to the difference in free energy prior and after the bridge formation. We use a lattice gas model to describe the liquid bridge formation between two parallel planes. Specifically, we determine the surface free energy and the conditions of the liquid bridge formation between two parallel planes separated by a distance 2h by a liquid droplet of volume Ω and contact angle Θ, using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constrained. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameter hΩ and Θ. We can distinguish two different phases: one droplet and one liquid bridge. We observe a hysteresis curve for the energy changes between these two states, and a finite size effect in the bridge formation. We compute the release of free energy during the formation of the liquid bridge and discuss the results in terms of system size. We also calculate the force exerted from liquid bridge on the planes by studying the dependence of the free energy on the separation between the planes 2h. The simulation results are in agreement with the analytical solution.

  10. Lattice simulations of real-time quantum fields

    NASA Astrophysics Data System (ADS)

    Berges, J.; Borsányi, Sz.; Sexty, D.; Stamatescu, I.-O.

    2007-02-01

    We investigate lattice simulations of scalar and non-Abelian gauge fields in Minkowski space-time. For SU(2) gauge-theory expectation values of link variables in 3+1 dimensions are constructed by a stochastic process in an additional (5th) “Langevin-time.” A sufficiently small Langevin step size and the use of a tilted real-time contour leads to converging results in general. All fixed point solutions are shown to fulfil the infinite hierarchy of Dyson-Schwinger identities, however, they are not unique without further constraints. For the non-Abelian gauge theory the thermal equilibrium fixed point is only approached at intermediate Langevin-times. It becomes more stable if the complex time path is deformed towards Euclidean space-time. We analyze this behavior further using the real-time evolution of a quantum anharmonic oscillator, which is alternatively solved by diagonalizing its Hamiltonian. Without further optimization stochastic quantization can give accurate descriptions if the real-time extent of the lattice is small on the scale of the inverse temperature.

  11. Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions.

    PubMed

    Sulaiman, N; Marenduzzo, D; Yeomans, J M

    2006-10-01

    We present lattice Boltzmann simulations of the dynamical equations of motion of a drop of isotropic fluid in a nematic liquid crystal solvent, both in the absence and in the presence of an electric field. The coupled equations we solve are the Beris-Edward equations for the dynamics of the tensor order parameter describing the nematic solvent, the Cahn-Hilliard equation for the concentration evolution, and the Navier-Stokes equations for the determination of the instantaneous velocity field. We implement the lattice Boltzmann algorithm to ensure that spurious velocities are close to zero in equilibrium. We first study the effects of the liquid crystal elastic constant, K, anchoring strength, W, and surface tension, sigma, on the shape of the droplet and on the director field texture in equilibrium. We then consider how the drop behaves as the director field is switched by an applied electric field. We also show that the algorithm allows us to follow the motion of a drop of isotropic fluid placed in a liquid crystal cell with a tilted director field at the boundaries.

  12. Volumetric lattice Boltzmann simulation for blood flow in aorta arteries

    NASA Astrophysics Data System (ADS)

    Deep, Debanjan; Yu, Huidan (Whitney); Teague, Shawn

    2012-11-01

    Complicated moving boundaries pose a major challenge in computational fluid dynamics for complex flows, especially in the biomechanics of both blood flow in the cardiovascular system and air flow in the respiratory system where the compliant nature of the vessels can have significant effects on the flow rate and wall shear stress. We develop a computation approach to treat arbitrarily moving boundaries using a volumetric representation of lattice Boltzmann method, which distributes fluid particles inside lattice cells. A volumetric bounce-back procedure is applied in the streaming step while momentum exchange between the fluid and moving solid boundary are accounted for in the collision sub-step. Additional boundary-induced migration is introduced to conserve fluid mass as the boundary moves across fluid cells. The volumetric LBM (VLBM) is used to simulate blood flow in both normal and dilated aorta arteries. We first compare flow structure and pressure distribution in steady state with results from Navier-Stokes based solver and good agreements are achieved. Then we focus on wall stress within the aorta for different heart pumping condition and present quantitative measurement of wall shear and normal stress.

  13. The effect of lattice compressibility on the thermodynamics of gas sorption in polymers

    SciTech Connect

    Conforti, R.M.

    1993-12-31

    An incompressible lattice model, Flory-Huggins theory, was used to model the sorption of carbon dioxide, methane, and ethylene in silicon rubber. Above the glass transition temperature, the criterion of lattice incompressibility was satisfied with physically-reasonable and constant values for the partial molar volumes (or lattice-site volumes) of the gases. Below the glass transition temperature, lattice incompressibility required concentration-dependent and physically-unrealistic values for the lattice-site volumes. Instead of forcing lattice incompressibility on the systems, an activity coefficient model based on a compressible lattice, the glassy polymer lattice sorption model (GPLSM) was developed. The GPLSM equation has four parameters: the Henry`s law coefficient and the interaction energies for the pure gas, the pure polymer, and the gas-polymer pair. The pure gas interaction energy is determined from an equation of state, and a geometric mean assumption is used for the gas-polymer interaction energy. The pure polymer segment-segment interaction energy and the Henry`s law constant remain as adjustable parameters. GPLSM, was used to analyze gas sorption in glassy polycarbonate (PC), tetramethyl-polycarbonate (TMPC), and hexafluoropolycarbonate (HFPC). Two adjustable parameters, the segment-segment interaction energy and the Henry`s law constant, were necessary to model CO{sub 2} sorption data in these polymers. The segment-segment interaction energy was then fixed and H was varied to model CH{sub 4}, and C{sub 2}H{sub 4} sorption in unconditioned PC, CO{sub 2}, CH{sub 4}, and C{sub 2}H{sub 4} sorption in CO{sub 2}-conditioned polycarbonate, and desorption hysteresis in PC, TMPC, and HFPC. Carbon dioxide sorption in conditioned polystyrene (PS) and poly[phenylene oxide] (PPO) was modeled with the two adjustable parameters described above. Carbon dioxide sorption in blends of PS and PPO was modeled using a single adjustable parameter, H.

  14. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  15. Monte Carlo simulations of ABC stacked kagome lattice films.

    PubMed

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  16. Simulating the Wess-Zumino Supersymmetry Model in Optical Lattices

    SciTech Connect

    Yu Yue; Yang Kun

    2010-10-08

    We study a cold atom-molecule mixture in two-dimensional optical lattices. We show that, by fine-tuning the atomic and molecular interactions, the Wess-Zumino supersymmetry (SUSY) model in 2+1 dimensions emerges in the low-energy limit and can be simulated in such mixtures. At zero temperature, SUSY is not spontaneously broken, which implies identical relativistic dispersions of the atom and its superpartner, a bosonic diatom molecule. This defining signature of SUSY can be probed by single-particle spectroscopies. Thermal breaking of SUSY at a finite temperature is accompanied by a thermal Goldstone fermion, i.e., phonino excitation. This and other signatures of broken SUSY can also be probed experimentally.

  17. Computer simulation study of a simple tetrahedratic mesogenic lattice model

    NASA Astrophysics Data System (ADS)

    Romano, Silvano

    2008-02-01

    Over the last 12 years, the possible existence of a tetrahedratic mesophase, involving a third-rank orientational order parameter and no positional order, has been addressed theoretically and predicted in some cases; no experimental realizations of a purely tetrahedratic phase are known at the time being, but various pieces of evidence suggest that interactions of tetrahedral symmetry do play a significant role in the macroscopic properties of mesophases resulting from banana-shaped (bent-core) mesogens. We address a very simple tetrahedratic mesogenic lattice model, involving continuous interactions; we consider particles possessing Td symmetry, whose centers of mass are associated with a three-dimensional simple-cubic lattice; the pair potential is taken to be isotropic in orientation space and restricted to nearest-neighboring sites; we let the two orthonormal triads {uα,α=1,2,3} and {vγ,γ=1,2,3} define the orientations of a pair of interacting particles; we let the unit vectors uα be combined to yield four unit vectors {ej,j=1,2,3,4} , arranged in a tetrahedral fashion; we let the unit vectors vγ be similarly combined to yield the four unit vectors {fk,k=1,2,3,4} ; and finally we let hjk=(ejṡfk) . The interaction model studied here is defined by the simplest nontrivial (cubic) polynomial in the scalar products hjk , consistent with the assumed symmetry and favoring orientational order; it is, so to speak, the tetrahedratic counterpart of the Lebwohl-Lasher model for uniaxial nematics. The model was investigated by molecular field (MF) theory and Monte Carlo simulations; MF theory predicts a low-temperature, tetrahedrically ordered phase, undergoing a second-order transition to the isotropic phase at higher temperature; on the other hand, available theoretical treatments point to the transition being driven first order by thermal fluctuations. Simulations showed evidence of a first-order transition.

  18. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    SciTech Connect

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  19. Z_c(3900): confronting theory and lattice simulations

    NASA Astrophysics Data System (ADS)

    Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan

    2016-10-01

    We consider a recent T-matrix analysis by Albaladejo et al. (Phys Lett B 755:337, 2016), which accounts for the J/ψ π and D^*bar{D} coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z_c(3900)^± . Within such scheme, the data can be similarly well described in two different scenarios, where Z_c(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91:014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z_c(3900) state.

  20. Massively parallel simulations of multiphase flows using Lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Ahrenholz, Benjamin

    2010-03-01

    In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.

  1. Lattice Boltzmann simulations of multiple-droplet interaction dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G.; Degertekin, F. Levent; Rosen, David W.

    2014-03-01

    A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface

  2. Phase transitions and damage spreading in a nonequilibrium lattice gas model with mixed dynamic rules

    NASA Astrophysics Data System (ADS)

    Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Bab, Marisa A.

    2016-02-01

    Phase transitions and damage spreading for a lattice gas model with mixed driven lattice gas (DLG)-Glauber dynamics are studied by means of Monte Carlo simulations. In order to control the number of sites updated according to the nonconservative Glauber dynamics, a parameter pɛ [ 0 , 1 ] is defined. In this way, for p = 0 the system corresponds to the DLG model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to the Ising model with Glauber dynamics. The results obtained show that the introduction of nonconservative dynamics dramatically affects the behavior of the DLG model, leading to the existence of Ising-like phase transitions from fully occupied to disordered states. The short-time dynamics results suggest that this transition is second order for values of p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always spreads within the investigated temperature range and reaches a saturation value Dsat that depends on the system size, the temperature, and p. The value of Dsat in the thermodynamic limit is estimated by performing a finite-size analysis. For p < 0.6 the results show a change in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0) DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each case, a damage temperature TD(p) can be defined as the value where either Dsat reaches a maximum or it becomes nonzero. This temperature is, within error bars, similar to the reported values of the temperatures that characterize the mentioned phase transitions.

  3. Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Savara, Aditya; Hin, Celine

    Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.

  4. Numerical Simulation of Isothermal Micro Flows by Lattice Boltzmann Method and Theoretical Analysis of the Diffuse Scattering Boundary Condition

    NASA Astrophysics Data System (ADS)

    Niu, X. D.; Shu, C.; Chew, Y. T.

    A Lattice Boltzmann model for simulating micro flows has been proposed by us recently (Europhysics Letters, 67(4), 600-606 (2004)). In this paper, we will present a further theoretical and numerical validation of the model. In this regards, a theoretical analysis of the diffuse-scattering boundary condition for a simple flow is carried out and the result is consistent with the conventional slip velocity boundary condition. Numerical validation is highlighted by simulating the two-dimensional isothermal pressure-driven micro-channel flows and the thin-film gas bearing lubrication problems, and comparing the simulation results with available experimental data and analytical predictions.

  5. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels

    NASA Astrophysics Data System (ADS)

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  6. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.

    PubMed

    Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei

    2017-08-01

    Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.

  7. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems

    SciTech Connect

    Elton, A.B.H.

    1990-09-24

    A numerical theory for the massively parallel lattice gas and lattice Boltzmann methods for computing solutions to nonlinear advective-diffusive systems is introduced. The convergence theory is based on consistency and stability arguments that are supported by the discrete Chapman-Enskog expansion (for consistency) and conditions of monotonicity (in establishing stability). The theory is applied to four lattice methods: Two of the methods are for some two-dimensional nonlinear diffusion equations. One of the methods is for the one-dimensional lattice method for the one-dimensional viscous Burgers equation. And one of the methods is for a two-dimensional nonlinear advection-diffusion equation. Convergence is formally proven in the L{sub 1}-norm for the first three methods, revealing that they are second-order, conservative, conditionally monotone finite difference methods. Computational results which support the theory for lattice methods are presented. In addition, a domain decomposition strategy using mesh refinement techniques is presented for lattice gas and lattice Boltzmann methods. The strategy allows concentration of computational resources on regions of high activity. Computational evidence is reported for the strategy applied to the lattice gas method for the one-dimensional viscous Burgers equation. 72 refs., 19 figs., 28 tabs.

  8. Lattice gas cellular automation model for rippling and aggregation in myxobacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Jiang, Yi; Kiskowski, Maria A.

    2004-05-01

    A lattice gas cellular automation (LGCA) model is used to simulate rippling and aggregation in myxobacteria. An efficient way of representing cells of different cell size, shape and orientation is presented that may be easily extended to model later stages of fruiting body formation. This LGCA model is designed to investigate whether a refractory period, a minimum response time, a maximum oscillation period and non-linear dependence of reversals of cells on C-factor are necessary assumptions for rippling. It is shown that a refractory period of 2-3 min, a minimum response time of up to 1 min and no maximum oscillation period best reproduce rippling in the experiments of Myxococcus xanthus. Non-linear dependence of reversals on C-factor is critical at high cell density. Quantitative simulations demonstrate that the increase in wavelength of ripples when a culture is diluted with non-signaling cells can be explained entirely by the decreased density of C-signaling cells. This result further supports the hypothesis that levels of C-signaling quantitatively depend on and modulate cell density. Analysis of the interpenetrating high density waves shows the presence of a phase shift analogous to the phase shift of interpenetrating solitons. Finally, a model for swarming, aggregation and early fruiting body formation is presented.

  9. Laterally driven interfaces in the three-dimensional Ising lattice gas.

    PubMed

    Smith, Thomas H R; Vasilyev, Oleg; Maciołek, Anna; Schmidt, Matthias

    2010-08-01

    We study the steady state of a phase-separated driven Ising lattice gas in three dimensions using computer simulations with Kawasaki dynamics. An external force field F(z) acts in the x direction parallel to the interface, creating a lateral order parameter current j^{x}(z) which varies with distance z from the interface. Above the roughening temperature, our data for "shearlike" linear variation of F(z) are in agreement with the picture wherein shear acts as effective confinement in this system, thus suppressing the interfacial capillary-wave fluctuations. We find sharper magnetization profiles and reduced interfacial width as compared to equilibrium. Pair correlations are more suppressed in the vorticity direction y than in the driving direction; the opposite holds for the structure factor. Lateral transport of capillary waves occurs for those forms of F(z) for which the current j^{x}(z) is an odd function of z , for example the shearlike drive, and a "steplike" driving field. For a V-shaped driving force no such motion occurs, but capillary waves are suppressed more strongly than for the shearlike drive. These findings are in agreement with our previous simulation studies in two dimensions. Near and below the (equilibrium) roughening temperature the effective-confinement picture ceases to work, but the lateral motion of the interface persists.

  10. Lattice Boltzmann Simulations of Evaporating Droplets with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Mingfei; Yong, Xin

    2016-11-01

    Elucidating the nanoparticle dynamics in drying droplets provides fundamental hydrodynamic insight into the evaporation-induced self-assembly, which is of great importance to materials printing and thin film processing. We develop a free-energy-based multiphase lattice Boltzmann model coupled with Lagrangian particle tracking to simulate evaporating particle-laden droplets on a solid substrate with specified wetting behavior. This work focuses on the interplay between the evaporation-driven advection and the self-organization of nanoparticles inside the droplet and at the droplet surface. For static droplets, the different parameters, fluid-particle interaction strength and particle number, governing the nanoparticle-droplet dynamics are systematically investigated, such as particle radial and circumferential distribution. We clarify the effect of nanoparticle presence on the droplet surface tension and wetting behavior. For evaporating droplets, we observe how droplet evaporation modulates the self-assembly of nanoparticles when the droplet has different static contact angles and hysteresis windows. We also confirm that the number of nanoparticles at the liquid-vapor interface influences the evaporation flux at the liquid-vapor interface.

  11. A lattice-gas model for alkali-metal fullerides: body-centred-cubic structure

    NASA Astrophysics Data System (ADS)

    Szabó, György; Udvardi, László

    1998-05-01

    A Coulomb lattice-gas model with a host-lattice screening mechanism is adapted to describe the ordering phenomena in alkali-metal fullerides of body-centred-cubic structure. It is assumed that the electric charge of an alkali ion residing at a tetrahedral interstitial site is completely screened by its first-neighbour 0953-8984/10/19/009/img5 molecules. The electronic energy of the 0953-8984/10/19/009/img6 ion is also taken into consideration as a charged spherical shell. By means of these assumptions an effective (short-range) pair interaction between two alkali ions is obtained. The resultant lattice-gas model is analysed by using two- and six-sublattice mean-field approximations. The thermodynamic properties are summarized in phase diagrams for different shell radii.

  12. Retained Gas Sampler Calibration and Simulant Tests

    SciTech Connect

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  13. Implementation and Performance of a Binary Lattice Gas Algorithm on Parallel Processor Systems

    NASA Astrophysics Data System (ADS)

    Hayot, F.; Mandal, M.; Sadayappan, P.

    1989-02-01

    We study the performance of a lattice gas binary algorithm on a "real arithmetic" machine, a 32 processor INTEL iPSC hypercube. The implementation is based on so-called multi-spin coding techniques. From the measured performance we extrapolate to larger and more powerful parallel systems. Comparisons are made with "bit" machines, such as the parallel Connection Machine.

  14. Lattice gas dynamics: application to driven vortices in two dimensional superconductors.

    PubMed

    Gotcheva, Violeta; Wang, Albert T J; Teitel, S

    2004-06-18

    A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.

  15. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  16. Morphology of Gas Release in Physical Simulants

    SciTech Connect

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  17. On the transverse-traceless projection in lattice simulations of gravitational wave production

    SciTech Connect

    Figueroa, Daniel G.; García-Bellido, Juan

    2011-11-01

    It has recently been pointed out that the usual procedure employed in order to obtain the transverse-traceless (TT) part of metric perturbations in lattice simulations was inconsistent with the fact that those fields live in the lattice and not in the continuum. It was claimed that this could lead to a larger amplitude and a wrong shape for the gravitational wave (GW) spectra obtained in numerical simulations of (p)reheating. In order to address this issue, we have defined a consistent prescription in the lattice for extracting the TT part of the metric perturbations. We demonstrate explicitly that the GW spectra obtained with the old continuum-based TT projection only differ marginally in amplitude and shape with respect to the new lattice-based ones. We conclude that one can therefore trust the predictions appearing in the literature on the spectra of GW produced during (p)reheating and similar scenarios simulated on a lattice.

  18. Ising model simulation in directed lattices and networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.; Stauffer, D.

    2006-01-01

    On directed lattices, with half as many neighbours as in the usual undirected lattices, the Ising model does not seem to show a spontaneous magnetisation, at least for lower dimensions. Instead, the decay time for flipping of the magnetisation follows an Arrhenius law on the square and simple cubic lattice. On directed Barabási-Albert networks with two and seven neighbours selected by each added site, Metropolis and Glauber algorithms give similar results, while for Wolff cluster flipping the magnetisation decays exponentially with time.

  19. Population dynamics of intraguild predation in a lattice gas system.

    PubMed

    Wang, Yuanshi; Wu, Hong

    2015-01-01

    In the system of intraguild predation (IGP) we are concerned with, species that are in a predator-prey relationship, also compete for shared resources (space or food). While several models have been established to characterize IGP, mechanisms by which IG prey and IG predator can coexist in IGP systems with spatial competition, have not been shown. This paper considers an IGP model, which is derived from reactions on lattice and has a form similar to that of Lotka-Volterra equations. Dynamics of the model demonstrate properties of IGP and mechanisms by which the IGP leads to coexistence of species and occurrence of alternative states. Intermediate predation is shown to lead to persistence of the predator, while extremely big predation can lead to extinction of one/both species and extremely small predation can lead to extinction of the predator. Numerical computations confirm and extend our results. While empirical observations typically exhibit coexistence of IG predator and IG prey, theoretical analysis in this work demonstrates exact conditions under which this coexistence can occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A lattice-Boltzman model for noble gas diffusion

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Huber, C.; Renne, P. R.

    2010-12-01

    Thermochronometry by the 40Ar/39Ar, 4He/3He, and (U-Th)/He techniques provides insights into a array of planetary processes that span immense time and temperature regimes, from rapid and high temperature asteroid impact events to mountain uplift occurring over plate tectonic timescales at near surface temperatures. Thermal modeling has expanded from simple calculations for quantifying diffusion from a single spherical domain or log normal distributions of domains to include crystals having discrete domain distributions, fast diffusion pathways, diffusive anisotropy, complex crystal geometries, alpha damage, and alpha ejection. Despite these advances, our understanding of diffusion within crystals that have complex microstructural features (e.g., exsolution and diffusive sinks) or highly asymmetric concentration gradients remains fragmentary. Improved computational speeds now enable thermochronologists to quantitatively explore many such problems. We have developed a code based on the lattice-Boltzmann (LB) method to model diffusion from a variety of complex 2-D geometries having isotropic, temperature-independent anisotropic, and temperature-dependent anisotropic diffusivity. We utilize the LB diffusion code to examine the effects of non-zero concentration boundaries, fast diffusion pathways, diffusive sinks, exsolution lamellae, asymmetrical concentration distributions, and temperature gradients on calculated diffusion parameters, age data, and inferred thermal histories. Animations and geological examples illustrate the applicability of the code to natural settings.

  1. Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Park, J.; Li, X.

    The gas diffusion layer of a polymer electrolyte membrane (PEM) fuel cell is a porous medium generally made of carbon cloth or paper. The gas diffusion layer has been modeled conventionally as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. However, in fact, the permeability of such fibrous porous medium is strongly affected by the fiber orientation having non-isotropic permeability. In this work, the lattice Boltzmann (LB) method is applied to the multi-phase flow phenomenon in the inhomogeneous gas diffusion layer of a PEM fuel cell. The inhomogeneous porous structure of the carbon cloth and carbon paper has been modeled as void space and porous area using Stokes/Brinkman formulation and void space and impermeable fiber distributions obtained from various microscopic images. The permeability of the porous medium is calculated and compared to the experimental measurements in literature showing a good agreement. Simulation results for various fiber distributions indicate that the permeability of the medium is strongly influenced by the effect of fiber orientation. Present lattice Boltzmann flow models are applied to the multi-phase flow simulations by incorporating multi-component LB model with inter-particle interaction forces. The model successfully simulates the complicated unsteady behaviors of liquid droplet motion in the porous medium providing a useful tool to investigate the mechanism of liquid water accumulation/removal in a gas diffusion layer of a PEM fuel cell.

  2. Numerical simulation for the Gross-Pitaevskii equation based on the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Wang, Huimin

    2017-09-01

    A lattice Boltzmann model for the Gross-Pitaevskii equation is proposed in this paper. Some numerical tests for one- and two-dimensional Gross-Pitaevskii equation have been conducted. The waves of the Gross-Pitaevskii equation are simulated. Numerical results show that the lattice Boltzmann method is an effective method for the wave of the Gross-Pitaevskii equation.

  3. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  4. Emergent structure in a dipolar Bose gas in a one-dimensional lattice

    SciTech Connect

    Wilson, Ryan M.; Bohn, John L.

    2011-02-15

    We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as ''islands'' in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic {sup 52}Cr.

  5. Site-Resolved Quantum Simulation of Fermion Lattice Problems

    DTIC Science & Technology

    2011-04-01

    magnetism and superfluidity in square lattices. En route to this goal, we have constructed an ultra-high vacuum system, assembled laser cooling...in square lattices. En route to this goal, we have constructed an ultra-high vacuum system, assembled laser cooling systems, tested high-resolution...a dedicated vacuum architecture with sub-millimeter working distances; the use of ultraviolet light to image atom, instead of standard infrared

  6. A Semi-Implicit Lattice Method for Simulating Flow

    SciTech Connect

    Rector, David R.; Stewart, Mark L.

    2010-09-20

    We propose a new semi-implicit lattice numerical method for modeling fluid flow that depends only on local primitive variable information (density, pressure, velocity) and not on relaxed upstream distribution function values. This method has the potential for reducing parallel communication and permitting larger time steps compared to the lattice Boltzmann method. The lid-driven cavity is modeled to demonstrate the accuracy of the method.

  7. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    SciTech Connect

    Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  8. When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?

    NASA Astrophysics Data System (ADS)

    Shakeel, Asif; Love, Peter J.

    2013-09-01

    Quantum cellular automata (QCA) are models of quantum computation of particular interest from the point of view of quantum simulation. Quantum lattice gas automata (QLGA - equivalently partitioned quantum cellular automata) represent an interesting subclass of QCA. QLGA have been more deeply analyzed than QCA, whereas general QCA are likely to capture a wider range of quantum behavior. Discriminating between QLGA and QCA is therefore an important question. In spite of much prior work, classifying which QCA are QLGA has remained an open problem. In the present paper we establish necessary and sufficient conditions for unbounded, finite QCA (finitely many active cells in a quiescent background) to be QLGA. We define a local condition that classifies those QCA that are QLGA, and we show that there are QCA that are not QLGA. We use a number of tools from functional analysis of separable Hilbert spaces and representation theory of associative algebras that enable us to treat QCA on finite but unbounded configurations in full detail.

  9. Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model.

    PubMed

    Jung, Narina; Seo, Hae Won; Leo, Perry H; Kim, Jaeup; Kim, Pilwon; Yoo, Chun Sang

    2017-09-12

    A coarse-grained lattice gas model is developed to study pattern forming processes in drying drops containing surfactant. By performing Monte Carlo simulations of the model, the coupled dynamics of surfactant and liquid evaporation and the resulting oscillatory dynamics at the contact line are elucidated. We show that the coupled drop dynamics and the resulting final deposition patterns can be altered by adsorption kinetics. For slow adsorption rates, surfactant molecules recirculate along with colloidal particles and the area covered by the surfactant on the surface grows from the contact line as the initial concentration of the surfactant increases. This leads to coffee-ring patterns with wide rim areas upon drying or to multi-ring patterns depending on the surfactant concentration. For fast adsorption rates, a surfactant skin covers the entire surface area during the early phase of evaporation. This suppresses the coffee ring effect, and uniform patterns are obtained independent of surfactant concentration. The results suggest that the distribution of surfactant on the surface is critical in determining final deposition patterns and that understanding of the skin-forming process of the surfactant on the surface can help in manipulating the delicate pattern forming process of particles in evaporating drops.

  10. Quadrupole deformation of electron shells in the lattice dynamics of compressed rare-gas crystals

    NASA Astrophysics Data System (ADS)

    Troitskaya, E. P.; Chabanenko, Val. V.; Zhikharev, I. V.; Gorbenko, Ie. Ie.; Pilipenko, E. A.

    2012-06-01

    The lattice dynamics of rare-gas crystals has been constructed taking into account the deformation of electron shells of the atoms of the dipole and quadrupole types, depending on the displacement of the nuclei. The obtained equations of lattice vibrations have been investigated in the long-wavelength approximation. The role played by the three-body interaction and the deformation of the electron shells in the violation of the Cauchy relation has been discussed. The calculated Birch elastic moduli for Xe and deviations from the Cauchy relation are in good agreement with the available experimental data over a wide range of pressures.

  11. Evaluation of the unstructured lattice Boltzmann method in porous flow simulations

    NASA Astrophysics Data System (ADS)

    Misztal, Marek; Matin, Rastin; Hernandez, Anier; Mathiesen, Joachim

    2015-11-01

    Flows in porous media are among the most challenging to simulate using the computational fluid dynamics methods, primarily due to the complex boundaries, often characterized by a very broad distribution of pore sizes. The standard (regular grid based) lattice Boltzmann method with the multi-relaxation time (MRT) collision operator is often used to simulate such flows. However, due to the lack of coupling between the positions of the computational grid nodes and the solid boundaries, the properties of the simulated flow might unnaturally vary with the fluid's viscosity, depending on the parameters of the MRT operator. This is, for instance, the case with the otherwise popular, single-relaxation time Bhatnagar-Gross-Krook (BGK) collision operator. Our focus has been on the unstructured grid based, finite element variant of the LBM. By using such approach, we can place the computational grid nodes precisely at the solid boundary. Since there is no prior work on the accuracy of this method in simulating porous flows, we perform a thorough permeability study using both BGK and MRT operators at a wide range of viscosities. We benchmark these models on artificial samples with known solutions, and further, we demonstrate the findings of our studies in the porous networks of real rocks. Predicting Petrophysical Parameters: A Project Sponsored by HTF and Maersk Oil and Gas.

  12. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity

    PubMed Central

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-01

    Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. PMID:25627247

  13. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity

    DOE PAGES

    Chen, Li; Zhang, Lei; Kang, Qinjun; ...

    2015-01-28

    Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsicmore » permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.« less

  14. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity

    SciTech Connect

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-28

    Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

  15. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.

    PubMed

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S; Yao, Jun; Tao, Wenquan

    2015-01-28

    Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

  16. Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using lattice animals and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Eising, G.; Kooi, B. J.

    2012-06-01

    Growth and decay of clusters at temperatures below Tc have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal bonds were identified up to 25 spins for the triangular lattice and up to 29 spins for the square lattice. From these configurations, the critical cluster sizes for nucleation have been determined based on two (thermodynamic) definitions. From the Monte Carlo simulations, the critical cluster size is also obtained by studying the decay and growth of inserted, most compact clusters of different sizes. A good agreement is found between the results from the MC simulations and one of the definitions of critical size used for the lattice animals at temperatures T > ˜0.4 Tc for the square lattice and T > ˜0.2 Tc for the triangular lattice (for the range of external fields H considered). At low temperatures (T ≈ 0.2 Tc for the square lattice and T ≈ 0.1 Tc for the triangular lattice), magic numbers are found in the size distributions during the MC simulations. However, these numbers are not present in the critical cluster sizes based on the MC simulations, as they are present for the lattice animal data. In order to achieve these magic numbers in the critical cluster sizes based on the MC simulation, the temperature has to be reduced further to T ≈ 0.15 Tc for the square lattice. The observed evolution of magic numbers as a function of temperature is rationalized in the present work.

  17. Lattice Boltzmann Method for Liquid-Gas-Particle Systems with Compact Discretization

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Farokhirad, Samaneh

    2015-11-01

    We have developed a liquid-gas-particle (LGP) lattice Boltzmann method (LBM) that utilizes only the nearest neighbor lattice sites for the computation of intermolecular forcing terms. Previous LGP-LBM requires larger number of lattice sites to model the interaction of fluid interfaces with immersed solid particles. This makes the treatment of contact line on a particle cumbersome when the partially wetting particle interacts with liquid-gas interface. The new model is capable of suppressing spurious currents at equilibrium. Many existing multi-component solvers suffer from spurious currents and the inability to employ components with sufficiently large density differences due to stability issues. Due to their finite size and wetting properties, particles deform an interface locally, which can lead to capillary interactions that dramatically alter the behavior of the system, relative to the particle-free case. We will present the liquid-gas-particle algorithm and its validations, which include two-particles on a flat liquid-gas interface approaching each other due to capillary effects, and a particle-laden drop impact with various impaction velocities.

  18. Simulant Gas Test Technique Feasibility

    DTIC Science & Technology

    1990-05-01

    constant y shock pressure. The test time is evaluated conservatively from the difference in arrival times at the expansion nozzle between the incident...relation for a constant y. The value of y at the supply gas conditions is used in this expression and a rapidly convergent Newton-Raphson iteration method...dimensional flow property/Mach number relations with assumed constant y and from the gas mixture equation of state. In all of the calculations in the present

  19. Numerical Simulation of Capillary Channels Growth in Heterogeneous Porous Anode in Aluminum Electrolysis Cells by Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Diop, Mouhamadou; Wang, Moran

    2014-11-01

    This paper presents results obtained from three-dimensional numerical simulations of multiphase reactive flows in porous anode block in aluminum cells controlling a great extent of mass, heat and chemical balance in the anode-cathode region. A lattice Boltzmann method based on thermal reactive multiphase flows, is developed to simulate the spatial and temporal distribution of fluids, the effects of gas rate and capillary instabilities in the cryolite. A new model, which involves eighteen lattice particles for the first and second derivative, is proposed to achieve accurate simulations at high fluid density ratio. The effects of the dissolution of gas and the capillary number on the flow field induced by gas bubbles evolution are investigated. It is found that capillary channels in the limit of small Stefan, the radial transport of reactant out of the capillary channel decay exponentially with the height of penetration in the porous anode. Several examples are solved by the proposed method to demonstrate the accuracy and robustness of the method.

  20. Gas Flow Simulation in GCB Chambers Featuring Hot Gas Energy

    NASA Astrophysics Data System (ADS)

    Mori, Tadashi; Iwamoto, Katsuharu; Kawano, Hiromichi; Tanaka, Yasunori

    A hot gas simulation in self-blast type GCBs was performed and revised. As a result, it was foundto be important to consider the thermodynamic and transport properties of SF6-PTFE gas at high pressures and temperatures. Moreover, modelling arc diameters are also important in the chamber. They have become the main factors in determining the rise of puffer pressure in self-blast type GCBs, while they were not relevant in conventional puffer-type GCBs.

  1. Flow Simulation Around Cambered Airfoil by Using Conformal Mapping and Intermediate Domain in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Poozesh, Amin; Mirzaei, Masoud

    2017-01-01

    In this paper the developed interpolation lattice Boltzmann method is used for simulation of unsteady fluid flow. It combines the desirable features of the lattice Boltzmann and the Joukowski transformation methods. This approach has capability to simulate flow around curved boundary geometries such as airfoils in a body fitted grid system. Simulation of unsteady flow around a cambered airfoil in a non-uniform grid for the first time is considered to show the capability of this method for modeling of fluid flow around complex geometries and complicated long-term periodic flow phenomena. The developed solver is also coupled with a fast adaptive grid generator. In addition, the new approach retains all the advantages of the standard lattice Boltzmann method. The Strouhal number, the pressure, the drag and the lift coefficients obtained from the simulations agree well with classical computational fluid dynamics simulations. Numerical studies for various test cases illustrate the strength of this new approach.

  2. Non-equilibrium dynamics of atomic Fermi and Bose gas under lattice geometry transformation

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Chien, Chih-Chun

    2015-03-01

    The tunability of ultra-cold atom experiments has provide a new arena of exploring quantum effect in both bosonic and fermonic system in and out of equilibrium. According to recent experiments, a triangular lattice can be dynamically tuned into a square or kagome lattice by adjusting frequency and focus point of laser beams. We simulate the dynamical properties of single component fermions and weakly interacting bosons under various transformation processes, including different ramping time scales, different ramping functions, and more importantly into different types of lattice geometry. A non-equilibrium steady state, which is not thermalized, is found in single component fermion system under different particle densities in both small size system and in the thermodynamic limit. In contras, weakly interacting bosons do not exhibit observable steady state behavior. This opens new opportunities of research on dynamical multi-band effects.

  3. DTIC Information for AFOSR Task 2304CP Lattice-Gas Theory and Computation for Complex Fluid Dynamics

    DTIC Science & Technology

    1997-11-06

    by ANSI Std Z39-18 ifested sound waves, surprising fluid-like behavior given the model’s simplicity and severe spacetime discretization. The transport...the integer lattice-gas: (1) is exactly computed on a discrete spacetime lattice (all the additive con- served quantities, e.g. mass and momentum, are

  4. Lattice Boltzmann Simulation of Multiphase Transport in Nanostructured PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Stiles, Christopher D.

    As the fossil fuel crisis becomes more critical, it is imperative to develop renewable sources of power generation. Polymer electrolyte membrane (PEM) fuel cells are considered a viable option. However, the cost of the platinum catalyst has hindered their commercialization. PEM fuel cells with platinum loading of >0.4 mg cm2 are common. Efforts towards further reducing this loading are currently underway utilizing nanostructured electrodes. A consequence of increased platinum utilization per unit area and thinner nanostructured electrodes is flooding, which is detrimental to fuel cell performance. Flooding causes a two-fold impact on cell performance: a drop in cell voltage and a rise in parasitic pumping power to overcome the increased pressure drop, which together result in a significant reduction in system efficiency. Proper water management is therefore crucial for optimum performance of the fuel cell and also for enhancing membrane durability. The goal of this thesis is to simulate the multiphase fluid transport in the nanostructured PEMFC of H2O in air with realistic density ratios. In order to pursue this goal, the ability of the pseudopotential based multiphase lattice Boltzmann method to realistically model the coexistence of the gas and liquid phases of H2O at low temperatures is explored. This method is expanded to include a gas mixture of O2 and N 2 into the multiphase H2O systems. Beginning with the examination of the phase transition region described by the current implementation of the multiphase pseudopotential lattice Boltzmann model. Following this, a modified form of the pressure term with the use of a scalar multiplier kappa for the Peng-Robinson equation of state is thoroughly investigated. This method proves to be very effective at enabling numerically stable simulations at low temperatures with large density ratios. It is found that for decreasing values of kappa, this model leads to an increase in multiphase interface thickness and a

  5. Lattice-free models of cell invasion: discrete simulations and travelling waves.

    PubMed

    Plank, Michael J; Simpson, Matthew J

    2013-11-01

    Invasion waves of cells play an important role in development, disease, and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation, and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction-diffusion equation that is related to the Fisher-Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction-diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice-based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high-density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice-based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher-Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.

  6. Lattice-Boltzmann-Langevin simulations of binary mixtures.

    PubMed

    Thampi, Sumesh P; Pagonabarraga, Ignacio; Adhikari, R

    2011-10-01

    We report a hybrid numerical method for the solution of the Model H fluctuating hydrodynamic equations for binary mixtures. The momentum conservation equations with Landau-Lifshitz stresses are solved using the fluctuating lattice Boltzmann equation while the order parameter conservation equation with Langevin fluxes is solved using stochastic method of lines. Two methods, based on finite difference and finite volume, are proposed for spatial discretization of the order parameter equation. Special care is taken to ensure that the fluctuation-dissipation theorem is maintained at the lattice level in both cases. The methods are benchmarked by comparing static and dynamic correlations and excellent agreement is found between analytical and numerical results. The Galilean invariance of the model is tested and found to be satisfactory. Thermally induced capillary fluctuations of the interface are captured accurately, indicating that the model can be used to study nonlinear fluctuations.

  7. Driven optical lattices as strong-field simulators

    SciTech Connect

    Arlinghaus, Stephan; Holthaus, Martin

    2010-06-15

    We argue that ultracold atoms in strongly shaken optical lattices can be subjected to conditions similar to those experienced by electrons in laser-irradiated crystalline solids, but without introducing secondary polarization effects. As a consequence, one can induce nonperturbative multiphoton-like resonances due to the mutual penetration of ac-Stark-shifted Bloch bands. These phenomena can be detected with a combination of currently available laboratory techniques.

  8. Simulating Photons and Plasmons in a Three-dimensional Lattice

    SciTech Connect

    Pletzer, A.; Shvets, G.

    2002-09-03

    Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented.

  9. Simulation of waves of partial discharges in a chain of gas inclusions located in condensed dielectrics

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.; Karpov, D. I.

    2016-10-01

    A stochastic model of partial discharges inside gas inclusions in condensed dielectrics was developed. The possibility of a "relay-race" wave propagation mechanism of partial discharges in a linear chain of gas inclusions is shown. The lattice Boltzmann method is successfully implemented for three-dimensional computer simulations of flows of dielectric fluid with bubbles. Growth and elongation of bubbles in a liquid dielectric under the action of a strong electric field are simulated. The physical model of propagation of partial discharges along a chain of gas bubbles in a liquid is formulated.

  10. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry

    NASA Astrophysics Data System (ADS)

    Szucki, Michal; Suchy, J. S.; Lelito, J.; Malinowski, P.; Sobczyk, J.

    2017-06-01

    The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.

  11. Entropic lattice pseudo-potentials for multiphase flow simulations at high Weber and Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Prestininzi, P.; La Rocca, M.; Succi, S.

    2017-09-01

    We present an entropic version of the lattice Boltzmann pseudo-potential approach for the simulation of multiphase flows. The method is shown to correctly simulate the dynamics of impinging droplets on hydrophobic surfaces and head-on and grazing collisions between droplets, at Weber and Reynolds number regimes not accessible to previous pseudo-potential methods at comparable resolution.

  12. Finite-temperature phase transitions in lattice QCD with Langevin simulation

    SciTech Connect

    Fukugita, M.; Ukawa, A.

    1988-09-15

    This article presents the result of Langevin simulation studies of finite-temperature behavior of QCD for a various number of flavor species. Most of the simulations employ an 8/sup 3/ x 4 lattice. A full description is made of the data and the identification problem of a first-order phase transition. The systematic bias problem is also investigated.

  13. Green function simulation of Hamiltonian lattice models with stochastic reconfiguration

    NASA Astrophysics Data System (ADS)

    Beccaria, M.

    2000-03-01

    We apply a recently proposed Green function Monte Carlo procedure to the study of Hamiltonian lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging over a set of suitable weighted random walkers. By means of a procedure called stochastic reconfiguration the long standing problem of keeping fixed the walker population without a priori knowledge of the ground state is completely solved. In the U(1)_2 model, which we choose as our theoretical laboratory, we evaluate the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works using model-dependent guiding functions for the random walkers.

  14. Diffusion dominated evaporation in multicomponent lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Hessling, Dennis; Xie, Qingguang; Harting, Jens

    2017-02-01

    We present a diffusion dominated evaporation model using the popular pseudopotential multicomponent lattice Boltzmann method introduced by Shan and Chen. With an analytical computation of the diffusion coefficients, we demonstrate that Fick's law is obeyed. We then validate the applicability of our model by demonstrating the agreement of the time evolution of the interface position of an evaporating planar film to the analytical prediction. Furthermore, we study the evaporation of a freely floating droplet and confirm that the effect of Laplace pressure is significant for predicting the time evolution of small droplet radii.

  15. METC CFD simulations of hot gas filtration

    SciTech Connect

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  16. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  17. Large-scale Monte Carlo simulations for the depinning transition in Ising-type lattice models

    NASA Astrophysics Data System (ADS)

    Si, Lisha; Liao, Xiaoyun; Zhou, Nengji

    2016-12-01

    With the developed "extended Monte Carlo" (EMC) algorithm, we have studied the depinning transition in Ising-type lattice models by extensive numerical simulations, taking the random-field Ising model with a driving field and the driven bond-diluted Ising model as examples. In comparison with the usual Monte Carlo method, the EMC algorithm exhibits greater efficiency of the simulations. Based on the short-time dynamic scaling form, both the transition field and critical exponents of the depinning transition are determined accurately via the large-scale simulations with the lattice size up to L = 8912, significantly refining the results in earlier literature. In the strong-disorder regime, a new universality class of the Ising-type lattice model is unveiled with the exponents β = 0.304(5) , ν = 1.32(3) , z = 1.12(1) , and ζ = 0.90(1) , quite different from that of the quenched Edwards-Wilkinson equation.

  18. Numerical analysis of the lattice Boltzmann method for simulation of linear acoustic waves

    NASA Astrophysics Data System (ADS)

    Dhuri, Dattaraj B.; Hanasoge, Shravan M.; Perlekar, Prasad; Robertsson, Johan O. A.

    2017-04-01

    We analyze a linear lattice Boltzmann (LB) formulation for simulation of linear acoustic wave propagation in heterogeneous media. We employ the single-relaxation-time Bhatnagar-Gross-Krook as well as the general multirelaxation-time collision operators. By calculating the dispersion relation for various 2D lattices, we show that the D2Q5 lattice is the most suitable model for the linear acoustic problem. We also implement a grid-refinement algorithm for the LB scheme to simulate waves propagating in a heterogeneous medium with velocity contrasts. Our results show that the LB scheme performance is comparable to the classical second-order finite-difference schemes. Given its efficiency for parallel computation, the LB method can be a cost effective tool for the simulation of linear acoustic waves in complex geometries and multiphase media.

  19. Excitation dynamics in a lattice Bose gas within the time-dependent Gutzwiller mean-field approach

    SciTech Connect

    Krutitsky, Konstantin V.; Navez, Patrick

    2011-09-15

    The dynamics of the collective excitations of a lattice Bose gas at zero temperature is systematically investigated using the time-dependent Gutzwiller mean-field approach. The excitation modes are determined within the framework of the linear-response theory as solutions of the generalized Bogoliubov-de Gennes equations valid in the superfluid and Mott-insulator phases at arbitrary values of parameters. The expression for the sound velocity derived in this approach coincides with the hydrodynamic relation. We calculate the transition amplitudes for the excitations in the Bragg scattering process and show that the higher excitation modes make significant contributions. We simulate the dynamics of the density perturbations and show that their propagation velocity in the limit of week perturbation is satisfactorily described by the predictions of the linear-response analysis.

  20. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  1. Simulating Dirac fermions with Abelian and non-Abelian gauge fields in optical lattices

    SciTech Connect

    Alba, E.; Fernandez-Gonzalvo, X.; Mur-Petit, J.; Garcia-Ripoll, J.J.; Pachos, J.K.

    2013-01-15

    In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice pattern. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams to induce complex non-Abelian potentials. We finally suggest several experiments to observe the properties of the quantum field theory in the setup. - Highlights: Black-Right-Pointing-Pointer This work provides a very flexible setup for simulating Dirac fermions. Black-Right-Pointing-Pointer The manuscript contains a detailed study of optical lattice deformations. Black-Right-Pointing-Pointer The link between lattice deformations and effective gauge Hamiltonians is studied.

  2. Two-Flavor Lattice-QCD Simulation in the γ Regime with Exact Chiral Symmetry

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Aoki, S.; Chiu, T. W.; Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Noaki, J.; Ogawa, K.; Okamoto, M.; Onogi, T.; Yamada, N.

    2007-04-01

    We perform lattice simulations of two-flavor QCD using Neuberger’s overlap fermion, with which the exact chiral symmetry is realized at finite lattice spacings. The γ regime is reached by decreasing the light quark mass down to 3 MeV on a 163×32 lattice with a lattice spacing ˜0.11fm. We find a good agreement of the low-lying Dirac eigenvalue spectrum with the analytical predictions of the chiral random matrix theory, which reduces to the chiral perturbation theory in the γ regime. The chiral condensate is extracted as ΣMS¯(2GeV)=(251±7±11MeV)3, where the errors are statistical and an estimate of the higher order effects in the γ expansion.

  3. Lattice Boltzmann simulations of convection heat transfer in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2017-01-01

    A non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed to study convection heat transfer in porous media at the representative elementary volume scale based on the generalized non-Darcy model. In the method, two different LB models are constructed: one is constructed in the framework of the double-distribution-function approach, and the other is constructed in the framework of the hybrid approach. In particular, the transformation matrices used in the MRT-LB models are non-orthogonal matrices. The present method is applied to study mixed convection flow in a porous channel and natural convection flow in a porous cavity. It is found that the numerical results are in good agreement with the analytical solutions and/or other results reported in previous studies. Furthermore, the non-orthogonal MRT-LB method shows better numerical stability in comparison with the BGK-LB method.

  4. Tonks-Girardeau gas of ultracold atoms in an optical lattice.

    PubMed

    Paredes, Belén; Widera, Artur; Murg, Valentin; Mandel, Olaf; Fölling, Simon; Cirac, Ignacio; Shlyapnikov, Gora V; Hänsch, Theodor W; Bloch, Immanuel

    2004-05-20

    Strongly correlated quantum systems are among the most intriguing and fundamental systems in physics. One such example is the Tonks-Girardeau gas, proposed about 40 years ago, but until now lacking experimental realization; in such a gas, the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. In order to minimize their mutual repulsion, the bosons are prevented from occupying the same position in space. This mimics the Pauli exclusion principle for fermions, causing the bosonic particles to exhibit fermionic properties. However, such bosons do not exhibit completely ideal fermionic (or bosonic) quantum behaviour; for example, this is reflected in their characteristic momentum distribution. Here we report the preparation of a Tonks-Girardeau gas of ultracold rubidium atoms held in a two-dimensional optical lattice formed by two orthogonal standing waves. The addition of a third, shallower lattice potential along the long axis of the quantum gases allows us to enter the Tonks-Girardeau regime by increasing the atoms' effective mass and thereby enhancing the role of interactions. We make a theoretical prediction of the momentum distribution based on an approach in which trapped bosons acquire fermionic properties, finding that it agrees closely with the measured distribution.

  5. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices: comment.

    PubMed

    Lo, C F

    2014-01-27

    Recently Rodriguez-Lara et al. [Opt. Express 21(10), 12888 (2013)] proposed a classical simulation of the dynamics of the nonlinear Rabi model by propagating classical light fields in a set of two photonic lattices. However, the nonlinear Rabi model has already been rigorously proven to be undefined by Lo [Quantum Semiclass. Opt. 10, L57 (1998)]. Hence, the proposed classical simulation is actually not applicable to the nonlinear Rabi model and the simulation results are completely invalid.

  6. Micromagnetic simulations of interacting dipoles on an fcc lattice: application to nanoparticle assemblies.

    PubMed

    Plumer, M L; van Lierop, J; Southern, B W; Whitehead, J P

    2010-07-28

    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in an fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations is investigated.

  7. Effects of Atomistic Domain Size on Hybrid Lattice Boltzmann-Molecular Dynamics Simulations of Dense Fluids

    NASA Astrophysics Data System (ADS)

    Dupuis, A.; Koumoutsakos, P.

    We present a convergence study for a hybrid Lattice Boltzmann-Molecular Dynamics model for the simulation of dense liquids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The velocity field from the atomistic domain is introduced as forcing terms to the Lattice Boltzmann model of the continuum while the mean field of the continuum imposes mean field conditions for the atomistic domain. In the present paper we investigate the effect of varying the size of the atomistic subdomain in simulations of two dimensional flows of liquid argon past carbon nanotubes and assess the efficiency of the method.

  8. Scalings in diffusion-driven reaction A+B→C: Numerical simulations by lattice BGK models

    NASA Astrophysics Data System (ADS)

    Qian, Y. H.; Orszag, S. A.

    1995-10-01

    We are interested in applying lattice BGK models to the diffusion-driven reactive system A+B→C, which was investigated by Gálfi and Rácz with an asymptotic analysis and by Chopard and Droz with a cellular automaton model. The lattice BGK model is free from noise and flexible for various applications. We derive the general reaction-diffusion equations for the lattice BGK models under the assumption of local diffusive equilibrium. Two fourth-order terms are derived and verified by numerical simulations. The motivation of this study is to compare the lattice BGK results with existing results before we apply the models to more complicated systems. The scalings concern two exponents α and β appearing in the production rate of C component R(x, t)˜t -β G(xt -α ). We find the same values for α=1/6 and β=2/3 as Gálfi and Rácz found at the long time limit. A Gaussian-like function for G is numerically obtained, which confirms a similar result of Gálfi and Rácz. On the one hand, when compared with the asymptotic analysis, lattice BGK models are easy to apply to cases where no analytic or asymptotic results exist; on the other hand, when compared with cellular automaton models, lattice BGK models are faster, simpler, and more accurate. The discrepancy of the results between the cellular automaton model and the lattice BGK models for the exponents comes from the role of the intrinsic fluctuation. Once the time and space correlation of stochastic stirring is given, we can incorporate a random fluctuating term in lattice BGK models. The Schlögl model is also tested, showing the ability of lattice BGK models for generating Turing patterns, which may stimulate further interesting investigations.

  9. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-06-01

    We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.

  10. Numerical simulation of polariton Bose gas thermalization

    NASA Astrophysics Data System (ADS)

    Kartsev, P. F.; Kuznetsov, I. O.

    2016-08-01

    In this work, we present the numerical simulation of the process a Bose gas thermalization and the formation of the condensate. Our approach is based on kinetic equations and “Fermi's golden rule” in the incoherent approximation. Direct summation of terms is performed using GPGPU OpenCL parallel code using AMD Radeon HD 7970.

  11. Lattice-Boltzmann simulation of multi-phase phenomena related to fuel cells

    NASA Astrophysics Data System (ADS)

    Akhgar, A.; Khalili, B.; Moa, B.; Rahnama, M.; Djilali, N.

    2017-07-01

    Fuel cells are devices that allow conversion of the chemical potential of a fuel and oxidant to produce electricity. A key component of a fuel cell is the catalyst layer, which facilitates the electrochemical reaction and where transport of reactants, charge, and byproduct heat and water take place. The structure and morphology of the catalyst layer determine its effectiveness and, in turn, strongly impact the overall performance and cost of a fuel cell. This paper discusses two central issue related to catalyst layers involving two-phase flow: liquid water transport in the catalyst layer during fuel cell operation, and fabrication of the catalyst layer from colloidal inks where a process of particle agglomeration takes place and eventually determines the final catalyst layer structure. Insight into these two issues are obtained using lattice-Botzmann based multi-phase simulations with formulations tailored to deal with features including high density ratio gas-liquid flow in complex porous media, and particle-particle and particle-hydrodynamic interactions.

  12. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-05-01

    Injection of anthropogenic carbon dioxide (CO2) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (Snw) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in Snw. In either pore networks, the specific interfacial length is linearly proportional to Snw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on Snw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  13. Fluctuations in an ordered c (2×2) two-dimensional lattice-gas system with repulsive interactions

    NASA Astrophysics Data System (ADS)

    Argyrakis, P.; Chumak, A. A.; Maragakis, M.

    2005-06-01

    Fluctuations of the particle density in an ordered c(2×2) two-dimensional lattice-gas system are studied both analytically and by means of Monte Carlo simulations. The ordering is caused by a strong interparticle repulsive interaction resulting in the second order phase transition. The lattice of adsorption sites is divided into two sublattices (almost filled and almost empty sublattices) each of which contains a small number of structural “defects,” i.e., vacancies and excess particles. The relaxation of the correlation function of fluctuations turns out to be governed by two different functions. This peculiarity is to be contrasted with the traditional fluctuation theory which predicts the existence of a single damping constant, determined by the collective diffusion coefficient. A specific thesis of the proposed approach is that transport phenomena in ordered systems may be described in terms of both displacements and generation-recombination of structural defects. Accordingly, the correlation function of fluctuations depends on diffusion coefficients of two defect species as well as on the generation-recombination frequency. Our theory reduces to the usual one when fluctuations occur under local equilibrium conditions, i.e., for a sufficiently large size of probe areas and not too great values of interaction parameter. The analytical results agree well with those obtained in the Monte Carlo framework.

  14. Numerical simulation of synthesis gas incineration

    NASA Astrophysics Data System (ADS)

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.

    2016-04-01

    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  15. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  16. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.

    PubMed

    Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I

    2008-12-19

    We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition.

  17. Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: a quantitative analysis.

    PubMed

    Márkus, Attila; Házi, Gábor

    2011-04-01

    An extension of the pseudopotential lattice Boltzmann method is introduced to simulate heat transfer problems involving phase transition. Using this model, evaporation through a plane interface and two-phase Poiseuille flow were simulated and the macroscopic jump conditions were utilized to evaluate the accuracy of the method. We have found that the simulation results are in very good agreement with the analytical solutions as far as we take into account the extent of the interface during the evaluation. Using the same model heterogeneous boiling was simulated taking into account the geometry of a cavity and the important features of the boiling process could be observed in the simulation results.

  18. Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms

    SciTech Connect

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2008-02-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 14x improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  19. Three-dimensional, off-lattice Monte-Carlo kinetics simulations of interstellar grain chemistry and ice structure

    SciTech Connect

    Garrod, Robin T.

    2013-12-01

    The first off-lattice Monte Carlo kinetics model of interstellar dust grain surface chemistry is presented. The positions of all surface particles are determined explicitly, according to the local potential minima resulting from the pair-wise interactions of contiguous atoms and molecules, rather than by a pre-defined lattice structure. The model is capable of simulating chemical kinetics on any arbitrary dust grain morphology, as determined by the user-defined positions of each individual dust grain atom. A simple method is devised for the determination of the most likely diffusion pathways and their associated energy barriers for surface species. The model is applied to a small, idealized dust grain, adopting various gas densities and using a small chemical network. Hydrogen and oxygen atoms accrete onto the grain to produce H{sub 2}O, H{sub 2}, O{sub 2}, and H{sub 2}O{sub 2}. The off-lattice method allows the ice structure to evolve freely; the ice mantle porosity is found to be dependent on the gas density, which controls the accretion rate. A gas density of 2 × 10{sup 4} cm{sup –3}, appropriate for dark interstellar clouds, is found to produce a fairly smooth and non-porous ice mantle. At all densities, H{sub 2} molecules formed on the grains collect within the crevices that divide nodules of ice and within micropores (whose extreme inward curvature produces strong local potential minima). The larger pores produced in the high-density models are not typically filled with H{sub 2}. Direct deposition of water molecules onto the grain indicates that amorphous ices formed in this way may be significantly more porous than interstellar ices that are formed by surface chemistry.

  20. Itinerant-localized dual character of a strongly correlated superfluid Bose gas in an optical lattice

    SciTech Connect

    Ohashi, Y.; Kitaura, M.; Matsumoto, H.

    2006-03-15

    We investigate a strongly correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdoes to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott insulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give useful information about the duality of a strongly correlated superfluid Bose gas near the superfluid-insulator transition.

  1. 2D Lattice Boltzmann Simulation Of Chemical Reactions Within Rayleigh-Bénard And Poiseuille-Bénard Convection Systems

    NASA Astrophysics Data System (ADS)

    Amaya-Ventura, Gilberto; Rodríguez-Romo, Suemi

    2011-09-01

    This paper deals with the computational simulation of the reaction-diffusion-advection phenomena emerging in Rayleigh-Bénard (RB) and Poiseuille-Bénard reactive convection systems. We use the Boussinesq's approximation for buoyancy forces and the Lattice Boltzmann method (LBM). The first kinetic mesoscopic model proposed here is based on the discrete Boltzmann equation needed to solve the momentum balance coupled with buoyancy forces. Then, a second lattice Boltzmann algorithm is applied to solve the reaction-diffusion-advection equation to calculate the evolution of the chemical species concentration. We use a reactive system composed by nitrous oxide (so call laughing gas) in air as an example; its spatio-temporal decomposition is calculated. Two cases are considered, a rectangular enclosed cavity and an open channel. The simulations are performed at low Reynolds numbers and in a steady state between the first and second thermo-hydrodynamic instabilities. The results presented here, for the thermo-hydrodynamic behavior, are in good agreement with experimental data; while our| chemical kinetics simulation yields expected results. Some applications of our approach are related to chemical reactors and atmospheric phenomena, among others.

  2. Libraries and Development Environments for Monte Carlo Simulations of Lattice Gauge Theories on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Decker, K. M.; Jayewardena, C.; Rehmann, R.

    We describe the library lgtlib, and lgttool, the corresponding development environment for Monte Carlo simulations of lattice gauge theory on multiprocessor vector computers with shared memory. We explain why distributed memory parallel processor (DMPP) architectures are particularly appealing for compute-intensive scientific applications, and introduce the design of a general application and program development environment system for scientific applications on DMPP architectures.

  3. Simulating (2+1)-dimensional lattice QED with dynamical matter using ultracold atoms.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2013-02-01

    We suggest a method to simulate compact quantum electrodynamics using ultracold atoms in optical lattices, which includes dynamical Dirac fermions in 2+1 dimensions. This allows us to test the dynamical effects of confinement as well as the deformations and breaking of two-dimensional flux loops, and to observe the Wilson-loop area law.

  4. Simulation of subsea gas hydrate exploitation

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  5. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms

    NASA Astrophysics Data System (ADS)

    González-Cuadra, Daniel; Zohar, Erez; Cirac, J. Ignacio

    2017-06-01

    We present a quantum simulation scheme for the Abelian-Higgs lattice gauge theory using ultracold bosonic atoms in optical lattices. The model contains both gauge and Higgs scalar fields, and exhibits interesting phases related to confinement and the Higgs mechanism. The model can be simulated by an atomic Hamiltonian, by first mapping the local gauge symmetry to an internal symmetry of the atomic system, the conservation of hyperfine angular momentum in atomic collisions. By including auxiliary bosons in the simulation, we show how the Abelian-Higgs Hamiltonian emerges effectively. We analyze the accuracy of our method in terms of different experimental parameters, as well as the effect of the finite number of bosons on the quantum simulator. Finally, we propose possible experiments for studying the ground state of the system in different regimes of the theory, and measuring interesting high energy physics phenomena in real time.

  6. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  7. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  8. Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices

    SciTech Connect

    Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tuennermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander

    2010-10-01

    We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.

  9. Polarization simulations in the RHIC run 15 lattice

    SciTech Connect

    Meot, F.; Huang, H.; Luo, Y.; Ranjbar, V.; Robert-Demolaize, G.; White, S.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  10. Time-Dependent Fluctuations and Superdiffusivity in the Driven Lattice Lorentz Gas

    NASA Astrophysics Data System (ADS)

    Leitmann, Sebastian; Franosch, Thomas

    2017-01-01

    We consider a tracer particle on a lattice in the presence of immobile obstacles. Starting from equilibrium, a force pulling on the particle is switched on, driving the system to a new stationary state. We solve for the complete transient dynamics of the fluctuations of the tracer position along the direction of the force. The analytic result, exact in first order of the obstacle density and for arbitrarily strong driving, is compared to stochastic simulations. Upon strong driving, the fluctuations grow superdiffusively for intermediate times; however, they always become diffusive in the stationary state. The diffusion constant is nonanalytic for small driving and is enhanced by orders of magnitude by increasing the force.

  11. Field-wide flow simulation in fractured porous media within lattice Boltzmann framework

    NASA Astrophysics Data System (ADS)

    Benamram, Z.; Tarakanov, A.; Nasrabadi, H.; Gildin, E.

    2016-10-01

    In this paper, a generalized lattice Boltzmann model for simulating fluid flow in porous media at the representative volume element scale is extended towards applications of hydraulically and naturally fractured reservoirs. The key element within the model is the development of boundary conditions for a vertical well and horizontal fracture with minimal node usage. In addition, the governing non-dimensional equations are derived and a new set of dimensionless numbers are presented for the simulation of a fractured reservoir system. Homogenous and heterogeneous vertical well and fracture systems are simulated and verified against commercial reservoir simulation suites. Results are in excellent agreement to analytical and finite difference solutions.

  12. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    NASA Astrophysics Data System (ADS)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  13. Simulating and detecting the quantum spin Hall effect in the kagome optical lattice

    SciTech Connect

    Liu Guocai; Jiang Shaojian; Sun Fadi; Liu, W. M.; Zhu Shiliang

    2010-11-15

    We propose a model which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian in the kagome lattice and promises to host the transition from the quantum spin Hall insulator to the normal insulator. In addition, we design an experimental scheme to simulate and detect this transition in the ultracold atom system. The lattice intrinsic spin-orbit coupling is generated via the laser-induced-gauge-field method. Furthermore, we establish the connection between the spin Chern number and the spin-atomic density which enables us to detect the quantum spin Hall insulator directly by the standard density-profile technique used in atomic systems.

  14. Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Xiu-Ying; Liu, Da-He; Zhou, Jing; Jin, Yong-Juan

    2005-11-01

    The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in a wide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation are presented in detail. The flow separation zones revealed with increase of Reynolds number are located in the areas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particular blood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmann method is adaptive to simulating the flow in larger vessels under a high Reynolds number.

  15. Simulations of gas clouds in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Thomasson, Magnus

    1990-01-01

    A companion can induce a variety of morphological changes in a galaxy. The author uses N-body simulations to study the effects of different kinds of perturbations on the dynamics of a disk galaxy. The model is two-dimensional, with a disk consisting of about 60,000 particles. Most of the particles (80%) represent the old stellar population with a high velocity dispersion, while the rest (20%) represent gas clouds with a low velocity dispersion. Initially, the velocity dispersion corresponds to Q = 1 for the star particles, and Q = O for the gas particles, where Q is Toomre's (1964) stability parameter. The gas clouds can collide inelastically. The disk is stabilized by a rigid halo potential, and by the random motions of the old star particles. To simulate the effect of an encounter on the disk, a companion galaxy, modelled as a point mass, can move in a co-planar orbit around the disk. A complete description of the N-body code is found in Thomasson (1989). The spiral structures caused by a companion in first a direct and then a retrograde (with respect to the rotation of the disk) parabolic orbit are presented. The associated velocity fields suggest a way to observationally distinguish between leading and trailing spiral arms. The stability of the gas component in a disk in which tidally triggered infall of gas to the center occurs is studied. Finally, the author shows how a ring of gas can form in a disk as a result of a co-planar encounter with another galaxy.

  16. Langevin simulation of the full QCD hadron mass spectrum on a lattice

    SciTech Connect

    Fukugita, M.; Oyanagi, Y.; Ukawa, A.

    1987-08-01

    Langevin simulation of quantum chromodynamics (QCD) on a lattice is carried out fully taking into account the effect of the quark vacuum polarization. It is shown that the Langevin method works well for full QCD and that simulation on a large lattice is practically feasible. A careful study is made of systematic errors arising from a finite Langevin time-step size. The magnitude of the error is found to be significant for light quarks, but the well-controlled extrapolation allows a separation of the values at the vanishing time-step size. As another important ingredient for the feasibility of Langevin simulation the advantage of the matrix inversion algorithm of the preconditioned conjugate residual method is described, as compared with various other algorithms. The results of a hadron-mass-spectrum calculation on a 9/sup 3/ x 18 lattice at ..beta.. = 5.5 with the Wilson quark action having two flavors are presented. It is shown that the contribution of vacuum quark loops significantly modifies the hadron masses in lattice units, but that the dominant part can be absorbed into a shift of the gauge coupling constant at least for the ground-state hadrons. Some suggestion is also presented for the physical effect of vacuum quark loops for excited hadrons.

  17. Developing extensible lattice-Boltzmann simulators for general-purpose graphics-processing units

    SciTech Connect

    Walsh, S C; Saar, M O

    2011-12-21

    Lattice-Boltzmann methods are versatile numerical modeling techniques capable of reproducing a wide variety of fluid-mechanical behavior. These methods are well suited to parallel implementation, particularly on the single-instruction multiple data (SIMD) parallel processing environments found in computer graphics processing units (GPUs). Although more recent programming tools dramatically improve the ease with which GPU programs can be written, the programming environment still lacks the flexibility available to more traditional CPU programs. In particular, it may be difficult to develop modular and extensible programs that require variable on-device functionality with current GPU architectures. This paper describes a process of automatic code generation that overcomes these difficulties for lattice-Boltzmann simulations. It details the development of GPU-based modules for an extensible lattice-Boltzmann simulation package - LBHydra. The performance of the automatically generated code is compared to equivalent purpose written codes for both single-phase, multiple-phase, and multiple-component flows. The flexibility of the new method is demonstrated by simulating a rising, dissolving droplet in a porous medium with user generated lattice-Boltzmann models and subroutines.

  18. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  19. Wang-Landau Simulations of Adsorbed and Confined Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Pattanasiri, Busara; Li, Ying Wai; Landau, David P.; Wüst, Thomas

    2012-08-01

    The hydrophobic-polar (HP) model has emerged as one of the standard approaches for simulating protein folding. In this work, we used this model together with Wang-Landau (WL) sampling and appropriate Monte Carlo trial moves to determine the density of states and thermodynamics for two cases: Protein adsorption and protein confinement, in the vicinity of attractive surfaces. The influence on the adsorption behavior of surface attractive strength in the adsorption case and volumetric spaces in the confinement case will be discussed.

  20. Measuring nanopore size from the spin-lattice relaxation of CF4 gas

    PubMed Central

    Kuethe, Dean O.; Montaño, Rebecca; Pietraß, Tanja

    2007-01-01

    The NMR 19F spin-lattice relaxation time constant T1 for CF4 gas is dominated by spin–rotation interaction, which is mediated by the molecular collision frequency. When confined to pores of approximately the same size or smaller than the bulk gas mean free path, additional collisions of molecules with the pore walls should substantially change T1. To develop a method for measuring the surface/volume ratio S/V by measuring how T1 changes with confinement, we prepared samples of known S/V from fumed silica of known mass-specific surface area and compressed to varying degrees into cylinders of known volume. We then measured T1 for CF4 in these samples at varying pressures, and developed mathematical models for the change in T1 to fit the data. Even though CF4 has a critical temperature below room temperature, we found that its density in pores was greater than that of the bulk gas and that it was necessary to take this absorption into account. We modeled adsorption in two ways, by assuming that the gas condenses on the pore walls, and by assuming that gas in a region near the wall is denser than the bulk gas because of a simplified attractive potential. Both models suggested the same two-parameter formula, to which we added a third parameter to successfully fit the data and thus achieved a rapid, precise way to measure S/V from the increase in T1 due to confinement in pores. PMID:17400493

  1. Lattice gauge theory simulations in the quantum information era

    NASA Astrophysics Data System (ADS)

    Dalmonte, M.; Montangero, S.

    2016-07-01

    The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behaviour of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analysing the symmetric properties of Hamiltonian and states: the most striking examples are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realisation of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review, we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.

  2. Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method.

    PubMed

    Yu, H; Zhao, K

    2001-11-01

    In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc., can be expected.

  3. 3D Flow Simulation Using Lattice Boltzmann Method on Real Carbonate Core-Plug Samples

    NASA Astrophysics Data System (ADS)

    Islam, A.; Faisal, T. F.; Chevalier, S.; Jouini, M. S.; Jouiad, M.; Sassi, M.

    2014-12-01

    Digital Rock Physics (DRP) is a novel technology that could be used to generate accurate, fast and cost effective special core analysis (SCAL) properties to support reservoir characterization and simulation tools. This work focuses on running numerical simulations using the Lattice Boltzmann algorithm on reconstructed volume from microCT images of carbonate core-plug samples at different resolutions. The porous media was first reconstructed from the retrieved image slices. Then the open-source software, Palabos was used to run the Lattice Boltzmann algorithm to simulate single phase flow in the medium and determine the permeability. The results were analyzed according to the resolutions of the original microCT images and the scale of the micro-plug.

  4. Comparison of lattice-Boltzmann and brownian-dynamics simulations of polymer migration in confined flows.

    PubMed

    Kekre, Rahul; Butler, Jason E; Ladd, Anthony J C

    2010-07-01

    This paper compares results from lattice-Boltzmann and brownian-dynamics simulations of polymer migration in confined flows bounded by planar walls. We have considered both a uniform shear rate and a constant pressure gradient. Lattice-Boltzmann simulations of the center-of-mass distribution agree quantitatively with brownian-dynamics results, contradicting previously published results. The mean end-to-end distance of the extended polymer is more sensitive to grid resolution Δx and time-step Δt. Nevertheless, for sufficiently small Δx and Δt, convergent results for the polymer stretch are obtained which agree with brownian dynamics within statistical uncertainties. The brownian-dynamics simulations incorporate a mobility matrix for a confined polymer that is both symmetric and positive definite for all physically accessible configurations.

  5. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Duvail, Magali; Jardat, Marie; Coelho, Daniel; Békri, Samir; Rotenberg, Benjamin

    2013-07-01

    We report the calculation of all the transfer coefficients which couple the solvent and ionic fluxes through a charged pore under the effect of pressure, electrostatic potential, and concentration gradients. We use a combination of analytical calculations at the Poisson-Nernst-Planck and Navier-Stokes levels of description and mesoscopic lattice simulations based on kinetic theory. In the absence of added salt, i.e., when the only ions present in the fluid are the counterions compensating the charge of the surface, exact analytical expressions for the fluxes in cylindrical pores allow us to validate a new lattice-Boltzmann electrokinetics (LBE) scheme which accounts for the osmotic contribution to the transport of all species. The influence of simulation parameters on the numerical accuracy is thoroughly investigated. In the presence of an added salt, we assess the range of validity of approximate expressions of the fluxes computed from the linearized Poisson-Boltzmann equation by a systematic comparison with LBE simulations.

  6. Martian environmental simulation for a deployable lattice mast

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.

    1994-01-01

    The Mars Pathfinder mission (formerly Mars Environmental Survey or MESUR) is scheduled for launch in December 1996 and is designed to place a small lander on the surface of Mars. After impact, the lander unfolds to expose its solar panels and release a miniature rover. Also on board is the Imager for Mars Pathfinder (IMP) binocular camera which is elevated by a deployable mast to obtain a panoramic view of the landing area. The design of this deployable mast is based on similar designs which have a long and successful flight history. In the past when this type of self-deployable mast has been used, a rate limiter has been incorporated to control the speed of deployment. In this application, to reduce weight and complexity, it was proposed to eliminate the rate limiter so that the mast would deploy without restraint. Preliminary tests showed that this type of deployment was possible especially if the deployed length was relatively short, as in this application. Compounding the problem, however, was the requirement to deploy the mast at an angle of up to 30 degrees from vertical. The deployment process was difficult to completely analyze due to the effects of gravitational and inertial loads on the mast and camera during rapid extension. Testing in a realistic manner was imperative to verify the system performance. A deployment test was therefore performed to determine the maximum tilt angle at which the mast could reliably extend and support the camera on Mars. The testing of the deployable mast requires partial gravity compensation to simulate the smaller force of Martian gravity. During the test, mass properties were maintained while weight properties were reduced. This paper describes the testing of a deployable mast in a simulated Martian environment as well as the results of the tests.

  7. Martian environmental simulation for a deployable lattice mast

    NASA Astrophysics Data System (ADS)

    Warden, Robert M.

    1994-11-01

    The Mars Pathfinder mission (formerly Mars Environmental Survey or MESUR) is scheduled for launch in December 1996 and is designed to place a small lander on the surface of Mars. After impact, the lander unfolds to expose its solar panels and release a miniature rover. Also on board is the Imager for Mars Pathfinder (IMP) binocular camera which is elevated by a deployable mast to obtain a panoramic view of the landing area. The design of this deployable mast is based on similar designs which have a long and successful flight history. In the past when this type of self-deployable mast has been used, a rate limiter has been incorporated to control the speed of deployment. In this application, to reduce weight and complexity, it was proposed to eliminate the rate limiter so that the mast would deploy without restraint. Preliminary tests showed that this type of deployment was possible especially if the deployed length was relatively short, as in this application. Compounding the problem, however, was the requirement to deploy the mast at an angle of up to 30 degrees from vertical. The deployment process was difficult to completely analyze due to the effects of gravitational and inertial loads on the mast and camera during rapid extension. Testing in a realistic manner was imperative to verify the system performance. A deployment test was therefore performed to determine the maximum tilt angle at which the mast could reliably extend and support the camera on Mars. The testing of the deployable mast requires partial gravity compensation to simulate the smaller force of Martian gravity. During the test, mass properties were maintained while weight properties were reduced. This paper describes the testing of a deployable mast in a simulated Martian environment as well as the results of the tests.

  8. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.

    PubMed

    Hussein, M A; Esterl, S; Pörtner, R; Wiegandt, K; Becker, T

    2008-12-05

    Owing to the growing demand of cartilage tissue repair and transplants, engineered cartilage cells have emerged as a prospective solution. Several bioreactors were built for artificially grown cartilage cells. In this work, a recently designed flow bed bioreactor is numerically investigated and compared with experimental results. The flow field inside the bioreactor was modelled using the lattice Boltzmann method. The flow consists of two phases which are the liquid component (nutrition supply) and gas component (oxygen supply). The flow field is simulated using the multi-phase lattice Boltzmann method, whilst the cell activity is modelled using Michaelis-Menten kinetics. The oxygen diffusion level at the exit of the nutrition phase is used as an evaluation process between the numerical and experimental results reporting the possibility of using the proposed model to fully simulate such bioreactors, though greatly saving time and money. Shear stress and pressure distributions are as well compared with published human cartilage load measurements to estimate the dynamic similarity between the bioreactor and the human knee. The predicted oxygen levels proved consistent trends with the experimental work with a 7% difference after 1h measuring time. The shear stress levels recorded 10-11 orders of magnitude lower than in humans and also one order of magnitude lower in the pressure distribution.

  9. Hydraulic fracture conductivity: effects of rod-shaped proppant from lattice-Boltzmann simulations and lab tests

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-06-01

    The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.

  10. Metastability in Schloegl's second model for autocatalysis: Lattice-gas realization with particle diffusion.

    PubMed

    Guo, Xiaofang; De Decker, Y; Evans, J W

    2010-08-01

    We analyze metastability associated with a discontinuous nonequilibrium phase transition in a stochastic lattice-gas realization of Schloegl's second model for autocatalysis. This model realization involves spontaneous annihilation, autocatalytic creation, and diffusion of particles on a square lattice, where creation at empty sites requires an adjacent diagonal pair of particles. This model, also known as the quadratic contact process, exhibits discontinuous transition between a populated active state and a particle-free vacuum or "poisoned" state, as well as generic two-phase coexistence. The poisoned state exists for all particle annihilation rates p>0 and hop rates h≥0 and is an absorbing state in the sense of Markovian processes. The active or reactive steady state exists only for p below a critical value, p{e}=p{e}(h) , but a metastable extension appears for a range of higher p up to an effective upper spinodal point, p{s+}=p{s+}(h) (i.e., p{s+}>p{e} ). For selected h , we assess the location of p{s+}(h) by characterizing both the poisoning kinetics and the propagation of interfaces separating vacuum and active states as a function of p .

  11. Lattice Boltzmann Simulation of Particle Laden Flows in Microfluidic Systems

    SciTech Connect

    Clague, D S; Weisgraber, T; Wheeler, E; Hon, G; Radford, J; Gascoyne, P; Smity, R; Liepmann, D; Meinhart, C; Santiago, J; Krulevitch, P

    2003-07-22

    The goal of this effort was to develop dynamic simulation tools to study and characterize particulate transport in Microfluidic devices. This includes the effects of external fields and near-field particle-particle, particle-surface interactions. The unique aspect of this effort is that we focused on the particles in suspension and rigorously accounted for all of the interactions that they experienced in solution. In contrast, other numerical methods within the program, finite element and finite volume approaches, typically treat the suspended species as non-interacting point particles. Later in the program, some of these approaches incorporated approximations to begin to account for particle-particle interactions. Through the programs (BioFlips and SIMBIOSYS), we developed collaborative relationships with device-oriented efforts. More specifically and at the request of the SIMBIOSYS program manager, we allowed our efforts/milestones to be more guided by the needs of our BioFlips colleagues; therefore, our efforts were focused on the needs of the MD Anderson Cancer Center (Peter Gascoyne), UCDavis (Rosemary Smith), and UC Berkeley (Dorian Liepmann). The first two collaborations involved the development of Dielectrophoresis analysis tools and the later involved the development of suspension and fluid modeling tools for microneedles.

  12. Second-principles method for materials simulations including electron and lattice degrees of freedom

    NASA Astrophysics Data System (ADS)

    García-Fernández, Pablo; Wojdeł, Jacek C.; Íñiguez, Jorge; Junquera, Javier

    2016-05-01

    We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved at a very modest computational cost. Our approach is based on dividing the electron density of the system into a reference part—typically corresponding to the system's neutral, geometry-dependent ground state—and a deformation part—defined as the difference between the actual and reference densities. We then take advantage of the fact that the bulk part of the system's energy depends on the reference density alone; this part can be efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then, the effects associated to the difference density can be treated perturbatively with good precision by working in a suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest. All these features combined yield a very flexible and computationally very efficient scheme. Here we present the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as well as its many envisioned possibilities and future extensions.

  13. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    SciTech Connect

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-05-15

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  14. Simulating regolith ejecta due to gas impingement

    NASA Astrophysics Data System (ADS)

    Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel

    2016-10-01

    Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.

  15. Lattice Boltzmann Simulations of a Falling Droplet on a Rest Fluid Film

    NASA Astrophysics Data System (ADS)

    Qian, Yuehong; Zhang, Ke; Chu, Xuesheng; Yan, Kai

    2009-11-01

    A single-phase model based on lattice Boltzmann [1,2] method is used to investigate the motion of the free surface. To describe the topological deformation of the fluid interface, the cell in the single-phase free surface model is divided into three types: fluid cells, interface cells and the empty cells. The distinctive feature of the model is that the propagation and interaction processes are carried out only in the interface cell and the fluid cell. Numerical simulations of a droplet falling onto a resting fluid film [3] is presented. The Crown formation shown in figure 1 as well as the splashing droplets have been found at different dimensionless Reynolds and Weber numbers, Some comparison with experiment will be also made. REFERENCES [1] Y.H. Qian, D. D'Humières, P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett 1992(17): 479-484. [2] N. Thurey, U. Rude. Interactive free surface fluids with the lattice Boltzmann method. Technical report 2005. University of Erlangen-Nuremberg, Germany. [3] Z.Y. Shi, Y.H. Yan, F. Yang, Y.H. Qian and G.H. Hu. A lattice Boltzmann method for simulation of a three dimensional drop impact on a liquid film. Journal of Hydrodynamics 2008,20 (3):267-272.

  16. A lattice-gas model for alkali-metal fullerides: face-centred-cubic structure

    NASA Astrophysics Data System (ADS)

    Udvardi, László; Szabó, György

    1996-12-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centred-cubic structure assuming that the electric charge of alkali ions residing in either octahedral or tetrahedral sites is completely screened by the first-neighbour 0953-8984/8/50/022/img5 molecules. This approximation allows us to derive an effective ion - ion interaction. The van der Waals interaction between the ion and 0953-8984/8/50/022/img5 molecule is characterized by introducing an additional site energy at the tetrahedral sites. This model is investigated by using a three-sublattice mean-field approximation and a simple cluster-variation method. The analysis shows a large variety of phase diagrams as the site energy parameter is changed.

  17. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    PubMed

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  18. Effect of disorder on condensation in the lattice gas model on a random graph

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Dear, Alexander; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2014-07-01

    The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.

  19. Competition of coarsening and shredding of clusters in a driven diffusive lattice gas

    NASA Astrophysics Data System (ADS)

    Kunwar, Ambarish; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2006-06-01

    We investigate a driven diffusive lattice gas model with two oppositely moving species of particle. The model is motivated by bidirectional traffic of ants on a pre-existing trail. A third species, corresponding to pheromones used by the ants for communication, is not conserved and mediates interactions between the particles. Here we study the spatio-temporal organization of the particles. In the unidirectional variant of this model it is known to be determined by the formation and coarsening of 'loose clusters'. For our bidirectional model, we show that the interaction of oppositely moving clusters is essential. In the late stages of evolution the cluster size oscillates because of a competition between their 'shredding' during encounters with oppositely moving counterparts and subsequent 'coarsening' during collision-free evolution. We also establish a nontrivial dependence of the spatio-temporal organization on the system size.

  20. Analog quantum simulation of (1 +1 ) -dimensional lattice QED with trapped ions

    NASA Astrophysics Data System (ADS)

    Yang, Dayou; Giri, Gouri Shankar; Johanning, Michael; Wunderlich, Christof; Zoller, Peter; Hauke, Philipp

    2016-11-01

    The prospect of quantum-simulating lattice gauge theories opens exciting possibilities for understanding fundamental forms of matter. Here, we show that trapped ions represent a promising platform in this context when simultaneously exploiting internal pseudospins and external phonon vibrations. We illustrate our ideas with two complementary proposals for simulating lattice-regularized quantum electrodynamics (QED) in (1 +1 ) space-time dimensions. The first scheme replaces the gauge fields by local vibrations with a high occupation number. By numerical finite-size scaling, we demonstrate that this model recovers Wilson's lattice gauge theory in a controlled way. Its implementation can be scaled up to tens of ions in an array of microtraps. The second scheme represents the gauge fields by spins 1/2 , and thus simulates a quantum link model. As we show, this allows the fermionic matter to be replaced by bosonic degrees of freedom, permitting small-scale implementations in a linear Paul trap. Both schemes work on energy scales significantly larger than typical decoherence rates in experiments, thus enabling the investigation of phenomena such as string breaking, Coleman's quantum phase transition, and false-vacuum decay. The underlying ideas of the proposed analog simulation schemes may also be adapted to other platforms, such as superconducting qubits.

  1. Effects of flavor-symmetry violation from staggered fermion lattice simulations of graphene

    SciTech Connect

    Giedt, Joel; Nayak, Saroj; Skinner, Andrew

    2011-01-15

    We analyze the effects of flavor splitting from staggered fermion lattice simulations of a low-energy effective theory for graphene. Both the unimproved action and the tadpole-improved action with a Naik term show significant flavor-symmetry breaking in the spectrum of the Dirac operator. Note that this is true even in the vicinity of the second-order phase transition point where it has been argued that the flavor-symmetry breaking should be small due to the continuum limit being approached. We show that at weaker couplings the flavor splitting is drastically reduced by stout link smearing, while this mechanism is ineffective at the stronger couplings relevant to suspended graphene. We also measure the average plaquette and describe how it calls for a reinterpretation of previous lattice Monte Carlo simulation results, due to tadpole improvement. After taking into account these effects, we conclude that previous lattice simulations are possibly indicative of an insulating phase, although the effective number of light flavors could be effectively less than two due to the flavor-splitting effects. If that is true, then simulations with truly chiral fermions (such as overlap fermions) are needed in order to settle the question.

  2. A Lattice-Boltzmann model for simulating bedform-induced hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Dapelo, D.; Bridgeman, J.; Krause, S.

    2016-12-01

    Bedform-induced hyporheic exchange plays a fundamental role in the ecohydrological and biogeochemical functioning of aquifer-river interfaces. The understanding of the complex interchange of hyporheic exchange fluxes, solute and energy transport between surface and groundwater is fundamental to design effective management, restoration and pollution mitigation strategies. For the first time, the Lattice-Boltzmann method was used to simulate 2D hyporheic exchange flow across a succession of dunes. The velocity field in both surface and groundwater was simulated directly; then, residence times were computed through post-processing. As a novelty to most previous applications of similar computational fluid dynamics models, a grid-independence test was performed for to analyse independence of the results from the mesh choice. The Lattice-Boltzmann simulation results are compared to previous fluid dynamic models of similar bedforms, and the impact of the bedform on hyporheic exchange flow dynamics is discussed. As an advantage, both the free-flow and the hyporheic exchange flow are simulated within the same model, thus removing the need of developing two distinct models as well as the coupling between them: the model dynamically reproduces turbulent Navier-Stokes (surface water) or generalized Darcian (groundwater) flow, depending only on the local value of the porosity field. Through this model, the critical advantages of the Lattice-Boltzmann method, consisting of unparalleled computational parsimony, meshing simplicity and attitude towards diffuse computing, are made available for a wide range of similar applications.

  3. Study of the critical behavior of the driven lattice gas model with limited nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Saracco, Gustavo P.; Rubio Puzzo, M. Leticia; Bab, Marisa A.

    2017-02-01

    In this paper the nonequilibrium critical behavior is investigated using a variant of the well-known two-dimensional driven lattice gas (DLG) model, called modified driven lattice gas (MDLG). In this model, the application of the external field is regulated by a parameter p ɛ [ 0 , 1 ] in such a way that if p = 0, the field is not applied, and it becomes the Ising model, while if p = 1, the DLG model is recovered. The behavior of the model is investigated for several values of p by studying the dynamic evolution of the system within the short-time regime in the neighborhood of a phase transition. It is found that the system experiences second-order phase transitions in all the interval of p for the density of particles ρ = 0.5. The determined critical temperatures Tc(p) are greater than the critical temperature of the Ising model TcI, and increase with p up to the critical temperature of the DLG model in the limit of infinite driving fields. The dependence of Tc(p) on p is compatible with a power-law behavior whose exponent is ψ = 0.27(3) . Furthermore, the complete set of the critical and the anisotropic exponents is estimated. For the smallest value of p, the ​dynamics and β exponents are close to that calculated for the Ising model, and the anisotropic exponent Δ is near zero. As p is increased, the exponents and Δ change, meaning that the anisotropy effects increase. For the largest value investigated, the set of exponents approaches to that reported by the most recent theoretical framework developed for the DLG model.

  4. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    SciTech Connect

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is

  5. Accurate boundary treatments for lattice Boltzmann simulations of electric fields and electro-kinetic applications

    NASA Astrophysics Data System (ADS)

    Oulaid, Othmane; Chen, Qing; Zhang, Junfeng

    2013-11-01

    In this paper a novel boundary method is proposed for lattice Boltzmann simulations of electric potential fields with complex boundary shapes and conditions. A shifted boundary from the physical surface location is employed in simulations to achieve a better finite-difference approximation of the potential gradient at the physical surface. Simulations are presented to demonstrate the accuracy and capability of this method in dealing with complex surface situations. An example simulation of the electrical double layer and electro-osmotic flow around a three-dimensional spherical particle is also presented. These simulated results are compared with analytical predictions and are found to be in excellent agreement. This method could be useful for electro-kinetic and colloidal simulations with complex boundaries, and can also be readily extended to other phenomena and processes, such as heat transfer and convection-diffusion systems.

  6. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.

  7. Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows.

    PubMed

    Wang, Zimeng; Shang, Helen; Zhang, Junfeng

    2017-06-01

    Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.

  8. Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Shang, Helen; Zhang, Junfeng

    2017-06-01

    Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.

  9. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions.

    PubMed

    Chen, Yu; Cai, Qingdong; Xia, Zhenhua; Wang, Moran; Chen, Shiyi

    2013-07-01

    The momentum exchange method has been widely used in lattice Boltzmann simulations for particle-fluid interactions. Although proved accurate for still walls, it will result in inaccurate particle dynamics without corrections. In this work, we reveal the physical cause of this problem and find that the initial momentum of the net mass transfer through boundaries in the moving-boundary treatment is not counted in the conventional momentum exchange method. A corrected momentum exchange method is then proposed by taking into account the initial momentum of the net mass transfer at each time step. The method is easy to implement with negligible extra computation cost. Direct numerical simulations of a single elliptical particle sedimentation are carried out to evaluate the accuracy for our method as well as other lattice Boltzmann-based methods by comparisons with the results of the finite element method. A shear flow test shows that our method is Galilean invariant.

  10. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. II. Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mikolasek, Mirko; Nicolazzi, William; Terki, Férial; Molnár, Gábor; Bousseksou, Azzedine

    2017-07-01

    In the first part of this work, an experimental study of the lattice dynamics of spin crossover nanoparticles was performed using the nuclear inelastic scattering (NIS). A size dependence of low energy phonon modes appears under 10 nm, but its origin is not well understood. In this paper, we investigate the phonon confinement effects in the framework of molecular dynamics simulations by modeling three-dimensional nanoparticles considering a cubic lattice with an octahedral pattern. The vibrational density of states is computed and compared to the experiment. The simulations allow one to highlight both the role of the phonon quantification and the role of the size and shape distributions of particles on the extracted parameters leading to a better understanding of the experimental results.

  11. Simulating anomalous transport and multiphase segregation in porous media with the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim

    2015-04-01

    Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  12. A non-equilibrium Monte Carlo renormalization-group approach based upon the microscopic master equation applied to the three-state driven lattice gas

    NASA Astrophysics Data System (ADS)

    Georgiev, Ivan T.; McKay, Susan R.

    2005-12-01

    We present a general position-space renormalization-group approach for systems in steady states far from equilibrium and illustrate its application to the three-state driven lattice gas. The method is based upon the possibility of a closed form representation of the parameters controlling transition rates of the system in terms of the steady state probability distribution of small clusters, arising from the application of the master equations to small clusters. This probability distribution on various length scales is obtained through a Monte Carlo algorithm on small lattices, which then yields a mapping between parameters on different length scales. The renormalization-group flows indicate the phase diagram, analogous to equilibrium treatments. For the three-state driven lattice gas, we have implemented this procedure and compared the resulting phase diagrams with those obtained directly from simulations. Results in general show the expected topology with one exception. For high densities, an unexpected additional fixed point emerges, which can be understood qualitatively by comparing it with the fixed point of the fully asymmetric exclusion process.

  13. PRELIMINARY RESULTS FROM A SIMULATION OF QUENCHED QCD WITH OVERL AP FERMIONS ON A LARGE LATTICE.

    SciTech Connect

    BERRUTO,F.GARRON,N.HOELBLING,D.LELLOUCH,L.REBBI,C.SHORESH,N.

    2003-07-15

    We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at {beta} = 6 on an 18{sup 3} x 64 lattice. We calculate quark propagators for a single source point and quark mass ranging from am{sub 4} = 0.03 to 0.75. We present here preliminary results based on the propagators for 60 gauge field configurations.

  14. Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Yamamoto, Arata

    2017-07-01

    We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.

  15. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    SciTech Connect

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the Appendix Section

  16. Canonical Bose gas simulations with stochastic gauges.

    PubMed

    Drummond, P D; Deuar, P; Kheruntsyan, K V

    2004-01-30

    A technique to simulate the grand canonical ensembles of interacting Bose gases is presented. Results are generated for many temperatures by averaging over energy-weighted stochastic paths, each corresponding to a solution of coupled Gross-Pitaevskii equations with phase noise. The stochastic gauge method used relies on an off-diagonal coherent-state expansion, thus taking into account all quantum correlations. As an example, the second-order spatial correlation function and momentum distribution for an interacting 1D Bose gas are calculated.

  17. Knot invariants and the thermodynamics of lattice gas automata. Final technical report, April 15, 1991--July 14, 1995

    SciTech Connect

    Meyer, D.A.

    1995-12-01

    The goal of this project has been to build on the understanding of the connections between knot invariants, exactly solvable statistical mechanics models and discrete dynamical systems gained in earlier work, toward an answer to the question of how early and robust thermodynamic behavior appears in lattice gas automata. These investigations have recently become relevant, unanticipatedly, to crucial issues in quantum computation.

  18. Development of an Angular Distribution Function for the Study of Atomic Lattice Structures Used in Atomistic Simulation

    DTIC Science & Technology

    1991-03-01

    Structures Used in Atanistic Simulation 6. AUTHOR(S) David Wesley, Capt, USAF 7. PERFORMING ORGA1 NIZATION NAME(S) AND ADDRESS(ES) 8 . PERFORMING...42 7 Appendix A: Program Lattice for Generating Model Lattices ................ 43 8 Appendix B: RDF Fortran Programs...15 Figure 8 : Inner ADF’s for model systems .............................................. 16 Figure 9: Outer ADF’s for model systems

  19. Towards the petaflop for Lattice QCD simulations the PetaQCD project

    NASA Astrophysics Data System (ADS)

    Anglès d'Auriac, Jean-Christian; Barthou, Denis; Becirevic, Damir; Bilhaut, René; Bodin, François; Boucaud, Philippe; Brand-Foissac, Olivier; Carbonell, Jaume; Eisenbeis, Christine; Gallard, Pascal; Grosdidier, Gilbert; Guichon, Pierre; Honoré, Pierre-François; Le Meur, Guy; Pène, Olivier; Rilling, Louis; Roudeau, Patrick; Seznec, André; Stocchi, Achille; Touze, François

    2010-04-01

    The study and design of a very ambitious petaflop cluster exclusively dedicated to Lattice QCD simulations started in early '08 among a consortium of 7 laboratories (IN2P3, CNRS, INRIA, CEA) and 2 SMEs. This consortium received a grant from the French ANR agency in July '08, and the PetaQCD project kickoff took place in January '09. Building upon several years of fruitful collaborative studies in this area, the aim of this project is to demonstrate that the simulation of a 256 x 1283 lattice can be achieved through the HMC/ETMC software, using a machine with efficient speed/cost/reliability/power consumption ratios. It is expected that this machine can be built out of a rather limited number of processors (e.g. between 1000 and 4000), although capable of a sustained petaflop CPU performance. The proof-of-concept should be a mock-up cluster built as much as possible with off-the-shelf components, and 2 particularly attractive axis will be mainly investigated, in addition to fast all-purpose multi-core processors: the use of the new brand of IBM-Cell processors (with on-chip accelerators) and the very recent Nvidia GP-GPUs (off-chip co-processors). This cluster will obviously be massively parallel, and heterogeneous. Communication issues between processors, implied by the Physics of the simulation and the lattice partitioning, will certainly be a major key to the project.

  20. Lattice models of ionic systems

    NASA Astrophysics Data System (ADS)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  1. Simulations of magnetic reversal in continuously distorted artificial spin ice lattices

    NASA Astrophysics Data System (ADS)

    Farmer, Barry; Bhat, Vinayak; Woods, Justin; Hastings, J. Todd; de Long, Lance

    2014-03-01

    Artificial spin ice (ASI) systems consist of lithographically patterned ferromagnetic segments that behave as Ising spins. The honeycomb lattice is an ASI analogue of the Kagomé spin ice lattice found in bulk pyrochlore crystals. We have developed a method to continuously distort the honeycomb lattice such that the pattern vertex spacings follow a Fibonacci chain sequence. The distortions break the rotational symmetry of the honeycomb lattice and alter the segment orientations and lengths such that all vertices retain three-fold coordination, but are no longer equivalent. We have performed micromagnetic simulations (OOMMF) of magnetization reversal for many samples having different strengths of distortion, and found the kinetics of magnetic reversal to be dramatically slowed, and avalanches (sequential switching of neighboring segments) shortened by only small deviations from perfect honeycomb symmetry. The coercivity increases as the distortion is strengthened, which is consistent with the retarded reversal. Research supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.

  2. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions.

    PubMed

    Soong, C Y; Yen, T H; Tzeng, P Y

    2007-09-01

    In the present paper, molecular dynamics simulations are performed to explore the effects of wall lattice-fluid interactions on the hydrodynamic characteristics in nanochannels. Couette and Poiseuille flows of liquid argon with channel walls of face-centered cubic (fcc) lattice structure are employed as the model configurations. Truncated and shifted Lennard-Jones (LJ) 12-6 potentials for evaluations of fluid-fluid and wall-fluid interactions, and a nonlinear spring potential for wall-wall interaction, are used as interatomistic or molecular models. The hydrodynamics at various flow orientation angles with respect to channel walls of lattice planes (111), (100), and (110) are explored. The present work discloses that the effects of key parameters, such as wall density, lattice plane, flow orientation, and LJ interaction energy, have a very significant impact on the nanochannel flow characteristics. The related interfacial phenomena and the underlying physical mechanisms are explored and interpreted. These results are significant in the understanding of nanoscale hydrodynamics, as well as in various applications where an accurate nanoscale flow rate control is necessary.

  3. Laboratory simulation of cometary neutral gas ionization

    NASA Technical Reports Server (NTRS)

    Chang, Tsuey-Fen; Rahman, H. U.; White, R. S.

    1989-01-01

    The laboratory simulation of the interaction of the solar wind with a comet is used to study the cometary neural gas ionization. The experiment is carried out in the UCR T-1 facility with an ice ball as the comet model. Photographs and data are taken with a variety of values of the solar wind velocity, interplanetary magnetic field (IMF), and comet configurations. The results show that the cometary neutral gas ionization depends on both the velocity of the solar wind and the interplanetary magnetic field. The plasma cloud surrounding the comet is visible only when the solar wind velocity and IMF are both above certain minimum values. This velocity dependent phenomena is explained by Alfven's critical ionization velocity effect. The critical magnetic field may be explained by assuming two stream lower hybrid instability as a triggering mechanism for the ionization of the neutral gas by plasma flow. Critical upper and lower limits for the magnetic field, required by anomalous ionization, are also derived that satisfy the experimental observations.

  4. Simulations of two-phase flow through the pharynx with moving boundaries using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Pal, Anupam; Brasseur, James G.; Shaker, Reza

    2000-11-01

    Transport of food through the human pharynx involves rapidly moving boundaries and liquid-vapor flow within highly complex geometries. Conventional continuum models are limited in their ability to handle two-phase flows with complex moving boundaries. We used the lattice Boltzmann (LB) method to simulate liquid flow in the air-filled pharynx with boundary motions which approximate those of anatomical structures from the mouth to the esophagus. The two phases in the LB simulation were separated using an interparticle interaction force based on a non-ideal gas equation of state. A moving boundary condition was applied by augmenting the `bounce-back' rule with added/subtracted mass and momentum for the displaced fluid due to boundary movement. Simulations predicted liquid movement in the pharynx which resembled closely actual movement of food boluses observed radiographically. Pressures along a simulated manometric catheter show similar transient and quasi-steady periods as measured pressures. Pressure gradient within the liquid is sensitive to the geometric constriction suggesting its potential application as a clinical parameter in diagnosing restrictive pharyngo-esophageal disorders.

  5. Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Boltzmann method.

    PubMed

    Watari, Minoru

    2009-06-01

    Two problems exist in the current studies on the application of the lattice Boltzmann method (LBM) to rarefied gas dynamics. First, most studies so far are applications of two-dimensional models. The numbers of velocity particles are small. Consequently, the boundary-condition methods of these studies are not directly applicable to a multispeed finite-difference lattice Boltzmann method (FDLBM) that has many velocity particles. Second, the LBM and FDLBM share their origins with the Boltzmann equation. Therefore, the results of LBM and FDLBM studies should be verified by the results of the continuous Boltzmann equation. In my review to date on the LBM studies, it appears that such verifications were seldom done. In this study, velocity slip and temperature jump simulations in the slip-flow regime were conducted using a three-dimensional FDLBM model. The results were compared with preceding theoretical studies based on the continuous Boltzmann equation. The results agreed with the theory with errors of a few percent. To further improve the accuracy of the FDLBM, it seems necessary to increase the number of velocity particles.

  6. Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations.

    PubMed

    Hammack, Audrey; Chen, Yeng-Long; Pearce, Jennifer Kreft

    2011-03-01

    We use a lattice Boltzmann based Brownian dynamics simulation to investigate the dependence of DNA thermophoresis on its interaction with dissolved salts. We find the thermal diffusion coefficient D{T} depends on the molecule size, in contrast with previous simulations without electrostatics. The measured S{T} also depends on the Debye length. This suggests thermophoresis of DNA is influenced by the electrostatic interactions between the polymer beads and the salt ions. However, when electrostatic forces are weak, DNA thermophoresis is not found, suggesting that other repulsive forces such as the excluded volume force prevent thermal migration.

  7. Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices

    PubMed

    Zhang; Isbister; Evans

    2000-04-01

    We study the use of the Evans nonequilibrium molecular dynamics (NEMD) heat flow algorithm for the computation of the heat conductivity in one-dimensional lattices. For the well-known Fermi-Pasta-Ulam model, it is shown that when the heat field strength is greater than a certain critical value (which depends on the system size) solitons can be generated in molecular dynamics simulations starting from random initial conditions. Such solitons are stable and travel with supersonic speeds. For smaller heat fields, no solitons are generated in the molecular dynamics simulations; the heat conductivity obtained via the NEMD algorithm increases monotonically with the size of the system.

  8. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2010-07-15

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO{sub 2} laser interaction with helium is simulated successfully.

  9. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    NASA Astrophysics Data System (ADS)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  10. Off lattice Monte Carlo simulation study for different metal adlayers onto (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Rojas, M. I.

    2004-10-01

    The structure, energetics, and elastic properties of metallic adlayers adsorbed onto monocrystalline substrate surfaces are analyzed for a set of systems of electrochemical interest. The systems considered involve Ag, Au, Pt, Pd, and Cu. The different adsorbate/substrate (1 1 1) systems were simulated employing off lattice Monte Carlo simulations with embedded atom method potentials in the canonical ensemble at 300 K. The underpotential and overpotential deposition trends observed for this set of transition metal systems are analyzed taking into account the structure of the monolayer, the energy of the systems, and the surface stress change.

  11. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas.

    PubMed

    Li, Huayu; Ki, Hyungson

    2010-07-01

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO2 laser interaction with helium is simulated successfully.

  12. Quantum phase transition of a Bose gas in a lattice with a controlled number of atoms per site

    NASA Astrophysics Data System (ADS)

    Du, Xu

    2005-05-01

    We have studied the superfluid-Mott insulator quantum phase transition [1] of a gas of ^87Rb atoms in an optical lattice. We are able to prepare the gas with a controllable number of one, two, or three atoms per lattice site, as verified with photoassociation spectroscopy. We measure momentum distributions using standard time-of-flight imaging techniques. These are similar to those of ref. [1], and exhibit narrow peaks at moderate lattice strengths. We find that the width of these peaks increases for lattice heights greater than about 13 times the recoil energy [2], and we observe interesting differences in this behavior, depending on the number of atoms per site. The data suggest that the quantum phase transition occurs at higher lattice strength with larger site occupation. We acknowledge the support of this work by the R. A. Welch Foundation, The N. S. F., and the D.O.E. Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] Thilo St"oferle et al., Phys. Rev. Lett. 92, 130403 (2004).

  13. Spin-lattice coupling in molecular dynamics simulation of ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Ma, Pui Wai

    A model for magnetic iron where atoms are treated as classical particles with intrinsic spins is developed. The atoms interact via scalar many-body forces as well as via spin-dependent forces of the Heisenberg form. The coupling between the lattice and spin degrees of freedom is described by a coordinate-dependent exchange function, where the spin-orientation-dependent forces are proportional to the gradient of this function. A spin-lattice dynamics simulation approach extends the existing magnetic-potential treatment to the case where the strength of interaction between the atoms depends on the relative non-collinear orientations of their spins. An algorithm for integrating the linked spin-coordinate equations of motion is based on the 2nd order Suzuki-Trotter decomposition for the non-commuting evolution operators for both coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced through the combined application of the Langevin spin dynamics and the fluctuation-dissipation theorem. We investigate several applications of the method, performing microcanonical ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180° domain-walls, and isothermal-isobaric ensemble dynamical simulations of thermally equilibrated homogeneous systems at various temperatures. The isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm is well described by the mean-field approximation and agrees satisfactorily with the experimental data for a broad range of temperatures. The equilibrium time-correlation functions of spin orientations exhibit the presence of short-range magnetic order above the Curie temperature. Short-range order spin fluctuations are shown to contribute to the thermal expansion of the material. Simulations on thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc iron thin films are also performed and the results discussed. Our analysis illustrates

  14. Phase separation dynamics of polydisperse colloids: a mean-field lattice-gas theory.

    PubMed

    de Castro, Pablo; Sollich, Peter

    2017-08-23

    New insights into phase separation in colloidal suspensions are provided via a dynamical theory based on the polydisperse lattice-gas model. The model gives a simplified description of polydisperse colloids, incorporating a hard-core repulsion combined with polydispersity in the strength of the attraction between neighbouring particles. Our mean-field equations describe the local concentration evolution for each of an arbitrary number of species, and for an arbitrary overall composition of the system. We focus on the predictions for the dynamics of colloidal gas-liquid phase separation after a quench into the coexistence region. The critical point and the relevant spinodal curves are determined analytically, with the latter depending only on three moments of the overall composition. The results for the early-time spinodal dynamics show qualitative changes as one crosses a 'quenched' spinodal that excludes fractionation and so allows only density fluctuations at fixed composition. This effect occurs for dense systems, in agreement with a conjecture by Warren that, at high density, fractionation should be generically slow because it requires inter-diffusion of particles. We verify this conclusion by showing that the observed qualitative changes disappear when direct particle-particle swaps are allowed in the dynamics. Finally, the rich behaviour beyond the spinodal regime is examined, where we find that the evaporation of gas bubbles with strongly fractionated interfaces causes long-lived composition heterogeneities in the liquid phase; we introduce a two-dimensional density histogram method that allows such effects to be easily visualized for an arbitrary number of particle species.

  15. A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences

    NASA Astrophysics Data System (ADS)

    Shi, Xiao Fei; Xi, Ping; Wu, Jian Jun

    2015-04-01

    This paper introduces a 2D lattice Boltzmann-Saltation (LBM-Saltation) model for numerical simulation of velocity profiles of windblown sand particles. The model is based on the LBM equations for transient, incompressible viscous flow. We first introduced a lattice Boltzmann subgrid model, which was used to predict the turbulent wind field. Two-way coupling was then used to describe the interaction between wind and the saltating sand particles. The correctness of the model was verified by comparing the simulated results of several important variables of wind-sand flow with that of experiment over a flat bed surface. To show the feasibility of this model with complex boundary conditions, we used it to simulate the wind-sand flow at porous wind fences and mainly discussed the particle velocity profiles. Single porous wind fence case was computed first and compared with the measurement. Two tandem porous wind fences cases were simulated next. Different distance and porosity of the fences were considered to quantitatively investigate the variation of the shelter effect. The simulated results achieved additional conclusions: The wind speed and the velocity of sand particles are obviously weakened because of the fence; reduction of the particle velocity by porous fence varies with the fence distance and porosity; the larger the distance or the porosity (significantly larger than the 0.3), the worse the shelter effect, and the weaker the reduction of particle velocity.

  16. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  17. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.

    PubMed

    Rodríguez-Lara, B M; Soto-Eguibar, Francisco; Cárdenas, Alejandro Zárate; Moya-Cessa, H M

    2013-05-20

    The interaction of a two-level atom with a single-mode quantized field is one of the simplest models in quantum optics. Under the rotating wave approximation, it is known as the Jaynes-Cummings model and without it as the Rabi model. Real-world realizations of the Jaynes-Cummings model include cavity, ion trap and circuit quantum electrodynamics. The Rabi model can be realized in circuit quantum electrodynamics. As soon as nonlinear couplings are introduced, feasible experimental realizations in quantum systems are drastically reduced. We propose a set of two photonic lattices that classically simulates the interaction of a single two-level system with a quantized field under field nonlinearities and nonlinear couplings as long as the quantum optics model conserves parity. We describe how to reconstruct the mean value of quantum optics measurements, such as photon number and atomic energy excitation, from the intensity and from the field, such as von Neumann entropy and fidelity, at the output of the photonic lattices. We discuss how typical initial states involving coherent or displaced Fock fields can be engineered from recently discussed Glauber-Fock lattices. As an example, the Buck-Sukumar model, where the coupling depends on the intensity of the field, is classically simulated for separable and entangled initial states.

  18. An improved lattice Boltzmann method for simulating advective-diffusive processes in fluids

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel

    2017-03-01

    Lattice Boltzmann methods are widely used to simulate advective-diffusive processes in fluids. Lattice Bhatnagar-Gross-Krook methods presented in the literature mostly just exhibit first order spatial accuracy and introduce errors proportional to the velocity squared. Formulations proposed to alleviate this have only been partly successful and are valid only in certain specific situations. We present and demonstrate here a formulation that produces no such second order errors. This formulation suggests that a subtle, but important, adjustment is all it takes to improve the accuracy of the method. The key to the improved accuracy of this new model is the non-standard definition of the concentration that relates to the distribution function describing the advection-diffusion in lattice Boltzmann. The main advantage of the algorithm comes to view when simulating situations where fluid density variations appear. The present formulation of the advection-diffusion algorithm will, by taking into account these fluid density variations, drastically reduce the errors produced compared to the standard formulations. We also show how a source term is included in this new formulation without it losing its second order spatial accuracy.

  19. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    SciTech Connect

    Luz, Fernando H. P.; Mendes, Tereza

    2010-11-12

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  20. Predictive wind turbine simulation with an adaptive lattice Boltzmann method for moving boundaries

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2016-09-01

    Operating horizontal axis wind turbines create large-scale turbulent wake structures that affect the power output of downwind turbines considerably. The computational prediction of this phenomenon is challenging as efficient low dissipation schemes are necessary that represent the vorticity production by the moving structures accurately and that are able to transport wakes without significant artificial decay over distances of several rotor diameters. We have developed a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that considers these requirements rather naturally and enables first principle simulations of wake-turbine interaction phenomena at reasonable computational costs. The paper describes the employed computational techniques and presents validation simulations for the Mexnext benchmark experiments as well as simulations of the wake propagation in the Scaled Wind Farm Technology (SWIFT) array consisting of three Vestas V27 turbines in triangular arrangement.

  1. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms

    SciTech Connect

    Zohar, Erez; Reznik, Benni

    2011-12-30

    We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

  2. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    NASA Astrophysics Data System (ADS)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  3. Chiral extrapolations of the ρ(770) meson in Nf=2+1 lattice QCD simulations

    DOE PAGES

    Hu, B.; Molina, R.; Döring, M.; ...

    2017-08-24

    Recentmore » $$N_f=2+1$$ lattice data for meson-meson scattering in $p$-wave and isospin $I=1$ are analyzed using a unitarized model inspired by Chiral Perturbation Theory in the inverse-amplitude formulation for two and three flavors. We perform chiral extrapolations that postdict phase shifts extracted from experiment quite well. Additionally, the low-energy constants are compared to the ones from a recent analysis of $$N_f=2$$ lattice QCD simulations to check for the consistency of the hadronic model used here. Some inconsistencies are detected in the fits to $$N_f=2+1$$ data, in contrast to the previous analysis of $$N_f=2$$ data.« less

  4. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  5. A boundary condition with adjustable slip length for lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Khalid Ahmed, Nayaz; Hecht, Martin

    2009-09-01

    A velocity boundary condition for the lattice Boltzmann simulation technique has been proposed recently by Hecht and Harting (2008 arXiv:0811.4593). This boundary condition is independent of the relaxation process during collision and contains no artificial slip. In this work, this boundary condition is extended to simulate slip flows. The extended boundary condition has been tested and it is found that the slip length is independent of the shear rate and the density, and proportional to the BGK relaxation time. The method is used to study slip in Poiseuille flow and in linear shear flow. Patterned walls with stripes of different slip parameters are also studied, and an anisotropy of the slip length in accordance with the surface pattern is found. The angle dependence of the simulation results perfectly agrees with theoretical expectations. The results confirm that the proposed boundary conditions can be used for simulating slip flows in microfluidics using the single-relaxation-time lattice Boltzmann technique, without any numerical slip, giving an accuracy of second order.

  6. Gas-Grain Simulation Facility (GGSF)

    NASA Technical Reports Server (NTRS)

    Greenwald, Ken

    1992-01-01

    The goal of the Gas-Grain Simulation Facility project is to provide a microgravity laboratory to facilitate research relevant to exobiology (the study of the origin and evolution of life in the universe). Such a facility will also be useful in other areas of study important to NASA including planetary science, biology, atmospheric science, astrophysics, chemistry, and physics. To achieve this goal, the project will develop and support the GGSF, a modular facility-class payload planned for inclusion on Space Station Freedom. The GGSF will consist of the following: an experiment chamber(s) supported by subsystems that provide chamber environment regulation and monitoring capabilities; sample generation, injection, positioning, and retrieval capabilities; and computer control, data acquisition, and housekeeping capabilities. The facility will also provide analytical tools such as light-scattering measurement systems, aerosol size-spectrum measurement devices, and optical imaging systems.

  7. Gas turbine system simulation: An object-oriented approach

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  8. Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids.

    PubMed

    Siderius, Daniel W; Gelb, Lev D

    2009-02-03

    We introduce a nonlocal on-lattice version of density functional theory (DFT) that allows for efficient modeling of fluids in complex inhomogeneous materials. In its previous implementations, classical DFT has required fine discretization of the fluid density. As a result, in studies of gas adsorption it has been used only in idealized pore models with high symmetry. Our new lattice DFT dramatically reduces the computational demand required to model simple fluids and hence can be efficiently applied to complex materials with multiple directions of asymmetry. We apply our new lattice DFT to study nitrogen adsorption in a slit pore with open ends and directly obtain the correct desorption hysteresis. We also apply our DFT to predict hydrogen adsorption accurately in an atomistic model of a metal-organic framework.

  9. Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations.

    PubMed

    Mente, Carsten; Voss-Böhme, Anja; Deutsch, Andreas

    2015-04-01

    Collective dynamics of migrating cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. Collective cell behavior at the tissue level is typically characterized by considering cell density patterns such as clusters and moving cell fronts. However, there are also important observables of collective dynamics related to individual cell behavior. In particular, individual cell trajectories are footprints of emergent behavior in populations of migrating cells. Lattice-gas cellular automata (LGCA) have proven successful to model and analyze collective behavior arising from interactions of migrating cells. There are well-established methods to analyze cell density patterns in LGCA models. Although LGCA dynamics are defined by cell-based rules, individual cells are not distinguished. Therefore, individual cell trajectories cannot be analyzed in LGCA so far. Here, we extend the classical LGCA framework to allow labeling and tracking of individual cells. We consider cell number conserving LGCA models of migrating cell populations where cell interactions are regulated by local cell density and derive stochastic differential equations approximating individual cell trajectories in LGCA. This result allows the prediction of complex individual cell trajectories emerging in LGCA models and is a basis for model-experiment comparisons at the individual cell level.

  10. Microcanonical Monte Carlo study of one dimensional self-gravitating lattice gas models

    NASA Astrophysics Data System (ADS)

    Maciel, Joao Marcos; Amato, Marco Antônio; da Rocha Filho, Tarcisio Marciano; Figueiredo, Annibal D.

    2017-03-01

    In this study we present a microcanonical Monte Carlo investigation of one dimensional (1 - d) self-gravitating toy models. We study the effect of hard-core potentials and compare to the results obtained with softening parameters and also the effect of the topology on these systems. In order to study the effect of the topology in the system we introduce a model with the symmetry of motion in a line instead of a circle, which we denominate as 1 /r model. The hard-core particle potential introduces the effect of the size of particles and, consequently, the effect of the density of the system that is redefined in terms of the packing fraction of the system. The latter plays a role similar to the softening parameter ɛ in the softened particles' case. In the case of low packing fractions both models with hard-core particles show a behavior that keeps the intrinsic properties of the three dimensional gravitational systems such as negative heat capacity. For higher values of the packing fraction the ring model behaves as the potential for the standard cosine Hamiltonian Mean Field model while for the 1 /r model it is similar to the one-dimensional systems. In the present paper we intend to show that a further simplification level is possible by introducing the lattice-gas counterpart of such models, where a drastic simplification of the microscopic state is obtained by considering a local average of the exact N-body dynamics.

  11. Lattice-gas model for active vesicle transport by molecular motors with opposite polarities

    NASA Astrophysics Data System (ADS)

    Muhuri, Sudipto; Pagonabarraga, Ignacio

    2010-08-01

    We introduce a multispecies lattice-gas model for motor protein driven collective cargo transport on cellular filaments. We use this model to describe and analyze the collective motion of interacting vesicle cargos being carried by oppositely directed molecular motors, moving on a single biofilament. Building on a totally asymmetric exclusion process to characterize the motion of the interacting cargos, we allow for mass exchange with the environment, input, and output at filament boundaries and focus on the role of interconversion rates and how they affect the directionality of the net cargo transport. We quantify the effect of the various different competing processes in terms of nonequilibrium phase diagrams. The interplay of interconversion rates, which allow for flux reversal and evaporation-deposition processes, introduces qualitatively unique features in the phase diagrams. We observe regimes of three-phase coexistence, the possibility of phase re-entrance, and a significant flexibility in how the different phase boundaries shift in response to changes in control parameters. The moving steady-state solutions of this model allows for different possibilities for the spatial distribution of cargo vesicles, ranging from homogeneous distribution of vesicles to polarized distributions, characterized by inhomogeneities or shocks. Current reversals due to internal regulation emerge naturally within the framework of this model. We believe that this minimal model will clarify the understanding of many features of collective vesicle transport, apart from serving as the basis for building more exact quantitative models for vesicle transport relevant to various in vivo situations.

  12. Aeroacoustic simulation of slender partially covered cavities using a Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    de Jong, A. T.; Bijl, H.; Hazir, A.; Wiedemann, J.

    2013-04-01

    The present investigation focuses on simulation of the aero-acoustic resonance of partially covered cavities with a width much larger than their length or depth, that represent simplified door and trunk lid gaps. These cavities are under influence of a low Mach number flow with a relatively thick boundary layer. Under certain conditions, flow-induced acoustic resonance can occur. The requirements to simulate the resonance behavior using a Lattice Boltzmann method (LBM) model are investigated. Special focus is put on the effect of simulation spanwise width and inflow conditions. In order to validate the simulations, experiments have been conducted on simplified geometries. The configuration consists of a partially covered, rectangular cavity geometry 32×50×250 mm3 in size, with opening dimensions of 8×250 mm. Cavity flow induced acoustic response is measured with microphones at different spanwise locations inside the cavity. Hot-wire measurements are performed to quantify the boundary layer characteristics. Furthermore, high speed time resolved particle image velocimetry is used to capture the instantaneous velocity field around the opening geometry. Flow simulations show that the turbulent fluctuation content of the boundary layer is important to correctly simulate the flow induced resonance response. A minimum simulation spanwise width is needed to show good resemblance with experimental cavity pressure spectra. When a full spanwise width simulation is employed, base mode and higher modes are retrieved.

  13. AFOSR Initiative Element: Lattice-Gas Automata and Lattice Boltzmann Methods as a Novel Parallel Computing Strategy

    DTIC Science & Technology

    2006-05-31

    methods. LBE is a generalization of LGA, where single- particle distributions are encoded directly using real numbers. The simulation dynamics is driven...local cellular automaton rule (A.14) does not explicitly show any mixing of particle flow directions. That fact that (A.14) does represent collisional ... dynamics simulation , provides the researcher with complete system de- tails not obtainable by either empirical or analytical treatments. LGA as a

  14. Gas dynamic simulations of galaxy formation

    NASA Technical Reports Server (NTRS)

    Evrard, August E.

    1993-01-01

    Results are presented from a simulation modeling the formation of a group of galaxies in a 'standard' cold, dark matter universe with delta = 1, h sub 0 = 50 km/(s(Mpc)), baryon fraction omega sub b = 0.1 and spectrum normalization sigma sub 8 = 0.6 (bias parameter b = 1.7). Initial conditions are generated within a periodic box with comoving length 16 Mpc in a manner constrained to produce a small cluster of total mass approximately 10 exp 14 solar mass. Two sets of 643 particles are used to model the dark matter and baryon fluids. Each gas particle represents 1.08 x 10 exp -8 solar mass, implying an L* galaxy is resolved by approximately 1000 particles. The system is evolved self-consistently in three dimensions using the combined N-body/hydrodynamic scheme P3MSPH up to a final redshift z = 1. Evolving to the present is prohibited by the fact that the mean density in the simulated volume is above critical and the entire volume would be going nonlinear beyond this point, We are currently analyzing another run with somewhat poorer mass resolution which was evolved to the present.

  15. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels

    NASA Astrophysics Data System (ADS)

    Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren

    2002-05-01

    A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.

  16. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures

    NASA Astrophysics Data System (ADS)

    Larter, Raima; Speelman, Brent; Worth, Robert M.

    1999-09-01

    A coupled ordinary differential equation lattice model for the CA3 region of the hippocampus (a common location of the epileptic focus) is developed. This model consists of a hexagonal lattice of nodes, each describing a subnetwork consisting of a group of prototypical excitatory pyramidal cells and a group of prototypical inhibitory interneurons connected via on/off excitatory and inhibitory synapses. The nodes communicate using simple rules to simulate the diffusion of extracellular potassium. Both the integration time over which a node's trajectory is integrated before the diffusional event is allowed to occur and the level of inhibition in each node were found to be important parameters. Shorter integration times lead to total synchronization of the lattice (similar to synchronous neural activity occurring during a seizure) whereas longer times cause more random spatiotemporal behavior. Moderately diminished levels of inhibition lead to simple nodal oscillatory behavior. It is postulated that both the lack of inhibition and an alteration in conduction time may be necessary for the development of a behaviorally manifest seizure.

  17. Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice

    NASA Astrophysics Data System (ADS)

    Yang, Zi-He; Wang, Yan-Pu; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Gao, Jin-Hua; Wu, Ying

    2016-06-01

    The concept of flat band plays an important role in strongly correlated many-body physics. However, the demonstration of the flat band physics is highly nontrivial due to intrinsic limitations in conventional condensed-matter materials. Here we propose a circuit quantum electrodynamics simulator of the two-dimensional (2D) Lieb lattice exhibiting a flat middle band. By exploiting the parametric conversion method, we design a photonic Lieb lattice with in situ tunable hopping strengths in a 2D array of coupled superconducting transmissionline resonators. Moreover, the flexibility of our proposal enables the incorporation of both the artificial gauge field and the strong photon-photon interaction in a time- and site-resolved manner. To unambiguously demonstrate the synthesized flat band, we further investigate the observation of the flat band localization of microwave photons through the pumping and the steady-state measurements of only a few sites on the lattice. Requiring only current level of technique and being robust against imperfections in realistic circuits, our scheme can be readily tested in experiment and may pave a new way towards the realization of exotic photonic quantum Hall fluids including anomalous quantum Hall effect and bosonic fractional quantum Hall effect without magnetic field.

  18. Simulation study of anisotropic random sequential adsorption of extended objects on a triangular lattice.

    PubMed

    Budinski-Petković, Lj; Lončarević, I; Jakšić, Z M; Vrhovac, S B; Svrakić, N M

    2011-11-01

    The properties of the anisotropic random sequential adsorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps, whereby the first step determines the orientation of the object. Anisotropy is introduced by positing unequal probabilities for orientation of depositing objects along different directions of the lattice. This probability is equal p or (1-p)/2, depending on whether the randomly chosen orientation is horizontal or not, respectively. Approach of the coverage θ(t) to the jamming limit θ(jam) is found to be exponential θ(jam)-θ(t)is proportional to exp(-t/σ), for all probabilities p. It was shown that the relaxation time σ increases with the degree of anisotropy in the case of elongated and asymmetrical shapes. However, for rounded and symmetrical shapes, values of σ and θ(jam) are not affected by the presence of anisotropy. We finally analyze the properties of the anisotropic RSA of polydisperse mixtures of k-mers. Strong dependencies of the parameter σ and the jamming coverage θ(jam) on the degree of anisotropy are obtained. It is found that anisotropic constraints lead to the increased contribution of the longer k-mers in the total coverage fraction of the mixture.

  19. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures.

    PubMed

    Larter, Raima; Speelman, Brent; Worth, Robert M.

    1999-09-01

    A coupled ordinary differential equation lattice model for the CA3 region of the hippocampus (a common location of the epileptic focus) is developed. This model consists of a hexagonal lattice of nodes, each describing a subnetwork consisting of a group of prototypical excitatory pyramidal cells and a group of prototypical inhibitory interneurons connected via on/off excitatory and inhibitory synapses. The nodes communicate using simple rules to simulate the diffusion of extracellular potassium. Both the integration time over which a node's trajectory is integrated before the diffusional event is allowed to occur and the level of inhibition in each node were found to be important parameters. Shorter integration times lead to total synchronization of the lattice (similar to synchronous neural activity occurring during a seizure) whereas longer times cause more random spatiotemporal behavior. Moderately diminished levels of inhibition lead to simple nodal oscillatory behavior. It is postulated that both the lack of inhibition and an alteration in conduction time may be necessary for the development of a behaviorally manifest seizure. (c) 1999 American Institute of Physics.

  20. Fast Off-Lattice Monte Carlo Simulations with a Novel Soft-Core Spherocylinder Model

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Zhang, Xinghua; Wang, Qiang (David)

    2011-03-01

    Fast off-lattice Monte Carlo simulations with soft-core repulsive potentials that allow particle overlapping give orders of magnitude faster/better sampling of the configurational space than conventional molecular simulations with hard-core repulsions (such as in the Lennard-Jones potential). Here we present our fast off-lattice Monte Carlo simulations on the structures and phase transitions of liquid crystals and rod-coil diblock copolymers based on a novel and computationally efficient anisotropic soft-core potential that gives exact treatment of the excluded-volume interactions between two spherocylinders (thus the orientational interaction between them favoring their parallel alignment). Our model further takes into account the degree of overlap of two spherocylinders, thus superior to other soft-core models that depend only on their shortest distance. It has great potential applications in the study of liquid crystals, block copolymers containing rod blocks, and liquid crystalline polymers. Q. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009).

  1. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.

    PubMed

    Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.

  2. Lattice Microbes: high-performance stochastic simulation method for the reaction-diffusion master equation

    PubMed Central

    Roberts, Elijah; Stone, John E.; Luthey-Schulten, Zaida

    2013-01-01

    Spatial stochastic simulation is a valuable technique for studying reactions in biological systems. With the availability of high-performance computing, the method is poised to allow integration of data from structural, single-molecule, and biochemical studies into coherent computational models of cells. Here we introduce the Lattice Microbes software package for simulating such cell models on high-performance computing systems. The software performs either well-stirred or spatially resolved stochastic simulations with approximated cytoplasmic crowding in a fast and efficient manner. Our new algorithm efficiently samples the reaction-diffusion master equation using NVIDIA GPUs and is shown to be two orders of magnitude faster than exact sampling for large systems while maintaining an accuracy of ∼0.1%. Display of cell models and animation of reaction trajectories involving millions of molecules is facilitated using a plug-in to the popular VMD visualization platform. The Lattice Microbes software is open source and available for download at http://www.scs.illinois.edu/schulten/lm. PMID:23007888

  3. Lattice Microbes: high-performance stochastic simulation method for the reaction-diffusion master equation.

    PubMed

    Roberts, Elijah; Stone, John E; Luthey-Schulten, Zaida

    2013-01-30

    Spatial stochastic simulation is a valuable technique for studying reactions in biological systems. With the availability of high-performance computing (HPC), the method is poised to allow integration of data from structural, single-molecule and biochemical studies into coherent computational models of cells. Here, we introduce the Lattice Microbes software package for simulating such cell models on HPC systems. The software performs either well-stirred or spatially resolved stochastic simulations with approximated cytoplasmic crowding in a fast and efficient manner. Our new algorithm efficiently samples the reaction-diffusion master equation using NVIDIA graphics processing units and is shown to be two orders of magnitude faster than exact sampling for large systems while maintaining an accuracy of !0.1%. Display of cell models and animation of reaction trajectories involving millions of molecules is facilitated using a plug-in to the popular VMD visualization platform. The Lattice Microbes software is open source and available for download at http://www.scs.illinois.edu/schulten/lm Copyright © 2012 Wiley Periodicals, Inc.

  4. MBAR-enhanced lattice Monte Carlo simulation of the effect of helices on membrane protein aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Yuanwei; Rodger, P. Mark

    2017-03-01

    We study the effect of helical structure on the aggregation of proteins using a simplified lattice protein model with an implicit membrane environment. A recently proposed Monte Carlo approach, which exploits the proven statistical optimality of the MBAR estimator in order to improve simulation efficiency, was used. The results show that with both two and four proteins present, the tendency to aggregate is strongly expedited by the presence of amphipathic helix (APH), whereas a transmembrane helix (TMH) slightly disfavours aggregation. When four protein molecules are present, partially aggregated states (dimers and trimers) were more common when the APH was present, compared with the cases where no helices or only the TMH is present.

  5. Phase diagram of a bidispersed hard-rod lattice gas in two dimensions

    NASA Astrophysics Data System (ADS)

    Kundu, Joyjit; Stilck, Jürgen F.; Rajesh, R.

    2015-12-01

    We obtain, using extensive Monte Carlo simulations, virial expansion and a high-density perturbation expansion about the fully packed monodispersed phase, the phase diagram of a system of bidispersed hard rods on a square lattice. We show numerically that when the length of the longer rods is 7, two continuous transitions may exist as the density of the longer rods is increased, keeping the density of shorter rods fixed: first from a low-density isotropic phase to a nematic phase, and second from the nematic to a high-density isotropic phase. The difference between the critical densities of the two transitions decreases to zero at a critical density of the shorter rods so that the fully packed phase is disordered for any composition. When both the rod lengths are larger than 6, we observe the existence of two transitions along the fully packed line as the composition is varied. Low-density virial expansion, truncated at the second virial coefficient, reproduces features of the first transition. By developing a high-density perturbation expansion, we show that when one of the rods is long enough, there will be at least two isotropic-nematic transitions along the fully packed line as the composition is varied.

  6. Position-space renormalization of the self-avoiding loop gas on the square lattice

    NASA Astrophysics Data System (ADS)

    Biedermann, K. H.; Helfrich, W.

    1983-06-01

    We propose a general method to renormalize statistical collections of loops on a lattice. It employs the ratio of the statistical weights of different “macroconfigurations”. A calculation involving up to 4 × 4 unit cells yields ν ≈ 1.04 for non-intersecting loops of multiplicity one on the square lattice.

  7. Real-time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-06-01

    Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.

  8. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  9. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations: Compression of grafted homopolymers

    SciTech Connect

    Zhang, Pengfei; Wang, Qiang

    2014-01-28

    Using fast lattice Monte Carlo (FLMC) simulations [Q. Wang, Soft Matter 5, 4564 (2009)] and the corresponding lattice self-consistent field (LSCF) calculations, we studied a model system of grafted homopolymers, in both the brush and mushroom regimes, in an explicit solvent compressed by an impenetrable surface. Direct comparisons between FLMC and LSCF results, both of which are based on the same Hamiltonian (thus without any parameter-fitting between them), unambiguously and quantitatively reveal the fluctuations/correlations neglected by the latter. We studied both the structure (including the canonical-ensemble averages of the height and the mean-square end-to-end distances of grafted polymers) and thermodynamics (including the ensemble-averaged reduced energy density and the related internal energy per chain, the differences in the Helmholtz free energy and entropy per chain from the uncompressed state, and the pressure due to compression) of the system. In particular, we generalized the method for calculating pressure in lattice Monte Carlo simulations proposed by Dickman [J. Chem. Phys. 87, 2246 (1987)], and combined it with the Wang-Landau–Optimized Ensemble sampling [S. Trebst, D. A. Huse, and M. Troyer, Phys. Rev. E 70, 046701 (2004)] to efficiently and accurately calculate the free energy difference and the pressure due to compression. While we mainly examined the effects of the degree of compression, the distance between the nearest-neighbor grafting points, the reduced number of chains grafted at each grafting point, and the system fluctuations/correlations in an athermal solvent, the θ-solvent is also considered in some cases.

  10. Low noise optical lattices for a Li-6 Fermi gas microscope

    NASA Astrophysics Data System (ADS)

    Mazurenko, Anton; Parsons, Maxwell; Chiu, Christie; Huber, Florian; Blatt, Sebastian; Greiner, Markus

    2015-05-01

    We report on recent progress towards single-site resolved imaging of fermions in an optical lattice. Fermionic 6-Li atoms are trapped in an optical lattice 10 μm below a high-quality reference surface in the image plane of a high resolution (NA 0.85) imaging system. We have created a highly intensity-stable optical lattice whose depth remains adjustable over three orders of magnitude. The high optical resolution enables a band mapping technique that allows detection of less than 1000 atoms in the ground band of the lattice. We use this technique to measure the decay of the radial ground band population and find lifetimes up to 70 seconds, limited by spontaneous scattering of lattice light. ARO DARPA OLE, ARO MURI, NSF, AFOSR MURI, and The Moore Foundation.

  11. A New Position-Space Renormalization-Group Approach for Non-Equilibrium Systems and its Application to the Three-State Driven Lattice Gas

    NASA Astrophysics Data System (ADS)

    Georgiev, Ivan T.; McKay, Susan R.

    2004-03-01

    We have introduced a general position-space renormalization-group approach for non-equilibrium systems developed from the microscopic master equation. The method is based upon a closed form representation of the parameters of the system in terms of the steady state probability distribution of small clusters. From the master equation in terms of these small clusters, we build recursion relations linking parameters affecting transition rates on various length scales and determine the flow topology. Results for the three-state driven lattice gas show many of the expected features associated with the phase diagrams previously reported for this system, (G. Korniss, B. Schmittmann, and R.K.P. Zia, Non-Equilibrium Phase Transitions in a Simple Three-State Lattice Gas, J. Stat. Phys. 86, 721 (1997).)in excellent agreement with simulations. The flow diagrams also exhibit added complexities, suggesting multiple regions within the ordered phase for some values of parameters and the presence of an extra "source" fixed point. (I.T. Georgiev, U. of Maine Ph.D. Thesis (2003); I.T. Georgiev and S.R. McKay, in preparation.)

  12. Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Hlushkou, Dzmitry; Kandhai, Drona; Tallarek, Ulrich

    2004-10-01

    In this article we are concerned with an extension of the lattice-Boltzmann method for the numerical simulation of three-dimensional electroosmotic flow problems in porous media. Our description is evaluated using simple geometries as those encountered in open-channel microfluidic devices. In particular, we consider electroosmosis in straight cylindrical capillaries with a (non)uniform zeta-potential distribution for ratios of the capillary inner radius to the thickness of the electrical double layer from 10 to 100. The general case of heterogeneous zeta-potential distributions at the surface of a capillary requires solution of the following coupled equations in three dimensions: Navier-Stokes equation for liquid flow, Poisson equation for electrical potential distribution, and the Nernst-Planck equation for distribution of ionic species. The hydrodynamic problem has been treated with high efficiency by code parallelization through the lattice-Boltzmann method. For validation velocity fields were simulated in several microcapillary systems and good agreement with results predicted either theoretically or obtained by alternative numerical methods could be established. Results are also discussed with respect to the use of a slip boundary condition for the velocity field at the surface.

  13. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  14. Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Hauke, P.; Marcos, D.; Dalmonte, M.; Zoller, P.

    2013-10-01

    We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints, provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-dependent properties, we study the underlying microscopic model and discuss undesired interaction terms and other imperfections. As our analysis shows, the proposed scheme allows for the observation in realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay. Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of only four ions in a simpler experimental setup, which enables us to probe basic physical phenomena related to the full many-body problem. The proposal opens a new route for analog quantum simulation of high-energy and condensed-matter models where gauge symmetries play a prominent role.

  15. Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Tang, G. H.; Wang, Y.

    2016-06-01

    In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.

  16. Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Sahraoui, Nassim M.; Houat, Samir; Saidi, Nawal

    2017-05-01

    We perform a contribution with a simulation study of the mixed convection in horizontal channel heated from below. The lattice Boltzmann method (LBM) is used with the Boussinesq approximation to solve the coupled phenomenon that governs the systems thermo-hydrodynamics. The double populations thermal lattice Boltzmann model (TLBM) is used with the D2Q5 for the thermal field and D2Q9 model for the dynamic field. A comparison of the results of the averaged Nusselt number obtained by the TLBM with other references is presented for an area stretching. The streamlines, the vortices, the isotherms, the velocity profiles and other parameters of the study, are presented at a certain time tT which is chosen arbitrarily. The results presented here are in good agreement with those reported in the scientific literature which gives us high expectations about the reliability of the TLBM to simulate this kind of physical phenomena. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  17. Macropore Flow in Soil Columns: Investigations with Computer Tomography and Lattice Boltzmann Simulations

    NASA Astrophysics Data System (ADS)

    Schaap, M. G.; Tuller, M.; Guber, A.; Martin, M. A.; Martinez, F. S.; Pachepsky, Y.

    2007-12-01

    Soil structure greatly affects the ability of soil to transmit and to retain water, chemicals, and colloidal particles that can carry contaminants or be contaminants themselves, e.g. pathogenic microorganisms. No theory or empirical relationships have been developed to date to quantitatively relate parameters of soil structure and parameters of the contaminant transport in soils. The absence of theoretical advances in this area seriously hampers the ability to address issues of public concern, e.g. spread of contaminants introduced in the environment by agricultural activities. Recently, computer tomography of soils has become available to generate detailed images of soil pore space with high resolution and density. Successful applications of computer tomography in medical and material sciences show the great potential of this technique to create an exhaustive characterization of soil structure heterogeneity. In this presentation we investigate saturated flow through twelve undisturbed macroporous soil columns (7.62- cm sample diameter and 18-cm length) with lattice Boltzmann simulations. Saturated flow was measured for the complete columns, as well as on 2 cm sections for selected columns. Computed X-Ray tomography was performed on each of the columns, using the 420 kV X-ray source of a HYTEC FlashCT high-speed industrial CT scanner. The resolution was 116 microns per voxel, yielding a final tomography image of 656x656x1482 (~ 6.3 10E8) voxels. X-Ray CT observations typically provide "gray-scale" representations of the imaged object that must be segmented to yield discrete pore and particle geometry. Many segmentation algorithms are available, each yielding different final pore geometries thus potentially creating uncertainties in subsequent flow analyses. Lattice Boltzmann (LB) simulations will be presented only for some of the columns as the simulations are extremely computationally intensive (each simulation requires ~ 60 GB of computer RAM at the observed

  18. The Lattice Kinetic Monte Carlo Simulation of Atomic Diffusion and Structural Transition for Gold

    PubMed Central

    He, Xiang; Cheng, Feng; Chen, Zhao-Xu

    2016-01-01

    For the kinetic simulation of metal nanoparticles, we developed a self-consistent coordination-averaged energies for Au atoms based on energy properties of gold bulk phases. The energy barrier of the atom pairing change is proposed and holds for the microscopic reversibility principle. By applying the lattice kinetic Monte Carlo simulation on gold films, we found that the atomic diffusion of Au on the Au(111) surface undergoes a late transition state with an energy barrier of about 0.2 eV and a prefactor between 40~50 Å2/ps. This study also investigates the structural transition from spherical to faceted gold nanoparticles upon heating. The temperatures of structural transition are in agreement with the experimental melting temperatures of gold nanoparticles with diameters ranging from 2 nm to 8 nm. PMID:27629538

  19. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping

    2005-12-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  20. Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect

    NASA Astrophysics Data System (ADS)

    de Rosis, Alessandro

    2014-02-01

    In this paper, numerical analysis aiming at simulating biological organisms immersed in a fluid are carried out. The fluid domain is modeled through the lattice Boltzmann (LB) method, while the immersed boundary method is used to account for the position of the organisms idealized as rigid bodies. The time discontinuous Galerkin method is employed to compute body motion. An explicit coupling strategy to combine the adopted numerical methods is proposed. The vertical take-off of a couple of butterflies is numerically simulated in different scenarios, showing the mutual interaction that a butterfly exerts on the other one. Moreover, the effect of lateral wind is investigated. A critical threshold value of the lateral wind is defined, thus corresponding to an increasing arduous take-off.

  1. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    SciTech Connect

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  2. Photonic lattice simulation of dissipation-induced correlations in bosonic systems

    PubMed Central

    Rai, Amit; Lee, Changhyoup; Noh, Changsuk; Angelakis, Dimitris G.

    2015-01-01

    We propose an optical simulation of dissipation-induced correlations in one-dimensional (1D) interacting bosonic systems, using a two-dimensional (2D) array of linear photonic waveguides and only classical light. We show that for the case of two bosons in a 1D lattice, one can simulate on-site two-body dissipative dynamics using a linear 2D waveguide array with lossy diagonal waveguides. The intensity distribution of the propagating light directly maps out the wave function, allowing one to observe the dissipation-induced correlations with simple measurements. Beyond the on-site model, we also show that a generalised model containing nearest-neighbour dissipative interaction can be engineered and probed in the proposed set-up. PMID:25708778

  3. Lattice-Boltzmann Simulation of Tablet Dissolution in Complex Hydrodynamic Environment

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaolong; Sun, Ning; Park, Taeshin; Ko, Glen H.; Gersappe, Dilip

    2015-03-01

    Using the Lattice-Boltzmann method, we developed a 3D model to study the tablet dissolution process in a complex hydrodynamic environment involving spatially varying velocity and shear forces. The results show that a turbulent flow is formed in the region above the tablet, which has been obtained by visualization experiments. The dissolution profiles were obtained by incorporating detailed kinetics, showing good agreement with case studies from literature. After studying the influence of the paddle speed and the size of the system, we simulated the dissolution process for multicomponent tablets. Our results indicate how the hydrodynamic environment would affect the dissolution process by changing the local concentration of components near the tablet as well as by the particle erosion under high fluid velocity. Since the code was successfully parallelized, the simulation for comparatively large systems is possible now.

  4. Simulation of liquid-vapour phase transitions and multiphase flows by an improved lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Yang, Chen; He, Hangxing

    2015-10-01

    An improved lattice Boltzmann (LB) model with a new scheme for the interparticle interaction force term is proposed in this paper. Based on the improved LB model, the equation-free method is implemented for simulating liquid-vapour phase change and multiphase flows. The details of phase separation are presented by numerical simulation results in terms of coexistence curves and spurious currents. Compared with existing models, the proposed model can give more accurate results in a wider temperature range with the spurious currents reduced and less time consumed. Characteristics of phase separation can be quickly and accurately reflected by the proposed method. Then, the contact angle of the solid surface is numerically investigated based on the proposed model. The proposed model is valid for steady flow with near zero velocity; unsteady cases will be investigated in further studies. This work will be helpful for our long-term aim of multi-scale modelling of convective boiling.

  5. Hybrid Lattice Boltzmann Method for the Simulation of Blending Process in Static Mixers

    NASA Astrophysics Data System (ADS)

    Latt, Jonas; Kontaxakis, Dimitrios; Chatagny, Laurent; Muggli, Felix; Chopard, Bastien

    2013-12-01

    A lattice Boltzmann method is proposed to simulate the blending of two fluids in static, laminar mixers. The method uses a mesh-based algorithm to solve for the fluid flow, and a meshless technique to trace the interface between the blended fluids. This hybrid approach is highly accurate, because the position of the interface can be traced beyond the resolution of the grid. The numerical diffusion is negligible in this model, and it is possible to reproduce mixing patterns that contain more than one hundred striations with high fidelity. The implementation of this method in the massively parallel library Palabos is presented, and simulation results are compared with experimental data to emphasize the accuracy of the results.

  6. Simulation of flow of mixtures through anisotropic porous media using a lattice Boltzmann model.

    PubMed

    Mendoza, M; Wittel, F K; Herrmann, H J

    2010-08-01

    We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, advection-diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by advection-diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, solid interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.

  7. Surface-ascension of discrete liquid drops via experimental reactive wetting and lattice Boltzmann simulation.

    PubMed

    Mo, Gary C H; Liu, Wei-Yang; Kwok, Daniel Y

    2005-06-21

    The reactive-wetting technique is employed to move liquid against gravitational force. Experiments have shown that the velocity of an ascending liquid drop is constant, unlike the gradual decrease intuitively linked to objects against gravitation. The ascending velocity decreases for increasing slope. The maximum inclination, or stopping, angle for this particular setup is >25 degrees . Computer simulation of a reactive-wetting drop using the lattice Boltzmann method is also performed. The results indicate that the method employed is suitable for the task, producing most experimentally observable responses. The mass flow of a liquid drop under reactive wetting was studied through simulation results, and a general description of the reactive-wetting phenomenon was deduced.

  8. Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity

    PubMed Central

    2011-01-01

    A lattice Boltzmann model is developed by coupling the density (D2Q9) and the temperature distribution functions with 9-speed to simulate the convection heat transfer utilizing Al2O3-water nanofluids in a square cavity. This model is validated by comparing numerical simulation and experimental results over a wide range of Rayleigh numbers. Numerical results show a satisfactory agreement between them. The effects of Rayleigh number and nanoparticle volume fraction on natural convection heat transfer of nanofluid are investigated in this study. Numerical results indicate that the flow and heat transfer characteristics of Al2O3-water nanofluid in the square cavity are more sensitive to viscosity than to thermal conductivity. PMID:21711683

  9. Lattice Boltzmann Simulations for High Density Ratio Flows of Multiphase Fluids

    NASA Astrophysics Data System (ADS)

    Wei, Yikun; Qian, Yuehong

    2010-11-01

    In the present communication, we will show that the compression effect of the Redlich-Kwong equation of state(EOS) is lower than that of the van der Waals (vdW) EOS. The Redlich-Kwong equation of state has a better agreement with experimental data for the coexistence curve than the van derWaals (vdW) EOS. We implement the Redlich-Kwong EOS in the lattice Boltzmann simulations via a pseudo-potential. As a result, multi-phase flows with large density ratios may be simulated, thus many real applications in engineering problems can be applied. Acknowledgement: This research is supported in part by Ministry of Education in China via project IRT0844 and NSFC project 10625210 and Shanghai Sci and Tech. Com. Project 08ZZ43

  10. Simulation of Droplets Collisions Using Two-Phase Entropic Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Mazloomi Moqaddam, A.; Chikatamarla, S. S.; Karlin, I. V.

    2015-12-01

    The recently introduced entropic lattice Boltzmann model for multiphase flows (Mazloomi et al. in Phys Rev Lett 114:174502, 2015) is used to simulate binary droplet collisions. The entropy-based stabilization, together with a new polynomial equation of state, enhances performance of the model and allow us to simulate droplet collision for various Weber and Reynolds numbers and large liquid to vapor density ratio. Different types of droplet collision outcomes, namely coalescence, stretching separation and reflexive separation are recovered in a range of impact parameter for two equal sized droplets. The results demonstrated the essential role played by the surface tension, kinematic viscosity, impact parameter and relative velocity in the droplet collision dynamics leading to coalescence or separation collision outcomes. Comparison between numerical results and experiments in both coalescence and separation collisions demonstrate viability of the presented model.

  11. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye

    2013-10-01

    Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis , IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/hxr008 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

  12. Lattice Boltzmann simulation of coalescence of multiple droplets on nonideal surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchao

    2015-11-01

    The interaction dynamics of droplets on a solid surface is a fundamental problem that is important to a wide variety of industrial applications, such as inkjet printing. Most previous research has focused on a single droplet and little research has been reported on the dynamics of multiple-droplet interactions on surfaces. Recently, Zhou et al. [W. Zhou, D. Loney, A. G. Fedorov, F. L. Degertekin, and D. W. Rosen, Lattice Boltzmann simulations of multiple-droplet interaction dynamics, Phys. Rev. E 89, 033311 (2014), 10.1103/PhysRevE.89.033311] reported an efficient numerical solver based on the lattice Boltzmann method (LBM) that enabled the simulation of the multiple-droplet interaction dynamics on an ideal surface (i.e., smooth and homogeneous). In order to predict the interaction dynamics in the real world, it is necessary to take into consideration the contact angle hysteresis phenomenon on a nonideal surface, which is possibly caused by the surface roughness and chemical inhomogeneity of the surface. In this paper a dynamic contact angle boundary condition is developed to take into account the contact angle hysteresis effect based on the previously reported LBM. The improved LBM is validated with experimental data from the literature. The influence of the droplet impact conditions (e.g., fluid properties and impingement velocity), droplet spacing, and surface conditions on the two-droplet interaction dynamics is investigated with the validated LBM. Interesting phenomena are observed and discussed. The interaction of a line of six droplets on a nonideal surface is simulated to demonstrate the powerful capability of the developed numerical solver in simulating the multiple-droplet interaction dynamics in the real world.

  13. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.

    PubMed

    Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye

    2013-10-01

    Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

  14. Simulation by using the lattice Boltzmann method of microscopic particle motion induced by artificial cilia

    NASA Astrophysics Data System (ADS)

    Alapati, Suresh; Che, Woo Seong; Mannoor, Madhusoodanan; Suh, Yong Kweon

    2016-06-01

    In this paper, we present the results obtained from the simulation of particle motion induced by the fluid flow driven by an array of beating artificial cilia inside a micro-channel. A worm-like-chain model is used to simulate the elastic cilia, and the lattice Boltzmann equation is used to compute the fluid flow. We employ a harmonic force at the extreme tip of each cilium to actuate it. Our simulation methods are first validated by applying them to the motion of a single cilium and a freely falling sphere. After validation, we simulate the fluid flow generated by an array of beating cilia and find that a maximum flow rate is achieved at an optimum sperm number. Next, we simulate the motion of a neutrally buoyant spherical particle at this optimum sperm number by tracking the particle motion with a smoothed profile method. We address the effect of the following parameters on the particle velocity: the gap between cilia and particle, the particle size, the cilia density, and the presence of an array of intermediate particles.

  15. Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach

    NASA Technical Reports Server (NTRS)

    Menon, S.; Feiz, H.

    1990-01-01

    Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.

  16. Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid

    NASA Astrophysics Data System (ADS)

    Lu, Zhenyu; Liao, Ying; Qian, Dongying; McLaughlin, J. B.; Derksen, J. J.; Kontomaris, K.

    2002-09-01

    A nonuniform grid lattice Boltzmann technique previously described by He et al. [1] has been extended to simulate three-dimensional flows in complex geometries. The technique is applied to the computation of the turbulent flow in a stirred tank driven by a standard Rushton turbine. With the nonuniform grid approach, the total CPU time required for a simulation of the flow in a stirred tank can be reduced by roughly 75% and still provide the same spatial accuracy as would be obtained with a uniform high-resolution grid. Statistical results for the computed flow fields will be compared with experimental results (H. Wu and G. K. Patterson, Chem. Eng. Sci.44, 2207 (1989)) and with simulations by J. G. M. Eggels ( Int. J. Heat Fluid Flow17, 307 (1996)) and J. J. Derksen and H. E. A. Van den Akker ( AIChE J.45, 209 (1999)). The results of the nonuniform mesh simulation are in reasonable agreement with the available experimental data and the results of previous simulations.

  17. Simulation of Two Phase Fluid Flow With Various Kinds of Barriers Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Wijaya, Imam; Purqon, Acep

    2016-08-01

    Multiphase fluid flow in a pore medium is a problem that is very interesting to be learned. In its flow, the fluid can experience a few of barriers / obstacles like the exsisting of things in the flow medium. The existence of the barriers can detain the rate speed of the fluid flow. The barries that its form is different will provide influence to the speed of of fluid flow that is different as well. To know the influence of barriers form twards the profile of fluid speed rate, is conducted by the simulation by using Lattice Boltzmann Methode (LBM). In this simulation, the barriers is varied in the form of circle, square, and ellips. From simulation that is conducted, to known the influence of barriers variations twards the fluid speed, ploted by the graph of the fluid speed relations along simulation time and plotted by the fluid speed vector in each posisition. From the simulation, it is obtained that the barriers with square formed produced the higest speed rate of the fluid flow, with the speed rate 0.26 lu/ts, then circle formed with the speed rate 0.24 lu/ts, and the last square formed with speed rate 0.24 lu/ts.

  18. Lattice Boltzmann simulation of rising bubble dynamics using an effective buoyancy method

    NASA Astrophysics Data System (ADS)

    Ngachin, Merlin; Galdamez, Rinaldo G.; Gokaltun, Seckin; Sukop, Michael C.

    2015-08-01

    This study describes the behavior of bubbles rising under gravity using the Shan and Chen-type multicomponent multiphase lattice Boltzmann method (LBM) [X. Shan and H. Chen, Phys. Rev. E47, 1815 (1993)]. Two-dimensional (2D) single bubble motions were simulated, considering the buoyancy effect for which the topology of the bubble was characterized by the nondimensional Eötvös (Eo), and Morton (M) numbers. In this study, a new approach based on the "effective buoyancy" was adopted and proven to be consistent with the expected bubble shape deformation. This approach expands the range of effective density differences between the bubble and the liquid that can be simulated. Based on the balance of forces acting on the bubble, it can deform from spherical to ellipsoidal shape with skirts appearing at high Eo number. A benchmark computational case for qualitative and quantitative validation was performed using COMSOL Multiphysics based on the level set method. Simulations were conducted for 1 ≤ Eo ≤ 100 and 3 × 10-6 ≤ M ≤ 2.73 × 10-3. Interfacial tension was checked through simulations without gravity, where Laplace's law was satisfied. Finally, quantitative analyses based on the terminal rise velocity and the degree of circularity was performed for various Eo and M values. Our results were compared with both the theoretical shape regimes given in literature and available simulation results.

  19. Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Park, J.; Matsubara, M.; Li, X.

    The electrode of a PEM fuel cell is a porous medium generally made of carbon cloth or paper. Such a porous electrode has been widely modeled as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. In fact, most of gas diffusion media are not homogeneous having non-isotropic permeability. In case of carbon cloth, the porous structure consists of carbon fiber tows, the bundles of carbon fiber, and void spaces among tows. The combinational effect of the void space and tow permeability results in the effective permeability of the porous electrode. In this work, the lattice Boltzmann method is applied to the simulation of the flow in the electrode of a PEM fuel cell. The electrode is modeled as void space and porous region which has certain permeability and the Stokes and Brinkman equations are solved in the flow field using the lattice Boltzmann model. The effective permeability of the porous medium is calculated and compared to an analytical calculation showing a good agreement. It has been shown that the permeability of porous medium is strongly dependant on the fiber tow orientation in three-dimensional simulations. The lattice Boltzmann method is an efficient and effective numerical scheme to analyze the flow in a complicated geometry such as the porous medium.

  20. An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.

    2010-07-01

    The recently proposed boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) [14] is improved in this work to simulate three-dimensional incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-calculated, and the non-slip boundary condition is not enforced as compared to body-fitted solvers. As a result, there is a flow penetration to the solid boundary. This drawback was removed by the new version of IB-LBM [14], in which the restoring force is considered as unknown and is determined in such a way that the non-slip boundary condition is enforced. Since Eulerian points are also defined inside the solid boundary, the computational domain is usually regular and the Cartesian mesh is used. On the other hand, to well capture the boundary layer and in the meantime, to save the computational effort, we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field. The final expression of TLLBM is an algebraic formulation with some weighting coefficients. These coefficients could be computed in advance and stored for the following computations. However, this way may become impractical for 3D cases as the memory requirement often exceeds the machine capacity. The other way is to calculate the coefficients at every time step. As a result, extra time is consumed significantly. To overcome this drawback, in this study, we propose a more efficient approach to solve lattice Boltzmann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed approach needs much less computational time and virtual storage. Its good accuracy and efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic cavity flow. To valid the combination of proposed approach with the new version of IBM [14] for 3D flows

  1. Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Guo, Pengfei; Guan, Yong; Liu, Gang; Liang, Zhiting; Liu, Jianhong; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao

    2016-09-01

    This work reports an investigation of the impact of microstructure on the performance of solid oxide fuel cells (SOFC) composed of nickel yttria-stabilized zirconia (Ni YSZ). X-ray nano computed tomography (nano-CT) was used to obtain three-dimensional (3D) models of Ni-YSZ composite anode samples subjected to different thermal cycles. Key parameters, such as triple phase boundary (TPB) density, were calculated using 3D reconstructions. The electrochemical reaction occurring at active-TPB was modeled by the Lattice Boltzmann Method for simulation of multi-component mass transfer in porous anodes. The effect of different electrode geometries on the mass transfer and the electrochemical reaction in anodes was studied by TPB distributions measured by nano CT for samples subjected to different thermal cycles. The concentration polarization and the activation polarization were estimated respectively. The results demonstrate that a combined approach involving nano-CT experiments in conjunction with simulations of gas transport and electrochemical reactions using the Lattice Boltzmann method can be used to better understand the relationship between electrode microstructure and performance of nickel yttria-stabilized zirconia anodes.

  2. Simulation of the gyroid phase in off-lattice models of pure diblock copolymer melts

    NASA Astrophysics Data System (ADS)

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2006-09-01

    Particle-based molecular simulations of pure diblock copolymer (DBC) systems were performed in continuum space via dissipative particle dynamics and Monte Carlo methods for a bead-spring chain model. This model consisted of chains of soft repulsive particles often used with dissipative particle dynamics. The gyroid phase was successfully simulated in DBC melts at selected conditions provided that the simulation box size was commensurate with the gyroid lattice spacing. Simulations were concentrated at conditions where the gyroid phase is expected to be stable which allowed us to outline approximate phase boundaries. When more than one phase was observed by varying simulation box size, thermodynamic stability was discerned by comparing the Helmholtz free energy of the competing phases. For this purpose, chemical potentials were efficiently simulated via an expanded ensemble that gradually inserts/deletes a target chain to/from the system. These simulations employed a novel combination of Bennett's [J. Comput. Phys. 22, 245 (1976)] acceptance-ratio method to estimate free-energy differences and a recently proposed method to get biasing weights that maximize the number of times that the target chain is regrown. The analysis of the gyroid nodes revealed clear evidence of packing frustration in the form of an (entropically) unfavorably overstretching of chains, a phenomenon that has been suggested to provide the structural basis for the limited region of stability of the gyroid phase in the DBC phase diagram. Finally, the G phase and nodal chain stretching were also found in simulations with a completely different DBC particle-based model.

  3. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods

    PubMed Central

    Axner, Lilit; Hoekstra, Alfons G; Jeays, Adam; Lawford, Pat; Hose, Rod; Sloot, Peter MA

    2009-01-01

    Background Systolic blood flow has been simulated in the abdominal aorta and the superior mesenteric artery. The simulations were carried out using two different computational hemodynamic methods: the finite element method to solve the Navier Stokes equations and the lattice Boltzmann method. Results We have validated the lattice Boltzmann method for systolic flows by comparing the velocity and pressure profiles of simulated blood flow between methods. We have also analyzed flow-specific characteristics such as the formation of a vortex at curvatures and traces of flow. Conclusion The lattice Boltzmann Method is as accurate as a Navier Stokes solver for computing complex blood flows. As such it is a good alternative for computational hemodynamics, certainly in situation where coupling to other models is required. PMID:19799782

  4. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.

    PubMed

    Axner, Lilit; Hoekstra, Alfons G; Jeays, Adam; Lawford, Pat; Hose, Rod; Sloot, Peter M A

    2009-10-02

    Systolic blood flow has been simulated in the abdominal aorta and the superior mesenteric artery. The simulations were carried out using two different computational hemodynamic methods: the finite element method to solve the Navier Stokes equations and the lattice Boltzmann method. We have validated the lattice Boltzmann method for systolic flows by comparing the velocity and pressure profiles of simulated blood flow between methods. We have also analyzed flow-specific characteristics such as the formation of a vortex at curvatures and traces of flow. The lattice Boltzmann Method is as accurate as a Navier Stokes solver for computing complex blood flows. As such it is a good alternative for computational hemodynamics, certainly in situation where coupling to other models is required.

  5. Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media.

    PubMed

    Wang, Junye; Zhang, Xiaoxian; Bengough, Anthony G; Crawford, John W

    2005-07-01

    The lattice Boltzmann method has proven to be a promising method to simulate flow in porous media. Its practical application often relies on parallel computation because of the demand for a large domain and fine grid resolution to adequately resolve pore heterogeneity. The existing domain-decomposition methods for parallel computation usually decompose a domain into a number of subdomains first and then recover the interfaces and perform the load balance. Normally, the interface recovery and the load balance have to be performed iteratively until an acceptable load balance is achieved; this costs time. In this paper we propose a cell-based domain-decomposition method for parallel lattice Boltzmann simulation of flow in porous media. Unlike the existing methods, the cell-based method performs the load balance first to divide the total number of fluid cells into a number of groups (or subdomains), in which the difference of fluid cells in each group is either 0 or 1, depending on if the total number of fluid cells is a multiple of the processor numbers; the interfaces between the subdomains are recovered at last. The cell-based method is to recover the interfaces rather than the load balance; it does not need iteration and gives an exact load balance. The performance of the proposed method is analyzed and compared using different computer systems; the results indicate that it reaches the theoretical parallel efficiency. The method is then applied to simulate flow in a three-dimensional porous medium obtained with microfocus x-ray computed tomography to calculate the permeability, and the result shows good agreement with the experimental data.

  6. SHIFT: An implementation for lattice Boltzmann simulation in low-porosity porous media

    NASA Astrophysics Data System (ADS)

    Ma, Jingsheng; Wu, Kejian; Jiang, Zeyun; Couples, Gary D.

    2010-05-01

    The lattice Boltzmann (LB) method has proven to be a promising method for simulating fluid dynamics in porous media. When fluid flow in pores is the only concern, a standard LB implementation, which stores one or two sets of particle distribution functions (PDFs) for both pore and solid cells, wastes a large amount of memory, especially for low-porosity media. This paper proposes a LB implementation scheme that stores a single set of PDFs for pore cells only and therefore makes it possible to simulate flow through larger and more-realistic porous models. A unique feature of this scheme is that it decomposes all PDFs into a set of 1D arrays in such a way that each array corresponds to a set of pore cells that connect one another along a pair of opposite LB velocity directions. This allows LB propagation and a standard bounce-back rule to be realized together as one or two circular shifting operations on every array. For this reason, this scheme is called SHIFT. Although PDFs are not stored in an efficient way for LB collision operation, it is shown that the incurred overhead could be reduced by properly arranging PDF arrays according to the pore structures. A D3Q15 LB implementation of SHIFT using the lattice Bhatnagar-Gross-Krook model is applied to simulate the Stokes flow through models of four natural and synthetic rock samples with porosities ranging from about 10% to 38%. Results show that SHIFT requires 36-82 % less memory than a comparable D3Q15 LB does, which stores a single set of PDF for both pore and solid cells. SHIFT achieves minimum performances of over 11 and 3.8 mega-lattice-updates-per-second (MLUPS) for the combined propagation and bounce-back operation and the collision operation, respectively, and therefore a minimum of 2.8 MLUPS in total on a computer with one AMD Opteron 2218. The performance of the collision operation is significantly improved for all cases when a simple K -mean clustering technique is employed to rearrange PDF arrays. It is

  7. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.

    PubMed

    Hejranfar, Kazem; Hajihassanpour, Mahya

    2015-01-01

    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary conditions based on the spectral solution of the governing equations implemented on the boundaries are used. An iterative procedure is applied to provide consistent initial conditions for the distribution function and the pressure field for the simulation of unsteady flows. The main advantage of using the CCSLBM over other high-order accurate lattice Boltzmann method (LBM)-based flow solvers is the decay of the error at exponential rather than at polynomial rates. Note also that the CCSLBM applied does not need any numerical dissipation or filtering for the solution to be stable, leading to highly accurate solutions. Three two-dimensional (2D) test cases are simulated herein that are a regularized cavity, the Taylor vortex problem, and doubly periodic shear layers. The results obtained for these test cases are thoroughly compared with the analytical and available numerical results and show excellent agreement. The computational efficiency of the proposed solution methodology based on the CCSLBM is also examined by comparison with those of the standard streaming-collision (classical) LBM and two finite-difference LBM solvers. The study indicates that the CCSLBM provides more accurate and efficient solutions than these LBM solvers in terms of CPU and memory usage and an exponential

  8. Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.

    2015-01-01

    Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.

  9. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.

    PubMed

    Poorgholami-Bejarpasi, Niaz; Hashemianzadeh, Majid; Mousavi-Khoshdel, S Morteza; Sohrabi, Beheshteh

    2010-09-07

    We have investigated micellization in systems containing two surfactant molecules with the same structure using a lattice Monte Carlo simulation method. For the binary systems containing two surfactants, we have varied the head-head interactions or tail-tail repulsions in order to mimic the nonideal behavior of mixed surfactant systems and to manipulate the net interactions between surfactant molecules. The simulation results indicate that interactions between headgroups or tailgroups have an effect on thermodynamic properties such as the mixed critical micelle concentration (cmc), distribution of aggregates, shape of the aggregates, and composition of the micelles formed. Moreover, we have compared the simulation results with estimates based on regular solution theory, a mean-field theory, to determine the applicability of this theory to the nonideal mixed surfactant systems. We have found that the simulation results agree reasonable well with regular solution theory for the systems with attractions between headgroups and repulsions between tailgroups. However, the large discrepancies observed for the systems with head-head repulsions could be attributed to the disregarding of the correlation effect on the interaction among surfactant molecules and the nonrandom mixing effect in the theory.

  10. Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling

    NASA Astrophysics Data System (ADS)

    Zarghami, Ahad; Looije, Niels; Van den Akker, Harry

    2015-08-01

    The pseudopotential lattice Boltzmann model (PP-LBM) is a very popular model for simulating multiphase systems. In this model, phase separation occurs via a short-range attraction between different phases when the interaction potential term is properly chosen. Therefore, the potential term is expected to play a significant role in the model and to affect the accuracy and the stability of the computations. The original PP-LBM suffers from some drawbacks such as being capable of dealing with low density ratios only, thermodynamic inconsistency, and spurious velocities. In this paper, we aim to analyze the PP-LBM with the view to simulate single-component (non-)isothermal multiphase systems at large density ratios and in spite of the presence of spurious velocities. For this purpose, the performance of two popular potential terms and of various implementation schemes for these potential terms is examined. Furthermore, the effects of different parameters (i.e., equation of state, viscosity, etc.) on the simulations are evaluated, and, finally, recommendations for a proper simulation of (non-)isothermal multiphase systems are presented.

  11. Lattice Boltzmann simulations of liquid crystal particulate flow in a channel with finite anchoring boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Roberts, Tyler; de Pablo, Juan; dePablo Team

    2014-11-01

    Liquid crystals (LC) posses anisotropic viscoelastic properties, and, as such, LC flow can be incredibly complicated. Here we employ a hybrid lattice Boltzmann method (pioneered by Deniston, Yeomans and Cates) to systematically study the hydrodynamics of nematic liquid crystals (LCs) with and without solid particles. This method evolves the velocity field through lattice Boltzmann and the LC-order parameter via a finite-difference solver of the Beris-Edwards equation. The evolution equation of the boundary points with finite anchoring is obtained through Poisson bracket formulation. Our method has been validated by matching the Ericksen-Leslie theory. We demonstrate two applications in the flow alignment regime. We first investigate a hybrid channel flow in which the top and bottom walls have different anchoring directions. By measuring the apparent shear viscosity in terms of Couette flow, we achieve a viscosity inhomogeneous system which may be applicable to nano particle processing. In the other example, we introduce a homeotropic spherical particle to the channel, and focus on the deformations of the defect ring due to anchorings and flow. The results are then compared to the molecular dynamics simulations of a colloid particle in an LC modeled by a Gay-Berne potential.

  12. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  13. Simulation of finite size particles in turbulent flows using entropic lattice boltzmann method

    NASA Astrophysics Data System (ADS)

    Gupta, Abhineet; Clercx, Herman J. H.; Toschi, Federico

    2016-11-01

    Particle-laden turbulent flows occur in variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we will present results on the development of numerical methods, based on the Lattice Boltzmann method, suitable for the study of suspensions of finite-size particles under turbulent flow conditions and with varying geometrical complexity. The turbulent flow is modeled by an entropic lattice Boltzmann method, and the interaction between particles and carrier fluid is modeled using bounce back rule. Direct contact and lubrication force models for particle-particle interactions and particle-wall interaction are taken into account to allow for a full four-way coupled interaction. The accuracy and robustness of the method is discussed by validating velocity profile in turbulent pipe flow, sedimentation velocity of spheres in duct flow and resistance functions of approaching particles. Results show that the velocity profiles and turbulence statistics can be significantly altered by the presence of the dispersed solid phase. The author is supported by Shell-NWO computational sciences for energy research (CSER) Grant (12CSER034).

  14. Parallel lattice Boltzmann simulation of bubble rising and coalescence in viscous flows

    NASA Astrophysics Data System (ADS)

    Shi, Dongyan; Wang, Zhikai

    2015-07-01

    A parallel three-dimensional lattice Boltzmann scheme for multicomponent immiscible fluids is proposed to simulate bubble rising and coalescence process in viscous flows. The lattice Boltzmann scheme is based on the free-energy model and is parallelized in the share-memory model by using the OpenMP. Bubble interface is described by a diffusion interface method solving the Cahn-Hilliard equation and both the surface tension force and the buoyancy are introduced in a form of discrete body force. To avoid the numerical instability caused by the interface deformation, the 18 point finite difference scheme is utilized to calculate the first- and second-order space derivative. The correction of the parallel scheme handling three-dimensional interfaces is verified by the Laplace law and the dynamic characteristics of an isolated bubble in stationary flows. Subsequently, effects of the initially relative position, accompanied by the size ratio on bubble-bubble interaction are studied. The results show that the present scheme can effectively describe the bubble interface dynamics, even if rupture and restructure occurs. In addition to the repulsion and coalescence phenomenon due to the relative position, the size ratio also plays an insignificant role in bubble deformation and trajectory.

  15. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    PubMed Central

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-01-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1−xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps. PMID:26471126

  16. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    NASA Astrophysics Data System (ADS)

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-10-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1-xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.

  17. Superfluid to Normal Fluid Phase Transition in the Bose Gas Trapped in Two-Dimensional Optical Lattices at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Pires, M. O. C.; de Passos, E. J. V.

    2017-02-01

    We develop the Hartree-Fock-Bogoliubov theory at finite temperature for Bose gas trapped in the two-dimensional optical lattice with the on-site energy low enough that the gas presents superfluid properties. We obtain the condensate density as function of the temperature neglecting the anomalous density in the thermodynamics equation. The condensate fraction provides two critical temperature. Below the temperature T_{C1}, there is one condensate fraction. Above two condensate fractions merger up to the critical temperature T_{C2}. At temperatures larger than T_{C2}, the condensate fraction is null and, therefore, the gas is normal fluid. We resume by a finite-temperature phase diagram where three domains can be identified: the normal fluid, the superfluid with one stable condensate fraction and the superfluid with two condensate fractions being unstable one of them.

  18. Discretization effects and the scalar meson correlator in mixed-action lattice simulations

    SciTech Connect

    Aubin, C.; Laiho, Jack; Van de Water, Ruth S.

    2008-06-01

    We study discretization effects in a mixed-action lattice theory with domain-wall valence quarks and Asqtad-improved staggered sea quarks. At the level of the chiral effective Lagrangian, discretization effects in the mixed-action theory give rise to two new parameters as compared to the lowest order Lagrangian for rooted-staggered fermions - the residual quark mass m{sub res} and the mixed valence-sea meson mass splitting {delta}{sub mix}. We find that m{sub res}, which parametrizes explicit chiral symmetry breaking in the mixed-action theory, is approximately one-quarter the size of our lightest valence quark mass on our coarser lattice spacing and of comparable size to that of simulations by the RBC and UKQCD Collaborations. We also find that the size of {delta}{sub mix} is comparable to the size of the smallest of the staggered meson taste splittings measured by the MILC Collaboration. Because lattice artifacts are different in the valence and sea sectors of the mixed-action theory, they give rise to unitarity-violating effects that disappear in the continuum limit, some of which should be described by mixed-action chiral perturbation theory (MA{chi}PT). Such effects are expected to be mild for many quantities of interest but are expected to be significant in the case of the isovector scalar (a{sub 0}) correlator. Specifically, once the parameters m{sub res}, {delta}{sub mix}, and two others that can be determined from the light pseudoscalar meson spectrum are known, the two-particle intermediate state 'bubble' contribution to the scalar correlator is completely predicted within MA{chi}PT. We find that the behavior of the scalar meson correlator is quantitatively consistent with the MA{chi}PT prediction; this supports the claim that MA{chi}PT describes the dominant unitarity-violating effects in the mixed-action theory and can therefore be used to remove lattice artifacts and recover physical quantities.

  19. Summary of HTGR (high-temperature gas-cooled reactor) benchmark data from the high temperature lattice test reactor

    SciTech Connect

    Newman, D.F.

    1989-10-01

    The High Temperature Lattice Test Reactor (HTLTR) was a unique critical facility specifically built and operated to measure variations in neutronic characteristics of high temperature gas cooled reactor (HTGR) lattices at temperatures up to 1000{degree}C. The Los Alamos National Laboratory commissioned Pacific Northwest Laboratory (PNL) to prepare this summary reference report on the HTLTR benchmark data and its associated documentation. In the initial stages of the program, the principle of the measurement of k{sub {infinity}} using the unpoisoned technique (developed by R.E. Heineman of PNL) was subjected to extensive peer review within PNL and the General Atomic Company. A number of experiments were conducted at PNL in the Physical Constants Testing Reactor (PCTR) using both the unpoisoned technique and the well-established null reactivity technique that substantiated the equivalence of the measurements by direct comparison. Records of all data from fuel fabrication, the reactor experiments, and the analytical results were compiled and maintained to meet applicable quality assurance standards in place at PNL. Sensitivity of comparisons between measured and calculated k{sub {infinity}}(T) data for various HTGR lattices to changes in neutron cross section data, graphite scattering kernel models, and fuel block loading variations, were analyzed by PNL for the Electric Power Research Institute. As a part of this effort, the fuel rod composition in the dilute {sup 233}UO{sub 2}-ThO{sub 2} HTGR central cell (HTLTR Lattice {number sign}3) was sampled and analyzed by mass spectrometry. Values of k{sub {infinity}} calculated for that lattice were about 5% higher than those measured. Trace quantities of sodium chloride were found in the fuel rod that were equivalent to 22 atom parts-per-million of natural boron.

  20. Tensor network simulation of QED on infinite lattices: Learning from (1 +1 ) d , and prospects for (2 +1 ) d

    NASA Astrophysics Data System (ADS)

    Zapp, Kai; Orús, Román

    2017-06-01

    The simulation of lattice gauge theories with tensor network (TN) methods is becoming increasingly fruitful. The vision is that such methods will, eventually, be used to simulate theories in (3 +1 ) dimensions in regimes difficult for other methods. So far, however, TN methods have mostly simulated lattice gauge theories in (1 +1 ) dimensions. The aim of this paper is to explore the simulation of quantum electrodynamics (QED) on infinite lattices with TNs, i.e., fermionic matter fields coupled to a U (1 ) gauge field, directly in the thermodynamic limit. With this idea in mind we first consider a gauge-invariant infinite density matrix renormalization group simulation of the Schwinger model—i.e., QED in (1 +1 ) d . After giving a precise description of the numerical method, we benchmark our simulations by computing the subtracted chiral condensate in the continuum, in good agreement with other approaches. Our simulations of the Schwinger model allow us to build intuition about how a simulation should proceed in (2 +1 ) dimensions. Based on this, we propose a variational ansatz using infinite projected entangled pair states (PEPS) to describe the ground state of (2 +1 ) d QED. The ansatz includes U (1 ) gauge symmetry at the level of the tensors, as well as fermionic (matter) and bosonic (gauge) degrees of freedom both at the physical and virtual levels. We argue that all the necessary ingredients for the simulation of (2 +1 ) d QED are, a priori, already in place, paving the way for future upcoming results.

  1. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    SciTech Connect

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  2. Lattice Boltzmann method simulating hemodynamics in the three-dimensional stenosed and recanalized human carotid bifurcations

    NASA Astrophysics Data System (ADS)

    Kang, XiuYing

    2015-01-01

    By using the lattice Boltzmann method (LBM) pulsatile blood flows were simulated in three-dimensional moderate stenosed and recanalized carotid bifurcations to understand local hemodynamics and its relevance in arterial atherosclerosis formation and progression. The helical flow patterns, secondary flow and wall dynamical pressure spatiotemporal distributions were investigated, which leads to the disturbed shear forces in the carotid artery bifurcations. The wall shear stress distributions indicated by time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and the relative residence time (RRT) in a cardiac cycle revealed the regions where atherosclerotic plaques are prone to form, extend or rupture. This study also illustrates the point that locally disturbed flow may be considered as an indicator for early atherosclerosis diagnosis. Additionally the present work demonstrates the robust and highly efficient advantages of the LBM for the hemodynamics study of the human blood vessel system.

  3. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  4. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    SciTech Connect

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  5. Lattice Boltzmann simulation of 3-dimensional natural convection heat transfer of CuO/water nanofluids

    NASA Astrophysics Data System (ADS)

    Alinejad, J.; Esfahani, J. A.

    2017-01-01

    The present study investigated fluid flow and natural convection heat transfer in an enclosure embedded with isothermal cylinder. The purpose was to simulate the three-dimensional natural convection by thermal lattice Boltzmann method based on the D3Q19 model. The effects of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different parameters such as particle volume fraction, particle diameters, and geometry aspect ratio. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) are effectively changed with different controlling parameters such as particle volume fraction (5 % ≤ φ ≤ 10 %), particle diameter ( d p = 10 nm to 30 nm) and aspect ratio (0.5 ≤ AR ≤ 2) with fixed Rayleigh number, Ra = 105. The present results give a good approximation for choosing an effective parameter to design a thermal system.

  6. Lattice Boltzmann Simulation of Droplets Impacting on Superhydrophobic Surfaces with Randomly Distributed Rough Structures.

    PubMed

    Yuan, Wu-Zhi; Zhang, Li-Zhi

    2017-01-24

    Superhydrophobic surfaces have attracted much attention in environmental control because of their excellent water-repellent properties. A successful design of superhydrophobic surfaces requires a correct understanding of the influences of surface roughness on water-repellent behaviors. Here, a new approach, a mesoscale lattice Boltzmann simulation approach, is proposed and used to model the dynamic behavior of droplets impacting on surfaces with randomly distributed rough microstructures. The fast Fourier transformation method is used to generate non-Gaussian randomly distributed rough surfaces, with the skewness and kurtosis obtained from real surfaces. Then, droplets impacting on the rough surfaces are modeled. It is found that the shape of droplet spreading is obviously affected by the distributions of surface asperity. Decreasing the skewness and keeping the kurtosis around 3 is an effective method to enhance the ability of droplet rebound. The new approach gives more detailed insights into the design of superhydrophobic surfaces.

  7. Monte Carlo simulations of a kagome lattice with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Holden, M. S.; Plumer, M. L.; Saika-Voivod, I.; Southern, B. W.

    2015-06-01

    The results of extensive Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state.

  8. Transverse Spin Structure of the Nucleon from Lattice-QCD Simulations

    SciTech Connect

    Goeckeler, M.; Schaefer, A.; Haegler, Ph.; Horsley, R.; Zanotti, J. M.; Nakamura, Y.; Pleiter, D.; Schierholz, G.

    2007-06-01

    We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h{sub 1}{sup perpendicular}, describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.

  9. Lattice Boltzmann Simulation of Healthy and Defective Red Blood Cell Settling in Blood Plasma.

    PubMed

    Hashemi, Z; Rahnama, M; Jafari, S

    2016-05-01

    In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid-membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

  10. Effect of lattice relaxation on thermal conductivity of fcc-based structures: an efficient procedure of molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ha, Min Young; Choi, Garam; Kim, Dong Hyun; Kim, Hyo Seok; Park, Sang Hyun; Lee, Won Bo

    2017-07-01

    This work studied the computational details of the Green-Kubo method with molecular dynamics (MD) simulation for thermal conductivity prediction. In MD thermal conductivity calculation, little consensus has been made about the inclusion of zero-pressure volume relaxation in the isobaric-isothermal (NpT) ensemble, which determines the simulation lattice parameters. Simulations of fcc-based structures with different lattice parameters were performed to calculate lattice thermal conductivities and phonon density of states, and the results were compared to experimental reports and ab initio results to conclude that NpT volume relaxation is crucial for accurate prediction of thermal conductivity. In addition, the relation between thermal conductivity and interatomic potential cutoff distance was also analysed in the context of lattice relaxation. The results suggested that calculated thermal conductivity is strictly dependent on the lattice parameter and essentially independent of the cutoff distance. It was also shown that reducing the cutoff distance can greatly accelerate the thermal conductivity calculation, even without sacrificing the accuracy of thermal conductivity.

  11. Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lenan; Jebakumar, Anand Samuel; Abraham, John

    2016-06-01

    In a recent experimental study by Lau and Nathan ["Influence of Stokes number on the velocity and concentration distributions in particle-laden jets," J. Fluid Mech. 757, 432 (2014)], it was found that particles in a turbulent pipe flow tend to migrate preferentially toward the wall or the axis depending on their Stokes number (St). Particles with a higher St (>10) are concentrated near the axis while those with lower St (<1) move toward the walls. Jebakumar et al. ["Lattice Boltzmann method simulations of Stokes number effects on particle trajectories in a wall-bounded flow," Comput. Fluids 124, 208 (2016)] have carried out simulations of a particle in a laminar channel flow to investigate this behavior. In their work, they report a similar behavior where particles with low St migrate toward the wall and oscillate about a mean position near the wall while those with high St oscillate about the channel center plane. They have explained this behavior in terms of the Saffman lift, Magnus lift, and wall repulsion forces acting on the particle. The present work extends the previous work done by Jebakumar et al. and aims to study the behavior of particles at intermediate St ranging from 10 to 20. It is in this range where the equilibrium position of the particle changes from near the wall to the axis and the particle starts oscillating about the axis. The Lattice Boltzmann method is employed to carry out this study. It is shown that the change in mean equilibrium position is related to increasing oscillations of the particle with mean position near the wall which results in the particle moving past the center plane to the opposite side. The responsible mechanisms are explained in detail.

  12. tmLQCD: A program suite to simulate Wilson twisted mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Jansen, Karl; Urbach, Carsten

    2009-12-01

    We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. Program summaryProgram title: tmLQCD Catalogue identifier: AEEH_v1_0 Program summary URL::http://cpc.cs.qub.ac.uk/summaries/AEEH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence (GPL) No. of lines in distributed program, including test data, etc.: 122 768 No. of bytes in distributed program, including test data, etc.: 931 042 Distribution format: tar.gz Programming language: C and MPI Computer: any Operating system: any with a standard C compiler Has the code been vectorised or parallelised?: Yes. One or optionally any even number of processors may be used. Tested with up to 32 768 processors RAM: no typical values available Classification: 11.5 External routines: LAPACK [1] and LIME [2] library Nature of problem: Quantum Chromodynamics Solution method: Markov Chain Monte Carlo using the Hybrid Monte Carlo algorithm with mass preconditioning and multiple time scales [3]. Iterative solver for large systems of linear equations. Restrictions: Restricted to an even number of (not necessarily mass degenerate) quark flavours in the Wilson or Wilson twisted mass formulation of lattice QCD. Running time: Depending on the problem size, the architecture and the input parameters from a few minutes to weeks. References:http://www.netlib.org/lapack/. USQCD, http://usqcd.jlab.org/usqcd-docs/c-lime/. C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174 (2006) 87, hep-lat/0506011.

  13. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Valocchi, Albert J.; Kang, Qinjun

    2012-04-01

    We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35simulations and experiments. Droplet breakup can also be promoted by increasing the Reynolds number. Finally, we numerically investigate a single bubble rising under buoyancy force in viscous fluids for a wide range of Eötvös and Morton numbers. Numerical results are compared with theoretical predictions and experimental results, and satisfactory agreement is shown.

  14. A quantum gas of polar KRb molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Covey, Jacob; Miecnikowski, Matthew; Moses, Steven; Fu, Zhengkun; Jin, Deborah; Ye, Jun

    2016-05-01

    Ultracold polar molecules provide new opportunities for investigation of strongly correlated many-body spin systems such as many-body localization and quantum magnetism. In an effort to access such phenomena, we load polar KRb molecules into a three-dimensional optical lattice. In this system, we observed many-body spin dynamics between molecules pinned in a deep lattice, even though the filling fraction of the molecules was only 5%. We have recently performed a thorough investigation of the molecule creation process in an optical lattice, and consequently improved our filling fraction to 30% by preparing and overlapping Mott and band insulators of the initial atomic gases. More recently, we switched to a second generation KRb apparatus that will allow application of large, stable electric fields as well as high-resolution addressing and detection of polar molecules in optical lattices. We plan to use these capabilities to study non-equilibrium spin dynamics in an optical lattice with nearly single site resolution. I will present the status and direction of the second generation apparatus.

  15. Variance-reduced simulation of lattice discrete-time Markov chains with applications in reaction networks

    NASA Astrophysics Data System (ADS)

    Maginnis, P. A.; West, M.; Dullerud, G. E.

    2016-10-01

    We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.

  16. Lattice-Boltzmann simulations of three-dimensional fluid flow on a desktop computer.

    PubMed

    Brewster, Jeffrey D

    2007-04-01

    The lattice-Boltzmann (LB) method is a cellular automaton approach to simulating fluid flow with many advantages over conventional methods based on the Navier-Stokes equations. It is conceptually simple, amenable to a wide array of boundary conditions, and can be adapted to handle thermal, density, miscibility, and other effects. The LB approach has been used to model a number of fluid systems of interest to analytical chemists, including chromatography columns, micromixers, and electroosmotic pumps. However, widespread use of this tool has been limited, in part because virtually all large-scale 3D simulations in the literature have been executed on supercomputers. This work demonstrates that such simulations can be executed in reasonable periods of time (hours) on a desktop computer using a cross-platform software package that is easy to learn and use. This package incorporates several improvements that enhance the utility of the LB approach, including an algorithm for speeding common calculations by 2 orders of magnitude and a scheme for handling convection-diffusion equations of interest in electrochemical and surface reaction studies.

  17. Simulation of Fluid Flow and Heat Transfer in Porous Medium Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Wijaya, Imam; Purqon, Acep

    2017-07-01

    Fluid flow and heat transfer in porous medium are an interesting phenomena to study. One kind example of porous medium is geothermal reservoir. By understanding the fluid flow and heat transfer in porous medium, it help us to understand the phenomena in geothermal reservoir, such as thermal change because of injection process. Thermal change in the reservoir is the most important physical property to known since it has correlation with performance of the reservoir, such as the electrical energy produced by reservoir. In this simulation, we investigate the fluid flow and heat transfer in geothermal reservoir as a simple flow in porous medium canal using Lattice Boltzmann Method. In this simulation, we worked on 2 dimension with nine vectors velocity (D2Q9). To understand the fluid flow and heat transfer in reservoir, we varied the fluid temperature that inject into the reservoir and set the heat source constant at 410°C. The first variation we set the fluid temperature 45°C, second 102.5°C, and the last 307.5°C. Furthermore, we also set the parameter of reservoir such as porosity, density, and injected fluid velocity are constant. Our results show that for the first temperature variation distribution between experiment and simulation is 92.86% match. From second variation shows that there is one pick of thermal distribution and one of turbulence zone, and from the last variation show that there are two pick of thermal distribution and two of turbulence zone.

  18. Mixed micellization of gemini and conventional surfactant in aqueous solution: a lattice Monte Carlo simulation.

    PubMed

    Gharibi, Hussein; Khodadadi, Zahra; Mousavi-Khoshdel, S Morteza; Hashemianzadeh, S Majid; Javadian, Soheila

    2014-09-01

    In the current study, we have investigated the micellization of pure gemini surfactants and a mixture of gemini and conventional surfactants using a 3D lattice Monte Carlo simulation method. For the pure gemini surfactant system, the effects of tail length on CMC and aggregation number were studied, and the simulation results were found to be in excellent agreement with the experimental results. For a mixture of gemini and conventional surfactants, variations in the mixed CMC, interaction parameter β, and excess Gibbs free energy G(E) with composition revealed synergism in micelle formation. Simulation results were compared to estimations made using regular solution theory to determine the applicability of this theory for non-ideal mixed surfactant systems. A large discrepancy was observed between the behavior of parameters such as the activity coefficients fi and the excess Gibbs free energy G(E) and the expected behavior of these parameters as predicted by regular solution theory. Therefore, we have used the modified version of regular solution theory. This three parameter model contains two parameters in addition to the interaction parameters: the size parameter, ρ, which reflects differences in the size of components, and the packing parameter, P*, which reflects nonrandom mixing in mixed micelles. The proposed model provides a good description of the behavior of gemini and conventional surfactant mixtures. The results indicated that as the chain length of gemini surfactants in mixture is increased, the size parameter remains constant while the interaction and packing parameters increase. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Numerical simulation of a lattice polymer model at its integrable point

    NASA Astrophysics Data System (ADS)

    Bedini, A.; Owczarek, A. L.; Prellberg, T.

    2013-07-01

    We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Blöte and Nienhuis (1989 J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via identification of the scaling dimensions xt = 1/12 and xh = -5/48. We directly investigate the polymer scaling exponents via Monte Carlo simulations using the pruned-enriched Rosenbluth method algorithm. By simulating this polymer model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5), which are clearly different from the predicted values. Our estimate for the exponent ν is compatible with the known θ-point value of 4/7 and in agreement with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A: Math. Theor. 45 505003).

  20. Microcanonical fermionic average method for Monte Carlo simulations of lattice gauge theories with dynamical fermions

    SciTech Connect

    Azcoiti, V.; Laliena, V.; Luo, X.Q.; Piedrafita, C.E. ); Di Carlo, G.; Galante, A.; Grillo, A.F. ); Fernandez, L.A. ); Vladikas, A. , Sezione di Roma I, Universita di Roma I, La Sapienza, Piazzale Aldo Moro 2, 00185 Roma )

    1993-07-01

    We present a comprehensive exposition of a method for performing numerical simulations of lattice gauge theories with dynamical fermions. Its main aspects have been presented elsewhere. This work is a systematic study of the feasibility of the method, which amounts to separating the evaluation of the fermionic determinant from the generation of gauge configurations through a microcanonical process. The main advantage consists in the fact that the parts of the simulation which are most computer intensive must not be repeated when varying the parameters of the theory. Moreover, we achieve good control over critical slowing down, since the configurations over which the determinant is measured are always very well decorrelated; in addition, the actual implementation of the method allows us to perform simulations at exactly zero fermion mass. We relate the numerical feasibility of this approach to an expansion in the number of flavors; the criteria for its convergence are analyzed both theoretically and in connection with physical problems. On more speculative grounds, we argue that the origin of the applicability of the method stems from the nonlocality of the theory under consideration.

  1. A Unified Detail-Preserving Liquid Simulation by Two-Phase Lattice Boltzmann Modeling.

    PubMed

    Guo, Yulong; Liu, Xiaopei; Xu, Xuemiao

    2016-02-19

    Traditional methods in graphics to simulate liquid-air dynamics under different scenarios usually employ separate approaches with sophisticated interface tracking/reconstruction techniques. In this paper, we propose a novel unified approach which is easy and effective to produce a variety of liquid-air interface phenomena. These phenomena, such as complex surface splashes, bubble interactions, as well as surface tension effects, can co-exist in one single simulation, and are created within the same computational framework. Such a framework is unique in that it is free from any complicated interface tracking/reconstruction procedures. Our approach is developed from the two-phase lattice Boltzmann method with the mean field model, which provides a unified framework for interface dynamics but is numerically unstable under turbulent conditions. Considering the drawbacks of the existing approaches, we propose techniques to suppress oscillation for significant stability enhancement, as well as derive a new subgrid-scale model to further improve stability, faithfully preserving liquid-air interface details without excessive diffusion by taking into account the density variation. The whole framework is highly parallel, enabling very efficient implementation. Comparisons to the related approaches show superiority on stable simulation with detail preservation and multiphase phenomena simultaneously involved. A set of animation results demonstrate the effectiveness of our method.

  2. Surface Structure of Polystyrenes: Comparison of Lattice Chain Simulations and Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Goldbeck-Wood, Gerhard; Bliznyuk, Valery; Burlakov, Victor; Assender, Hazel; Briggs, Andrew; Tsukahara, Yusuke; Anderson, Kelly; Windle, Alan

    2001-03-01

    The understanding of the structural arrangement of polymer chains near surfaces impacts many technological areas. In this study we address surface features on the length scale of 1-100nm (i.e. covering many times the radius of gyration) for a series of polystyrenes with molecular weights Mn from 3*10^3 to 9*10^6. Surface images are generated by scanning probe microscopy in tapping mode. An autocorrelation function analysis of the height data provides information about the lateral correlations in the surface structure. We find that the correlation length converges towards the bulk value of the radius of gyration at larger molecular weights, but lies somewhat above at lower molecular weights. Alongside the experiment we carried out simulations using a face-centred cubic lattice chain model, parameterized for polystyrene. The autocorrelation lengths of the simulated surfaces follow the radius of gyration dependence with chain length. Simulation as well experimental results suggest that the height autocorrelation length converges towards the size and scaling of the radius of gyration for medium to high molecular weight. Further work is required before a conclusion can be reached for low molecular weights.

  3. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel.

    PubMed

    Jiang, Di; Sun, Dongke; Xiang, Nan; Chen, Ke; Yi, Hong; Ni, Zhonghua

    2013-01-01

    This paper applies the lattice Boltzmann method (LBM) to a 3D simulation of micro flows in an expansion-contraction microchannel. We investigate the flow field under various inlet flow rates and cavity structures, and then systematically study the flow features of the vortex and Dean flow in this channel. Vortex formation analysis demonstrates that there is no observable vortex generated when the inlet flow rate is low enough. As the inlet flow rate increases, a small vortex first appears near the inlet, and then this vortex region will keep expanding until it fully occupies the cavity. A smaller cavity width may result in a larger vortex but the vortex is less influenced by cavity length. The Dean flow features at the outlet become more apparent with increasing inlet flow rate and more recirculation regions can be observed in the cross-section under over high inlet flow rate. In order to support the simulation results, some experimental processes are conducted successfully. It validates that the applied model can accurately characterize the flow in the microchannel. Results of simulations and experiments in this paper provide insights into the design and operation of microfluidic systems for particle/cell manipulation.

  4. Simulation of flow in the microcirculation using a hybrid Lattice-Boltzman and Finite Element algorithm

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego

    2014-11-01

    Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.

  5. Phases of a two-dimensional bose gas in an optical lattice.

    PubMed

    Jiménez-García, K; Compton, R L; Lin, Y-J; Phillips, W D; Porto, J V; Spielman, I B

    2010-09-10

    Ultracold atoms in optical lattices realize simple condensed matter models. We create an ensemble of ≈60 harmonically trapped 2D Bose-Hubbard systems from a 87Rb Bose-Einstein condensate in an optical lattice and use a magnetic resonance imaging approach to select a few 2D systems for study, thereby eliminating ensemble averaging. Our identification of the transition from superfluid to Mott insulator, as a function of both atom density and lattice depth, is in excellent agreement with a universal state diagram [M. Rigol, Phys. Rev. A 79 053605 (2009)] suitable for our trapped system. In agreement with theory, our data suggest a failure of the local density approximation in the transition region.

  6. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    SciTech Connect

    Hansen, T. C.; Falenty, A.; Kuhs, W. F.

    2016-02-07

    The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.

  7. Thermodynamic properties of water in the lattice gas model with consideration of the vibrational motions of molecules

    NASA Astrophysics Data System (ADS)

    Titov, S. V.; Tovbin, Yu. K.

    2016-11-01

    A molecular model developed earlier for a polar fluid within the lattice gas model is supplemented by considering the vibrational motions of molecules using water as an example. A combination of point dipole and Lennard-Jones potentials from SPC parametrization is chosen as the force field model for the molecule. The main thermodynamic properties of liquid water (density, internal energy, and entropy) are studied as functions of temperature. There is qualitative agreement between the calculation results and the experimental data. Ways of refining the molecular theory are discussed.

  8. Parameter estimation with a novel gradient-based optimization method for biological lattice-gas cellular automaton models.

    PubMed

    Mente, Carsten; Prade, Ina; Brusch, Lutz; Breier, Georg; Deutsch, Andreas

    2011-07-01

    Lattice-gas cellular automata (LGCAs) can serve as stochastic mathematical models for collective behavior (e.g. pattern formation) emerging in populations of interacting cells. In this paper, a two-phase optimization algorithm for global parameter estimation in LGCA models is presented. In the first phase, local minima are identified through gradient-based optimization. Algorithmic differentiation is adopted to calculate the necessary gradient information. In the second phase, for global optimization of the parameter set, a multi-level single-linkage method is used. As an example, the parameter estimation algorithm is applied to a LGCA model for early in vitro angiogenic pattern formation.

  9. Transport of a Bose gas in 1D disordered lattices at the fluid-insulator transition.

    PubMed

    Tanzi, Luca; Lucioni, Eleonora; Chaudhuri, Saptarishi; Gori, Lorenzo; Kumar, Avinash; D'Errico, Chiara; Inguscio, Massimo; Modugno, Giovanni

    2013-09-13

    We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one. We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.

  10. A Lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Young, Iain M.

    2016-07-01

    The Lattice Boltzmann (LB) method is an established prominent model for simulating water flow at pore scale in saturated porous media. However, its application in unsaturated soil is less satisfactory because of the difficulties associated with most two-phase LB models in simulating immiscible fluids, such as water and air, which have contrasting densities and viscosities. While progress has been made in developing LB models for fluids with high density ratio, they are still prone to numerical instability and cannot accurately describe the interfacial friction on water-air interface in unsaturated media. Considering that one important application of the LB model in porous materials is to calculate their hydraulic properties when flow is at steady state, we develop a simple LB model to simulate steady water flow at pore scale in unsaturated soils. The method consists of two steps. The first one is to determine water distribution within the soil structure using a morphological model; once the water distribution is known, its interfaces with air are fixed. The second step is to use a single-phase LB model to simulate water flow by treating the water-air interfaces as free-flow boundaries where the shear resistance of air to water flow is assumed to be negligible. We propose a method to solve such free-flow boundaries, and validate the model against analytical solutions of flows of water film over non-slip walls in both two and three dimensions. We then apply the model to calculate water retention and hydraulic properties of a medium acquired using X-ray computed tomography at resolution of 6 μm. The model is quasi-static, similar to the porous network model, but is an improvement as it directly simulates water flow in the pore geometries acquired by tomography without making any further simplifications.

  11. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: higher order theory based on the Bethe-Peierls and path probability method approximations.

    PubMed

    Edison, John R; Monson, Peter A

    2014-07-14

    Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.

  12. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: Higher order theory based on the Bethe-Peierls and path probability method approximations

    SciTech Connect

    Edison, John R.; Monson, Peter A.

    2014-07-14

    Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.

  13. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  14. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Brescaccin, L.; Serianni, G.

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  15. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    SciTech Connect

    Sartori, E. Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  16. Hot halo gas in numerical simulations of galaxy mergers

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep

    Galaxy merger simulations have explored the behavior of gas within a galactic disk, yet the dynamics of hot gas within the galaxy halo has been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with hot halo gas. We explore a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and the dynamics of the gas within the progenitor halos. We find that: (i) A strong shock is produced in the galaxy halos before the first passage, increasing the temperature of the gas by almost an order of magnitude to ˜ 10 6.3 K. (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction. It is ≳ 1039 erg/s for gas fractions larger than 10%. (iii) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes for galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (iv) The hot diffuse gas in the simulation also produces X-ray luminosities as large as 1042 erg/s. This contributes to the total X-ray background in the Universe. (v) ˜ 10--20% of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3--5% of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism for metal enrichment of the IGM. We use an analytical halo merger tree to estimate the fraction of gas mass lost over the history of the Universe.

  17. Incompressible states of a two-component Fermi gas in a double-well optical lattice

    SciTech Connect

    Crepin, Francois; Simon, Pascal; Citro, Roberta

    2010-07-15

    We propose a scheme to investigate the effect of frustration on the magnetic phase transitions of cold atoms confined in an optical lattice. We also demonstrate how to get two-leg spin ladders with frustrated spin-exchange coupling that display a phase transition from a spin liquid to a fully incompressible state. Further, various experimental quantities are analyzed for describing this phase.

  18. An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media

    NASA Astrophysics Data System (ADS)

    Zhu, Jiujiang; Ma, Jingsheng

    2013-06-01

    A lattice Boltzmann (LB) model is proposed for simulating fluid flow in porous media by allowing the aggregates of finer-scale pores and solids to be treated as 'equivalent media'. This model employs a partially bouncing-back scheme to mimic the resistance of each aggregate, represented as a gray node in the model, to the fluid flow. Like several other lattice Boltzmann models that take the same approach, which are collectively referred to as gray lattice Boltzmann (GLB) models in this paper, it introduces an extra model parameter, ns, which represents a volume fraction of fluid particles to be bounced back by the solid phase rather than the volume fraction of the solid phase at each gray node. The proposed model is shown to conserve the mass even for heterogeneous media, while this model and that model of Walsh et al. (2009) [1], referred to the WBS model thereafter, are shown analytically to recover Darcy-Brinkman's equations for homogenous and isotropic porous media where the effective viscosity and the permeability are related to ns and the relaxation parameter of LB model. The key differences between these two models along with others are analyzed while their implications are highlighted. An attempt is made to rectify the misconception about the model parameter ns being the volume fraction of the solid phase. Both models are then numerically verified against the analytical solutions for a set of homogenous porous models and compared each other for another two sets of heterogeneous porous models of practical importance. It is shown that the proposed model allows true no-slip boundary conditions to be incorporated with a significant effect on reducing errors that would otherwise heavily skew flow fields near solid walls. The proposed model is shown to be numerically more stable than the WBS model at solid walls and interfaces between two porous media. The causes to the instability in the latter case are examined. The link between these two GLB models and a

  19. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.

    PubMed

    Tarruell, Leticia; Greif, Daniel; Uehlinger, Thomas; Jotzu, Gregor; Esslinger, Tilman

    2012-03-14

    Dirac points are central to many phenomena in condensed-matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators. At a Dirac point, two energy bands intersect linearly and the electrons behave as relativistic Dirac fermions. In solids, the rigid structure of the material determines the mass and velocity of the electrons, as well as their interactions. A different, highly flexible means of studying condensed-matter phenomena is to create model systems using ultracold atoms trapped in the periodic potential of interfering laser beams. Here we report the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum bandgap inside the Brillouin zone at the positions of the two Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to change the positions of the Dirac points inside the Brillouin zone. When the anisotropy exceeds a critical limit, the two Dirac points merge and annihilate each other-a situation that has recently attracted considerable theoretical interest but that is extremely challenging to observe in solids. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials in which the topology of the band structure is crucial, but also provide an avenue to exploring many-body phases resulting from the interplay of complex lattice geometries with interactions. © 2012 Macmillan Publishers Limited. All rights reserved

  20. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  1. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.

    PubMed

    Berk Usta, O; Ladd, Anthony J C; Butler, Jason E

    2005-03-01

    A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dunweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].

  2. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries

    NASA Astrophysics Data System (ADS)

    Berk Usta, O.; Ladd, Anthony J. C.; Butler, Jason E.

    2005-03-01

    A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].

  3. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.

    PubMed

    Chatterji, Apratim; Horbach, Jürgen

    2005-05-08

    We present a hybrid method for the simulation of colloidal systems that combines molecular dynamics (MD) with the Lattice Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point [with a velocity V(r) at any off-lattice position r] is interacting with the neighboring eight LB nodes by a frictional force F = xi0(V(r)-u(r)), with xi0 being a friction coefficient and u(r) being the velocity of the fluid at the position r. Thermal fluctuations are introduced in the framework of fluctuating hydrodynamics. This coupling scheme has been proposed recently for polymer systems by Ahlrichs and Dunweg [J. Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single colloidal particle in a LB fluid, namely, the effective Stokes friction and long-time tails in the autocorrelation functions for the translational and rotational velocity. Moreover, a charged colloidal system is considered consisting of a macroion, counterions, and coions that are coupled to a LB fluid. We study the behavior of the ions in a constant electric field. In particular, an estimate of the effective charge of the macroion is yielded from the number of counterions that move with the macroion in the direction of the electric field.

  4. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  5. KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations

    NASA Astrophysics Data System (ADS)

    Leetmaa, Mikael; Skorodumova, Natalia V.

    2014-09-01

    KMCLib is a general framework for lattice kinetic Monte Carlo (KMC) simulations. The program can handle simulations of the diffusion and reaction of millions of particles in one, two, or three dimensions, and is designed to be easily extended and customized by the user to allow for the development of complex custom KMC models for specific systems without having to modify the core functionality of the program. Analysis modules and on-the-fly elementary step diffusion rate calculations can be implemented as plugins following a well-defined API. The plugin modules are loosely coupled to the core KMCLib program via the Python scripting language. KMCLib is written as a Python module with a backend C++ library. After initial compilation of the backend library KMCLib is used as a Python module; input to the program is given as a Python script executed using a standard Python interpreter. We give a detailed description of the features and implementation of the code and demonstrate its scaling behavior and parallel performance with a simple one-dimensional A-B-C lattice KMC model and a more complex three-dimensional lattice KMC model of oxygen-vacancy diffusion in a fluorite structured metal oxide. KMCLib can keep track of individual particle movements and includes tools for mean square displacement analysis, and is therefore particularly well suited for studying diffusion processes at surfaces and in solids. Catalogue identifier: AESZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AESZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 49 064 No. of bytes in distributed program, including test data, etc.: 1 575 172 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer that can run a C++ compiler and a Python interpreter. Operating system: Tested on Ubuntu 12

  6. Grain boundary and lattice diffusion in nanocrystal α-iron: An atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Mohammadzadeh, Mina

    2017-09-01

    To obtain fundamental understanding on the effect of grain boundaries on the diffusion kinetics, molecular dynamics simulations (MD) were carried out on single crystal and nanocrystal (with a mean grain size of 2.5 nm) bcc iron using the second nearest-neighbor modified embedded atom method (2NN-MEAM) interatomic potential. Self-diffusion coefficient in single crystal and nanocrystal samples were calculated in the temperature range from 350 K to 1000 K. A temperature-dependence of the diffusion coefficient according to the Arrhenius law was obtained for both lattice and grain boundary diffusion. By doing so, activation energies as well as pre-exponential factors were derived from the diffusion coefficients and compared to experimental data. MD simulation results show that diffusion rate of iron atoms in nanocrystal sample is 6 to 28 orders of magnitude greater than single crystal. The trajectory of iron atoms during diffusion process verified that diffusion occurs mostly in the grain boundaries of nanocrystal iron; suggesting that grain boundary diffusion is dominant in nanocrystal iron. Based on the obtained results pure grain boundary diffusion coefficient was calculated.

  7. Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Liu, Yu; Luo, Hong-Gang

    2017-10-01

    The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (1 S 0⇌3 P 0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU( N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large- N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [ SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.

  8. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.

    PubMed

    Liu, Xiao; Seider, Warren D; Sinno, Talid

    2013-03-21

    A recently introduced method for coarse-graining standard continuous Metropolis Monte Carlo simulations of atomic or molecular fluids onto a rigid lattice of variable scale [X. Liu, W. D. Seider, and T. Sinno, Phys. Rev. E 86, 026708 (2012)] is further analyzed and extended. The coarse-grained Metropolis Monte Carlo technique is demonstrated to be highly consistent with the underlying full-resolution problem using a series of detailed comparisons, including vapor-liquid equilibrium phase envelopes and spatial density distributions for the Lennard-Jones argon and simple point charge water models. In addition, the principal computational bottleneck associated with computing a coarse-grained interaction function for evolving particle positions on the discretized domain is addressed by the introduction of new closure approximations. In particular, it is shown that the coarse-grained potential, which is generally a function of temperature and coarse-graining level, can be computed at multiple temperatures and scales using a single set of free energy calculations. The computational performance of the method relative to standard Monte Carlo simulation is also discussed.

  9. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  10. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    PubMed

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.

  11. Multiple-relaxation-time lattice Boltzmann simulation for flow, mass transfer, and adsorption in porous media

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Chen, Zhenqian; Liu, Hao

    2017-07-01

    In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.

  12. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Sbragaglia, M.; Belardinelli, D.; Sugiyama, K.

    2016-12-01

    Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the breakup properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic breakup of droplets due to the cross-flowing. Temperature effects are investigated by switching on-off both positive-negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated-delayed breakup. Numerical simulations are performed at changing the flow rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces, and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of breakup in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behavior, and to provide quantitative guidelines on how to predict the droplet size after breakup.

  13. Lattice Boltzmann simulations of sedimentation of a single fiber in a weak vertical shear flow

    NASA Astrophysics Data System (ADS)

    Qi, Dewei; He, Guowei; Liu, Yingming

    2013-09-01

    Instability of a suspension is directly related to the problem of the cross-stream migration of a particle relative to its neighboring particle suspension. Such cross-stream or lateral migration of a single non-spherical particle (fiber) settling in a bounded weak shear flow with vertical streamlines produced by a perturbation to the fiber number density is studied using lattice Boltzmann simulations. The present simulation results demonstrate that at a given shear rate, the lateral migration can be divided into three phases depending on settling Reynolds number Rsd and particle aspect ratio κ. At a low settling Reynolds number Rsd, the suspension becomes more stable in phase 1. As Rsd increases and excesses a critical settling Reynolds number Rsd1, the fiber suspension becomes unstable in phase 2. In phase 3, at an enough large Rsd, the inertia dominates the weak shear flow and it may have little effect on stability. A mechanism of the instability induced by an inertial fiber orientation drift and a shear induced cross-streamline drift, recently proposed by Shin, Koch, and Subramanian ["Structure and dynamics of dilute suspensions of finite reynolds number settling fibers," Phys. Fluids 21, 123304 (2009)], is examined and confirmed.

  14. Simulation of binary droplet collisions with the entropic lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Mazloomi Moqaddam, Ali; Chikatamarla, Shyam S.; Karlin, Ilya V.

    2016-02-01

    The recently introduced entropic lattice Boltzmann method (ELBM) for multiphase flows is extended here to simulation of droplet collisions. Thermodynamically consistent, non-linearly stable ELBM together with a novel polynomial equation of state is proposed for simulation large Weber and Reynolds number collisions of two droplets. Extensive numerical investigations show that ELBM is capable of accurately capturing the dynamics and complexity of droplet collision. Different types of the collision outcomes such as coalescence, reflexive separation, and stretching separation are identified. Partition of the parameter plane is compared to the experiments and excellent agreement is observed. Moreover, the evolution of the shape of a stable lamella film is quantitatively compared with experimental results. The end pinching and the capillary-wave instability are shown to be the main mechanisms behind formation of satellite droplets for near head-on and off-center collisions with high impact parameter, respectively. It is shown that the number of satellite drops increases with increasing Weber number, as predicted by experiments. Also, it is demonstrated that the rotational motion due to angular momentum and elongation of the merged droplet play essential roles in formation of satellite droplets in off-center collisions with an intermediate impact parameter.

  15. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  16. Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-10-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations, which can be identified with mixed metal-Boron optical phonon modes. Results for temperatures from 300K to 1000K are presented.

  17. Molecular Dynamics Simulations of Gas Transport in Polymer Films

    NASA Astrophysics Data System (ADS)

    Whitley, David; Butler, Simon; Adolf, David

    2010-03-01

    Parallel molecular dynamics simulations have been carried out to determine the permeability of O2 and N2 through polyethylene terephthalate, polypropylene and cis(1-4) polybutadiene. The permeability of both mixed and unmixed gas penetrants is studied within films of these well known gas barrier polymers. Results are obtained either through the solubility and diffusion (i.e. P=D*S) or via the permeability directly. Encouraging results are obtained. Additional analysis focuses on ``unmixed/mixed gas'' intracomparisons of the simulated permeability data in addition to corresponding penetrant and host polymer local dynamics.

  18. Finite-size effects of hadron masses in lattice QCD: A comparative study for quenched and full QCD simulations

    SciTech Connect

    Aoki, S.; Umemura, T.; Fukugita, M.; Ishizuka, N.; Mino, H.; Okawa, M.; Ukawa, A. Yukawa Institute, Kyoto University, Kyoto 606 Faculty of Engineering, Yamanashi University, Kofu 404 National Laboratory for High Energy Physics , Tsukuba, Ibaraki 305 )

    1994-07-01

    A study of finite-size effects is carried out for hadron masses in the quenched simulation of lattice QCD using the Kogut-Susskind quark action. It is found that finite-size effects for quenched QCD are much smaller than those for full QCD, when hadron masses for the two cases are compared at the same physical lattice size and lattice spacing. Based on an extensive study of the boundary condition dependence of hadron masses we ascribe the origin of the difference to a partial cancellation of the finite-size effects among the [ital Z](3)-related gauge configurations in quenched QCD; such a cancellation does not take place in full QCD due to [ital Z](3) breaking effects of dynamical quarks. However, this does not mean finite-size errors are negligible in quenched QCD for lattice sizes of 2 to 3 fm used in current simulations; a still significant finite-size shift of hadron masses, especially of the nucleon mass, would pose a serious hindrance to obtaining the hadron mass spectrum at the few percent level aimed at in current quenched QCD simulations.

  19. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Chen, Shiyi; Matthaeus, William H.

    1992-01-01

    A lattice Boltzmann model is presented which gives the complete Navier-Stokes equation and may provide an efficient parallel numerical method for solving various fluid problems. The model uses the single-time relaxation approximation and a particular Maxwell-type distribution. The model eliminates exactly (1) the non-Galilean invariance caused by a density-dependent coefficient in the convection term and (2) a velocity-dependent equation of state.

  20. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Chen, Shiyi; Matthaeus, William H.

    1992-01-01

    A lattice Boltzmann model is presented which gives the complete Navier-Stokes equation and may provide an efficient parallel numerical method for solving various fluid problems. The model uses the single-time relaxation approximation and a particular Maxwell-type distribution. The model eliminates exactly (1) the non-Galilean invariance caused by a density-dependent coefficient in the convection term and (2) a velocity-dependent equation of state.