High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD
NASA Astrophysics Data System (ADS)
Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.
2016-10-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0 .51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3 N and 4 N systems based only on the standard plateau fitting of the temporal correlation functions. [Figure not available: see fulltext.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
Haidenbauer, Johann
2011-10-24
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
NASA Astrophysics Data System (ADS)
Haidenbauer, Johann
2011-10-01
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction
Fujiwara, Y.; Fukukawa, K.
2010-05-12
We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
NASA Astrophysics Data System (ADS)
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Kohno, M.; Fujiwara, Y.
2009-05-15
Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration on predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
NASA Astrophysics Data System (ADS)
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
III-V Solar Cells Based on a Lattice Parameter near that of InP
NASA Astrophysics Data System (ADS)
O'Mahony, Donagh; Mathews, Ian; Gocalinska, Agnieszka; Pelucchi, Emanuele; Thomas, Kevin; Morrison, Alan P.; Corbett, Brian
2014-08-01
Multi-junction cells based on a lattice constant of 5.816 Å using InAlAs - InGaAsP - InGaAs alloys can theoretically outperform those based on the GaAs lattice parameter by 3%. This lattice constant is close to that of InP (5.86 Å) but ultimately requires growth on a lower cost substrate such as Ge or Si for cost effectiveness. This paper presents an overview of our group's progress on the development of the essential sub-elements of this novel configuration, namely: (i) single-junction In0.52Al0.48As and In0.53Ga0.47As solar cells lattice matched to InP substrates with measured 1-Sun PV efficiencies of 13.8% and 9.3% respectively, (ii) a compositionally-graded InxGa1-xAs/InP metamorphic buffer layer (MBL) that alters the lattice constant from 5.65 Å (GaAs) to 5.87 Å (InP) and (iii) the growth of In0.52Al0.48As and In0.53Ga0.47As single junction cells on GaAs substrates.
Case for exotic baryon-baryon states
Thomas, G.H.
1980-01-01
Three main points are presented. (1) Current theoretical prejudices are presented for why dibaryon states are interesting, and why they should be expected. (2) A review is given of some of the unsettled experimental issues which have emerged during this conference concerning dibaryons. (3) Phenomenological issues are raised which are critical to understanding whether dibaryon states are observable in the medium energy NN system.
Lattice-Mismatched III-V Epilayers for High-Efficiency Photovoltaics
Ahrenkiel, Scott Phillip
2013-06-30
The project focused on development of new approaches and materials combinations to expand and improve the quality and versatility of lattice-mismatched (LMM) III-V semiconductor epilayers for use in high-efficiency multijunction photovoltaic (PV) devices. To address these goals, new capabilities for materials synthesis and characterization were established at SDSM&T that have applications in modern opto- and nano-electronics, including epitaxial crystal growth and transmission electron microscopy. Advances were made in analyzing and controlling the strain profiles and quality of compositional grades used for these technologies. In particular, quaternary compositional grades were demonstrated, and a quantitative method for characteristic X-ray analysis was developed. The project allowed enhanced collaboration between scientists at NREL and SDSM&T to address closely related research goals, including materials exchange and characterization.
Bound H Dibaryon in Flavor SU(3) Limit of Lattice QCD
Inoue, Takashi; Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Sasaki, Kenji; Hatsuda, Tetsuo; Ikeda, Yoichi; Murano, Keiko; Nemura, Hidekatsu
2011-04-22
The flavor-singlet H dibaryon, which has strangeness -2 and baryon number 2, is studied by the approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-Salpeter wave function measured in N{sub f}=3 full QCD simulations with the lattice size of L{approx_equal}2,3,4 fm. The potential is found to be insensitive to the volume, and it leads to a bound H dibaryon with the binding energy of 30-40 MeV for the pseudoscalar meson mass of 673-1015 MeV.
Bound H dibaryon in flavor SU(3) limit of lattice QCD.
Inoue, Takashi; Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2011-04-22
The flavor-singlet H dibaryon, which has strangeness -2 and baryon number 2, is studied by the approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-Salpeter wave function measured in N(f)=3 full QCD simulations with the lattice size of L≃2,3,4 fm. The potential is found to be insensitive to the volume, and it leads to a bound H dibaryon with the binding energy of 30-40 MeV for the pseudoscalar meson mass of 673-1015 MeV.
Frentrup, Martin Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael; Hatui, Nirupam; Bhattacharya, Arnab
2013-12-07
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
NASA Astrophysics Data System (ADS)
Deng, Hui-Xiong; Luo, Jun-Wei; Wei, Su-Huai
2015-02-01
Using the first-principles density functional theory method, we systematically investigate the structural and electronic properties of heterovalent interfaces of the lattice-matched II-VI/III-V semiconductors, i.e., ZnTe/GaSb, ZnSe/GaAs, ZnS/GaP, and ZnO/GaN. We find that, independent of the orientations, the heterovalent superlattices with period n =6 are energetically more favorable to form nonpolar interfaces. For the [001] interface, the stable nonpolar interfaces are formed by mixing 50% group-III with 50% group-II atoms or by mixing 50% group-V with 50% group-VI atoms; for the [111] nonpolar interfaces, the mixings are 25% group-III (II) and 75% group-II (III) atoms or 25% group-V (VI) and 75% group-VI (V) atoms. For all the nonpolar interfaces, the [110] interface has the lowest interfacial energy because it has the minimum number of II-V or III-VI "wrong bonds" per unit interfacial area. The interfacial energy increases when the atomic number of the elements decreases, except for the ZnO/GaN system. The band alignments between the II-VI and III-V compounds are drastically different depending on whether they have mixed-cation or mixed-anion interfaces, but the averaged values are nearly independent of the orientations. Similarly, other than ZnO/GaN, the valence-band offsets also increase as the atomic number of the elements decreases. The abnormal trends in interfacial energy and band alignment for ZnO/GaN are primarily attributed to the very short bond lengths in this system. The underlying physics behind these trends are explained.
NASA Astrophysics Data System (ADS)
Tolle, J.; Roucka, R.; Tsong, I. S. T.; Ritter, C.; Crozier, P. A.; Chizmeshya, A. V. G.; Kouvetakis, J.
2003-04-01
Growth of metallic and reflecting ZrB2 films is conducted on Si(111) substrates at 900 °C using a single-source unimolecular precursor Zr(BH4)4 in a molecular beam epitaxy chamber. Epitaxial growth of ZrB2(0001) is accomplished despite the very large lattice mismatch between ZrB2 and Si(111). High-resolution cross-sectional transmission electron microscopy images of the sharp ZrB2/Si(111) interface show a heteroepitaxial relationship involving a "magic mismatch" of coincidence lattices. The GaN films grown on the ZrB2/Si(111) template is virtually homoepitaxy because of the very small lattice mismatch, 0.6%, between the in-plane lattice parameters of ZrB2(0001) and GaN(0001).
Lattice Dynamical Properties of Group-III Nitrides AN (A = B, Al, Ga and In) in Zinc-Blende Phase
NASA Astrophysics Data System (ADS)
Kushwaha, A. K.
2016-03-01
In the present paper, we have calculated the phonon dispersion relations, phonon density of states, Debye characteristic temperature and the zone boundary phonons for group-III nitrides AN (A = B, Al, Ga and In) using eleven-parameter three-body shell model with both the ions being polarizable. Our calculated results are in good agreement with experimental results available in the literature.
EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS
Levander, A.; Geisz, J.
2007-01-01
Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.
Baryon-Baryon Interaction in a Chiral-Quark Mean - Model
NASA Astrophysics Data System (ADS)
Pineda, Fernando Javier
The nontopological soliton solution of a chirally invariant Lagrangian which incorporates the linear (sigma) -model BB84,KR84 is used as a model for Baryons. The nucleon-nucleon interaction is modeled by the interaction of two such solitons. The soliton-soliton interaction is calculated adiabatically by extremizing the energy of the two-soliton system subject to the constraint that the inter-soliton separation is fixed. The fields and wavefunctions are expanded in a two-center harmonic oscillator basis thus permitting essentially arbitrary tri-axial deformations. The hedgehog form is imposed on the spin-isospin wavefunction of the solitons. The isospin (or spin) of the two solitons may be quantized along different directions thus introducing a dependence in the energy on the relative orientation of the quantization axes. This permits the extraction of a low energy effective NN potential by an approximate method. An OBE calculation between identical undeformed solitons shows that the pion form factor is quite soft. It also suggests that the mass ((TURN)550 MeV) of the (sigma) -meson, responsible for intermediate range attraction in the central potential of phenomenological meson-exchange models, is a consequence of the coupling of a heavier (sigma) -meson with lighter pions. The Euler-Lagrange equations for the six-quark system are solved approximately using a variational method. The solutions exhibit a dynamical boundary which divides the NN interaction into two domains, an exterior domain where the solitons maintain their identity and the six-quark system is appropriately described as two distinct solitons, and an interior domain where the system is more appropriately described as a single highly deformed soliton. The boundary occurs sharply for critical inter-soliton separations in the range 0.8 - 0.1 fm. The even parity interior solution and the critical separation are shown to be consistent with the energy independence of the F-matrix at low energy in the Feshbach-Lomon boundary condition model. In the exterior domain the energy as a function of R is identified with an effective soliton-soliton potential. This potential qualitatively reproduces many of the features of physical phenomenological potentials. The central potential exhibits an intermediate range attraction and short range repulsion. The attraction is a direct consequence of the polarizability of the quark orbitals.
Neutron star structure from a quark-model baryon-baryon interaction
NASA Astrophysics Data System (ADS)
Fukukawa, K.; Baldo, M.; Burgio, G. F.; Schulze, H.-J.
2016-05-01
We derive the equation of state (EOS) of nuclear matter from are alistic constituent quark model for the nucleon-nucleon interaction. We use the Brueckner-Bethe-Goldstone approach with the inclusion of the three hole-line contribution. We find that the resulting EOS reproduces correctly the saturation point, moreover the symmetry energy at low density, its slope, and the incompressibility turn out to be compatible with phenomenology. We calculate the mass-radius relation for neutron stars, and find maximum values close to two solar masses, in agreement with recent observational data.
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.
2012-05-01
The lattice cluster theory of strongly interacting, structured polymer fluids is applied to determine the thermodynamic properties of solutions of telechelic polymers that may associate through bifunctional end groups. Hence, this model represents a significant albeit natural extension of a diverse array of prior popular equilibrium polymerization models in which structureless "bead" monomers associate into chain-like clusters under equilibrium conditions. In particular, the thermodynamic description of the self-assembly of linear telechelic chains in small molecule solvents (initiated in Paper II) is systematically extended through calculations of the order parameter Φ and average degree ⟨N⟩ of self-assembly, the self-assembly transition temperature Tp, and the specific heat CV of solutions of telechelic molecules. Special focus is placed on examining how molecular and thermodynamic parameters, such as the solution composition ϕ, temperature T, microscopic interaction energies (ɛs and ɛ), and length M of individual telechelic chains, influence the computed thermodynamic quantities that are commonly used to characterize self-assembling systems.
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
Lattice QCD production on commodity clusters at Fermilab
D. Holmgren et al.
2003-09-30
We describe the construction and results to date of Fermilab's three Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We examine a number of aspects of performance of the MILC lattice QCD code running on these clusters.
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-02-15
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction obtained by a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction that is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Triton and hypertriton binding energies with SU{sub 6} quark-model baryon-baryon interactions
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-04-29
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction which is obtained by a resonating-group method for two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction which is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
III-V arsenide-nitride semiconductor
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
Symmetry of semi-reduced lattices.
Stróż, Kazimierz
2015-05-01
The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the `geometric' operations in Bravais lattices map the basis vectors into themselves, the `arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\\bb M}(p,q,r), where {\\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.
2003-01-01
In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.
Quasicrystallography from Bn lattices
NASA Astrophysics Data System (ADS)
Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.
2014-11-01
We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2016-05-01
In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
BIOPLUME III is a two-dimensional finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation.
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Crossing on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Gu, Hang; Ziff, Robert M.
2012-05-01
We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify the self-duality point p* corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.
NASA Astrophysics Data System (ADS)
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates
Global Positioning System III (GPS III)
2013-12-01
Global Positioning System III ( GPS III) As of FY 2015 President’s Budget...00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Global Positioning System III ( GPS III) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Responsible Office References Program Name Global Positioning System III ( GPS III) DoD Component Air Force
Moving embedded lattice solitons.
Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S
2006-03-01
It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.
Generalizing Word Lattice Translation
2008-02-01
demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
NASA Technical Reports Server (NTRS)
Savelyev, V. A.
1979-01-01
The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.
ERIC Educational Resources Information Center
Allegheny County Community Coll., Pittsburgh, PA.
Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…
Localization oscillation in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, S.; Ando, T.
1998-06-01
The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Jozef Dudek
2007-08-05
Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.
Crystallographic Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
Digital lattice gauge theories
NASA Astrophysics Data System (ADS)
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
NASA Astrophysics Data System (ADS)
Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U.-J.
2010-12-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility {χ_t} = {{{left< {{Q^2}} rightrangle }} left/ {V} right.} is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
Beloy, K.
2010-09-15
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Single identities for lattice theory and for weakly associative lattices
McCune, W.; Padmanabhan, R.
1995-03-13
We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.
Thermodynamics of the Relationship between Lattice Energy and Lattice Enthalpy
NASA Astrophysics Data System (ADS)
Jenkins, H. Donald B.
2005-06-01
Incorporation of lattice potential energy, U POT , within a Born Fajans Haber thermochemical cycle based on enthalpy changes necessitates correction of the energy of the lattice to an enthalpy term, Δ H L . For a lattice containing p i ions of type i in the formula unit, the lattice enthalpy is given by Δ H L = U POT + ∑ s i [( c i /2) - 2] RT where R is the gas constant (= 8.314 J K -1 mol -1 ), T is the absolute temperature, and c i is defined according as to whether the ion i is monatomic ( c i = 3), linear polyatomic ( c i = 5), or polyatomic ( c i = 6), respectively.
Methods for forming group III-arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2002-01-01
Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
NASA Astrophysics Data System (ADS)
Beane, Silas
2016-09-01
Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.
Lattice harmonics expansion revisited
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Orthocomplemented complete lattices and graphs
NASA Astrophysics Data System (ADS)
Ollech, Astrid
1995-08-01
The problem I consider originates from Dörfler, who found a construction to assign an Orthocomplemented lattice H(G) to a graph G. By Dörfler it is known that for every finite Orthocomplemented lattice L there exists a graph G such that H(G)=L. Unfortunately, we can find more than one graph G with this property, i.e., orthocomplemented lattices which belong to different graphs can be isomorphic. I show some conditions under which two graphs have the same orthocomplemented lattice.
S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage
2004-04-01
The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
Recent progress in lattice QCD
Sharpe, S.R.
1992-12-01
A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.
Introduction to lattice gauge theory
NASA Astrophysics Data System (ADS)
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
Branes and integrable lattice models
NASA Astrophysics Data System (ADS)
Yagi, Junya
2017-01-01
This is a brief review of my work on the correspondence between four-dimensional 𝒩 = 1 supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Buckling modes in pantographic lattices
NASA Astrophysics Data System (ADS)
Giorgio, Ivan; Della Corte, Alessandro; dell'Isola, Francesco; Steigmann, David J.
2016-07-01
We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface. xml:lang="fr"
Lattice models of ionic systems
NASA Astrophysics Data System (ADS)
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Nonlinear dust-lattice waves: a modified Toda lattice
Cramer, N. F.
2008-09-07
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
Silver(II) Oxide or Silver(I,III) Oxide?
ERIC Educational Resources Information Center
Tudela, David
2008-01-01
The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…
Localized structures in Kagome lattices
Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Lattice QCD: Status and Prospect
Ukawa, Akira
2006-02-08
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.
Yang, Yi-feng; Fisk, Zachary; Lee, Han-Oh; Thompson, J D; Pines, David
2008-07-31
The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local-moment' magnetism and 'itinerant-electron' magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram.
Counting Lattice-Gas Invariants
2007-11-02
Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet . Lattice gas hydrodynamics in two and three dimensions...177. Springer -Verlag, Februrary 1989. Proceedings of the Winter School, Les Houches, France. 6
LATTICE QCD AT FINITE TEMPERATURE.
PETRECZKY, P.
2005-03-12
I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.
Lattice Multiplication: Old and New.
ERIC Educational Resources Information Center
Givan, Betty; Karr, Rosemary
1988-01-01
The author presents two examples of lattice multiplication followed by a computer algorithm to perform this multiplication. The algorithm is given in psuedocode but could easily be given in Pascal. (PK)
Andreas S. Kronfeld
2003-11-05
This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.
Instability of vibrational modes in hexagonal lattice
NASA Astrophysics Data System (ADS)
Korznikova, Elena A.; Bachurin, Dmitry V.; Fomin, Sergey Yu.; Chetverikov, Alexander P.; Dmitriev, Sergey V.
2017-02-01
The phenomenon of modulational instability is investigated for all four delocalized short-wave vibrational modes recently found for the two-dimensional hexagonal lattice with the help of a group-theoretic approach. The polynomial pair potential with hard-type quartic nonlinearity ( β-FPU potential with β > 0) is used to describe interactions between atoms. As expected for the hard-type anharmonic interactions, for all four modes the frequency is found to increase with the amplitude. Frequency of the modes I and III bifurcates from the upper edge of the phonon spectrum, while that of the modes II and IV increases from inside the spectrum. It is also shown that the considered model supports spatially localized vibrational mode called discrete breather (DB) or intrinsic localized mode. DB frequency increases with the amplitude above the phonon spectrum. Two different scenarios of the mode decay were revealed. In the first scenario (for modes I and III), development of the modulational instability leads to a formation of long-lived DBs that radiate their energy slowly until thermal equilibrium is reached. In the second scenario (for modes II and IV) a transition to thermal oscillations of atoms is observed with no formation of DBs.
Lattice Studies of Hyperon Spectroscopy
Richards, David G.
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Lattice QCD: A Brief Introduction
NASA Astrophysics Data System (ADS)
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
Mello Koch, Robert de; Mashile, Grant; Park, Nicholas
2010-05-15
In this article the anomalous dimension of a class of operators with a bare dimension of O(N) is studied. The operators considered are dual to excited states of a two giant graviton system. In the Yang-Mills theory they are described by restricted Schur polynomials, labeled with Young diagrams that have at most two columns. In a certain limit the dilatation operator looks like a lattice version of a second derivative, with the lattice emerging from the Young diagram itself.
DeGrand, T.
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Advances in Lattice Quantum Chromodynamics
NASA Astrophysics Data System (ADS)
McGlynn, Greg
In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.
Optimal lattice-structured materials
NASA Astrophysics Data System (ADS)
Messner, Mark C.
2016-11-01
This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Phyllotaxis of flux lattices in layered superconductors
Levitov, L.S. )
1991-01-14
The geometry of a flux lattice pinned by superconducting layers is studied. Under variation of magnetic field the lattice undergoes an infinite sequence of continuous transitions corresponding to different ways of selection of shortest distances. All possible lattices form a hierarchical structure identified as the hierarchy of Farey numbers. It is shown that dynamically accessible lattices are characterized by pairs of consecutive Fibonacci numbers.
K. Orginos
2011-12-01
In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.
Recent progress on dense nuclear matter in skyrmion approaches
NASA Astrophysics Data System (ADS)
Ma, YongLiang; Rho, Mannque
2017-03-01
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
Discrete vortices on anisotropic lattices
NASA Astrophysics Data System (ADS)
Chen, Gui-Hua; Wang, Hong-Cheng; Chen, Zi-Fa
2015-08-01
We consider the effects of anisotropy on two types of localized states with topological charges equal to 1 in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. We find that on-site-centered vortices with different propagation constants are not globally stable, and that upper and lower boundaries of the propagation constant exist. The region between these two boundaries is the domain outside of which the on-site-centered vortices are unstable. This region decreases in size as the anisotropy parameter is gradually increased. We also consider off-site-centered vortices on anisotropic lattices, which are unstable on this lattice type and either transform into stable quadrupoles or collapse. We find that the transformation of off-sitecentered vortices into quadrupoles, which occurs on anisotropic lattices, cannot occur on isotropic lattices. In the quadrupole case, a propagation-constant region also exists, outside of which the localized states cannot stably exist. The influence of anisotropy on this region is almost identical to its effects on the on-site-centered vortex case.
An Improved Lattice Kinetic Scheme for Incompressible Viscous Fluid Flows
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Inamuro, Takaji
2014-01-01
The lattice Boltzmann method (LBM) is an explicit numerical scheme for the incompressible Navier-Stokes equations (INSE) without integrating the Poisson equation for the pressure. In spite of its merit, the LBM has some drawbacks in accuracy. First, we review drawbacks for three numerical methods based on the LBM. The three methods are the LBM with the Bhatnagar-Gross-Krook model (LBGK), the lattice kinetic scheme (LKS) and the link-wise artificial compressibility method (LWACM). Second, in order to remedy the drawbacks, we propose an improved LKS. The present method incorporates (i) the scheme used in the LWACM for determining the kinematic viscosity, (ii) an iterative calculation of the pressure and (iii) a semi-implicit algorithm, while preserving the simplicity of the algorithm of the original LKS. Finally, in simulations of test problems, we find that the improved LKS eliminates the drawbacks and gives more accurate and stable results than LBGK, LKS and LWACM.
Lattice Structures For Aerospace Applications
NASA Astrophysics Data System (ADS)
Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.
2012-07-01
The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Nucleon Structure from Lattice QCD
Haegler, Philipp
2011-10-24
Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.
Tetraquark states from lattice QCD
Mathur, Nilmani
2011-10-24
Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.
Negative-viscosity lattice gases
Rothman, D.H. )
1989-08-01
A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.
Lattice QCD and Nuclear Physics
Konstantinos Orginos
2007-03-01
A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.
Nuclear Physics from Lattice QCD
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Lattice Green's Function for the Body-Centered Cubic Lattice
NASA Astrophysics Data System (ADS)
Sakaji, A. J.
2002-05-01
An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.
Lattice continuum and diffusional creep
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Lattice continuum and diffusional creep
2016-01-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696
Lattice QCD in Background Fields
William Detmold, Brian Tiburzi, Andre Walker-Loud
2009-06-01
Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.
Confinement and lattice gauge theory
Creutz, M
1980-06-01
The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed.
Hadronic Interactions from Lattice QCD
Konstantinos Orginos
2006-03-19
In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.
Chiral four-dimensional heterotic covariant lattices
NASA Astrophysics Data System (ADS)
Beye, Florian
2014-11-01
In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.
NASA Astrophysics Data System (ADS)
Cecile, D. J.
In Quantum Chromodynamics (QCD), the pions are the lightest bound states. Current lattice QCD calculations are not able to study pions at realistic masses due to algorithmic difficulties. Instead, lattice studies are limited to unphysically large pion masses, and Chiral Perturbation Theory (ChPT) is often relied upon to extrapolate lattice results to the phenomenological regime and to the chiral limit, where quarks are massless. One of the outstanding problems in the field is to determine the range of quark masses where ChPT is valid and to understand the nonperturbative physics that may cause ChPT to break down. Given the difficulty of studying QCD, it is interesting and useful to construct a lattice field theory model of pions, which would allow a direct lattice calculation without the need for chiral extrapolations. This model can be used to evaluate the reliability of chiral extrapolations as applied to lattice data in the context of a lattice field theory that is exactly solvable numerically even at small quark masses and in the chiral limit. In this light, to create a model of pions of two-flavor Quantum Chromodynamics (QCD), a lattice field theory involving two flavors of staggered quarks interacting strongly with Abelian gauge fields is constructed. In the chiral limit, this theory exhibits a SUL(2) x SU R(2) x UA(1) symmetry. The UA(1) symmetry can be broken by introducing a four-fermion term into the action, thereby incorporating the physics of the QCD anomaly. To qualify as a meaningful model of QCD, this lattice model must exhibit spontaneous chiral symmetry breaking and confinement and must have a continuum limit. An interesting mechanism is introduced to address the continuum limit. In particular, an extra dimension allows one to tune a fictitious temperature in order to access a phase of broken symmetry and to find a range where the pion decay constant is much smaller than the lattice cutoff, i.e. Fpi ≪1a . Unlike lattice QCD, a major advantage of
Global Positioning System III (GPS III)
2015-12-01
from the SV Bus, specifically the Scalable Power Regulation Unit and is being amplified by the solar arrays which act as highly efficient antennas. To...Military Operations in Urban Terrain; Defense-Wide Mission Support; Air Mobility; and Space Launch Orbital Support. For military users, the GPS III...Service: The GPS III program will provide O&S for on- orbit support through the Launch and On- Orbit Support contract. For Space Vehicle (SV)01 and
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
NASA Astrophysics Data System (ADS)
Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan
2014-11-01
The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
The CKM Matrix from Lattice QCD
Mackenzie, Paul B.; /Fermilab
2009-07-01
Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analyzing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.
Long-Range Lattice-Gas Algorithm
2007-11-02
lattice-gases, and therefore inherits exact computabil- ity on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that...gases, and therefore inherits exact computability on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that allow us to
Lattice Boltzmann solver of Rossler equation
NASA Astrophysics Data System (ADS)
Yan, Guangwu; Ruan, Li
2000-06-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Methods for forming group III-V arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Lattice Simulations and Infrared Conformality
Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; ...
2011-09-01
We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less
The Fermilab lattice supercomputer project
NASA Astrophysics Data System (ADS)
Fischler, Mark; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, George; Eichten, E.; Mackenzie, P.; Thacker, H. B.; Toussaint, D.
1989-06-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort.
Dru Renner
2012-04-01
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1990-01-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices, which were provided by the aperture task force's lattice group and are described in an other paper to this conference, with existing tracking programs. 6 refs., 5 figs., 2 tabs.
Innovations in Lattice QCD Algorithms
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Scanning phononic lattices with ultrasound
Vines, R.E.; Wolfe, J.P.; Every, A.V.
1999-11-01
A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}
Hadron physics from lattice QCD
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang
2016-07-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.
Apiary B Factory Lattice Design
Donald, M.H.R.; Garren, A.A.
1991-05-03
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper presents the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent.
Apiary B Factory lattice design
Donald, M.H.R. ); Garren, A.A. )
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab.
Texture dependent lattice strains and texture gradient in AI7020
NASA Astrophysics Data System (ADS)
Y Zhong, Z.; Brokmeier, H.-G.; Maawad, E.; Schell, N.
2015-04-01
Firstly, an Al7020 block was characterized by the texture gradient, which was remarkably strong. Texture sharpness in the center with about 30 mrd (multiple random distribution) shows typical plain strain texture components. On the surface and close to the surface the texture sharpness is much weaker showing also shear components. Strongest shear was not directly at the surface but 4 mm deeper. The texture analysis at HEMS Beamline (Petra III/DESY-Hamburg) was done with continuous scanning mode to include all grains to improve the grain statistics. Secondly, with an in situ synchrotron experiment the texture dependent lattice strain behavior was investigated using flat tensile samples oriented 0°, 45° and 90° to the rolling direction (RD). Texture induced anisotropy influenced on the lattice dependent yield strength and the lattice dependent stress-strain behavior, which will be discussed in detail. Due to the high energy synchrotron beam complete Debye-Scherrer rings were obtained so that the patterns, parallel and perpendicular to loading direction (LD), were obtained simultaneously.
From lattice Hamiltonians to tunable band structures by lithographic design
NASA Astrophysics Data System (ADS)
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Ectopic A-lattice seams destabilize microtubules.
Katsuki, Miho; Drummond, Douglas R; Cross, Robert A
2014-01-01
Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe.
Lattice Truss Structural Response Using Energy Methods
NASA Technical Reports Server (NTRS)
Kenner, Winfred Scottson
1996-01-01
A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.
Optical techniques for Rydberg physics in lattice geometries. A technical guide
NASA Astrophysics Data System (ADS)
Naber, Julian B.; Vos, Jannie; Rengelink, Robert J.; Nusselder, Rosanne J.; Davtyan, David
2016-12-01
We address the technical challenges when performing quantum information experiments with ultracold Rydberg atoms in lattice geometries. We discuss the following key aspects: (i) the coherent manipulation of atomic ground states, (ii) the coherent excitation of Rydberg states, and (iii) spatial addressing of individual lattice sites. We briefly review methods and solutions which have been successfully implemented, and give examples based on our experimental apparatus. This includes an optical phase-locked loop, an intensity and frequency stabilization setup for lasers, and a nematic liquid-crystal spatial light modulator.
Random-field Ising model on isometric lattices: Ground states and non-Porod scattering.
Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay
2016-01-01
We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δ_{c} at zero temperature with high accuracy. For the SC lattice, our estimate (Δ_{c}=2.278±0.002) is consistent with earlier reports. For the BCC and FCC lattices, Δ_{c}=3.316±0.002 and 5.160±0.002, respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α=0.5±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy E_{i}(L) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.
Random-field Ising model on isometric lattices: Ground states and non-Porod scattering
NASA Astrophysics Data System (ADS)
Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay
2016-01-01
We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.
III-V aresenide-nitride semiconductor materials and devices
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
1997-01-01
III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Unbiased sampling of lattice Hamilton path ensembles
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.
2006-10-01
Hamilton paths, or Hamiltonian paths, are walks on a lattice which visit each site exactly once. They have been proposed as models of globular proteins and of compact polymers. A previously published algorithm [Mansfield, Macromolecules 27, 5924 (1994)] for sampling Hamilton paths on simple square and simple cubic lattices is tested for bias and for efficiency. Because the algorithm is a Metropolis Monte Carlo technique obviously satisfying detailed balance, we need only demonstrate ergodicity to ensure unbiased sampling. Two different tests for ergodicity (exact enumeration on small lattices, nonexhaustive enumeration on larger lattices) demonstrate ergodicity unequivocally for small lattices and provide strong support for ergodicity on larger lattices. Two other sampling algorithms [Ramakrishnan et al., J. Chem. Phys. 103, 7592 (1995); Lua et al., Polymer 45, 717 (2004)] are both known to produce biases on both 2×2×2 and 3×3×3 lattices, but it is shown here that the current algorithm gives unbiased sampling on these same lattices. Successive Hamilton paths are strongly correlated, so that many iterations are required between statistically independent samples. Rules for estimating the number of iterations needed to dissipate these correlations are given. However, the iteration time is so fast that the efficiency is still very good except on extremely large lattices. For example, even on lattices of total size 10×10×10 we are able to generate tens of thousands of uncorrelated Hamilton paths per hour of CPU time.
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Fractional random walk lattice dynamics
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-02-01
We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Education, Raleigh.
SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…
Casimir effect for Dirac lattices
NASA Astrophysics Data System (ADS)
Bordag, M.; Pirozhenko, I. G.
2017-03-01
We consider polarizable sheets, which recently received some attention, especially in the context of the dispersion interaction of thin sheets like graphene. These sheets are modeled by a collection of delta function potentials and resemble zero-range potentials, which are known in quantum mechanics. We develop a theoretical description and apply the so-called TGTG formula to calculate the interaction of two such lattices. Thereby, we make use of the formulation of the scattering of waves off such sheets provided earlier. We consider all limiting cases, providing a link to earlier results. Also, we discuss the relation to the pairwise summation method.
Percolation in finite matching lattices
NASA Astrophysics Data System (ADS)
Mertens, Stephan; Ziff, Robert M.
2016-12-01
We derive an exact, simple relation between the average number of clusters and the wrapping probabilities for two-dimensional percolation. The relation holds for periodic lattices of any size. It generalizes a classical result of Sykes and Essam, and it can be used to find exact or very accurate approximations of the critical density. The criterion that follows is related to the criterion used by Scullard and Jacobsen to find precise approximate thresholds, and our work provides a different perspective on their approach.
Fractal lattice of gelatin nanoglobules
NASA Astrophysics Data System (ADS)
Novikov, D. V.; Krasovskii, A. N.
2012-11-01
The globular structure of polymer coatings on a glass, which were obtained from micellar solutions of gelatin in the isooctane-water-sodium (bis-2-ethylhexyl) sulfosuccinate system, has been studied using electron microscopy. It has been shown that an increase in the average globule size is accompanied by the formation of a fractal lattice of nanoglobules and a periodic physical network of macromolecules in the coating. The stability of such system of the "liquid-in-a-solid" type is limited by the destruction of globules and the formation of a homogeneous network structure of the coating.
Lattice models of biological growth
Young, D.A.; Corey, E.M. )
1990-06-15
We show that very simple iterative rules for the growth of cells on a two-dimensional lattice can simulate biological-growth phenomena realistically. We discuss random cellular automata models for the growth of fern gametophytes, branching fungi, and leaves, and for shape transformations useful in the study of biological variation and evolution. Although there are interesting analogies between biological and physical growth processes, we stress the uniqueness of biological automata behavior. The computer growth algorithms that successfully mimic observed growth behavior may be helpful in determining the underlying biochemical mechanisms of growth regulation.
Tunable luminescence and enhanced photocatalytic activity for Eu(III) doped Bi2WO6 nanoparticles.
Gu, Haidong; Yu, Lei; Wang, Juan; Ni, Min; Liu, Tingting; Chen, Feng
2017-04-15
A series of Eu(III) doped Bi2WO6 nanoparticles were synthesized by a hydrothermal process. The obtained Bi2WO6:Eu(III) nanoparticles were characterized by XRD, SEM, luminescence spectrophotometer and DRS. The XRD and TEM results indicate that the Eu(III) doping concentration has no influence on the phase and morphology. However, the Eu(III) doping can tune the luminescence and enhance the photocatalytic activity of Bi2WO6. With the increases of Eu(3+) doping concentrations, the emission intensity of WO6(6-) group decreases nut the photocatalytic activity increases. The tunable luminescence of Bi2WO6:Eu(III) nanoparticles results from the energy transfer from WO6(6-) group to Eu(III) ion. The enhanced performance can be ascribed to efficient separation of electron and hole pairs after doping Eu(III) into the Bi2WO6 lattice.
Tunable luminescence and enhanced photocatalytic activity for Eu(III) doped Bi2WO6 nanoparticles
NASA Astrophysics Data System (ADS)
Gu, Haidong; Yu, Lei; Wang, Juan; Ni, Min; Liu, Tingting; Chen, Feng
2017-04-01
A series of Eu(III) doped Bi2WO6 nanoparticles were synthesized by a hydrothermal process. The obtained Bi2WO6:Eu(III) nanoparticles were characterized by XRD, SEM, luminescence spectrophotometer and DRS. The XRD and TEM results indicate that the Eu(III) doping concentration has no influence on the phase and morphology. However, the Eu(III) doping can tune the luminescence and enhance the photocatalytic activity of Bi2WO6. With the increases of Eu3 + doping concentrations, the emission intensity of WO66 - group decreases nut the photocatalytic activity increases. The tunable luminescence of Bi2WO6:Eu(III) nanoparticles results from the energy transfer from WO66 - group to Eu(III) ion. The enhanced performance can be ascribed to efficient separation of electron and hole pairs after doping Eu(III) into the Bi2WO6 lattice.
X-ray diffraction of III-nitrides
NASA Astrophysics Data System (ADS)
Moram, M A; Vickers, M E
2009-03-01
The III-nitrides include the semiconductors AlN, GaN and InN, which have band gaps spanning the entire UV and visible ranges. Thin films of III-nitrides are used to make UV, violet, blue and green light-emitting diodes and lasers, as well as solar cells, high-electron mobility transistors (HEMTs) and other devices. However, the film growth process gives rise to unusually high strain and high defect densities, which can affect the device performance. X-ray diffraction is a popular, non-destructive technique used to characterize films and device structures, allowing improvements in device efficiencies to be made. It provides information on crystalline lattice parameters (from which strain and composition are determined), misorientation (from which defect types and densities may be deduced), crystallite size and microstrain, wafer bowing, residual stress, alloy ordering, phase separation (if present) along with film thicknesses and superlattice (quantum well) thicknesses, compositions and non-uniformities. These topics are reviewed, along with the basic principles of x-ray diffraction of thin films and areas of special current interest, such as analysis of non-polar, semipolar and cubic III-nitrides. A summary of useful values needed in calculations, including elastic constants and lattice parameters, is also given. Such topics are also likely to be relevant to other highly lattice-mismatched wurtzite-structure materials such as heteroepitaxial ZnO and ZnSe.
Localization of Waves in Merged Lattices
Alagappan, G.; Png, C. E.
2016-01-01
This article describes a new two–dimensional physical topology–merged lattice, that allows dense number of wave localization states. Merged lattices are obtained as a result of merging two lattices of scatters of the same space group, but with slightly different spatial resonances. Such merging creates two–dimensional scattering “beats” which are perfectly periodic on the longer spatial scale. On the shorter spatial scale, the systematic breakage of the translational symmetry leads to strong wave scattering, and this causes the occurrences of wave localization states. Merged Lattices promises variety of localization states including tightly confined, and ring type annular modes. The longer scale perfect periodicity of the merged lattice, enables complete prediction and full control over the density of the localization states and its’ quality factors. In addition, the longer scale periodicity, also allows design of integrated slow wave components. Merged lattices, thus, can be engineered easily to create technologically beneficial applications. PMID:27535096
Localization of Waves in Merged Lattices
NASA Astrophysics Data System (ADS)
Alagappan, G.; Png, C. E.
2016-08-01
This article describes a new two–dimensional physical topology–merged lattice, that allows dense number of wave localization states. Merged lattices are obtained as a result of merging two lattices of scatters of the same space group, but with slightly different spatial resonances. Such merging creates two–dimensional scattering “beats” which are perfectly periodic on the longer spatial scale. On the shorter spatial scale, the systematic breakage of the translational symmetry leads to strong wave scattering, and this causes the occurrences of wave localization states. Merged Lattices promises variety of localization states including tightly confined, and ring type annular modes. The longer scale perfect periodicity of the merged lattice, enables complete prediction and full control over the density of the localization states and its’ quality factors. In addition, the longer scale periodicity, also allows design of integrated slow wave components. Merged lattices, thus, can be engineered easily to create technologically beneficial applications.
Working Group Report: Lattice Field Theory
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Observing dynamical SUSY breaking with lattice simulation
Kanamori, Issaku
2008-11-23
On the basis of the recently developed lattice formulation of supersymmetric theories which keeps a part of the supersymmetry, we propose a method of observing dynamical SUSY breaking with lattice simulation. We use Hamiltonian as an order parameter and measure the ground state energy as a zero temperature limit of the finite temperature simulation. Our method provides a way of obtaining a physical result from the lattice simulation for supersymmetric theories.
Bose-Einstein condensates in rotating lattices.
Bhat, Rajiv; Holland, M J; Carr, L D
2006-02-17
Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.
The Fermilab lattice supercomputer project
Fischler, M.; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, G.
1989-02-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8 MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort. 3 refs., 1 fig.
QCD thermodynamics on a lattice
NASA Astrophysics Data System (ADS)
Levkova, Ludmila A.
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.
Computational study of lattice models
NASA Astrophysics Data System (ADS)
Zujev, Aleksander
This dissertation is composed of the descriptions of a few projects undertook to complete my doctorate at the University of California, Davis. Different as they are, the common feature of them is that they all deal with simulations of lattice models, and physics which results from interparticle interactions. As an example, both the Feynman-Kikuchi model (Chapter 3) and Bose-Fermi mixture (Chapter 4) deal with the conditions under which superfluid transitions occur. The dissertation is divided into two parts. Part I (Chapters 1-2) is theoretical. It describes the systems we study - superfluidity and particularly superfluid helium, and optical lattices. The numerical methods of working with them are described. The use of Monte Carlo methods is another unifying theme of the different projects in this thesis. Part II (Chapters 3-6) deals with applications. It consists of 4 chapters describing different projects. Two of them, Feynman-Kikuchi model, and Bose-Fermi mixture are finished and published. The work done on t - J model, described in Chapter 5, is more preliminary, and the project is far from complete. A preliminary report on it was given on 2009 APS March meeting. The Isentropic project, described in the last chapter, is finished. A report on it was given on 2010 APS March meeting, and a paper is in preparation. The quantum simulation program used for Bose-Fermi mixture project was written by our collaborators Valery Rousseau and Peter Denteneer. I had written my own code for the other projects.
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Lattices of processes in graphs with inputs
Shakhbazyan, K.V.
1995-09-01
This article is a continuation of others work, presenting a detailed analysis of finite lattices of processes in graphs with input nodes. Lattices of processes in such graphs are studied by representing the lattices in the form of an algebra of pairs. We define the algebra of pairs somewhat generalizing the definition. Let K and D be bounded distributive lattices. A sublattice {delta} {contained_in} K x D is called an algebra of pairs if for all K {element_of} K we have (K, 1{sub D}) {element_of} {delta} and for all d {element_of} D we have (O{sub K}).
Commissioning Simulations for the APS Upgrade Lattice
Sajaev, V.; Borland, M.
2015-01-01
A hybrid seven-bend-achromat lattice that features very strong focusing elements and a relatively small vacuum chamber has been proposed for the APS upgrade. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe start-to-end simulation of the machine commissioning beginning from first-turn trajectory correction, progressing to orbit and lattice correction, and culminating in evaluation of the nonlinear performance of the corrected lattice
NASA Astrophysics Data System (ADS)
Costanza, E. F.; Costanza, G.
2016-12-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Polarization response of RHIC electron lens lattices
NASA Astrophysics Data System (ADS)
Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.
2016-10-01
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Subwavelength Lattice Optics by Evolutionary Design
2015-01-01
This paper describes a new class of structured optical materials—lattice opto-materials—that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062
Dark periodic lattices in nonlinear liquid media
NASA Astrophysics Data System (ADS)
Alvarado-Méndez, Edgar; Trejo-Durán, Mónica; Cano-Lara, Miroslava; Huerta-Mascotte, Eduardo; Castaňo, Víctor M.
2007-11-01
Experimental evidence of the formation of one- and two-dimensional dark periodic lattices in a negative Kerr-type nonlinear liquid media is presented. Bright periodic lattices propagate throughout two nonlinear liquids [alcohol with rhodamine (R6G), and acetone with R6G] as the negative nonlinear refractive index forms a dark periodic lattice. Our experiments demonstrate that the nonlinearity increases with the optical power and that a proper selection of the period leads to self-phase modulation of the lattice.
Elastic lattice in an incommensurate background
Dickman, R.; Chudnovsky, E.M. )
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices.
Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
Norman, Andrew
2016-08-23
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.
2+1 flavor lattice QCD with Luscher's Domain-Decomposed HMC algorithm
NASA Astrophysics Data System (ADS)
Kuramashi, Yoshinobu
2006-12-01
We report on a study of 2+1 flavor lattice QCD with the O(a)-improved Wilson quarks on a 163 × 32 lattice at the lattice spacing 1/a ≈ 2GeV employing Lüscher's domain-decomposed HMC(LDDHMC) algorithm. This is dedicated to a preliminary study for the PACS-CS project which plans to complete the Wilson-clover N f = 2 + 1 program lowering the up-down quark masses close to the physical values as much as possible. We focus on three issues: (i) how light quark masses we can reach with LDDHMC, (ii) efficiency of the algorithm compared with the conventional HMC, (iii) parameter choice for the production runs on PACS-CS.
Effect of impurities on the vortex lattice in Bose-Einstein condensates on optical lattice
NASA Astrophysics Data System (ADS)
Mithun, T.; Porsezian, K.; Dey, Bishwajyoti
2015-06-01
We numerically solve the Gross-Pitaeveskii equation to study the Bose-Einstein condensate in the rotating harmonical tarp and co-rotating optical lattice. The effect of a pinning site or impurity shows that it is able to move the vortex lattice center to either left or right depending on the position of the impurity. Also, it is observed that the impurity at the random positions can destroy the vortex lattice and the resulting disordered lattice has more energy.
Cold atoms in a rotating optical lattice
NASA Astrophysics Data System (ADS)
Foot, Christopher J.
2009-05-01
We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1
Bimaterial lattices as thermal adapters and actuators
NASA Astrophysics Data System (ADS)
Toropova, Marina M.; Steeves, Craig A.
2016-11-01
The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.
InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering
NASA Astrophysics Data System (ADS)
Serrano, J.; Bosak, A.; Krisch, M.; Manjón, F. J.; Romero, A. H.; Garro, N.; Wang, X.; Yoshikawa, A.; Kuball, M.
2011-05-01
Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.
... AT III) is a protein that helps control blood clotting. A blood test can determine the amount of ... may mean you have an increased risk of blood clotting. This can occur when there is not enough ...
FFAG lattice without opposite bends
NASA Astrophysics Data System (ADS)
Trbojevic, Dejan; Courant, Ernest D.; Garren, Al
2000-08-01
A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
Realizing Parafermions in Optical Lattices
NASA Astrophysics Data System (ADS)
Liu, Fangli; Gorshkov, Alexey
2016-05-01
Parafermions, which are the fractional versions of Majorana fermions, possess more exotic braiding statistics than Majorana fermions and are therefore more powerful from the point of view of topological quantum computing. We propose a scheme to realize parafermionic zero modes in optical lattices, without the use of superconductive paring. With the help of laser assisted tunneling and on-site interactions, two layers of ultracold atoms in distinct hyperfine states can be engineered to host +/- 1 / m fractional quantum Hall states. We then introduce a finite-extent potential barrier that pierces both layers - this gives rise to two counter-propagating edge states that sit on top of each other. Finally, laser induced coupling is used to introduce backscattering between the two edge states and to gap them out. We show that the resulting defects give rise to the topological degeneracy associated with parafermions. We also discuss methods for preparation and detection.
Lattice mechanics of origami tessellations.
Evans, Arthur A; Silverberg, Jesse L; Santangelo, Christian D
2015-07-01
Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex. This formulation provides a general method for associating mechanical properties with periodic folded structures and allows for a concrete connection between more conventional materials and the mechanical metamaterials constructed using origami-based design.
Lattice mechanics of origami tessellations
NASA Astrophysics Data System (ADS)
Evans, Arthur A.; Silverberg, Jesse L.; Santangelo, Christian D.
2015-07-01
Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex. This formulation provides a general method for associating mechanical properties with periodic folded structures and allows for a concrete connection between more conventional materials and the mechanical metamaterials constructed using origami-based design.
Nuclear forces from lattice QCD
Ishii, Noriyoshi
2011-05-06
Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.
On lattice chiral gauge theories
NASA Technical Reports Server (NTRS)
Maiani, L.; Rossi, G. C.; Testa, M.
1991-01-01
The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.
Reflooding of tight lattice bundles
Veteau, J.M.; Digonnet, A.; Deruaz, R. . Centre d'Etudes Nucleaires de Grenoble)
1994-07-01
Results regarding analytical bottom reflooding experiments in a 37- and a 127-heater rod bundle are presented for two different tight lattices. A comparison between these two geometries and with the standard pressurized water reactor (PWR) array shows a degradation of cooling efficiency when the cross section of the subchannels is decreased. The core heat sinks (guide thimbles and water tubes'') are seen to have a noticeable influence on the overall cooling of the bundle, and it is confirmed that a combined top/bottom injection does not significantly improve cooling efficiency. Calculations with CATHARE 1.3 code adjusted for the standard PWR array are presented (zero heat sinks), but results have to be confirmed over a wider range of parameters.
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1985-10-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices.
Entropy of Open Lattice Systems
NASA Astrophysics Data System (ADS)
Derrida, B.; Lebowitz, J. L.; Speer, E. R.
2007-03-01
We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L → ∞, the leading order ( O( L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k th such correlation is shown to be O( L - k+1). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.
NASA Astrophysics Data System (ADS)
Chen, Zhaopin; Malomed, Boris A.
2017-03-01
We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling ("Rabi lattice") and self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on- and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes. On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two coupled GPEs to a single one with an effective lattice potential.
Lattice studies of hadrons with heavy flavors
Christopher Aubin
2009-07-01
I will discuss recent developments in lattice studies of hadrons composed of heavy quarks. I will mostly cover topics which are at a state of direct comparison with experiment, but will also discuss new ideas and promising techniques to aid future studies of lattice heavy quark physics.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Disorder solutions of lattice spin models
NASA Astrophysics Data System (ADS)
Batchelor, M. T.; van Leeuwen, J. M. J.
1989-01-01
It is shown that disorder solutions, which have been obtained by different methods, follow from a simple decimation method. The method is put in general form and new disorder solutions are constructed for the Blume-Emery-Griffiths model on a triangular lattice and for Potts and Ising models on square and fcc lattices.
Recent advances in lattice Boltzmann methods
Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.
1998-12-31
In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.
The Chroma Software System for Lattice QCD
Robert Edwards; Balint Joo
2004-06-01
We describe aspects of the Chroma software system for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimized lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer.
The mystery of the fifteenth Bravais lattice
NASA Astrophysics Data System (ADS)
Nussbaum, Allen
2000-10-01
An understanding of the principles of crystal structure is necessary for the study of solids. There are contradictions in the literature dealing with the nature of crystal lattices, and there is also a miscounting of the number of possible lattices. This paper clarifies the situation in a systematic and simple way.
Numerical study of localization in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, Seiji; Ando, Tsuneya
1998-10-01
Localization effects in antidot lattices in weak magnetic fields are numerically studied with the use of a Thouless-number method. In hexagonal antidot lattices, both conductance and inverse localization length oscillate as a function of a magnetic flux with the same period as an Al'tshuler-Aronov-Spivak oscillation, in qualitative agreement with recent experiments.
Synthetic magnetic fluxes on the honeycomb lattice
Gorecka, Agnieszka; Gremaud, Benoit; Miniatura, Christian
2011-08-15
We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less
Marin, E.; Tomas, R.; Bambade, P.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G.; Woodley, M.; /SLAC
2011-12-09
The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.
Lattice Boltzmann modeling of phonon transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2016-06-01
A novel lattice Boltzmann scheme is proposed for phonon transport based on the phonon Boltzmann equation. Through the Chapman-Enskog expansion, the phonon lattice Boltzmann equation under the gray relaxation time approximation recovers the classical Fourier's law in the diffusive limit. The numerical parameters in the lattice Boltzmann model are therefore rigorously correlated to the bulk material properties. The new scheme does not only eliminate the fictitious phonon speed in the diagonal direction of a square lattice system in the previous lattice Boltzmann models, but also displays very robust performances in predicting both temperature and heat flux distributions consistent with analytical solutions for diverse numerical cases, including steady-state and transient, macroscale and microscale, one-dimensional and multi-dimensional phonon heat transport. This method may provide a powerful numerical tool for deep studies of nonlinear and nonlocal heat transports in nanosystems.
Synthetic magnetic fluxes on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Górecka, Agnieszka; Grémaud, Benoît; Miniatura, Christian
2011-08-01
We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter’s butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.
Counting lattice animals in high dimensions
NASA Astrophysics Data System (ADS)
Luther, Sebastian; Mertens, Stephan
2011-09-01
We present an implementation of Redelemeier's algorithm for the enumeration of lattice animals in high-dimensional lattices. The implementation is lean and fast enough to allow us to extend the existing tables of animal counts, perimeter polynomials and series expansion coefficients in d-dimensional hypercubic lattices for 3 <= d <= 10. From the data we compute formulae for perimeter polynomials for lattice animals of size n <= 11 in arbitrary dimension d. When amended by combinatorial arguments, the new data suffice to yield explicit formulae for the number of lattice animals of size n <= 14 and arbitrary d. We also use the enumeration data to compute numerical estimates for growth rates and exponents in high dimensions that agree very well with Monte Carlo simulations and recent predictions from field theory.
Spin Chains with Dynamical Lattice Supersymmetry
NASA Astrophysics Data System (ADS)
Hagendorf, Christian
2013-02-01
Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the {N}=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension possess a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
A lattice approach to spinorial quantum gravity
NASA Technical Reports Server (NTRS)
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Extended applications of the vortex lattice method
NASA Technical Reports Server (NTRS)
Miranda, L. R.
1976-01-01
The application of the vortex lattice method to problems not usually dealt with by this technique is considered. It is shown that if the discrete vortex lattice is considered as an approximation to surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vortex-induced velocity that renders the vortex lattice method valid for supersonic flow. Special schemes for simulating non-zero thickness lifting surfaces and fusiform bodies with vortex lattice elements are presented. Thickness effects of wing-like components are simulated by a double vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentric cylindrical surfaces. Numerical considerations peculiar to the application of these techniques are briefly discussed.
Lattice strain accompanying the colossal magnetoresistance effect in EuB6.
Manna, Rudra Sekhar; Das, Pintu; de Souza, Mariano; Schnelle, Frank; Lang, Michael; Müller, Jens; von Molnár, Stephan; Fisk, Zachary
2014-08-08
The coupling of magnetic and electronic degrees of freedom to the crystal lattice in the ferromagnetic semimetal EuB(6), which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect, is studied by high-resolution thermal expansion and magnetostriction experiments. EuB(6) may be viewed as a model system, where pure magnetism-tuned transport and the response of the crystal lattice can be studied in a comparatively simple environment, i.e., not influenced by strong crystal-electric field effects and Jahn-Teller distortions. We find a very large lattice response, quantified by (i) the magnetic Grüneisen parameter, (ii) the spontaneous strain when entering the ferromagnetic region, and (iii) the magnetostriction in the paramagnetic temperature regime. Our analysis reveals that a significant part of the lattice effects originates in the magnetically driven delocalization of charge carriers, consistent with the scenario of percolating magnetic polarons. A strong effect of the formation and dynamics of local magnetic clusters on the lattice parameters is suggested to be a general feature of colossal magnetoresistance materials.
Toward a realistic low-field SSC lattice
Heifets, S.
1985-10-01
Three six-fold lattices for 3 T superferric SSC have been generated at TAC. The program based on the first order canonical transformation was used to compare lattices. On this basis the realistic race-track lattices were generated.
Enhancement of optical Faraday effect of nonanuclear Tb(III) complexes.
Nakanishi, Takayuki; Suzuki, Yuki; Doi, Yoshihiro; Seki, Tomohiro; Koizumi, Hitoshi; Fushimi, Koji; Fujita, Koji; Hinatsu, Yukio; Ito, Hajime; Tanaka, Katsuhisa; Hasegawa, Yasuchika
2014-07-21
The effective magneto-optical properties of novel nonanuclear Tb(III) complexes with Tb-O lattice (specifically, [Tb9(sal-R)16(μ-OH)10](+)NO3(-), where sal-R = alkyl salicylate (R = -CH3 (Me), -C2H5 (Et), -C3H7 (Pr), or -C4H9 (Bu)) are reported. The geometrical structures of these nonanuclear Tb(III) complexes were characterized using X-ray single-crystal analysis and shape-measure calculation. Optical Faraday rotation was observed in nonanuclear Tb(III) complexes in the visible region. The Verdet constant per Tb(III) ion of the Tb9(sal-Me) complex is 150 times larger than that of general Tb(III) oxide glass. To understand their large Faraday rotation, electron paramagnetic resonance measurements of Gd(III) complexes were carried out. In this Report, the magneto-optical relation to the coordination geometry of Tb ions is discussed.
NASA Astrophysics Data System (ADS)
Ning, Zongjun; Fu, Qijun; Lu, Quankang
2000-05-01
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.
NASA Astrophysics Data System (ADS)
Zongjun, Ning; Fu, Qijun; Quankang, Lu
2000-05-01
Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
Fusion Power Demonstration III
Lee, J.D.
1985-07-01
This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.
Making the cut: lattice kirigami rules.
Castle, Toen; Cho, Yigil; Gong, Xingting; Jung, Euiyeon; Sussman, Daniel M; Yang, Shu; Kamien, Randall D
2014-12-12
In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami—folding, cutting, and pasting the edges of paper.
Making the Cut: Lattice Kirigami Rules
NASA Astrophysics Data System (ADS)
Castle, Toen; Cho, Yigil; Gong, Xingting; Jung, Euiyeon; Sussman, Daniel M.; Yang, Shu; Kamien, Randall D.
2014-12-01
In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami—folding, cutting, and pasting the edges of paper.
Coincidence lattices in the hyperbolic plane.
Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A
2011-01-01
The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections.
Continuum methods in lattice perturbation theory
Becher, Thomas G
2002-11-15
We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.
Lattice surgery translation for quantum computation
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-01-01
In this paper we outline a method for a compiler to translate any non fault tolerant quantum circuit to the geometric representation of the lattice surgery error-correcting code using inherent merge and split operations. Since the efficiency of state distillation procedures has not yet been investigated in the lattice surgery model, their translation is given as an example using the proposed method. The resource requirements seem comparable or better to the defect-based state distillation process, but modularity and eventual implementability allow the lattice surgery model to be an interesting alternative to braiding.
Charmonium excited state spectrum in lattice QCD
Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards
2008-02-01
Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.
Reactive Orthotropic Lattice Diffuser for Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor)
2016-01-01
An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.
Shock wave structure in a lattice gas
NASA Astrophysics Data System (ADS)
Broadwell, James E.; Han, Donghee
2007-05-01
The motion and structure of shock and expansion waves in a simple particle system, a lattice gas and cellular automaton, are determined in an exact computation. Shock wave solutions, also exact, of a continuum description, a model Boltzmann equation, are compared with the lattice results. The comparison demonstrates that, as proved by Caprino et al. ["A derivation of the Broadwell equation," Commun. Math. Phys. 135, 443 (1991)] only when the lattice processes are stochastic is the model Boltzmann description accurate. In the strongest shock wave, the velocity distribution function is the bimodal function proposed by Mott-Smith.
Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.
1987-01-01
The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.
Nuclear reactions from lattice QCD
NASA Astrophysics Data System (ADS)
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-02-01
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Anyonic braiding in optical lattices
Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.
2007-01-01
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038
Lattice Universe: examples and problems.
Brilenkov, Maxim; Eingorn, Maxim; Zhuk, Alexander
We consider lattice Universes with spatial topologies [Formula: see text], [Formula: see text], and [Formula: see text]. In the Newtonian limit of General Relativity, we solve the Poisson equation for the gravitational potential in the enumerated models. In the case of point-like massive sources in the [Formula: see text] model, we demonstrate that the gravitational potential has no definite values on the straight lines joining identical masses in neighboring cells, i.e. at points where masses are absent. Clearly, this is a nonphysical result, since the dynamics of cosmic bodies is not determined in such a case. The only way to avoid this problem and get a regular solution at any point of the cell is the smearing of these masses over some region. Therefore, the smearing of gravitating bodies in [Formula: see text]-body simulations is not only a technical method but also a physically substantiated procedure. In the cases of [Formula: see text] and [Formula: see text] topologies, there is no way to get any physically reasonable and nontrivial solution. The only solutions we can get here are the ones which reduce these topologies to the [Formula: see text] one.
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
NASA Astrophysics Data System (ADS)
Daniška, Michal; Gendiar, Andrej
2016-04-01
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence.
Bishop, R. F.; Li, P. H. Y.
2011-04-15
An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1/2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.
Theory of Lattice Strain for Materials Undergoing Plastic Deformation
NASA Astrophysics Data System (ADS)
Karato, S.
2008-12-01
Radial x-ray diffraction is used to probe physical properties of materials including elastic and plastic properties. The theory used behind such an practice is the one developed by Singh (1993) in which the relation between lattice strain and elastic constants and macroscopic stress is derived. In this theory, the variation of inferred stress with the crystallographic planes, (hkl), is due to the elastic anisotropy. However, recent experimental studies showed that in many cases, the variation of stress with (hkl) far exceeds the value expected from this theory. I have developed a modified theory to rectify this problem with Singh's theory. In Singh's theory, the stress distribution in a polycrystalline material is treated only either unrelaxed or relaxed state. The role of plastic deformation is included only to the extent that plastic flow influences this stress state. Such an assumption corresponds to a Voigt model behavior, which is not an appropriate model at high temperatures where continuing plastic flow occurs with concurrent microscopic equilibrium, elastic deformation. This is a Maxwell model type behavior, and my model provides a stress analysis in a Maxwell material with anisotropic and non-linear power-law rheology. In this theory, the lattice strain corresponding to an imposed macroscopic strain-rate is calculated by three steps: (i) conversion of macroscopic strain-rate to macroscopic stress, (ii) conversion of macroscopic stress to microscopic stress at individual grains, and (iii) calculation of microscopic strain due to microscopic stress. The first step involves anisotropy in macroscopic viscosity that depends on anisotropy in crystal plasticity and lattice-preferred orientation. The second step involves anisotropic crystal plasticity and finally the third step involves elastic crystal anisotropy. In most cases, the influence of LPO is weak and in such a case, the lattice strain depends on (hkl) due to the anisotropy in both elastic and plastic
Lattice Engineering via Nanoparticle-DNA Frameworks
Tian, Ye; Zhang, Yugang; Wang, Tong; Xin, Huolin L.; Li, Huilin; Gang, Oleg
2017-01-01
Advances in self-assembly over the last decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate the desired lattice type from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The well-defined geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell. PMID:26901516
Regge calculus models of closed lattice universes
NASA Astrophysics Data System (ADS)
Liu, Rex G.; Williams, Ruth M.
2016-01-01
This paper examines the behavior of closed "lattice universes" wherein masses are distributed in a regular lattice on the Cauchy surfaces of closed vacuum universes. Such universes are approximated using a form of Regge calculus originally developed by Collins and Williams to model closed Friedmann-Lemaître-Robertson-Walker universes. We consider two types of lattice universes, one where all masses are identical to each other and another where one mass gets perturbed in magnitude. In the unperturbed universe, we consider the possible arrangements of the masses in the Regge Cauchy surfaces and demonstrate that the model will only be stable if each mass lies within some spherical region of convergence. We also briefly discuss the existence of Regge models that are dual to the ones we have considered. We then model a perturbed lattice universe and demonstrate that the model's evolution is well behaved, with the expansion increasing in magnitude as the perturbation is increased.
Three electroweak results from lattice QCD
Kronfeld, A.S., FERMI
1998-08-01
Quantum chromodynamics is needed to understand quarks and, hence, to determine the quarks` Yukawa couplings from experimental measurements. As a short illustration, the results of three lattice calculations are given.
Lattice engineering through nanoparticle–DNA frameworks
Tian, Ye; Zhang, Yugang; Wang, Tong; ...
2016-02-22
Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using themore » same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.« less
Lattice Waves, Spin Waves, and Neutron Scattering
DOE R&D Accomplishments Database
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Enumerations of Lattice Animals and Trees
NASA Astrophysics Data System (ADS)
Jensen, Iwan
2001-02-01
We have developed an improved algorithm that allows us to enumerate the number of site animals on the square lattice up to size 46. We also calculate the number of lattice trees up to size 44 and the radius of gyration of both lattice animals and trees up to size 42. Analysis of the resulting series yields an improved estimate, λ=4.062570(8), for the growth constant of lattice animals, and, λ0=3.795254(8), for the growth constant of trees, and confirms to a very high degree of certainty that both the animal and tree generating functions have a logarithmic divergence. Analysis of the radius of gyration series yields the estimate, ν=0.64115(5), for the size exponent.
Two-dimensional generalized Toda lattice
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Olshanetsky, M. A.; Perelomov, A. M.
1981-12-01
The zero curvature representation is obtained for the two-dimensional generalized Toda lattices connected with semisimple Lie algebras. The reduction group and conservation laws are found and the mass spectrum is calculated.
Random sequential adsorption on imprecise lattice
NASA Astrophysics Data System (ADS)
Privman, Vladimir; Yan, Han
2016-06-01
We report a surprising result, established by numerical simulations and analytical arguments for a one-dimensional lattice model of random sequential adsorption, that even an arbitrarily small imprecision in the lattice-site localization changes the convergence to jamming from fast, exponential, to slow, power-law, with, for some parameter values, a discontinuous jump in the jamming coverage value. This finding has implications for irreversible deposition on patterned substrates with pre-made landing sites for particle attachment. We also consider a general problem of the particle (depositing object) size not an exact multiple of the lattice spacing, and the lattice sites themselves imprecise, broadened into allowed-deposition intervals. Regions of exponential vs. power-law convergence to jamming are identified, and certain conclusions regarding the jamming coverage are argued for analytically and confirmed numerically.
Colloquium: Physics of optical lattice clocks
Derevianko, Andrei; Katori, Hidetoshi
2011-04-01
Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
Colloquium: Physics of optical lattice clocks
NASA Astrophysics Data System (ADS)
Derevianko, Andrei; Katori, Hidetoshi
2011-04-01
Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10-18 fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
Strange Baryon Physics in Full Lattice QCD
Huey-Wen Lin
2007-11-01
Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.
Renormalization transformation of periodic and aperiodic lattices
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-10-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process.
Ballistic Transport in Graphene Antidot Lattices.
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-12-09
The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential.
Optical physics: Magnetic appeal in strained lattice
NASA Astrophysics Data System (ADS)
Lepetit, Thomas
2013-02-01
Using strain to induce a pseudomagnetic field in a photonic lattice at optical frequencies might bring improvements to fields such as photonic crystal fibres, supercontinuum generation and frequency combs.
Lattice engineering through nanoparticle–DNA frameworks
Tian, Ye; Zhang, Yugang; Wang, Tong; Xin, Huolin L.; Li, Huilin; Gang, Oleg
2016-02-22
Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.
Furman, M.A.
2002-06-19
This is a summary of the talks presented in Session III ''Simulations of Electron-Cloud Build Up'' of the Mini-Workshop on Electron-Cloud Simulations for Proton and Positron Beams ECLOUD-02, held at CERN, 15-18 April 2002.
ERIC Educational Resources Information Center
Ditlea, Steve
1982-01-01
Describes and evaluates the features, performance, peripheral devices, available software, and capabilities of the Apple III microcomputer. The computer's operating system, its hardware, and the commercially produced software it accepts are discussed. Specific applications programs for financial planning, accounting, and word processing are…
NASA Astrophysics Data System (ADS)
Egri, Győző I.; Fodor, Zoltán; Hoelbling, Christian; Katz, Sándor D.; Nógrádi, Dániel; Szabó, Kálmán K.
2007-10-01
The speed, bandwidth and cost characteristics of today's PC graphics cards make them an attractive target as general purpose computational platforms. High performance can be achieved also for lattice simulations but the actual implementation can be cumbersome. This paper outlines the architecture and programming model of modern graphics cards for the lattice practitioner with the goal of exploiting these chips for Monte Carlo simulations. Sample code is also given.
Current and lattice matched tandem solar cell
Olson, Jerry M.
1987-01-01
A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.
Fermionic Optical Lattices: A Computational Study
2014-10-22
Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 optical lattices, degenerate quantum gases , quantum control, correlation...with a different wavelength. We systematically determine the real - and momentum-space properties of these states. The crossover from 3D to two...fermions in square lattices. The phases are systematically characterized by the symmetry of the order parameter and the real - and momentum-space
Solitons in PT-symmetric nonlinear lattices
Abdullaev, Fatkhulla Kh.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Kartashov, Yaroslav V.
2011-04-15
The existence of localized modes supported by the PT-symmetric nonlinear lattices is reported. The system considered reveals unusual properties: unlike other typical dissipative systems, it possesses families (branches) of solutions, which can be parametrized by the propagation constant; relatively narrow localized modes appear to be stable, even when the conservative nonlinear lattice potential is absent; and finally, the system supports stable multipole solutions.
The optical potential on the lattice
Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; MeiBner, Ulf -G.; Rusetsky, Akaki
2016-06-08
The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.
Lattice and Phase Diagram in QCD
Lombardo, Maria Paola
2008-10-13
Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.
Vague Congruences and Quotient Lattice Implication Algebras
Qin, Xiaoyan; Xu, Yang
2014-01-01
The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207
Building the RHIC tracking lattice model
Luo, Y.; Fischer, W.; Tepikian, S.
2010-01-27
In this note we outline the procedure to build a realistic lattice model for the RHIC beam-beam tracking simulation. We will install multipole field errors in the arc main dipoles, arc main quadrupols and interaction region magnets (DX, D0, and triplets) and introduce a residual closed orbit, tune ripples, and physical apertures in the tracking lattice model. Nonlinearities such as local IR multipoles, second order chromaticies and third order resonance driving terms are also corrected before tracking.
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Some Poisson structures and Lax equations associated with the Toeplitz lattice and the Schur lattice
NASA Astrophysics Data System (ADS)
Lemarie, Caroline
2016-01-01
The Toeplitz lattice is a Hamiltonian system whose Poisson structure is known. In this paper, we unveil the origins of this Poisson structure and derive from it the associated Lax equations for this lattice. We first construct a Poisson subvariety H n of GL n (C), which we view as a real or complex Poisson-Lie group whose Poisson structure comes from a quadratic R-bracket on gl n (C) for a fixed R-matrix. The existence of Hamiltonians, associated to the Toeplitz lattice for the Poisson structure on H n , combined with the properties of the quadratic R-bracket allow us to give explicit formulas for the Lax equation. Then we derive from it the integrability in the sense of Liouville of the Toeplitz lattice. When we view the lattice as being defined over R, we can construct a Poisson subvariety H n τ of U n which is itself a Poisson-Dirac subvariety of GL n R (C). We then construct a Hamiltonian for the Poisson structure induced on H n τ , corresponding to another system which derives from the Toeplitz lattice the modified Schur lattice. Thanks to the properties of Poisson-Dirac subvarieties, we give an explicit Lax equation for the new system and derive from it a Lax equation for the Schur lattice. We also deduce the integrability in the sense of Liouville of the modified Schur lattice.
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-24
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice
NASA Astrophysics Data System (ADS)
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-01
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
Lattice calculation of nonleptonic charm decays
Simone, J.N.
1991-11-01
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.
Topological phases: An expedition off lattice
Freedman, Michael H.; Gamper, Lukas; Gils, Charlotte; Isakov, Sergei V.; Trebst, Simon; Troyer, Matthias
2011-08-15
Highlights: > Models of topological phases where the lattice topology is a dynamical variable. > We discuss off-lattice hazards that destroy topological protection. > The Cheeger constant yields upper bound to the energy of excited states. > Baby universes meet condensed matter physics. > We study the graph Laplacian of loop gases and string nets on fluctuating lattices. - Abstract: Motivated by the goal to give the simplest possible microscopic foundation for a broad class of topological phases, we study quantum mechanical lattice models where the topology of the lattice is one of the dynamical variables. However, a fluctuating geometry can remove the separation between the system size and the range of local interactions, which is important for topological protection and ultimately the stability of a topological phase. In particular, it can open the door to a pathology, which has been studied in the context of quantum gravity and goes by the name of 'baby universe', here we discuss three distinct approaches to suppressing these pathological fluctuations. We complement this discussion by applying Cheeger's theory relating the geometry of manifolds to their vibrational modes to study the spectra of Hamiltonians. In particular, we present a detailed study of the statistical properties of loop gas and string net models on fluctuating lattices, both analytically and numerically.
Pacific Barrier Radar III (PACBAR III)
NASA Astrophysics Data System (ADS)
Miller, C. D.; Sigler, J. D.
1983-11-01
The Pacific Barrier (PACBAR III) C-band radar is being installed at the Western Space and Missile Center to furnish Revolution 0 detection of foreign launches. Previously installed on a tracking ship, the upgraded system will also identify and target space objects, maintain a catalog, and cover maneuvers and decay of space objects. Nominal operation will comprise a search of a predesignated 15 deg azimuth with the capability of detecting a 6 sq m target in a 400 km orbit, track spacecraft in orbits up to 800 km altitude, have a range resolution of about 80 yd, provide realtime payload and rocket body discrimination, and transmit two-way digital message traffic between the Center and NORAD in Cheyenne Mt. Interlaced vertical and horizontal pulses will augment the search and acquisition capabilities, and the antenna will have a 140 deg plunge range. The transmitter will function at 5.4-5.65 GHz, 320 p/sec, with a peak power of 0.8 MW, and the system will have a nonambiguous range of 32,768 nmi.
Two-dimensional electrostatic lattices for indirect excitons
NASA Astrophysics Data System (ADS)
Remeika, M.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.
2012-02-01
We report on a method for the realization of two-dimensional electrostatic lattices for excitons using patterned interdigitated electrodes. Lattice structure is set by the electrode pattern and depth of the lattice potential is controlled by applied voltages. We demonstrate square, hexagonal, and honeycomb lattices created by this method.
Phase transitions in cooperative coinfections: Simulation results for networks and lattices
NASA Astrophysics Data System (ADS)
Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran
2016-04-01
We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d -dimensional lattices with d ≥4 , and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.
Phase transitions in cooperative coinfections: Simulation results for networks and lattices.
Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran
2016-04-01
We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d-dimensional lattices with d≥4, and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.
The Spectrum and Laplacian Spectrum of the Dice Lattice
NASA Astrophysics Data System (ADS)
Li, Shuli; Yan, Weigen; Tian, Tao
2016-07-01
The dice lattice is the dual lattice of kagomé lattice. Many physical properties on the dice lattice have been studied by physicists, such as Ising model, Glassy dynamics of Josephson arrays, and Lattice Green's function. In this paper, we derive the spectrum and Laplacian spectrum of the dice lattice with toroidal boundary condition. In addition, we apply our results to obtain the formulae of the number of spanning trees, the Kirchhoff index, and the energy of the dice lattice with toroidal boundary condition.
Titanium-silicon carbide composite lattice structures
NASA Astrophysics Data System (ADS)
Moongkhamklang, Pimsiree
Sandwich panel structures with stiff, strong face sheets and lightweight cellular cores are widely used for weight sensitive, bending dominated loading applications. The flexural stiffness and strength of a sandwich panel is determined by the stiffness, strength, thickness, and separation of the face sheets, and by the compressive and shear stiffness and strength of the cellular core. Panel performance can be therefore optimized using cores with high specific stiffness and strength. The specific stiffness and strength of all cellular materials depends upon the specific elastic modulus and strength of the material used to make the structure. The stiffest and strongest cores for ambient temperature applications utilize carbon fiber reinforced polymer (CFRP) honeycombs and lattice structures. Few options exist for lightweight sandwich panels intended for high temperature uses. High temperature alloys such as Ti-6A1-4V can be applied to SiC monofilaments to create very high specific modulus and strength fibers. These are interesting candidates for the cores of elevated temperature sandwich structures such as the skins of hypersonic vehicles. This dissertation explores the potential of sandwich panel concepts that utilize millimeter scale titanium matrix composite (TMC) lattice structures. A method has been developed for fabricating millimeter cell size cellular lattice structures with the square or diamond collinear truss topologies from 240 mum diameter Ti-6A1-4V coated SiC monofilaments (TMC monofilaments). Lattices with relative densities in the range 10% to 20% were manufactured and tested in compression and shear. Given the very high compressive strength of the TMC monofilaments, the compressive strengths of both the square and diamond lattices were dominated by elastic buckling of the constituent struts. However, under shear loading, some of the constituent struts of the lattices are subjected to tensile stresses and failure is then set by tensile failure of the
Numerical Studies of Localized Vibrating Structures in Nonlinear Lattices
1991-03-01
unity, except in Chapter V, where nonuniformities are discussed. Thus, the lattice in each case is characterized by coupling and damping constants. The...with a simple lattice of point masses connected by massless springs. Except in Chapter V, this and all other lattices will be taken to consist of...next to last element and to the first element; this is essentially a finite ring lattice, except that all effects of curvature of such a ring lattice are
ERIC Educational Resources Information Center
Elcoro, Luis; Etxebarria, Jesus
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…
NASA Technical Reports Server (NTRS)
Rogers, A. E. E.; Whitney, A. R.; Levine, J. I.; Nesman, E. F.; Webber, J. C.; Hinteregger, H. F.
1988-01-01
Geodetic measurements have errors in centimeter range. Collection of three reports describes both equipment and results of some measurements taken with Mark III very-long-baseline interferometry (VLBI) system. Has demonstrated high accuracy over short baselines, where phase-delay measurements used. Advanced hardware, called Mark III A, developed to improve system performance and efficiency. Original Mark III hardware and III A subsystem upgrades developed as part of NASA Crustal Dynamics Project at Haystack Observatory.
Ultracold Quantum Gases in Hexagonal Optical Lattices
NASA Astrophysics Data System (ADS)
Sengstock, Klaus
2010-03-01
Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording
Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10{sup -17} Level
Westergaard, P. G.; Lodewyck, J.; Lecallier, A.; Millo, J.; Lemonde, P.; Lorini, L.; Burt, E. A.; Zawada, M.
2011-05-27
We present a comprehensive study of the frequency shifts associated with the lattice potential in a Sr lattice clock by comparing two such clocks with a frequency stability reaching 5x10{sup -17} after a 1 h integration time. We put the first experimental upper bound on the multipolar M1 and E2 interactions, significantly smaller than the recently predicted theoretical upper limit, and give a 30-fold improved upper limit on the effect of hyperpolarizability. Finally, we report on the first observation of the vector and tensor shifts in a Sr lattice clock. Combining these measurements, we show that all known lattice related perturbations will not affect the clock accuracy down to the 10{sup -17} level, even for lattices as deep as 150 recoil energies.
Controlling polar molecules in optical lattices
Kotochigova, S.; Tiesinga, E.
2006-04-15
We theoretically investigate the interaction of polar molecules with optical lattices and microwave fields. We demonstrate the existence of frequency windows in the optical domain where the complex internal structure of the molecule does not influence the trapping potential of the lattice. In such frequency windows the Franck-Condon factors are so small that near-resonant interaction of vibrational levels of the molecule with the lattice fields have a negligible contribution to the polarizability, and light-induced decoherences are kept to a minimum. In addition, we show that microwave fields can induce a tunable dipole-dipole interaction between ground-state rotationally symmetric (J=0) molecules. A combination of a carefully chosen lattice frequency and microwave-controlled interaction between molecules will enable trapping of polar molecules in a lattice and possibly realize molecular quantum logic gates. Our results are based on ab initio relativistic electronic structure calculations of the polar KRb and RbCs molecules combined with calculations of their rovibrational motion.
Lattice-induced transparency in planar metamaterials
NASA Astrophysics Data System (ADS)
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan
2016-10-01
Lattice modes are intrinsic to periodic structures and they can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed the excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report an experimental observation of a lattice-induced transparency (LIT) by coupling the first-order lattice mode (FOLM) to the structural resonance of a terahertz asymmetric split ring resonator. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM assisted dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes a large change in its bandwidth and resonance position. We propose a three-oscillator model to explain the underlying coupling mechanism in LIT system that shows good agreement with the observed results. Besides controlling the transparency behavior, LIT also shows a huge enhancement in its Q factor and exhibits a high group delay of 28 ps with an enhanced group index of 4.5 ×104 , which could be pivotal in ultrasensitive sensing and slow-light device applications.
Full CKM matrix with lattice QCD
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
Incommensurate lattice modulations in Potassium Vanadate
NASA Astrophysics Data System (ADS)
Chakoumakos, Bryan; Banerjee, Arnab; Mark, Lumsden; Cao, Huibo; Kim, Jong-Woo; Hoffman, Christina; Wang, Xiaoping
Potassium Vanadate (K2V3O8) is an S = 1/2 2D square lattice antiferromagnet that shows spin reorientation indicating a strong coupling between the magnetism and its dielectric properties with a promise of rich physics that promises multiferroicity. These tangible physical properties are strongly tied through a spin-lattice coupling to the underlying lattice and superlattice behavior. It has a superlattice (SL) onsetting below Tc = 115 K with an approximate [3 x 3 x 2] modulation. Here we present our recent experiments at TOPAZ beamline at SNS which for the first time proves conclusively that the lattice modulations are incommensurate, with an in-plane Q of 0.315. We will also show our attempts to refine the data using JANA which requires a redefinition of the lattice, as well as the temperature and Q dependence of the superlattice modulation measured using neutrons at HFIR and synchrotron x-rays at APS. Our results are not only relevant for the ongoing search of multifunctional behavior in K2V3O8 but also generally for the superlattice modulations observed in a large family of fresnoites. Work performed at ORNL and ANL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.
Hybrid lattice Boltzmann method on overlapping grids
NASA Astrophysics Data System (ADS)
Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S.
2017-01-01
In this work, a hybrid lattice Boltzmann method (HLBM) is proposed, where the standard lattice Boltzmann implementation based on the Bhatnagar-Gross-Krook (LBGK) approximation is combined together with an unstructured finite-volume lattice Boltzmann model. The method is constructed on an overlapping grid system, which allows the coexistence of a uniform lattice nodes spacing and a coordinate-free lattice structure. The natural adaptivity of the hybrid grid system makes the method particularly suitable to handle problems involving complex geometries. Moreover, the provided scheme ensures a high-accuracy solution near walls, given the capability of the unstructured submodel of achieving the desired level of refinement in a very flexible way. For these reasons, the HLBM represents a prospective tool for solving multiscale problems. The proposed method is here applied to the benchmark problem of a two-dimensional flow past a circular cylinder for a wide range of Reynolds numbers and its numerical performances are measured and compared with the standard LBGK ones.
NASA Astrophysics Data System (ADS)
Singh, Avinash; Mohapatra, Shubhajyoti; Ziman, Timothy; Chatterji, Tapan
2017-02-01
Spin waves in the type-III ordered antiferromagnetic state of the frustrated t- t ' Hubbard model on the face-centred-cubic (fcc) lattice are calculated to investigate finite-U-induced competing interaction and frustration effects on magnetic excitations and instabilities. Particularly strong competing interactions generated due to the interplay of fcc lattice geometry and magnetic order result in significant spin wave softening. The calculated spin wave dispersion is found to be in qualitative agreement with the measured spin wave dispersion in the pyrite mineral MnS2 obtained from inelastic neutron scattering experiments. Instabilities to other magnetic orders (type I, type II, spiral, non-collinear), as signalled by spin wave energies turning negative, are also discussed.
Making the Cut: Lattice Kirigami Rules
NASA Astrophysics Data System (ADS)
Castle, Toen; Cho, Yigil; Gong, Xingting; Jung, Euiyeon; Sussman, Daniel; Yang, Shu; Kamien, Randall
2015-03-01
Complex 3D structures can be built by bending and folding a flat sheet, as is done in origami. This paradigm can be extended by cutting and gluing the sheet as well as folding. The principles manifest in manipulating a piece of paper can translate across many length scales, limited only by fabrication methods. We explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed, providing a framework for exploring and building kirigami - folding, cutting, and pasting the edges of paper. Support from NSF DMR12-62047.
Lattice Boltzmann model for numerical relativity
NASA Astrophysics Data System (ADS)
Ilseven, E.; Mendoza, M.
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Entropic Lattice Boltzmann Algorithms for Turbulence
NASA Astrophysics Data System (ADS)
Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda; Keating, Brian; Carter, Jonathan
2007-11-01
For turbulent flows in non-trivial geometry, the scaling of CFD codes (now necessarily non-pseudo spectral) quickly saturate with the number of PEs. By projecting into a lattice kinetic phase space, the turbulent dynamics are simpler and much easier to solve since the underlying kinetic equation has only local algebraic nonlinearities in the macroscopic variables with simple linear kinetic advection. To achieve arbitrary high Reynolds number, a discrete H-theorem constraint is imposed on the collision operator resulting in an entropic lattice Boltzmann (ELB) algorithm that is unconditionally stable and scales almost perfectly with PE's on any supercomputer architecture. At this mesoscopic level, there are various kinetic lattices (ELB-27, ELB-19, ELB-15) which will recover the Navier-Stokes equation to leading order in the Chapman-Enskog asymptotics. We comment on the morphology of turbulence and its correlation to the rate of change of enstrophy as well as simulations on 1600^3 grids.
Maximum independent set on diluted triangular lattices
NASA Astrophysics Data System (ADS)
Fay, C. W., IV; Liu, J. W.; Duxbury, P. M.
2006-05-01
Core percolation and maximum independent set on random graphs have recently been characterized using the methods of statistical physics. Here we present a statistical physics study of these problems on bond diluted triangular lattices. Core percolation critical behavior is found to be consistent with the standard percolation values, though there are strong finite size effects. A transfer matrix method is developed and applied to find accurate values of the density and degeneracy of the maximum independent set on lattices of limited width but large length. An extrapolation of these results to the infinite lattice limit yields high precision results, which are tabulated. These results are compared to results found using both vertex based and edge based local probability recursion algorithms, which have proven useful in the analysis of hard computational problems, such as the satisfiability problem.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Pattern Recognition of Adsorbing HP Lattice Proteins
NASA Astrophysics Data System (ADS)
Wilson, Matthew S.; Shi, Guangjie; Wüst, Thomas; Landau, David P.; Schmid, Friederike
2015-03-01
Protein adsorption is relevant in fields ranging from medicine to industry, and the qualitative behavior exhibited by course-grained models could shed insight for further research in such fields. Our study on the selective adsorption of lattice proteins utilizes the Wang-Landau algorithm to simulate the Hydrophobic-Polar (H-P) model with an efficient set of Monte Carlo moves. Each substrate is modeled as a square pattern of 9 lattice sites which attract either H or P monomers, and are located on an otherwise neutral surface. The fully enumerated set of 102 unique surfaces is simulated with each protein sequence. A collection of 27-monomer sequences is used- each of which is non-degenerate and protein-like. Thermodynamic quantities such as the specific heat and free energy are calculated from the density of states, and are used to investigate the adsorption of lattice proteins on patterned substrates. Research supported by NSF.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Lattice gas dynamics under continuous measurement
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund
2016-05-01
The act of measurement has a profound consequences quantum systems. While this backaction has so far been discussed as being a limitation on the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful and versatile means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. Here, we show how spatially designed measurement landscapes can be used to realize entropy segregation in lattice gases. This presents an alternate path to the longstanding challenge of realizing lattice gases with sufficiently low entropy to access regimes of correlated quantum behavior such as Néel ordered states. This work is supported by the ARO MURI on non-equilibrium dynamics.
Ising antiferromagnet on the 2-uniform lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2016-08-01
The antiferromagnetic Ising model is investigated on the twenty 2-uniform lattices using the Monte Carlo method based on the Wang-Landau algorithm and the Metropolis algorithm to study the geometric frustration effect systematically. Based on the specific heat, the residual entropy, and the Edwards-Anderson freezing order parameter, the ground states of them were determined. In addition to the long-range-ordered phase and the spin ice phase found in the Archimedean lattices, two more phases were found. The partial long-range order is long-range order with exceptional disordered sites, which give extensive residual entropy. In the partial spin ice phase, the partial freezing phenomenon appears: A majority of sites are frozen without long-range order, but the other sites are fluctuating even at zero temperature. The spin liquid ground state was not found in the 2-uniform lattices.
Exploring hyperons and hypernuclei with lattice QCD
Beane, S.R.; Bedaque, P.F.; Parreno, A.; Savage, M.J.
2003-01-01
In this work we outline a program for lattice QCD that wouldprovide a first step toward understanding the strong and weakinteractions of strange baryons. The study of hypernuclear physics hasprovided a significant amount of information regarding the structure andweak decays of light nuclei containing one or two Lambda's, and Sigma's.From a theoretical standpoint, little is known about the hyperon-nucleoninteraction, which is required input for systematic calculations ofhypernuclear structure. Furthermore, the long-standing discrepancies inthe P-wave amplitudes for nonleptonic hyperon decays remain to beunderstood, and their resolution is central to a better understanding ofthe weak decays of hypernuclei. We present a framework that utilizesLuscher's finite-volume techniques in lattice QCD to extract thescattering length and effective range for Lambda-N scattering in both QCDand partially-quenched QCD. The effective theory describing thenonleptonic decays of hyperons using isospin symmetry alone, appropriatefor lattice calculations, is constructed.
Multisite Interactions in Lattice-Gas Models
NASA Astrophysics Data System (ADS)
Einstein, T. L.; Sathiyanarayanan, R.
For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.
Lattice radial quantization: 3D Ising
NASA Astrophysics Data System (ADS)
Brower, R. C.; Fleming, G. T.; Neuberger, H.
2013-04-01
Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l = 1, 2), we obtain an estimate for η = 0.034 (10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson-Fisher fixed point in the continuum limit.
Exploring Three Nucleon Forces in Lattice QCD
Doi, Takumi
2011-10-21
We study the three nucleon force in N{sub f} = 2 dynamical clover fermion lattice QCD, utilizing the Nambu-Bethe-Salpeter wave function of the three nucleon system. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we develop a new formulation to extract the genuine three nucleon force which requires only the information of parity-even two nucleon potentials. In order to handle the extremely expensive calculation cost, we consider a specific three-dimensional coordinate configuration for the three nucleons. We find that the linear setup is advantageous, where nucleons are aligned linearly with equal spacings. The lattice calculation is performed with 16{sup 3}x32 configurations at {beta} = 1.95, m{sub {pi}} = 1.13 GeV generated by CP-PACS Collaboration, and the result of the three nucleon force in triton channel is presented.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
Twisted complex superfluids in optical lattices.
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-09-08
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose-Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid.
Lattice animals: dc=8 for trees
NASA Astrophysics Data System (ADS)
Ruskin, H. J.; Duarte, J. A. M. S.
1982-09-01
The asymptotic behavior of the total number of treelike clusters (lattice trees) on the hypercubic system is investigated for d>=4 by the method of series expansions. Interest centers on ascertaining the critical dimension, dc, at which the prefactor exponent θ attains its mean-field value. We present results for θ and for the cluster growth parameter λ for d=4 to 9. The λ values are close to within a few percent of those found for the general animal case. Results for θ have large uncertainties in the dimensions of interest, and the mean-field value is approached very gradually with d, so that the possibility of a lower value for dc cannot be completely discarded. Nevertheless, the available evidence suggests that dc=8 for lattice trees. This supports the findings of Lubensky and Isaacson in their recent work on lattice animals and dilute branched polymers.
How good is the Lattice Boltzmann method?
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Barad, Michael; Kiris, Cetin
2016-11-01
Conflicting opinions exist in literature regarding how efficient the lattice Boltzmann method is relative to high-order finite difference approximations of the Navier-Stokes equations on Cartesian meshes, especially at high Mach numbers. We address the question from the pragmatic viewpoint of a practitioner. Dispersion, dissipation and aliasing errors of various lattice Boltzmann models are systematically quantified. The number of floating point operations and memory required for a desired accuracy level are carefully compared for the two numerical methods. Turbulent kinetic energy budgets for several standard test cases such as the decaying Taylor-Green vortex problem are used to evaluate how effective the stabilization mechanisms necessary for lattice Boltzmann method at high Reynolds numbers are. Detailed comments regarding the cyclomatic complexity of the underlying software, scalability of the underlying algorithm on state-of-the-art high-performance computing platforms and wall clock times and relative accuracy for selected simulations conducted using the two approaches are also made.
Featureless quantum insulator on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Kim, Panjin; Lee, Hyunyong; Jiang, Shenghan; Ware, Brayden; Jian, Chao-Ming; Zaletel, Michael; Han, Jung Hoon; Ran, Ying
2016-08-01
We show how to construct fully symmetric states without topological order on a honeycomb lattice for S =1/2 spins using the language of projected entangled pair states. An explicit example is given for the virtual bond dimension D =4 . Four distinct classes differing by lattice quantum numbers are found by applying the systematic classification scheme introduced by two of the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015), 10.1103/PhysRevB.92.104414]. Lack of topological degeneracy or other conventional forms of symmetry breaking in the proposed wave functions are checked by numerical calculations of the entanglement entropy and various correlation functions. Exponential decay of all correlation functions measured are strongly indicative of the energy gap for the putative parent Hamiltonian of the state. Our work provides the first explicit realization of a featureless quantum state for spin-1/2 particles on a honeycomb lattice.
Quantum search algorithms on a regular lattice
Hein, Birgit; Tanner, Gregor
2010-07-15
Quantum algorithms for searching for one or more marked items on a d-dimensional lattice provide an extension of Grover's search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behavior for the search time and the localization probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions.
Discrete breathers in hexagonal dusty plasma lattices
Koukouloyannis, V.; Kourakis, I.
2009-08-15
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Arbitrary lattice symmetries via block copolymer nanomeshes
Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.
2015-01-01
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566
Lattice Strain Defects in a Ceria Nanolayer
2016-01-01
An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu–O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state. PMID:26988695
Excited light meson spectroscopy from lattice QCD
Christopher Thomas, Hadron Spectrum Collaboration
2012-04-01
I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.
Modeling shocks in periodic lattice materials
NASA Astrophysics Data System (ADS)
Messner, Mark C.; Barham, Mathew I.; Kumar, Mukul; Barton, Nathan R.
2017-01-01
Periodic lattice materials are extremely light relative to their stiffness and strength. Developments in additive manufacturing technologies open the possibility of using periodic lattices as energy absorbers for impact loading. This work extends an equivalent continuum material model for periodic, stretch dominated lattices to shock compression by augmenting the model with an equation for the evolution of relative density under volumetric plastic deformation. When compared to detailed finite element simulations, this simple modification to the equivalent continuum model accurately captures some parts of the shock response, especially the behavior of elastic precursors. However, the model is less accurate for the properties of the compaction shock, reflecting inaccuracies in the final state of the material.
Nucleon Structure from Dynamical Lattice QCD
Huey-Wen Lin
2007-06-01
We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.
Nucleon Structure from Dynamical Lattice QCD
Lin, H.-W.
2007-06-13
We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Proton spin structure from lattice QCD
Fukugita, M.; Kuramashi, Y.; Okawa, M.; Ukawa, A. ||
1995-09-11
A lattice QCD calculation of the proton matrix element of the flavor singlet axial-vector current is reported. Both the connected and disconnected contributions are calculated, for the latter employing the variant method of wall source without gauge fixing. From simulations in quenched QCD with the Wilson quark action on a 16{sup 3}{times}20 lattice at {beta}=5.7 (the lattice spacing {ital a}{approx}0.14 fm), we find {Delta}{Sigma}={Delta}{ital u}+{Delta}{ital d}+{Delta}{ital s}=+0.638(54){minus}0.347(46){minus}0.109(30)=+0.18(10) with the disconnected contribution to {Delta}{ital u} and {Delta}{ital d} equal to {minus}0.119(44), which is reasonably consistent with the experiment.
Physical Nucleon Form Factors from Lattice QCD
Hrayr Matevosyan; Anthony W. Thomas; Gerald A. Miller
2005-10-25
We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime. We find that the lattice results can be reproduced using the Light Front Cloudy Bag Model and the Extended Gari-Krmpelmann Model by letting their parameters be analytic functions of the quark mass. We then use the models to extend the lattice calculations to large values of Q{sup 2} of interest to current and planned experiments. These functions for the first model are also used to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted zero in G{sub E}(Q{sup 2})/G{sub M}(Q{sup 2}) varies as a function of quark mass.
Lattice QCD simulations of the Zc+ channel
NASA Astrophysics Data System (ADS)
Prelovsek, Sasa; Lang, C. B.; Leskovec, Luka; Mohler, Daniel
2016-01-01
We discuss the lattice QCD simulations that search for the Zc+ with the unconventional quark content c ¯c d ¯u in the channel IG(JPC) = 1+(1+-). The major challenge is due to the two-meson states J /Ψ π , Ψ2 Sπ , Ψ1 Dπ , D D¯*, D *D¯*, ηcρ that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates, but no additional eigenstate as a candidate for Zc+ . This is in a striking contrast to the lattice results in the flavour non-exotic channels, where additional states are found in relation to most of the known resonances and bound states.
Experimental Realization of a Quantum Pentagonal Lattice
Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko
2015-01-01
Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL. PMID:26468930
Lattice Strain Defects in a Ceria Nanolayer.
Ma, Liying; Doudin, Nassar; Surnev, Svetlozar; Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Netzer, Falko P
2016-04-07
An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state.
Full-deautonomisation of a lattice equation
NASA Astrophysics Data System (ADS)
Willox, R.; Mase, T.; Ramani, A.; Grammaticos, B.
2016-07-01
In this letter we report on the unexpected possibility of applying the full-deautonomisation approach we recently proposed for predicting the algebraic entropy of second-order birational mappings, to discrete lattice equations. Moreover, we show, on two examples, that the full-deautonomisation technique can in fact also be successfully applied to reductions of these lattice equations to mappings with orders higher than 2. In particular, we apply this technique to a recently discovered lattice equation that has confined singularities while being nonintegrable, and we show that our approach accurately predicts this nonintegrable character. Finally, we demonstrate how our method can even be used to predict the algebraic entropy for some nonconfining higher order mappings.
Cold bosons in noisy optical lattices
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Pichler, Hannes; Zoller, Peter; Daley, Andrew
2012-02-01
Cold atoms in optical lattices open the possibility to experimentally study strongly interacting many-body quantum systems with controllable parameters. A key challenge to prepare interesting quantum states in these systems is to achieve sufficiently low temperatures. At these temperatures a deep theoretical understanding of possible heating processes and how they affect the characteristics of the quantum state becomes essential. In every realistic experiment there exist many sources of noise that cause phase and amplitude fluctuations in the standing laser waves that form the optical lattice potential. This classical noise can lead to heating and a significant change of the quantum state. We study the stochastic many-body non-equilibrium dynamics of bosons in an optical lattice and determine how the state changes depending on the characteristics of the noise. We do this by solving time-dependent stochastic many-body Schr"odinger equations, both analytically and numerically.
kmos: A lattice kinetic Monte Carlo framework
NASA Astrophysics Data System (ADS)
Hoffmann, Max J.; Matera, Sebastian; Reuter, Karsten
2014-07-01
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.
Type III Hyperlipoproteinaemia
Borrie, Peter
1969-01-01
Eighteen patients with type III hyperlipoproteinaemia, diagnosed on the basis of skin lesions, serum lipids, and lipoprotein electrophoresis, have been fully investigated over a period of 15 years. The incidence of coronary artery disease was only slightly increased, and was not increased at all among first-degree relatives. Peripheral occlusive arterial disease was probably more common. An increased incidence of carbohydrate intolerance was found in neither the patients nor their relatives. The effects of treatment on the skin were uniformly good. ImagesFig. 1Fig. 2 PMID:5783124
Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics
Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.
2010-07-02
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Gluon and Ghost Dynamics from Lattice QCD
NASA Astrophysics Data System (ADS)
Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.
2017-03-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime for various extra-dimensional models.
String breaking in four dimensional lattice QCD
Duncan, A.; Eichten, E.; Thacker, H.
2001-06-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.
Lattice dynamics of a protein crystal.
Meinhold, Lars; Merzel, Franci; Smith, Jeremy C
2007-09-28
All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The sound velocities, density of states, heat capacity (C(V)) and thermal diffuse scattering are all consistent with available experimental data. C(V) proportional, variant T(1.68) for T < 35 K, significantly deviating from a Debye solid. In Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-dynamical calculations with experiments on next-generation neutron sources.
New lattice action for heavy quarks
Oktay, Mehmet B.; Kronfeld, Andreas S.
2008-03-01
We extend the Fermilab method for heavy quarks to include interactions of dimension six and seven in the action. There are, in general, many new interactions, but we carry out the calculations needed to match the lattice action to continuum QCD at the tree level, finding six non-zero couplings. Using the heavy-quark theory of cutoff effects, we estimate how large the remaining discretization errors are. We find that our tree-level matching, augmented with one-loop matching of the dimension-five interactions, can bring these errors below 1%, at currently available lattice spacings.
YANG-MILLS FIELDS AND THE LATTICE.
CREUTZ,M.
2004-05-18
The Yang-Mills theory lies at the heart of our understanding of elementary particle interactions. For the strong nuclear forces, we must understand this theory in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss some of the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.
Lattice Calculations of Nucleon Form Factors
Syritsyn, S. N.
2011-10-24
We present recent results of calculation of the isovector electromagnetic and axial form factors of the nucleon using lattice QCD with three different lattice actions and pion masses down to m{sub {pi}} > or approx. 300 MeV. Because of the precision of our high-statistics calculations, we can test predictions of baryon chiral perturbation theory for the charge and axial radii of the nucleon. We find that currently available baryon ChPT calculations disagree with our data, indicating that the corresponding effective theory approximations are not valid above m{sub {pi}{approx_equal}3}00 MeV.
Excited light isoscalar mesons from lattice QCD
Christopher Thomas
2011-07-01
I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.
Towards an interoperable International Lattice Datagrid
G. Beckett; P. Coddington; N. Ishii; B. Joo; D. Melkumyan; R. Ostrowski; D. Pleiter; M. Sato; J. Simone; C. Watson; S. Zhang
2007-11-01
The International Lattice Datagrid (ILDG) is a federation of several regional grids. Since most of these grids have reached production level, an increasing number of lattice scientists start to benefit from this new research infrastructure. The ILDG Middleware Working Group has the task of specifying the ILDG middleware such that interoperability among the different grids is achieved. In this paper we will present the architecture of the ILDG middleware and describe what has actually been achieved in recent years. Particular focus is given to interoperability and security issues. We will conclude with a short overview on issues which we plan to address in the near future.
Building the International Lattice Data Grid
Mark G. Beckett, Paul Coddington, Bálint Joó, Chris M. Maynard, Dirk Pleiter, Osamu Tatebe, Tomoteru Yoshie
2011-06-01
We present the International Lattice Data Grid (ILDG), a loosely federated grid-of-grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file-format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the two years of production.
Staggered Fermion Thermodynamics using Anisotropic Lattices
NASA Astrophysics Data System (ADS)
Levkova, L.
2003-05-01
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with 2-flavors of dynamical fermions where all bare parameters and hence the physics scales are kept constant while the temperature is changed in small steps by varying only the number of the time slices. The results from a series of zero-temperature scale setting simulations are used to determine the Karsch coefficients and the equation of state at finite temperatures.
DESIGN OF THE RCMS LATTICE OPTICS.
CARDONA,J.; KEWISCH,J.; PEGGS,S.
2002-06-02
THE RAPID CYCLING MEDICAL SYNCHROTRON (RCMS) IS DESIGNED TO BE A VERY LIGHT AND INEXPENSIVE ACCELERATOR. THIS IS POSSIBLE DUE TO THE SMALL BEAM SIZE THAT HAS BEEN CHOSEN EARLY DURING THE DESIGN STAGE. THIS CHOICE HAS IMPLICATIONS IN THE DESIGN OF THE LATTICE OPTICS. IN THIS PAPER, WE PRESENT AN OVERVIEW OF THE RCMS OPTICS LATTICE, THE KIND OF MAGNETS TO BE USED AND ALSO A DESCRIPTION OF A SPECIAL OPTIC MODULE THAT MATCHES THE ROTATING GANTRY WITH THE REST OF THE FIXED ACCELERATOR. TECHNIQUESDEVELOPED TO WIN ADDITIONAL SPACE BETWEEN QUADRUPOLES WITHOUT DISTRUBING BETA FUNCTIONS ARE ALSO PRESENTED.
Fibonacci optical lattices for tunable quantum quasicrystals
NASA Astrophysics Data System (ADS)
Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.
2015-12-01
We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.
Helical Floquet Channels in 1D Lattices
NASA Astrophysics Data System (ADS)
Budich, Jan Carl; Hu, Ying; Zoller, Peter
2017-03-01
We show how dispersionless channels exhibiting perfect spin-momentum locking can arise in a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably, this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump and related models of adiabatic spin pumps. The proposed setup is shown to be experimentally feasible with state-of-the-art techniques used to control ultracold alkaline earth atoms in optical lattices.
Jacobi photonic lattices and their SUSY partners.
Zúñiga-Segundo, A; Rodríguez-Lara, B M; Fernández C, David J; Moya-Cessa, H M
2014-01-13
We present a classical analog of quantum optical deformed oscillators in arrays of waveguides. The normal modes of these one-dimensional photonic crystals are given in terms of Jacobi polynomials. We show that it is possible to attack the problem via factorization by exploiting the corresponding quantum optical model. This allows us to provide an unbroken supersymmetric partner of the proposed Jacobi lattices. Thanks to the underlying SU(1, 1) group symmetry of the lattices, we present the analytic propagators and impulse functions for these one-dimensional photonic crystals.
The canonical forms of a lattice rule
Lyness, J.N.
1992-12-31
Much of the elementary theory of lattice rules may, be presented as an elegant application of classical results. These include Kronecker group representation theorem and the Hermite and Smith normal forms of integer matrices. The theory of the canonical form is a case in point. In this paper, some of this theory is treated in a constructive rather than abstract manner. A step-by-step approach that parallels the group theory is described, leading to an algorithm to obtain a canonical form of a rule of prime power order. The number of possible distinct canonical forms is derived, and this is used to determine the number of integration lattices having specified invariants.
The canonical forms of a lattice rule
Lyness, J.N.
1992-01-01
Much of the elementary theory of lattice rules may, be presented as an elegant application of classical results. These include Kronecker group representation theorem and the Hermite and Smith normal forms of integer matrices. The theory of the canonical form is a case in point. In this paper, some of this theory is treated in a constructive rather than abstract manner. A step-by-step approach that parallels the group theory is described, leading to an algorithm to obtain a canonical form of a rule of prime power order. The number of possible distinct canonical forms is derived, and this is used to determine the number of integration lattices having specified invariants.
Spectral tunneling of lattice nonlocal solitons
Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.
2010-07-15
We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.
Quantum theory of cold bosonic atoms in optical lattices
Tilahun, Dagim; Duine, R. A.; MacDonald, A. H.
2011-09-15
Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical lattices which provides a qualitative description of both superfluid and insulator states. The theory is based on a change of variables in which the boson coherent state amplitude is replaced by an effective potential which promotes phase coherence between different number states on each lattice site. It is illustrated here by applying it to uniform and fully frustrated lattice cases but is simple enough that it can be applied to spatially inhomogeneous lattice systems.
Smidt, Joseph; Whalen, Daniel J.; Wiggins, Brandon K.; Even, Wesley; Fryer, Chris L.; Johnson, Jarrett L.
2014-12-20
Population III supernovae have been of growing interest of late for their potential to directly probe the properties of the first stars, particularly the most energetic events that are visible near the edge of the observable universe. Until now, hypernovae, the unusually energetic Type Ib/c supernovae that are sometimes associated with gamma-ray bursts, have been overlooked as cosmic beacons at the highest redshifts. In this, the latest of a series of studies on Population III supernovae, we present numerical simulations of 25-50 M {sub ☉} hypernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible at z = 10-15 to the James Webb Space Telescope and z = 4-5 to the Wide-Field Infrared Survey Telescope, tracing star formation rates in the first galaxies and at the end of cosmological reionization. If, however, the hypernova crashes into a dense shell ejected by its progenitor, it is expected that a superluminous event will occur that may be seen at z ∼ 20 in the first generation of stars.
NASA Astrophysics Data System (ADS)
Fujimoto, H.; Waseda, A.; Zhang, X. W.
2011-04-01
The homogeneity of the lattice spacings of silicon single crystals from different origins was characterized. Strain measurements were performed on single crystals from NRLM3, NRLM4 and 28Si-10Pr11 ingots, which are all used to determine the Avogadro constant. NRLM3 and NRLM4 both exhibited clear striations, whereas almost no pattern was obtained for 28Si-10Pr11. The standard deviation of the lattice spacing of the single crystal obtained from 28Si-10Pr11 was 4.7 × 10-9, which enabled the lattice spacing to be determined with a standard uncertainty of 3 × 10-9.
NASA Astrophysics Data System (ADS)
Jiang, F. D.; Feng, J. Y.
2008-02-01
Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.
Twisted 3D N=4 supersymmetric YM on deformed A{sub 3}{sup *} lattice
Saidi, El Hassan
2014-01-15
We study a class of twisted 3D N=4 supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice L{sub 3D} formally denoted as L{sub 3D}{sup su{sub 3}×u{sub 1}} and given by non-trivial fibration L{sub 1D}{sup u{sub 1}}×L{sub 2D}{sup su{sub 3}} with base L{sub 2D}{sup su{sub 3}}=A{sub 2}{sup *}, the weight lattice of SU(3). We first, develop the twisted 3D N=4 SYM in continuum by using superspace method where the scalar supercharge Q is manifestly exhibited. Then, we show how to engineer the 3D lattice L{sub 3D}{sup su{sub 3}×u{sub 1}} that host this theory. After that we build the lattice action S{sub latt} invariant under the following three points: (i) U(N) gauge invariance, (ii) BRST symmetry, (iii) the S{sub 3} point group symmetry of L{sub 3D}{sup su{sub 3}×u{sub 1}}. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on L{sub 2D}≡L{sub 2D}{sup su{sub 2}×u{sub 1}}, the extension to twisted maximal 5D SYM with 16 supercharges on lattice L{sub 5D}≡L{sub 5D}{sup su{sub 4}×u{sub 1}} as well as the relation with known results are also given.
Clusters in irregular areas and lattices.
Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S
2012-01-01
Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.
A study of microtubule dipole lattices
NASA Astrophysics Data System (ADS)
Nandi, Shubhendu
Microtubules are cytoskeletal protein polymers orchestrating a host of important cellular functions including, but not limited to, cell support, cell division, cell motility and cell transport. In this thesis, we construct a toy-model of the microtubule lattice composed of vector Ising spins representing tubulin molecules, the building block of microtubules. Nearest-neighbor and next-to-nearest neighbor interactions are considered within an anisotropic dielectric medium. As a consequence of the helical topology, we observe that certain spin orientations render the lattice frustrated with nearest neighbor ferroelectric and next-to-nearest neighbor antiferroelectric bonds. Under these conditions, the lattice displays the remarkable property of stabilizing certain spin patterns that are robust to thermal fluctuations. We model this behavior in the framework of a generalized Ising model known as the J1 - J2 model and theoretically determine the set of stable patterns. Employing Monte-Carlo methods, we demonstrate the stability of such patterns in the microtubule lattice at human physiological temperatures. This suggests a novel biological mechanism for storing information in living organisms, whereby the tubulin spin (dipole moment) states become information bits and information gets stored in microtubules in a way that is robust to thermal fluctuations.
Mechanical cloak design by direct lattice transformation.
Bückmann, Tiemo; Kadic, Muamer; Schittny, Robert; Wegener, Martin
2015-04-21
Spatial coordinate transformations have helped simplifying mathematical issues and solving complex boundary-value problems in physics for decades already. More recently, material-parameter transformations have also become an intuitive and powerful engineering tool for designing inhomogeneous and anisotropic material distributions that perform wanted functions, e.g., invisibility cloaking. A necessary mathematical prerequisite for this approach to work is that the underlying equations are form invariant with respect to general coordinate transformations. Unfortunately, this condition is not fulfilled in elastic-solid mechanics for materials that can be described by ordinary elasticity tensors. Here, we introduce a different and simpler approach. We directly transform the lattice points of a 2D discrete lattice composed of a single constituent material, while keeping the properties of the elements connecting the lattice points the same. After showing that the approach works in various areas, we focus on elastic-solid mechanics. As a demanding example, we cloak a void in an effective elastic material with respect to static uniaxial compression. Corresponding numerical calculations and experiments on polymer structures made by 3D printing are presented. The cloaking quality is quantified by comparing the average relative SD of the strain vectors outside of the cloaked void with respect to the homogeneous reference lattice. Theory and experiment agree and exhibit very good cloaking performance.
Lattice QCD and the unitarity triangle
Andreas S Kronfeld
2001-12-03
Theoretical and computational advances in lattice calculations are reviewed, with focus on examples relevant to the unitarity triangle of the CKM matrix. Recent progress in semi-leptonic form factors for B {yields} {pi}/v and B {yields} D*lv, as well as the parameter {zeta} in B{sup 0}-{bar B}{sup 0} mixing, are highlighted.
Mechanical properties of lattice grid composites
NASA Astrophysics Data System (ADS)
Fan, Hualin; Fang, Daining; Jin, Fengnian
2008-08-01
An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid composite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.
An Overview of Lattice-Gas Dynamics
1997-11-01
irreversible. There- fore, the CAM-8 dissipates heat like any conventional computer even though the Szilard entropy of the lattice gas is unchanged, but an...Reviews of Modern Physics, 49(3):435–479, 1977. [37] Leo P. Kadanoff and Jack Swift. Transport coefficients near the critical point: A master-equation
Lattice gas models with long range interactions
NASA Astrophysics Data System (ADS)
Aristoff, David; Zhu, Lingjiong
2017-02-01
We study microcanonical lattice gas models with long range interactions, including power law interactions. We rigorously obtain a variational principle for the entropy. In a one dimensional example, we find a first order phase transition by proving the entropy is non-differentiable along a certain curve.
Radiative Transitions in Charmonium from Lattice QCD
Jozef Dudek; Robert Edwards; David Richards
2006-01-17
Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.
Scalar meson spectroscopy with lattice staggered fermions
Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa
2007-11-01
With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.
Thermal D mesons from anisotropic lattice QCD
NASA Astrophysics Data System (ADS)
Kelly, Aoife; Skullerud, Jon-Ivar
2017-03-01
We present results for correlators and spectral functions of open charm mesons using 2+1 flavours of clover fermions on anisotropic lattices. The D mesons are found to dissociate close to the deconfinement crossover temperature Tc. Our preliminary results suggest a shift in the thermal D meson mass below Tc. Mesons containing strange quarks exhibit smaller thermal modifications than those containing light quarks.
Frontiers of finite temperature lattice QCD
NASA Astrophysics Data System (ADS)
Borsányi, Szabolcs
2017-03-01
I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and finite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search.
Lattice QCD and High Baryon Density State
Nagata, Keitaro; Nakamura, Atsushi; Motoki, Shinji; Nakagawa, Yoshiyuki; Saito, Takuya
2011-10-21
We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.
Ultra-Cold Atoms on Optical Lattices
ERIC Educational Resources Information Center
Ghosh, Parag
2009-01-01
The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…
Marking up lattice QCD configurations and ensembles
P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie
2007-10-01
QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
Atomic Current across an Optical Lattice
Ponomarev, Alexey V.; Kolovsky, Andrey R.; Madronero, Javier; Buchleitner, Andreas
2006-02-10
We devise a microscopic model for the emergence of a collision-induced, fermionic atomic current across a tilted optical lattice. Tuning the--experimentally controllable--parameters of the microscopic dynamics allows us to switch from Ohmic to negative differential conductance.
Variational method for lattice spectroscopy with ghosts
Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.
2006-01-01
We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson.
Recycler lattice for Project X at Fermilab
Xiao, Meiqin; Johnson, David E.; /Fermilab
2009-09-01
Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.
Entropic lattice Boltzmann model for Burgers's equation.
Boghosian, Bruce M; Love, Peter; Yepez, Jeffrey
2004-08-15
Entropic lattice Boltzmann models are discrete-velocity models of hydrodynamics that possess a Lyapunov function. This feature makes them useful as nonlinearly stable numerical methods for integrating hydrodynamic equations. Over the last few years, such models have been successfully developed for the Navier-Stokes equations in two and three dimensions, and have been proposed as a new category of subgrid model of turbulence. In the present work we develop an entropic lattice Boltzmann model for Burgers's equation in one spatial dimension. In addition to its pedagogical value as a simple example of such a model, our result is actually a very effective way to simulate Burgers's equation in one dimension. At moderate to high values of viscosity, we confirm that it exhibits no trace of instability. At very small values of viscosity, however, we report the existence of oscillations of bounded amplitude in the vicinity of the shock, where gradient scale lengths become comparable with the grid size. As the viscosity decreases, the amplitude at which these oscillations saturate tends to increase. This indicates that, in spite of their nonlinear stability, entropic lattice Boltzmann models may become inaccurate when the ratio of gradient scale length to grid spacing becomes too small. Similar inaccuracies may limit the utility of the entropic lattice Boltzmann paradigm as a subgrid model of Navier-Stokes turbulence.
Visualization Tools for Lattice QCD - Final Report
Massimo Di Pierro
2012-03-15
Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.
Electrical properties of dislocations in III-Nitrides
Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.
2014-02-21
Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.
Fendley, Paul; Moore, Joel E; Xu, Cenke
2007-05-01
We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k{B} approximately 0.3661 ... centered and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.
Interdependent lattice networks in high dimensions
NASA Astrophysics Data System (ADS)
Lowinger, Steven; Cwilich, Gabriel A.; Buldyrev, Sergey V.
2016-11-01
We study the mutual percolation of two interdependent lattice networks ranging from two to seven dimensions, denoted as D . We impose that the length (measured as chemical distance) of interdependency links connecting nodes in the two lattices be less than or equal to a certain value, r . For each value of D and r , we find the mutual percolation threshold, pc[D ,r ] , below which the system completely collapses through a cascade of failures following an initial destruction of a fraction (1 -p ) of the nodes in one of the lattices. We find that for each dimension, D <6 , there is a value of r =rI>1 such that for r ≥rI the cascading failures occur as a discontinuous first-order transition, while for r
Interdependent Lattice Networks in High Dimensions
NASA Astrophysics Data System (ADS)
Lowinger, Steven; Cwilich, Gabriel; Buldyrev, Sergey
We study the mutual percolation of two interdependent lattice networks following the procedure outlined by Buldyrev et al 1 . We studied lattices of dimensions 2, 3, 4, 5 and 6. We imposed that the length of interdependent links connecting the nodes from one lattice to the other be less than a certain value, r. We find that for each dimension, D <6, there is a value of r =rI >1 such that for r >=rI, the cascading failures occur as a discontinuous first order transition, while for r
Lee, Dean; Schaefer, Thomas
2006-01-15
We study cold dilute neutron matter on the lattice using an effective field theory. We work in the unitary limit in which the scattering length is much larger than the interparticle spacing. In this article we focus on the equation of state at temperatures above the Fermi temperature and compare lattice simulations to the virial expansion on the lattice and in the continuum. We find that in the unitary limit lattice discretization errors in the second virial coefficient are significantly enhanced. As a consequence the equation of state does not show the universal scaling behavior expected in the unitary limit. We suggest that scaling can be improved by tuning the second virial coefficient rather than the scattering length.
Al-Hummayani, Fadia M.
2016-01-01
The treatment of deep anterior crossbite is technically challenging due to the difficulty of placing traditional brackets with fixed appliances. This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors. Treatment was carried out in 2 phases. Phase I treatment was performed by removable appliance “modified Hawley appliance with inverted labial bow,” some modifications were carried out to it to suit the presented case. Positive overbite and overjet was accomplished in one month, in this phase with minimal forces exerted on the lower incisors. Whereas, phase II treatment was performed with fixed appliances (braces) to align teeth and have proper over bite and overjet and to close posterior open bite, this phase was accomplished within 11 month. PMID:27052290
Pseudo Class III malocclusion.
Al-Hummayani, Fadia M
2016-04-01
The treatment of deep anterior crossbite is technically challenging due to the difficulty of placing traditional brackets with fixed appliances. This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors. Treatment was carried out in 2 phases. Phase I treatment was performed by removable appliance "modified Hawley appliance with inverted labial bow," some modifications were carried out to it to suit the presented case. Positive overbite and overjet was accomplished in one month, in this phase with minimal forces exerted on the lower incisors. Whereas, phase II treatment was performed with fixed appliances (braces) to align teeth and have proper over bite and overjet and to close posterior open bite, this phase was accomplished within 11 month.
Transverse momentum distributions inside the nucleon from lattice QCD
Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.
2011-07-15
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
5. VIEW FROM THE SOUTHEAST, SHOWING REPLACEMENT OF LATTICE PANELS ...
5. VIEW FROM THE SOUTHEAST, SHOWING REPLACEMENT OF LATTICE PANELS WITH CONCRETE PIERS AND ARCHED LATTICE PANELS, PRIOR TO 1908 ALTERATIONS - Ralph M. Munroe House, 3485 Main Highway, Coconut Grove, Miami, Miami-Dade County, FL
Transverse momentum distributions inside the nucleon from lattice QCD
Bernhard Musch, Philipp Haegler, John Negele, Andreas Schaefer
2011-07-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
MBE growth technology for high quality strained III-V layers
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)
1992-01-01
III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group II and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation to low temperature, and to permit the film to relax to equilibrium. The method of the invention 1) minimizes starting step density on sample surface; 2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 mono-layers at a time); 3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and 4) uses time-resolved RHEED to achieve aspects (1)-14 (3).
Hadronic Vacuum Polarization Contribution to g-2 from the Lattice
Dru Renner, Xu Feng, Marcus Petschlies, Karl Jansen
2012-05-01
We give a short description of the present situation of lattice QCD simulations. We then focus on the computation of the anomalous magnetic moment of the muon using lattice techniques. We demonstrate that by employing improved observables for the muon anomalous magnetic moment, a significant reduction of the lattice error can be obtained. This provides a promising scenario that the accuracy of lattice calculations can match the experimental errors.
Experimental evidence for lattice effects in high temperature superconductors
Billinge, S.J.L.; Kwei, G.H.; Thompson, J.D.
1994-01-18
We present an overview of the experimental evidence for a role of the lattice in the mechanism of high temperature superconductivity. It appears unlikely that a solely conventional electron-phonon interaction produces the pairing. However, there is ample evidence of strong electron and spin to lattice coupling and observations of a response of the lattice to the electronic state. We draw attention to the importance of the local structure in discussions of lattice effects in high-{Tc} superconductivity.
Connection Between the Lattice Boltzmann Equation and the Beam Scheme
NASA Technical Reports Server (NTRS)
Xu, Kun; Luo, Li-Shi
1999-01-01
In this paper we analyze and compare the lattice Boltzmann equation with the beam scheme in details. We notice the similarity and differences between the lattice Boltzmann equation and the beam scheme. We show that the accuracy of the lattice Boltzmann equation is indeed second order in space. We discuss the advantages and limitations of lattice Boltzmann equation and the beam scheme. Based on our analysis, we propose an improved multi-dimensional beam scheme.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
Resonant bonding leads to low lattice thermal conductivity.
Lee, Sangyeop; Esfarjani, Keivan; Luo, Tengfei; Zhou, Jiawei; Tian, Zhiting; Chen, Gang
2014-04-28
Understanding the lattice dynamics and low thermal conductivities of IV-VI, V2-VI3 and V materials is critical to the development of better thermoelectric and phase-change materials. Here we provide a link between chemical bonding and low thermal conductivity. Our first-principles calculations reveal that long-ranged interaction along the 〈100〉 direction of the rocksalt structure exist in lead chalcogenides, SnTe, Bi2Te3, Bi and Sb due to the resonant bonding that is common to all of them. This long-ranged interaction in lead chalcogenides and SnTe cause optical phonon softening, strong anharmonic scattering and large phase space for three-phonon scattering processes, which explain why rocksalt IV-VI compounds have much lower thermal conductivities than zincblende III-V compounds. The new insights on the relationship between resonant bonding and low thermal conductivity will help in the development of better thermoelectric and phase change materials.
Dynamics of a lattice gas system of three species
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; Wu, Hong; Liang, Junhao
2016-10-01
This paper considers a mutualism system of three species in which each species provides resource for the next one in a one-directional loop, while there exists spatial competition among them. The system is characterized by a lattice gas model and the cases of obligate mutualisms, obligate-facultative mutualisms and facultative mutualisms are considered. Using dynamical systems theory, it is shown that (i) the mutualisms can lead to coexistence of species; (ii) A weak mutualism or an extremely strong mutualism will result in extinction of species, while even the superior facultative species will be driven into extinction by its over-strong mutualism on the next one; (iii) Initial population density plays a role in the coexistence of species. It is also shown that when there exists weak mutualism, an obligate species can survive by providing more benefit to the next one, and the inferior facultative species will not be driven into extinction if it can strengthen its mutualism on the next species. Moreover, Hopf bifurcation, saddle-node bifurcation and bifurcation of heteroclinic cycles are shown in the system. Projection method is extended to exhibit bistability in the three-dimensional model: when saddle-node bifurcation occurs, stable manifold of the saddle-node point divides intR+3 into two basins of attraction of two equilibria. Furthermore, Lyapunov method is applied to exhibit unstability of heteroclinic cycles. Numerical simulations confirm and extend our results.
Title III and Cultural Diversity.
ERIC Educational Resources Information Center
The Title III Quarterly, 1973
1973-01-01
Title III projects dealing with cultural diversity in the classroom are described in this issue of the Title III Quarterly. Major articles are devoted to the following projects: Two Arts Culture Three Project, developing the crafts and music of mountain whites, blacks, and Cherokees; the Rota Bilingual Project, the Marianas District, emphasizing…
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Education, Raleigh.
SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…
ERIC Educational Resources Information Center
Evans, Janet; And Others
1986-01-01
Four articles on dBASE III include three on library applications: a photocopy invoicing system for interlibrary loan, a vertical file subject headings list program, and a subject index to statistical resources. Another article explains the differences between interpreters and compilers and the advantages of the Clipper compiler for dBASE III. (EM)
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Education, Raleigh.
SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…
Lattice QCD Calculation of Nucleon Structure
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass decomposition and the
HPC CLOUD APPLIED TO LATTICE OPTIMIZATION
Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong
2011-03-18
As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.
Lattice reduction using a Euclidean algorithm.
Mujica, A
2017-01-01
The need to reduce a periodic structure given in terms of a large supercell and associated lattice generators arises frequently in different fields of application of crystallography, in particular in the ab initio theoretical modelling of materials at the atomic scale. This paper considers the reduction of crystals and addresses the reduction associated with the existence of a commensurate translation that leaves the crystal invariant, providing a practical scheme for it. The reduction procedure hinges on a convenient integer factorization of the full period of the cycle (or grid) generated by the repeated applications of the invariant translation, and its iterative reduction into sub-cycles, each of which corresponds to a factor in the decomposition of the period. This is done in successive steps, each time solving a Diophantine linear equation by means of a Euclidean reduction algorithm in order to provide the generators of the reduced lattice.
Quantum Operator Design for Lattice Baryon Spectroscopy
Lichtl, Adam
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Equilibration via Gaussification in Fermionic Lattice Systems
NASA Astrophysics Data System (ADS)
Gluza, M.; Krumnow, C.; Friesdorf, M.; Gogolin, C.; Eisert, J.
2016-11-01
In this Letter, we present a result on the nonequilibrium dynamics causing equilibration and Gaussification of quadratic noninteracting fermionic Hamiltonians. Specifically, based on two basic assumptions—clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing transport—we prove that non-Gaussian initial states become locally indistinguishable from fermionic Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law independent of the system size. Our argument is general enough to allow for pure and mixed initial states, including thermal and ground states of interacting Hamiltonians on large classes of lattices as well as certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a generalized Gibbs ensemble. Our results allow us to develop an intuition of equilibration that is expected to be more generally valid and relates to current experiments of cold atoms in optical lattices.
Euclidean lattice simulation for dynamical supersymmetry breaking
Kanamori, Issaku; Suzuki, Hiroshi; Sugino, Fumihiko
2008-05-01
The global supersymmetry is spontaneously broken if and only if the ground-state energy is strictly positive. We propose to use this fact to observe the spontaneous supersymmetry breaking in Euclidean lattice simulations. For lattice formulations that possess a manifest fermionic symmetry, there exists a natural choice of a Hamiltonian operator that is consistent with a topological property of the Witten index. We confirm validity of our idea in models of the supersymmetric quantum mechanics. We then examine a possibility of a dynamical supersymmetry breaking in the two-dimensional N=(2,2) super Yang-Mills theory with the gauge group SU(2), for which the Witten index is unknown. Differently from a recent conjectural claim, our numerical result tempts us to conclude that supersymmetry is not spontaneously broken in this system.
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime formore » various extra-dimensional models.« less
Non-lattice matched metallic superlattices
NASA Astrophysics Data System (ADS)
Schuller, I. K.; Grimsditch, M.
1987-03-01
High quality multilayers can be grown by sputtering and molecular beam epitaxy techniques. If the constituents are not lattice matched and do not form solid solutions, the reasons for the growth into superlattices is not understood. For some limited cases (Mo/Ni, Nb/Cu, V/Ni, Ag/Co) high quality superlattices can be grown quite easily, although the in plane structure is polycrystalline. If the constituents form solid solutions and are lattice matched the growth into single crystalline superlattices is possible, although more interdiffusion is likely. The physical properties in nonlattice matched superlattices exhibit anomalous elastic constants and a metal-nonmetal transition in their normal state properties. By changing the relative coupling across a normal material we have observed dimensional crossover in superconducting superlattices and the development of magnon bands in magnetic superlattices.
Low lattice thermal conductivity of stanene
NASA Astrophysics Data System (ADS)
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan
2016-02-01
A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures.
Lattice Boltzmann model for wave propagation.
Zhang, Jianying; Yan, Guangwu; Shi, Xiubo
2009-08-01
A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation.
Equation of State from Lattice QCD Calculations
Gupta, Rajan
2011-01-01
We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T = 150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that these lattice results of EoS are precise enough to be used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.
Geometric stability of topological lattice phases
Jackson, T. S.; Möller, Gunnar; Roy, Rahul
2015-01-01
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311
Path-integral approach to lattice polarons
NASA Astrophysics Data System (ADS)
Kornilovitch, P. E.
2007-06-01
The basic principles behind a path integral approach to the lattice polaron are reviewed. Analytical integration of phonons reduces the problem to one self-interacting imaginary-time path, which is then simulated by Metropolis Monte Carlo. Projection operators separate states of different symmetry, which provides access to various excited states. Shifted boundary conditions in imaginary time enable calculation of the polaron mass, spectrum and density of states. Other polaron characteristics accessible by the method include the polaron energy, number of excited phonons and isotope exponent on mass. Monte Carlo updates are formulated in continuous imaginary time on infinite lattices and as such provide statistically unbiased results without finite-size and finite time-step errors. Numerical data are presented for models with short-range and long-range electron-phonon interactions.
Anomalies, gauge field topology, and the lattice
Creutz, Michael
2011-04-15
Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally 'fall through the lattice.' Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.
Fast dynamics for atoms in optical lattices.
Łącki, Mateusz; Zakrzewski, Jakub
2013-02-08
Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.
Low lattice thermal conductivity of stanene.
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan
2016-02-03
A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures.
Critical phenomena in ferromagnetic antidot lattices
NASA Astrophysics Data System (ADS)
Zivieri, R.
2016-05-01
In this paper a quantitative theoretical formulation of the critical behavior of soft mode frequencies as a function of an applied magnetic field in two-dimensional Permalloy square antidot lattices in the nanometric range is given according to micromagnetic simulations and simple analytical calculations. The degree of softening of the two lowest-frequency modes, namely the edge mode and the fundamental mode, corresponding to the field interval around the critical magnetic field, can be expressed via numerical exponents. For the antidot lattices studied we have found that: a) the ratio between the critical magnetic field and the in-plane geometric aspect ratio and (b) the ratio between the numerical exponents of the frequency power laws of the fundamental mode and of the edge mode do not depend on the geometry. The above definitions could be extended to other types of in-plane magnetized periodic magnetic systems exhibiting soft-mode dynamics and a fourfold anisotropy.
The NIM Sr Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.
2016-06-01
A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.
Magnetic switching of nanoscale antidot lattices
Gräfe, Joachim; Lebecki, Kristof M; Skripnik, Maxim; Haering, Felix; Schütz, Gisela; Ziemann, Paul; Goering, Eberhard; Nowak, Ulrich
2016-01-01
Summary We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices. PMID:27335762
Generalized thermalization in an integrable lattice system.
Cassidy, Amy C; Clark, Charles W; Rigol, Marcos
2011-04-08
After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce a microcanonical version of the GGE and provide a justification of the GGE based on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (≈10(10) eigenstates) validate our approach.
A stochastic lattice model for locust outbreak
NASA Astrophysics Data System (ADS)
Kizaki, Shinya; Katori, Makoto
The locust is a kind of grasshoppers. Gregarious locusts form swarms and can migrate over large distances and they spread and damage a large area (locust outbreak). When the density is low, each of locusts behaves as an individual insect (solitary phase). As locusts become crowded, they become to act as a part of a group (gregarious phase) as a result of interactions among them. Modeling of this phenomenon is a challenging problem of statistical physics. We introduce a stochastic cellular automaton model of locust population-dynamics on lattices. Change of environmental conditions by seasonal migration is a key factor in gregarisation of locusts and we take it into account by changing the lattice size periodically. We study this model by computer simulations and discuss the locust outbreak as a cooperative phenomena.
Wilson Dslash Kernel From Lattice QCD Optimization
Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.; Vaidyanathan, Karthikeyan
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
Exciton-polariton gap solitons in two-dimensional lattices.
Cerda-Méndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V
2013-10-04
We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.
Scaling of Greenwood Peierls conductance on a diluted square lattice
NASA Astrophysics Data System (ADS)
Schwalm, William; Schmitz, Albert
The modified rectangle lattice of Dhar is a bond-diluted square lattice. The structure is self-similar and finitely ramified, like a fractal. Nevertheless certain discrete Schrödinger equation Green functions for the modified rectangle are known in closed form in the infinite lattice limit and the spectrum is continuous. By standard transfer matrix renormalization methods we present a study scaling properties of the Greenwood Peierls conductance distribution across the lattice with one dimensional lead wires attached as a function of lattice size and of additional disorder of several types.
BB Potentials in Quenched Lattice QCD
William Detmold; Kostas Orginos; Martin J. Savage
2007-12-01
The potentials between two B-mesons are computed in the heavy-quark limit using quenched lattice QCD at $m_\\pi\\sim 400~{\\rm MeV}$. Non-zero central potentials are clearly evident in all four spin-isospin channels, (I,s_l) = (0,0) , (0,1) , (1,0) , (1,1), where s_l is the total spin of the light degrees of freedom. At short distance, we find repulsion in the $I\
Historical evolution of vortex-lattice methods
NASA Technical Reports Server (NTRS)
Deyoung, J.
1976-01-01
A review of the beginning and some orientation of the vortex-lattice method were given. The historical course of this method was followed in conjunction with its field of computational fluid dynamics, spanning the period from L.F. Richardson's paper in 1910 to 1975. The following landmarks were pointed out: numerical analysis of partial differential equations, lifting-line theory, finite-difference method, 1/4-3/4 rule, block relaxation technique, application of electronic computers, and advanced panel methods.
QCD-like technicolor on the lattice
Rummukainen, Kari
2011-05-23
This talk gives an overview, aimed at non-experts, of the recent progress of technicolor models on the lattice. Phenomenologically successful technicolor models require walking coupling; thus, an emphasis is put on the determination of the {beta}-function of various models. As a case study we consider SU(2) gauge field theory with two adjoint representation fermions, so-called minimal walking technicolor theory.
Calculating Buckling And Vibrations Of Lattice Structures
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Durling, B. J.; Herstrom, C. L.; Williams, F. W.; Banerjee, J. R.; Kennedy, D.; Warnaar, D. B.
1989-01-01
BUNVIS-RG computer program designed to calculate vibration frequencies or buckling loads of prestressed lattice structures used in outer space. For buckling and vibration problems, BUNVIS-RG calculates deadload axial forces caused in members by any combination of externally-applied static point forces and moments at nodes, axial preload or prestrain in members, and such acceleration loads as those due to gravity. BUNVIS-RG is FORTRAN 77 computer program implemented on CDC CYBER and VAX computer.
Roundoff error effects on spatial lattice algorithm
NASA Technical Reports Server (NTRS)
An, S. H.; Yao, K.
1986-01-01
The floating-point roundoff error effect under finite word length limitations is analyzed for the time updates of reflection coefficients in the spatial lattice algorithm. It is shown that recursive computation is superior to direct computation under finite word length limitations. Moreover, the forgetting factor, which is conventionally used to smooth the time variations of the inputs, is also a crucial parameter in the consideration of the system stability and adaptability under finite word length constraints.
Velocity selection in coupled-map lattices
NASA Astrophysics Data System (ADS)
Parekh, Nita; Puri, Sanjay
1993-02-01
We investigate the phenomenon of velocity selection for traveling wave fronts in a class of coupled-map lattices, derived by discretizations of the Fisher equation [Ann. Eugenics 7, 355 (1937)]. We find that the velocity selection can be understood in terms of a discrete analog of the marginal-stability hypothesis. A perturbative approach also enables us to estimate the selected velocity accurately for small values of the discretization mesh sizes.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
Logic and Lattices for Distributed Programming
2012-06-22
Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2012-167 http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley...tion of small, easy-to-analyze lattices into larger programs. 1. INTRODUCTION As cloud computing becomes increasingly common, the inherent difficulties
Kinetic antiferromagnetism in the triangular lattice.
Haerter, Jan O; Shastry, B Sriram
2005-08-19
We show that the motion of a single hole in the infinite-U Hubbard model with frustrated hopping leads to weak metallic antiferromagnetism of kinetic origin. An intimate relationship is demonstrated between the simplest versions of this problem in one and two dimensions, and two of the most subtle many body problems, namely, the Heisenberg Bethe ring in one dimension and the two-dimensional triangular lattice Heisenberg antiferromagnet.
Tests of the lattice index theorem
Jordan, Gerald; Hoellwieser, Roman; Faber, Manfried; Heller, Urs M.
2008-01-01
We investigate the lattice index theorem and the localization of the zero modes for thick classical center vortices. For nonorientable spherical vortices, the index of the overlap Dirac operator differs from the topological charge although the traces of the plaquettes deviate only by a maximum of 1.5% from trivial plaquettes. This may be related to the fact that even in Landau gauge some links of these configuration are close to the nontrivial center elements.
Lattice results on nucleon/roper properties
Lin, Huey-Wen
2009-12-01
In this proceeding, I review the attempts to calculate the Nucleon resonance (including Roper as first radially excited state of nucleon and other excited states) using lattice quantum chromodynamics (QCD). The latest preliminary results from Hadron Spectrum Collaboration (HSC) with mπ thickapprox 380 MeV are reported. The Sachs electric form factor of the proton and neutron and their transition with the Roper at large Q2 are also updated in this work.
The Classical Lattice-Gas Method
1999-02-01
also be fixed obstacles with which the particles have perfectly elastic collisions. For example, one can simulate vortex shedding in a fluid flowing ...cause an attractive force between particles giving rise to an athermal liquid-gas phase transition.4 To simulate the correct macroscopic dynamics , the...rheology of mul- tiphase dynamics is driven by low Reynolds number flows . The rheology of droplets (for example 3 The first lattice Boltzmann simulations
On boundary conditions in lattice Boltzmann methods
Chen, S.; Martinez, D. |; Mei, R.
1996-09-01
A lattice Boltzmann boundary condition for simulation of fluid flow using simple extrapolation is proposed. Numerical simulations, including two-dimensional Poiseuille flow, unsteady Couette flow, lid-driven square cavity flow, and flow over a column of cylinders for a range of Reynolds numbers, are carried out, showing that this scheme is of second order accuracy in space discretization. Applications of the method to other boundary conditions, including pressure condition and flux condition are discussed. {copyright} {ital 1996 American Institute of Physics.}
Dynamics for QCD on an Infinite Lattice
NASA Astrophysics Data System (ADS)
Grundling, Hendrik; Rudolph, Gerd
2017-02-01
We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796-1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.
Radiative decays of resonances on the lattice
Agadjanov, Andria; Bernard, Véronique; Rusetsky, Akaki
2016-01-22
We discuss a generalization of the Lüscher approach to the calculation of the matrix elements of the unstable states. A theoretical framework for the lattice extraction of the ΔNγ* transition form factors is formulated. The procedure to measure the form factors at the resonance pole is given. The current theoretical progress on the B → K*γ* decays is briefly summarized.
Weak coupling tests of lattice QCD
Kovacs, E.
1984-01-01
For many arbitrary lattices with arbitrary SU(N) actions, the perturbative value of ..lambda../sub latt//..lambda../sub MOM/ can be estimated from the Monte Carlo data at weak coupling by analyzing the perturbative expansions for various Wilson loop ratios. Here, general loop ratios including those of polygons and parallelograms are considered. The lowest order perturbative expansions are calculated and some applications to the Monte Carlo data are presented.
Quantum Lattice Representation of Dark Solitons
2004-01-01
Gross - Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (ID) cubic NLS, in an external...solitons Vector dark-bright solitons Nonlinear Schrodinger equation Gross - Pitaevskii equation Quantum lattice representation 16. SECURITY CLASSIFICATION...condensate (BEC) is described by the Gross - Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one
Monte Carlo algorithms for lattice gauge theory
Creutz, M.
1987-05-01
Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations.
Optical Lattice Gases of Interacting Fermions
2015-12-02
theoretical research supported by this grant focused on discovering new phases of quantum matter for ultracold fermionic atoms or molecules confined in optical...Communications, including a review paper on the orbital physics of cold atoms in optical lattices [1] and a book chapter on topological insulators of cold... atoms [14]. A few significant results are highlighted below. 1. Novel phases of cold atoms on higher orbital bands. The research team discovered
Flow of Gas Through Turbine Lattices
NASA Technical Reports Server (NTRS)
Deich, M E
1956-01-01
This report is concerned with fluid mechanics of two-dimensional cascades, particularly turbine cascades. Methods of solving the incompressible ideal flow in cascades are presented. The causes and the order of magnitude of the two-dimensional losses at subsonic velocities are discussed. Methods are presented for estimating the flow and losses at high subsonic velocities. Transonic and supersonic flows in lattices are then analyzed. Some three-dimensional features of the flow in turbines are noted.
Entropic Lattice Boltzmann Models and Quantum Computation
2008-04-01
cellular automata, quantum cellular automata, action principles, periodic orbits, turbulence U U U UL 8 Bruce M. Boghosian (617) 627–3054 Contents 1...thereof . . 6 2.5 Lattice Boltzmann algorithm for periodic unstable orbits . . . . . . . . . . . . . . . . . . . . . 7 3 Personnel Supported 7 3.1 2005...continue to work on it in the remaining period of this grant. There are reasons for optimism in the search for quantum circuits described above. First, if
Lattice QCD calculations of weak matrix elements
NASA Astrophysics Data System (ADS)
Detar, Carleton
2017-01-01
Lattice QCD has become the method of choice for calculating the hadronic environment of the electroweak interactions of quarks. So it is now an essential tool in the search for new physics beyond the Standard Model. Advances in computing power and algorithms have resulted in increasingly precise predictions and increasingly stringent tests of the Standard Model. I review results of recent calculations of weak matrix elements and discuss their implications for new physics. Supported by US NSF grant PHY10-034278.
Thermoelectric properties of electrostatically tunable antidot lattices
NASA Astrophysics Data System (ADS)
Goswami, Srijit; Siegert, Christoph; Shamim, Saquib; Pepper, Michael; Farrer, Ian; Ritchie, David A.; Ghosh, Arindam
2010-09-01
We report on the fabrication and characterization of a device which allows the formation of an antidot lattice (ADL) using only electrostatic gating. The antidot potential and Fermi energy of the system can be tuned independently. Well defined commensurability features in magnetoresistance as well as magnetothermopower are observed. We show that the thermopower can be used to efficiently map out the potential landscape of the ADL.
Blackbody Effects in the Yb Lattice Clock
2012-05-21
unprecedented levels of accuracy and stability. The most recent evaluation of the ytterbium optical lattice clock at NIST yielded a fractional frequency...108 153002, 2012. [4] V. A. Dzuba and A. Derevianko, “Dynamic polarizabilities and related properties of clock states of the ytterbium atom,” J. Phys. B...Experimental investigation of excited-state lifetimes in atomic ytterbium ,” Phys. Rev. A 53 3103, 1996.
Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models
NASA Astrophysics Data System (ADS)
Shi, Qian-Qian; Wang, Hong-Lei; Li, Sheng-Hao; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang
2016-06-01
Geometric entanglement (GE), as a measure of multipartite entanglement, has been investigated as a universal tool to detect phase transitions in quantum many-body lattice models. In this paper we outline a systematic method to compute GE for two-dimensional (2D) quantum many-body lattice models based on the translational invariant structure of infinite projected entangled pair state (iPEPS) representations. By employing this method, the q -state quantum Potts model on the square lattice with q ∈{2 ,3 ,4 ,5 } is investigated as a prototypical example. Further, we have explored three 2D Heisenberg models: the antiferromagnetic spin-1/2 X X X and anisotropic X Y X models in an external magnetic field, and the antiferromagnetic spin-1 X X Z model. We find that continuous GE does not guarantee a continuous phase transition across a phase transition point. We observe and thus classify three different types of continuous GE across a phase transition point: (i) GE is continuous with maximum value at the transition point and the phase transition is continuous, (ii) GE is continuous with maximum value at the transition point but the phase transition is discontinuous, and (iii) GE is continuous with nonmaximum value at the transition point and the phase transition is continuous. For the models under consideration, we find that the second and the third types are related to a point of dual symmetry and a fully polarized phase, respectively.
Modeling of yttrium, oxygen atoms and vacancies in γ-iron lattice
NASA Astrophysics Data System (ADS)
Gopejenko, Aleksejs; Zhukovskii, Yuri F.; Vladimirov, Pavel V.; Kotomin, Eugene A.; Möslang, Anton
2011-09-01
Development of the oxide dispersion strengthened (ODS) steels for fission and fusion reactors requires a deep understanding of the mechanism and kinetics of Y 2O 3 nanoparticle precipitation in the steel matrix. Therefore, it is necessary to perform a large-scale theoretical modeling of the Y 2O 3 formation. In the current study, a series of first-principles calculations have been performed on different elementary clusters consisting of pair and triple solute atoms and containing: (i) the Y-Fe-vacancy pairs, (ii) the two Y atoms substituted for Fe lattice atoms and (iii) the O impurity atoms dissolved in the steel matrix. The latter is represented by a face-centered cubic γ-Fe single crystal. This structure is relevant because a transition to γ-phase occurs in low Cr ferritic-martensitic steels at typically hot isostatic pressing temperatures. The results clearly demonstrate a certain attraction between the Y substitute and Fe vacancy whereas no binding has been found between the two Y substitute atoms. Results of calculations on different Y-O-Y cluster configurations in lattice show that not only a presence of oxygen atom favors a certain binding between the impurity atoms inside the γ-Fe lattice but also the increased concentration of Fe vacancies is required for the growth of the Y 2O 3 precipitates within the iron crystalline matrix.
Geometry and symmetries in lattice spinor gravity
Wetterich, C.
2012-09-15
Lattice spinor gravity is a proposal for regularized quantum gravity based on fermionic degrees of freedom. In our lattice model the local Lorentz symmetry is generalized to complex transformation parameters. The difference between space and time is not put in a priori, and the euclidean and the Minkowski quantum field theory are unified in one functional integral. The metric and its signature arise as a result of the dynamics, corresponding to a given ground state or cosmological solution. Geometrical objects as the vierbein, spin connection or the metric are expectation values of collective fields built from an even number of fermions. The quantum effective action for the metric is invariant under general coordinate transformations in the continuum limit. The action of our model is found to be also invariant under gauge transformations. We observe a 'geometrical entanglement' of gauge- and Lorentz-transformations due to geometrical objects transforming non-trivially under both types of symmetry transformations. - Highlights: Black-Right-Pointing-Pointer We formulate the geometrical aspects of a proposal for a lattice regularized model of quantum gravity. Black-Right-Pointing-Pointer The vierbein shows an entanglement between Lorentz symmetry and gauge symmetry. Black-Right-Pointing-Pointer Euclidean and Minkowski signatures of the collective metric and the vierbein are described within the same functional integral.
Exploring Hyperons and Hypernuclei with Lattice QCD
S.R. Beane; P.F. Bedaque; A. Parreno; M.J. Savage
2005-01-01
In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda's, and Sigma's. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher's finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed.
Nonlinear tunneling in two-dimensional lattices
Brazhnyi, V. A.; Konotop, V. V.; Kuzmiak, V.; Shchesnovich, V. S.
2007-08-15
We present a thorough analysis of the nonlinear tunneling of Bose-Einstein condensates in static and accelerating two-dimensional lattices within the framework of the mean-field approximation. We deal with nonseparable lattices, considering different initial atomic distributions in highly symmetric states. For an analytical description of the condensate before instabilities develop, we derive several few-mode models, analyzing essentially both nonlinear and quasilinear regimes of tunneling. By direct numerical simulations, we show that two-mode models provide an accurate description of tunneling when either initially two states are populated or tunneling occurs between two stable states. Otherwise, a two-mode model may give only useful qualitative hints for understanding tunneling, but does not reproduce many features of the phenomenon. This reflects the crucial role of instabilities developed due to two-body interactions resulting in a non-negligible population of the higher bands. This effect becomes even more pronounced in the case of accelerating lattices. In the latter case we show that the direction of the acceleration is a relevant physical parameter which affects the tunneling by changing the atomic rates at different symmetric states and by changing the numbers of bands involved in the atomic transfer.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J^{P} = 1/2^{+} and J^{P} = 3/2^{+}. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m_{Q} and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Integer lattice dynamics for Vlasov-Poisson
NASA Astrophysics Data System (ADS)
Mocz, Philip; Succi, Sauro
2017-03-01
We revisit the integer lattice (IL) method to numerically solve the Vlasov-Poisson equations, and show that a slight variant of the method is a very easy, viable, and efficient numerical approach to study the dynamics of self-gravitating, collisionless systems. The distribution function lives in a discretized lattice phase-space, and each time-step in the simulation corresponds to a simple permutation of the lattice sites. Hence, the method is Lagrangian, conservative, and fully time-reversible. IL complements other existing methods, such as N-body/particle mesh (computationally efficient, but affected by Monte Carlo sampling noise and two-body relaxation) and finite volume (FV) direct integration schemes (expensive, accurate but diffusive). We also present improvements to the FV scheme, using a moving-mesh approach inspired by IL, to reduce numerical diffusion and the time-step criterion. Being a direct integration scheme like FV, IL is memory limited (memory requirement for a full 3D problem scales as N6, where N is the resolution per linear phase-space dimension). However, we describe a new technique for achieving N4 scaling. The method offers promise for investigating the full 6D phase-space of collisionless systems of stars and dark matter.
Graphene, Lattice Field Theory and Symmetries
Drissi, L. B.; Bousmina, M.; Saidi, E. H.
2011-02-15
Borrowing ideas from tight binding model, we propose a board class of lattice field models that are classified by non simply laced Lie algebras. In the case of A{sub N-1{approx_equal}}su(N) series, we show that the couplings between the quantum states living at the first nearest neighbor sites of the lattice L{sub suN} are governed by the complex fundamental representations N-bar and N of su(N) and the second nearest neighbor interactions are described by its adjoint N-bar x N. The lattice models associated with the leading su(2), su(3), and su(4) cases are explicitly studied and their fermionic field realizations are given. It is also shown that the su(2) and su(3) models describe the electronic properties of the acetylene chain and the graphene, respectively. It is established as well that the energy dispersion of the first nearest neighbor couplings is completely determined by the A{sub N} roots {alpha} through the typical dependence N/2+{Sigma}{sub roots} cos(k.{alpha} with k the wave vector.Other features such as the SO(2N) extension and other applications are also discussed.
Light propagation through black-hole lattices
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian; Gerlicher, Daniel
2017-03-01
The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance DL of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the DL(z) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema{ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema{ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the DL(z) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .
Vortices and vortex lattices in quantum ferrofluids
NASA Astrophysics Data System (ADS)
Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.
2017-03-01
The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.
Lattice Boltzmann method and channel flow
NASA Astrophysics Data System (ADS)
Stensholt, Sigvat; Mongstad Hope, Sigmund
2016-07-01
Lattice Boltzmann methods are presented at an introductory level with a focus on fairly simple simulations that can be used to test and illustrate the model’s capabilities. Two scenarios are presented. The first is a simple laminar flow in a straight channel driven by a pressure gradient (Poiseuille flow). The second is a more complex, including a wedge where Moffatt vortices may be induced if the wedge is deep enough. Simulations of the Poiseuille flow scenario accurately capture the theoretical velocity profile. The experiment shows the location of the fluid-wall boundary and the effects viscosity has on the velocity and convergence time. The numerical capabilities of the lattice Boltzmann model are tested further by simulating the more complex Moffatt vortex scenario. The method reproduces with high accuracy the theoretical predction that Moffat vortices will not form in a wedge if the vertex angle exceeds 146°. Practical issues limitations of the lattice Boltzmann method are discussed. In particular the accuracy of the bounce-back boundary condition is first order dependent on the grid resolution.
Processing of IN-718 Lattice Block Castings
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.
2002-01-01
Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.
National Computational Infrastructure for Lattice Gauge Theory
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
Vortices and vortex lattices in quantum ferrofluids.
Martin, A M; Marchant, N G; O'Dell, D H J; Parker, N G
2017-03-15
The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.
Simplified lattice model for polypeptide fibrillar transitions
NASA Astrophysics Data System (ADS)
Xiao, Xuhui; Wu, Ming-Chya
2014-10-01
Polypeptide fibrillar transitions are studied using a simplified lattice model, modified from the three-state Potts model, where uniform residues as spins, placed on a cubic lattice, can interact with neighbors to form coil, helical, sheet, or fibrillar structure. Using the transfer matrix method and numerical calculations, we analyzed the partition function and construct phase diagrams. The model manifests phase transitions among coil, helix, sheet, and fibril through parameterizing bond coupling energy ɛh,ɛs,ɛf, structural entropies sh,ss,sf of helical, sheet, and fibrillar states, and number density ρ. The phase diagrams show the transition sequence is basically governed by ɛh, ɛs, and ɛf, while the transition temperature is determined by the competition among ɛh, ɛs, and ɛf, as well as sh, ss, sf, and ρ. Furthermore, the fibrillation is accompanied with an abrupt phase transition from coil, helix, or sheet to fibril even for short polypeptide length, resembling the feature of nucleation-growth process. The finite-size effect in specific heat at transitions for the nonfibrillation case can be described by the scaling form of lattice model. With rich phase-transition properties, our model provides a useful reference for protein aggregation experiments and modeling.
Renormalization of aperiodic model lattices: spectral properties
NASA Astrophysics Data System (ADS)
Kroon, Lars; Riklund, Rolf
2003-04-01
Many of the published results for one-dimensional deterministic aperiodic systems treat rather simplified electron models with either a constant site energy or a constant hopping integral. Here we present some rigorous results for more realistic mixed tight-binding systems with both the site energies and the hopping integrals having an aperiodic spatial variation. It is shown that the mixed Thue-Morse, period-doubling and Rudin-Shapiro lattices can be transformed to on-site models on renormalized lattices maintaining the individual order between the site energies. The character of the energy spectra for these mixed models is therefore the same as for the corresponding on-site models. Furthermore, since the study of electrons on a lattice governed by the Schrödinger tight-binding equation maps onto the study of elastic vibrations on a harmonic chain, we have proved that the vibrational spectra of aperiodic harmonic chains with distributions of masses determined by the Thue-Morse sequence and the period-doubling sequence are purely singular continuous.
Membrane Fluctuations Destabilize Clathrin Protein Lattice Order
Cordella, Nicholas; Lampo, Thomas J.; Mehraeen, Shafigh; Spakowitz, Andrew J.
2014-01-01
We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The clathrin subunit is modeled as a three-legged pinwheel with elastic deformation modes and intersubunit binding interactions. The pinwheels are constrained to lie on the surface of an elastic sheet that opposes bending deformation and is subjected to tension. Through Monte Carlo simulations, we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High membrane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large, flat crystalline structures similar to plaques that have been observed in vivo on cell membranes that are adhered to rigid surfaces. Low tensions, on the other hand, give rise to disordered, defect-ridden lattices that behave in a fluidlike manner. The principles of two-dimensional melting theory are applied to our model system to further clarify how high tensions can stabilize crystalline order on flexible membranes. These results demonstrate the importance of environmental physical cues in dictating the collective behavior of self-assembled protein structures. PMID:24703309
Helium nuclei in quenched lattice QCD
Yamazaki, T.; Ukawa, A.; Kuramashi, Y.
2010-06-01
We present results for the binding energies for {sup 4}He and {sup 3}He nuclei calculated in quenched lattice QCD at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m{sub {pi}=}0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the nucleus and the free multinucleon states by changing the spatial extent of the lattice from 3.1 to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.
Advances in hadronic structure from Lattice QCD
NASA Astrophysics Data System (ADS)
Constantinou, Martha
2017-01-01
Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.
Diquark mass differences from unquenched lattice QCD
NASA Astrophysics Data System (ADS)
Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng; Qiao, Hao-Xue; Yang, Yi-Bo
2016-07-01
We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. The scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. The light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243 × 64 and 323 × 64 with inverse spacings 1/a = 1.75(4) GeV and 2.33(5) GeV, respectively. Supported by National Science Foundation of China (11575197, 10835002, 11405178, 11335001), joint funds of NSFC (U1232109), MG and ZL are partially supported by the Youth Innovation Promotion Association of CAS (2015013, 2011013), YC and ZL acknowledge support of NSFC and DFG (CRC110)
Lindquist-Wheeler formulation of lattice universes
NASA Astrophysics Data System (ADS)
Liu, Rex G.
2015-09-01
This paper examines the properties of "lattice universes" wherein point masses are arranged in a regular lattice on spacelike hypersurfaces; open, flat, and closed universes are considered. The universes are modeled using the Lindquist-Wheeler (LW) approximation scheme, which approximates the space-time in each lattice cell by Schwarzschild geometry. Extending Lindquist and Wheeler's work, we derive cosmological scale factors describing the evolution of all three types of universes, and we use these scale factors to show that the universes' dynamics strongly resemble those of Friedmann-Lemaître-Robertson-Walker (FLRW) universes. In particular, we use the scale factors to make more salient the resemblance between Clifton and Ferreira's Friedmann-like equations for the LW models and the actual Friedmann equations of FLRW space-times. Cosmological redshifts for such universes are then determined numerically, using a modification of Clifton and Ferreira's approach; the redshifts are found to closely resemble their FLRW counterparts, though with certain differences attributable to the "lumpiness" in the underlying matter content. Most notably, the LW redshifts can differ from their FLRW counterparts by as much as 30%, even though they increase linearly with FLRW redshifts, and they exhibit a nonzero integrated Sachs-Wolfe effect, something which would not be possible in matter-dominated FLRW universes without a cosmological constant.
Entropic Lattice Boltzmann Methods for Fluid Mechanics
NASA Astrophysics Data System (ADS)
Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya
2013-11-01
With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.
Some physical and chemical indices of clique-inserted lattices
NASA Astrophysics Data System (ADS)
Zhang, Zuhe
2013-10-01
The operation of replacing every vertex of an r-regular lattice H by a complete graph of order r is called clique-insertion, and the resulting lattice is called the clique-inserted lattice of H. For any given r-regular lattice, applying this operation iteratively, an infinite family of r-regular lattices is generated. Some interesting lattices including the 3-12-12 lattice can be constructed this way. In this paper, we recall the relationship between the spectra of an r-regular lattice and that of its clique-inserted lattice, and investigate the graph energy and resistance distance statistics. As an application, the asymptotic energy per vertex and average resistance distance of the 3-12-12 and 3-6-24 lattices are computed. We also give formulae expressing the numbers of spanning trees and dimer coverings of the kth iterated clique-inserted lattices in terms of those of the original one. Moreover, we show that new families of expander graphs can be constructed from the known ones by clique-insertion.
Local discrimination of qudit lattice states via commutativity
NASA Astrophysics Data System (ADS)
Tian, Guojing; Yu, Sixia; Gao, Fei; Wen, Qiaoyan; Oh, C. H.
2015-10-01
Qudit lattice states, as the generalization of qubit lattice states, are the maximally entangled states determined by qudit lattice unitaries in a pr⊗pr quantum system with p being a prime and r being an integer. Based on the partitions of qudit lattice unitaries into commuting sets, we present a sufficient condition for local discrimination of qudit lattice states, in which the commutativity plays an efficient role. It turns out that any set of l qudit lattice states with 2 ≤l ≤pr , including k ≤l mutually commuting qudit lattice unitaries and satisfying l (l -1 ) -(k +1 ) (k -2 ) ≤2 pr , can be locally distinguished, not only extending Fan's result [H. Fan, Phys. Rev. Lett. 92, 177905 (2004), 10.1103/PhysRevLett.92.177905] to the prime power quantum system but also involving the local discrimination of a larger number of maximally entangled states.
Finite-temperature mechanical instability in disordered lattices
NASA Astrophysics Data System (ADS)
Zhang, Leyou; Mao, Xiaoming
2016-02-01
Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T =0 . We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G ˜T1 /2 , whereas the square lattice shows G ˜T2 /3 . We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.
Solution of an associating lattice-gas model with density anomaly on a Husimi lattice
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.; Stilck, Jürgen F.; Barbosa, Marco Aurélio A.
2010-11-01
We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
Kim, Junghoon; Ha, Tai Hwan; Park, Sung Ha
2015-08-07
We present a simple route to circumvent kinetic traps which affect many types of DNA nanostructures in their self-assembly process. Using this method, a new 2D DNA lattice made up of short, single-stranded tile (SST) motifs was created. Previously, the growth of SST DNA assemblies was restricted to 1D (tubes and ribbons) or finite-sized 2D (molecular canvases). By utilizing the substrate-assisted growth method, sets of SSTs were designed as unit cells to self-assemble into periodic and aperiodic 2D lattices which continuously grow both along and orthogonal to the helical axis. Notably, large-scale (∼1 μm(2)) fully periodic 2D lattices were fabricated using a minimum of just 2 strand species. Furthermore, the ability to create 2D lattices from a few motifs enables certain rules to be encoded into these SSTs to carry out algorithmic self-assembly. A set of these motifs was designed to execute simple 1-input 1-output COPY and NOT algorithms, the space-time manifestations which were aperiodic 2D algorithmic SST lattices. The methodology presented here can be straightforwardly applied to other motifs which fall into this type of kinetic trap to create novel DNA crystals.
High Precision Calculations of the Lennard-Jones Lattice Constants for Five Lattices
NASA Astrophysics Data System (ADS)
Stein, Matthew
2017-01-01
The total potential energy of a crystal as described by the Lennard-Jones (L-J) potential depends in part upon the calculation of lattice constants. Knowing these constants to high precision is useful for prediction of the lattice type and simulation of crystals such as rare-gas solids or germanium detectors, but reaching higher precision is computationally costly and challenging. Presented here is the extension of the precision of the lattice constants, Lp, up to 32 decimal digits, and in some cases corrections from previous publication. The Lp terms are given for 4 <= p <= 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. This precision was obtained through the use of careful parallelization technique, exploitation of the symmetries of each lattice, and the ``onionization'' of the simulated crystal. The results of this computation, along with the tools and algorithm strategies to make this computation possible, are explained in detail graphically.
Solution of an associating lattice-gas model with density anomaly on a Husimi lattice.
Oliveira, Tiago J; Stilck, Jürgen F; Barbosa, Marco Aurélio A
2010-11-01
We study a model of a lattice gas with orientational degrees of freedom which resemble the formation of hydrogen bonds between the molecules. In this model, which is the simplified version of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal plaquettes with a central site. The ground state of the model, which was originally defined on the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase diagram, one gas and two liquid [high density liquid (HDL) and low density liquid (LDL)] phases are present. All phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases coexist at a triple point. A line of temperatures of maximum density in the isobars is found in the metastable GAS phase, as well as another line of temperatures of minimum density appears in the LDL phase, part of it in the stable region and another in the metastable region of this phase. These findings are at variance with simulational results for the same model on the triangular lattice, which suggested a phase diagram with two critical points. However, our results show very good quantitative agreement with the simulations, both for the coexistence loci and the densities of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
Lattice effects on Laughlin wave functions and parent Hamiltonians
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Cirac, J. Ignacio; Sierra, Germán; Nielsen, Anne E. B.
2016-12-01
We investigate lattice effects on wave functions that are lattice analogs of bosonic and fermionic Laughlin wave functions with number of particles per flux ν =1 /q in the Landau levels. These wave functions are defined analytically on lattices with μ particles per lattice site, where μ may be different than ν . We give numerical evidence that these states have the same topological properties as the corresponding continuum Laughlin states for different values of q and for different fillings μ . These states define, in particular, particle-hole symmetric lattice fractional quantum Hall states when the lattice is half filled. On the square lattice it is observed that for q ≤4 this particle-hole symmetric state displays the topological properties of the continuum Laughlin state at filling fraction ν =1 /q , while for larger q there is a transition towards long-range ordered antiferromagnets. This effect does not persist if the lattice is deformed from a square to a triangular lattice, or on the kagome lattice, in which case the topological properties of the state are recovered. We then show that changing the number of particles while keeping the expression of these wave functions identical gives rise to edge states that have the same correlations in the bulk as the reference lattice Laughlin states but a different density at the edge. We derive an exact parent Hamiltonian for which all these edge states are ground states with different number of particles. In addition this Hamiltonian admits the reference lattice Laughlin state as its unique ground state of filling factor 1 /q . Parent Hamiltonians are also derived for the lattice Laughlin states at other fillings of the lattice, when μ ≤1 /q or μ ≥1 -1 /q and when q =4 also at half filling.
NASA Astrophysics Data System (ADS)
Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.
2007-06-01
All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and
LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.
BLUM,T.; CREUTZ,M.; PETRECZKY,P.
2004-02-24
With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition
Hart, W E; Istrail, S
1997-01-01
This paper considers the protein energy minimization problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. We consider two side chain models: a lattice model that generalizes the HP model (Dill, 1985) to explicitly represent side chains on the cubic lattice and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. We describe algorithms with mathematically guaranteed error bounds for both of these models. In particular, we describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 86% of optimal in a face-centered cubic lattice, and we demonstrate how this provides a better than 70% performance guarantee for the HP-TSSC model. Our analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Ngo et al. (1994) concerning the complexity of protein folding models that include side chains.
Plank, Michael J; Simpson, Matthew J
2012-11-07
Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice-based model is that a proliferative population will always eventually fill the lattice. Here, we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental set-ups. Lattice-free simulation results are compared with these mean-field descriptions and with a corresponding lattice-based model. Data from a proliferation experiment are used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.
Conjugate heat and mass transfer in the lattice Boltzmann equation method
Li, LK; Chen, C; Mei, RW; Klausner, JF
2014-04-22
An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes. The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are conveniently obtained from the microscopic distribution functions without finite-difference calculations. The present treatment takes into account the local geometry of the interface so that it can be directly applied to curved interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including (i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and (iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature (concentration), and heat (mass) flux are examined in detail and compared with those obtained from the "half-lattice division" treatment in the literature. The present analysis and numerical results show that the half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For curved
Conjugate heat and mass transfer in the lattice Boltzmann equation method.
Li, Like; Chen, Chen; Mei, Renwei; Klausner, James F
2014-04-01
An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes. The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are conveniently obtained from the microscopic distribution functions without finite-difference calculations. The present treatment takes into account the local geometry of the interface so that it can be directly applied to curved interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including (i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and (iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature (concentration), and heat (mass) flux are examined in detail and compared with those obtained from the "half-lattice division" treatment in the literature. The present analysis and numerical results show that the half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For curved
NASA Technical Reports Server (NTRS)
1978-01-01
VIKING PHASE III - With the incredible success of the Viking missions on Mars, mission operations have progressed though a series of phases - each being funded as mission success dictated its potential. The Viking Primary Mission phase was concluded in November, 1976, when the reins were passed on to the second phase - the Viking Extended Mission. The Extended Mission successfully carried spacecraft operations through the desired period of time needed to provided a profile of a full Martian year, but would have fallen a little short of connecting and overlapping a full Martian year of Viking operations which scientists desired as a means of determining the degree of duplicity in the red planet's seasons - at least for the summer period. Without this continuation of spacecraft data acquisitions to and beyond the seasonal points when the spacecraft actually began their Mars observations, there would be no way of knowing whether the changing environmental values - such as temperatures and winds atmospheric dynamics and water vapor, surface thermal dynamics, etc. - would match up with those acquired as the spacecraft began investigations during the summer and fall of 1976. This same broad interest can be specifically pursued at the surface - where hundreds of rocks, soil drifts and other features have become extremely familiar during long-term analysis. This picture was acquired on the 690th Martian day of Lander 1 operations - 4009th picture sequence commanded of the two Viking Landers. As such, it became the first picture acquired as the third phase of Viking operations got under way - the Viking Continuation Mission. Between the start of the Continuation Mission in April, 1978, until spacecraft operations are concluded in November, the landers will acquire an additional 200 pictures. These will be used to monitor the two landscaped for the surface changes. All four cameras, two on Lander 1 and two on Lander 2, continue to operate perfectly. Both landers will also
Collider lattice position changes from the ``blue book`` to the 10F lattice
Ketcham, L.; Syphers, M.
1992-01-01
GREV4 was the lattice used by RTK to generate the numbers that appear in the ``blue book`` which is the basis for the present footprint. The 1000 foot wide band allows for inevitable design iterations. The first iteration, GREV5 was the lattice used for the baseline costs and descriptions. If the west utility region (at which point the Collider is tied to the injector chain) is held fixed, the coordinates of the GREV4 and GREV5 rings differ by several tens of meters in some places. This is all within the footprint defined in the ``blue book.``
Collider lattice position changes from the blue book'' to the 10F lattice
Ketcham, L.; Syphers, M.
1992-01-01
GREV4 was the lattice used by RTK to generate the numbers that appear in the blue book'' which is the basis for the present footprint. The 1000 foot wide band allows for inevitable design iterations. The first iteration, GREV5 was the lattice used for the baseline costs and descriptions. If the west utility region (at which point the Collider is tied to the injector chain) is held fixed, the coordinates of the GREV4 and GREV5 rings differ by several tens of meters in some places. This is all within the footprint defined in the blue book.''
Deterministic composite nanophotonic lattices in large area for broadband applications
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates. PMID:27941869
Deterministic composite nanophotonic lattices in large area for broadband applications
NASA Astrophysics Data System (ADS)
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
The growth of minicircle networks on regular lattices
NASA Astrophysics Data System (ADS)
Diao, Y.; Hinson, K.; Arsuaga, J.
2012-01-01
The mitochondrial DNA of trypanosomes is organized into a network of topologically linked minicircles. In order to investigate how key topological properties of the network change with minicircle density, the authors introduced, in an earlier study, a mathematical model in which randomly oriented minicircles were placed on the vertices of the simple square lattice. Using this model, the authors rigorously showed that when the density of minicircles increases, percolation clusters form. For higher densities, these percolation clusters are the backbones for networks of minicircles that saturate the entire lattice. An important relevant question is whether these findings are generally true. That is, whether these results are independent of the choice of the lattices on which the model is based. In this paper, we study two additional lattices (namely the honeycomb and the triangular lattices). These regular lattices are selected because they have been proposed for trypanosomes before and after replication. We compare our findings with our earlier results on the square lattice and show that the mathematical statements derived for the square lattice can be extended to these other lattices qualitatively. This finding suggests the universality of these properties. Furthermore, we performed a numerical study which provided data that are consistent with our theoretical analysis, and showed that the effect of the choice of lattices on the key network topological characteristics is rather small.
Deterministic composite nanophotonic lattices in large area for broadband applications.
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-12
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm(2)) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Cranial mononeuropathy III - diabetic type
... diabetic type of cranial mononeuropathy III is a complication of diabetes . It causes double vision and eyelid drooping . ... Cooper ME, Vinik AI, Plutzky J, Boulton AJM. Complications of diabetes mellitus. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg ...
Noise tolerant dendritic lattice associative memories
NASA Astrophysics Data System (ADS)
Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc
2011-09-01
Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.
Simulations of lattice animals and trees
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walter; Grassberger, Peter
2005-01-01
The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the animal (tree) ensemble, and prune or branch the further growth according to a heuristic fitness function. In contrast to previous applications of PERM, this fitness function is not the weight with which the actual configuration would contribute to the partition sum, but is closely related to it. We obtain high statistics of animals with up to several thousand sites in all dimension 2 <= d <= 9. In addition to the partition sum (number of different animals) we estimate gyration radii and numbers of perimeter sites. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4 and >=8. In addition, we present the hitherto most precise estimates for growth constants in d >= 3. For clusters with one site attached to an attractive surface, we verify for d >= 3 the superuniversality of the cross-over exponent phgr at the adsorption transition predicted by Janssen and Lyssy, but not for d = 2. There, we find phgr = 0.480(4) instead of the conjectured phgr = 1/2. Finally, we discuss the collapse of animals and trees, arguing that our present version of the algorithm is also efficient for some of the models studied in this context, but showing that it is not very efficient for the 'classical' model for collapsing animals.
Epitaxy on Substrates with Hexagonal Lattice Symmetry.
NASA Astrophysics Data System (ADS)
Braun, Max Willi Hermann
A general description of epitaxy between thin films and substrates of general symmetry was developed from a model with rigid substrate and overgrowth and extended to include strain of the overgrowth. The overgrowth-substrate interaction was described by Fourier series, usually truncated, defined on the reciprocal lattice of the interface surfaces of the crystals. Energy considerations lead directly to a criterion that epitaxial configurations occur when a pair of surface reciprocal lattice vectors of the substrate and overgrowth coincide, equivalent to atomic row matching. This is analogous to the von Laue criterion and Bragg equations of diffraction theory, with a geometrical realization related to the Ewald construction. When generalized, misfit strain, the spacing, line sense and Burgers vectors of misfit dislocations and misfit verniers are obtained from the reciprocal lattices of crystals with any symmetry and misfit. The most general structures can be described with convenient unit cells by using structure factors. Homogeneous misfit strain, the interfacial atom positions after local relaxation and misfit and elastic (harmonic approximation) strain energies were obtained by direct minimization of the total interfacial energy of a large (1105 atoms), but finite, system. The local relaxation was calculated with a Finite Element formulation. Systems with fcc {111 } or bcc{ 110} overgrowths on fcc {111} or hcp{0001} substrates were studied with respect to substrate symmetry, overgrowth size and anisotropy of the overgrowth elastic constants. Configurations such as Kurdjumov-Sachs (KS), Nishiyama-Wassermann (NW) and a pseudomorphic phase (2DC) were explained, while several other higher order configurations were predicted. The inherent difference in nature between the KS and NW and their relationship to the 2DC were emphasized. Deviations from the ideal orientation of KS linked to anisotropy for systems undergoing misfit strain were discovered. Deviations were also
Measurements on Compressor-Blade Lattices
NASA Technical Reports Server (NTRS)
Weinig, F.
1948-01-01
At the end & 1940 an investigation of a guide-vane lattice for the compressor of a TL unit [NACA comment: Turbojet] was requested. The greatest possible Mach number had to be attained. The investigation was conducted with an annular lattice subjected to axial flow. A direct-current shunt motor with a useful output of 235 horsepower at en engine speed of 1800 qm was available for driving the necessary blower. In designing the blower the speed was set at 10,000 rpm. A gear box fran an armored car was used as gearing in which supplementary fresh oil lubrication was installed. The gear box was used to step up from low to high speeds. The blower that was designed is two stage. The hub-tip ratios are 0.79 to 0.82; the design pressure coefficient for each stage is 0.6 and the design flow coefficient is 0.4. The rotor dosimeter D sub a is 0.39 meters and the resulting peripheral speed is u sub a = 204 meters per second [NACA comment: Value corrected from the German]. The blower was entirely satisfactory. The construction of the test stand is shown in figure 1. The air flows in through an annular Inlet, which is used in the measurement of the quantity of air, and is deflected into an inward-pointing radial slot. A spiral motion is imparted to the air by a guide-vane installation manually adjustable as desired, which enables injection of the air, after it has been deflected from the radial direction to the axial direction, into the lattice being investigated at any desired angle.
Lattice model for water-solute mixtures
NASA Astrophysics Data System (ADS)
Furlan, A. P.; Almarza, N. G.; Barbosa, M. C.
2016-10-01
A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.
Algorithms for Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Konstantinos; Yoon, Boram; Gupta, Rajan; Syritsyn, Sergey
2016-11-01
Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.
Current Fluctuations in Stochastic Lattice Gases
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2005-01-01
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.
Isoscalar meson spectroscopy from lattice QCD
Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon
2011-06-01
We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.
Quantum Entanglement in Optical Lattice Systems
2015-02-18
superfluidity, Physical Review A (02 2013) Yinyin Qian, Ming Gong, Chuanwei Zhang. Many-body Landau -Zener transition in cold-atom double-well...in a Trapped Bose-Einstein Condensate, arXiv:1111.4778v1 (11 2011) Yinyin Qian, Ming Gong, Chuanwei Zhang. Many-body Landau -Zener Transition in...PhysRevA.87.023611 5. Y. Qian, M. Gong, and C. Zhang, Many-body Landau -Zener Transition in Cold Atom Double Well Optical Lattices, Physical Review A 87
Nuclear correlation functions in lattice QCD
Detmold, William; Orginos, Konstantinos
2013-06-01
We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, $^4$He, $^8$Be, $^{12}$C, $^{16}$O and $^{28}$Si.
Lattice QCD with mismatched fermi surfaces.
Yamamoto, Arata
2014-04-25
We study two flavor fermions with mismatched chemical potentials in quenched lattice QCD. We first consider a large isospin chemical potential, where a charged pion is condensed, and then introduce a small mismatch between the chemical potentials of the up quark and the down antiquark. We find that the homogeneous pion condensate is destroyed by the mismatch of the chemical potentials. We also find that the two-point correlation function shows spatial oscillation, which indicates an inhomogeneous ground state, although it is not massless but massive in the present simulation setup.
Nonlinear lattice waves in heterogeneous media
NASA Astrophysics Data System (ADS)
Laptyeva, T. V.; Ivanchenko, M. V.; Flach, S.
2014-12-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry-André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations.
Line of Dirac Nodes in Hyperhoneycomb Lattices.
Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T
2015-07-10
We propose a family of structures that have "Dirac loops," closed lines of Dirac nodes in momentum space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic and multiply connected Fermi surface leads to quantized Hall conductivities in three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those structures have topological surface states. We discuss the feasibility of realizing the structures as new allotropes of carbon.
Line of Dirac Nodes in Hyperhoneycomb Lattices
NASA Astrophysics Data System (ADS)
Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T.
2015-07-01
We propose a family of structures that have "Dirac loops," closed lines of Dirac nodes in momentum space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic and multiply connected Fermi surface leads to quantized Hall conductivities in three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those structures have topological surface states. We discuss the feasibility of realizing the structures as new allotropes of carbon.
Lattice-Boltzmann-based Simulations of Diffusiophoresis
NASA Astrophysics Data System (ADS)
Castigliego, Joshua; Kreft Pearce, Jennifer
We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.
Kondo lattice without Nozieres exhaustion effect.
Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.
2006-01-01
We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.
Pion electric polarizability from lattice QCD
Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank
2016-01-22
Electromagnetic polarizabilities are important parameters for understanding the interaction between photons and hadrons. For pions these quantities are poorly constrained experimentally since they can only be measured indirectly. New experiments at CERN and Jefferson Lab are planned that will measure the polarizabilities more precisely. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies.
Rare B meson decays on the lattice
NASA Astrophysics Data System (ADS)
Agadjanov, Andria
2017-03-01
We discuss a framework for the measurement of the B → K* transition form factors in lattice simulations, when the K* eventually decays. The possible mixing of πK and ηK states is considered. We reproduce the two-channel analogue of the Lellouch-Lüscher formula, which allows one to extract the B → K*l+l- decay amplitude in the low-recoil region. Since the K* is a resonance, we provide a procedure to determine the form factors at the complex pole position in a process-independent manner. The infinitely-narrow width approximation of the results is also studied.