Sample records for launch complex alaska

  1. KSC01KODI057

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Athena I launch vehicle for flight at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  2. KSC01kodi066

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- The PICSat and Starshine 3 (back) payloads wait for their launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  3. KSC01KODI040

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is raised off a truck at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  4. KSC01kodi063

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- The PCSat payload waits for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  5. KSC01kodi059

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  6. KSC01kodi064

    NASA Image and Video Library

    2001-08-09

    KODIAK ISLAND, Alaska -- Technicians prepare the PICSat payload for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  7. KSC01KODI055

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A convoy of trucks transports the stages of an Athena launch vehicle and supporting launch equipment to the pad at Kodiak Island, Alaska, as preparations to launch the Kodiak Star continue. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  8. KSC01KODI046

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians install Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  9. KSC01kodi062

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload, while the payload fairing of the Athena 1 launch vehicle awaits servicing at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program

  10. KSC01KODI043

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is lowered into place at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  11. KSC01KODI039

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Trucks transporting Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, arrive at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  12. KSC01KODI042

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Castor 120, the first stage of the Athena 1 launch vehicle, is lifted into a vertical position at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  13. KSC01KODI041

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians inspect Castor 120, the first stage of the Athena 1 launch vehicle, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  14. KSC01kodi058

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle, while the payload fairing awaits processing, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  15. KSC01KODI045

    NASA Image and Video Library

    2001-05-31

    KODIAK ISLAND, Alaska -- Technicians inspect and secure Castor 120, the first stage of the Athena 1 launch vehicle, on the launch mount at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  16. KSC01kodi071

    NASA Image and Video Library

    2001-08-08

    KODIAK ISLAND, Alaska -- Technicians transport the Sapphire payload at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  17. KSC01KODI035

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A special platform connects the barge with a ramp to allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  18. KSC01KODI036

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- A boat moves a ramp into place that will allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  19. KSC01KODI051

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- Technicians lower the fueled Orbit Adjust Model (OAM), which navigates payloads into the correct orbit, onto Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  20. KSC01KODI050

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- The fueled Orbit Adjust Model (OAM), which navigates payloads into the correct orbit, is installed onto Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  1. KSC01kodi072

    NASA Image and Video Library

    2001-08-08

    KODIAK ISLAND, Alaska -- The Sapphire payload is moved into position next to the Starshine 3 payload at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  2. KSC01kodi053

    NASA Image and Video Library

    2001-07-19

    KODIAK ISLAND, Alaska -- A technician performs final testing on Starshine 3 at the Naval Research Laboratory in Washington, D.C., to prepare for the launch of the Kodiak Star at Kodiak Island, Alaska. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  3. KSC01kodi054

    NASA Image and Video Library

    2001-07-19

    KODIAK ISLAND, Alaska -- A technician performs final testing on Starshine 3 at the Naval Research Laboratory in Washington, D.C., to prepare for the launch of the Kodiak Star at Kodiak Island, Alaska. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  4. KSC01kodi049

    NASA Image and Video Library

    2001-06-19

    KODIAK ISLAND, Alaska -- Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, awaits the installation of the Orbit Adjust Model (OAM), which navigates the payloads into the correct orbit, at the launch pad at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  5. 50 CFR 217.70 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.70 Specified activity and specified... specified in paragraph (b) of this section by U.S. citizens engaged in space vehicle and missile launch...

  6. 50 CFR 217.70 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.70 Specified activity and specified... specified in paragraph (b) of this section by U.S. citizens engaged in space vehicle and missile launch...

  7. 50 CFR 217.70 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.70 Specified activity and specified... specified in paragraph (b) of this section by U.S. citizens engaged in space vehicle and missile launch...

  8. 50 CFR 217.70 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.70 Specified activity and specified... specified in paragraph (b) of this section by U.S. citizens engaged in space vehicle and missile launch...

  9. KSC01KODI037

    NASA Image and Video Library

    2001-05-29

    KODIAK ISLAND, Alaska -- The Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, waits for the first stage, Castor 120, to be towed up the steepest part of the road, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  10. ARC-2010-ACD10-0244-011

    NASA Image and Video Library

    2010-12-28

    A Minotaur IV rocket, carrying NASA's Organism/Organic Exposure to Orbital Stresses (O/OREOS) nano satellite launches from the Alaska Aerospace Corporation's Kodiak Launch Complex on Nov. 19, 2010. Image credit: NASA/Matthew Daniels

  11. 50 CFR 217.77 - Renewal of a Letter of Authorization and adaptive management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS... to Space Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.77 Renewal of a Letter...

  12. 50 CFR 217.77 - Renewal of a Letter of Authorization and adaptive management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS... to Space Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.77 Renewal of a Letter...

  13. 50 CFR 217.77 - Renewal of a Letter of Authorization and adaptive management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS... to Space Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.77 Renewal of a Letter...

  14. 50 CFR 217.77 - Renewal of a Letter of Authorization and adaptive management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS... to Space Vehicle and Missile Launches at Kodiak Launch Complex, Alaska § 217.77 Renewal of a Letter...

  15. KSC-01pp1549

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- At the Launch Service Structure, Kodiak Launch Complex (KLC), the fairing is lowered over the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  16. KSC01kodi080

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - The Launch Service Structure, Kodiak Launch Complex (KLC), on Kodiak Island is viewed from a distance. Kodiak Star, the first launch to take place from KLC, is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  17. KSC01kodi079

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - A transporter moves the encapsulated Kodiak Star spacecraft into position in the Launch Service Structure, Kodiak Launch Complex (KLC), for final stacking for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  18. KSC-01pp1547

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- In the Launch Service Structure, Kodiak Launch Complex (KLC), workers check the fairing that is to be placed around the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  19. KSC-01pp1548

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, Alaska -- Inside the Launch Service Structure, Kodiak Launch Complex (KLC), workers watch as the fairing (background) is lifted before encapsulating the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  20. KSC01kodi076

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the fairing is lowered over the Kodiak Star spacecraft in preparation for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  1. KSC01kodi074

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the Kodiak Star spacecraft is ready for encapsulation in the fairing, as preparation for launch. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  2. KSC01kodi075

    NASA Image and Video Library

    2001-09-04

    KODIAK ISLAND, ALASKA - In the Launch Service Structure, Kodiak Launch Complex (KLC), the Kodiak Star spacecraft is ready for encapsulation in the fairing seen at right, above. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  3. KSC01kodi078

    NASA Image and Video Library

    2001-09-05

    KODIAK ISLAND, ALASKA - Inside the Launch Service Structure, Kodiak Launch Complex (KLC), the final stage of the Athena I launch vehicle, with the Kodiak Star spacecraft, is maneuvered into place. The first launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  4. 50 CFR 217.72 - Permissible methods of taking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Permissible methods of taking. 217.72 Section 217.72 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Kodiak Launch Complex, Alaska § 217.72 Permissible methods of taking. (a) Under a Letter of Authorization...

  5. 50 CFR 217.72 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Permissible methods of taking. 217.72 Section 217.72 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Kodiak Launch Complex, Alaska § 217.72 Permissible methods of taking. (a) Under a Letter of Authorization...

  6. Environmental Assessment of the Kodiak Launch Complex, Kodiak Island, Alaska

    DTIC Science & Technology

    1996-05-01

    Pasagshak State Recreation Area, a small park containing seven campsites, picnic areas, potable water and latrines , is approximately 10 kilometers (6 miles...rookeries near the proposed KLC site on Narrow Cape. The two closest major rookeries are at Marmot Island [approximately 88 kilometers (55 miles) north of

  7. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  8. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  9. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  10. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  11. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  12. KSC01padig281

    NASA Image and Video Library

    2001-09-29

    KODIAK ISLAND, Alaska. -- With light still on the horizon, a Lockheed Martin Athena I launch vehicle lifts off the launch pad at Kodiak Launch Complex (KSC) with the Kodiak Star spacecraft on board. Liftoff occurred at 10:40 p.m. EDT, Sept. 29. The Kodiak Star payload consists of four satellites: PICOSat, PCSat, Sapphire and Starshine 3. Starshine is sponsored by NASA. The 200-pound sphere will be used by students to study orbital decay. The other three satellites, also on educational missions, are sponsored by the department of defense. PICOSat is a technology demonstration satellite with four experiments on board. PCSat was designed by midshipmen at the U.S. Naval Academy, and will become part of the amateur radio community's automatic position reporting system. Sapphire is a micro-satellite built by students at Stanford University and Washington University - St. Louis to test infrared sensors for space use. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  13. KSC01padig280

    NASA Image and Video Library

    2001-09-29

    KODIAK ISLAND, Alaska -- A Lockheed Martin Athena I launch vehicle lifts off the launch pad at Kodiak Launch Complex (KSC) with the Kodiak Star spacecraft on board. Liftoff occurred at 10:40 p.m. EDT, Sept. 29. The Kodiak Star payload consists of four satellites: PICOSat, PCSat, Sapphire and Starshine 3. Starshine is sponsored by NASA. The 200-pound sphere will be used by students to study orbital decay. The other three satellites, also on educational missions, are sponsored by the department of defense. PICOSat is a technology demonstration satellite with four experiments on board. PCSat was designed by midshipmen at the U.S. Naval Academy, and will become part of the amateur radio community's automatic position reporting system. Sapphire is a micro-satellite built by students at Stanford University and Washington University - St. Louis to test infrared sensors for space use. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  14. KSC01padig279

    NASA Image and Video Library

    2001-09-29

    KODIAK ISLAND, Alaska -- A Lockheed Martin Athena I launch vehicle rockets off the launch pad at Kodiak Launch Complex (KSC) with the Kodiak Star spacecraft on board. Liftoff occurred at 10:40 p.m. EDT, Sept. 29. The Kodiak Star payload consists of four satellites: PICOSat, PCSat, Sapphire and Starshine 3. Starshine is sponsored by NASA. The 200-pound sphere will be used by students to study orbital decay. The other three satellites, also on educational missions, are sponsored by the department of defense. PICOSat is a technology demonstration satellite with four experiments on board. PCSat was designed by midshipmen at the U.S. Naval Academy, and will become part of the amateur radio community's automatic position reporting system. Sapphire is a micro-satellite built by students at Stanford University and Washington University - St. Louis to test infrared sensors for space use. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits

  15. A Characterization of the Terrestrial Environment of Kodiak Island, Alaska for the Design, Development and Operation of Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rawlins, Michael A.; Johnson, Dale L.; Batts, Glen W.

    2000-01-01

    A quantitative characterization of the terrestrial environment is an important component in the success of a launch vehicle program. Environmental factors such as winds, atmospheric thermodynamics, precipitation, fog, and cloud characteristics are among many parameters that must be accurately defined for flight success. The National Aeronautics and Space Administration (NASA) is currently coordinating weather support and performing analysis for the launch of a NASA payload from a new facility located at Kodiak Island, Alaska in late 2001 (NASA, 1999). Following the first launch from the Kodiak Launch Complex, an Air Force intercontinental ballistic missile on November 5, 1999, the site's developer, the Alaska Aerospace Development Corporation (AADC), is hoping to acquire a sizable share of the many launches that will occur over the next decade. One such customer is NASA, which is planning to launch the Vegetation Canopy Lidar satellite aboard an Athena I rocket, the first planned mission to low earth orbit from the new facility. To support this launch, a statistical model of the atmospheric and surface environment for Kodiak Island, AK has been produced from rawinsonde and surface-based meteorological observations for use as an input to future launch vehicle design and/or operations. In this study, the creation of a "reference atmosphere" from rawinsonde observations is described along with comparisons between the reference atmosphere and existing model representations for Kodiak. Meteorological conditions that might result in a delay on launch day (cloud cover, visibility, precipitation, etc.) are also explored and described through probabilities of launch by month and hour of day. This atmospheric "mission analysis" is also useful during the early stages of a vehicle program, when consideration of the climatic characteristics of a location can be factored into vehicle designs. To be most beneficial, terrestrial environment definitions should a) be available at the inception of the program and based on the desired operational performance of the launch vehicle, b) be issued under the signature of the program manager and be part of the controlled program definition and requirements documentation, and c) specify the terrestrial environment for all phases of activity including prelaunch, launch, ascent, on-orbit, decent, and landing. Since the beginning of the space era, NASA has utilized some of the most detailed assessments of the terrestrial climatic environment in design, development, and operations of both expendable and reusable launch vehicles.

  16. ARC-2010-ACD10-0244-003

    NASA Image and Video Library

    2010-10-18

    From left, Giovanni Minelli with the NASA's Ames Research Center; Center: Kitty Sedam with Aerospace Corp.; and Charlie Friedericks with Ames inspect the packing list and instructions for the Ames-managed O/OREOS and NanoSail-D from NASA's Marshall Space Flgith Center nano satellites at Kodiak Launch Complex, Alaska . Image credit: U.S. Air Force/Lou Hernandez

  17. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    NASA Astrophysics Data System (ADS)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  18. KSC-05pd2449

    NASA Image and Video Library

    2005-11-07

    KENNEDY SPACE CENTER, FLA. - A Long-Eared Owl is spotted on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. This one holds a typical stance for protecting its young. These owls range from Alaska and Canada to the Gulf states and Mexico, as far east as Central Florida. Their habitat is deciduous and evergreen forests. They nest in deserted nests of crows, hawks or squirrels.

  19. KSC-05pd2448

    NASA Image and Video Library

    2005-11-07

    KENNEDY SPACE CENTER, FLA. - A Long-Eared Owl is spotted on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. This one holds a typical stance for protecting its young. These owls range from Alaska and Canada to the Gulf states and Mexico, as far east as Central Florida. Their habitat is deciduous and evergreen forests. They nest in deserted nests of crows, hawks or squirrels.

  20. Robotic weather balloon launchers spread in Alaska

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  1. M-TeX and MIST Experiments Launched from Alaska

    NASA Image and Video Library

    2017-12-08

    Caption: Composite shot of all four rockets for the M-TeX and MIST experiments is made up of 30 second exposures. The rocket salvo began at 4:13 a.m. EST, Jan. 26, 2015, from the Poker Flat Research Range, Alaska. Credit: NASA/Jamie Adkins More info: The Mesosphere-Lower Thermosphere Turbulence Experiment, or M-TeX, and the Mesospheric Inversion-layer Stratified Turbulence, or MIST, experiment were successfully conducted the morning of Jan. 26, 2015, from the Poker Flat Research Range, Alaska. The first M-Tex rocket, a NASA Terrier-Improved Malemute sounding rocket, was launched at 4:13 a.m. EST and was followed one-minute later by the first MIST experiment payload on a NASA Terrier-Improved Orion. The second M-TeX payload was launched at 4:46 a.m. EST and also was followed one minute later by the second MIST payload. Preliminary data show that all four payloads worked as planned and the trimethyl aluminum, or TMA, vapor trails were seen at the various land-based observation sites in Alaska. A fifth rocket carrying the Auroral Spatial Structures Probe remains ready on the launch pad. The launch window for this experiment runs through Jan. 27. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 75 FR 38991 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at... application from the Alaska Aerospace Corporation (AAC) for authorization to take marine mammals incidental to launching space launch vehicles, long range ballistic target missiles, and other smaller missile systems at...

  3. KSC-2012-1856

    NASA Image and Video Library

    2012-02-17

    Launch Vehicles: Launch vehicles are the rocket-powered systems that provide transportation from the Earth’s surface into the environment of space. Kennedy Space Center’s heritage includes launching robotic and satellite missions into space primarily using Atlas, Delta and Titan launch vehicles. Other launch vehicles include the Pegasus and Athena. The Launch Services Program continues this mission today directing launches from the Cape Canaveral Air Force Station, Fla. Vandenberg Air Force Base, Calif. Kodiak, Alaska and Kwajalein Atoll in the Marshall Islands. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  4. 75 FR 20344 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Rocket Launches from...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... (LOA) has been issued to the Alaska Aerospace Corporation (AAC, formerly known as the Alaska Aerospace... scheduled prior to expiration of the current LOA. As such, the most recent reports concerning activity and... ambient levels for one minute thirty three seconds with an SEL of 89.6 dBA. The one-second broadband peak...

  5. Freezing Fog Formation in a Supercooled Boundary Layer: Solving the Winter Fog Forecasting Challenge for Elmendorf Air Force Base, Alaska

    DTIC Science & Technology

    2007-03-01

    from PANC launched at 00Z on 28 Nov 2005. From UWSP, 2007. ............................................................................ 34 Figure 17...Upper-air sounding from PANC launched at 12Z on 28 Nov 2005. From UWSP, 2007...sounding from PANC launched at 00Z (top) and 12Z (bottom) on 4 Dec 2005. From UWSP, 2007...................................... 47 Figure 29. Sea-level

  6. GREECE Mission Launching Into Aurora

    NASA Image and Video Library

    2014-03-04

    Caption: A NASA-funded sounding rocket launches into an aurora in the early morning of March 3, 2014, over Venetie, Alaska. The GREECE mission studies how certain structures – classic curls like swirls of cream in coffee -- form in the aurora. Credit: NASA/Christopher Perry More info: On March 3, 2014, at 6:09 a.m. EST, a NASA-funded sounding rocket launched straight into an aurora over Venetie, Alaska. The Ground-to-Rocket Electrodynamics – Electron Correlative Experiment, or GREECE, sounding rocket mission, which launched from Poker Flat Research Range in Poker Flat, Alaska, will study classic curls in the aurora in the night sky. The GREECE instruments travel on a sounding rocket that launches for a ten-minute ride right through the heart of the aurora reaching its zenith over the native village of Venetie, Alaska. To study the curl structures, GREECE consists of two parts: ground-based imagers located in Venetie to track the aurora from the ground and the rocket to take measurements from the middle of the aurora itself. At their simplest, auroras are caused when particles from the sun funnel over to Earth's night side, generate electric currents, and trigger a shower of particles that strike oxygen and nitrogen some 60 to 200 miles up in Earth's atmosphere, releasing a flash of light. But the details are always more complicated, of course. Researchers wish to understand the aurora, and movement of plasma in general, at much smaller scales including such things as how different structures are formed there. This is a piece of information, which in turn, helps paint a picture of the sun-Earth connection and how energy and particles from the sun interact with Earth's own magnetic system, the magnetosphere. GREECE is a collaborative effort between SWRI, which developed particle instruments and the ground-based imaging, and the University of California, Berkeley, measuring the electric and magnetic fields. The launch is supported by a sounding rocket team from NASA’s Wallops Flight Facility, Wallops Island, Va. The Poker Flat Research Range is operated by the University of Alaska, Fairbanks. “The conditions were optimal,” said Marilia Samara, principal investigator for the mission at Southwest Research Institute in San Antonio, Texas. “We can’t wait to dig into the data.” For more information on the GREECE mission visit: www.nasa.gov/content/goddard/nasa-funded-sounding-rocket- .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  8. 78 FR 43861 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at..., notification is hereby given that a Letter of Authorization (LOA) has been issued to the Alaska Aerospace Corporation (AAC) to take two species of pinnipeds incidental to space vehicle and missile launch operations...

  9. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be replicated in Alaska, with plans to begin with 40 rising 9th graders during the summer of 2012. The program will continue to add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacty of 160 students in grades 9th through 12th.

  10. Hydrological Modeling in Alaska with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  11. Sounding Rocket Launches Successfully from Alaska

    NASA Image and Video Library

    2015-01-28

    A NASA Oriole IV sounding rocket with the Aural Spatial Structures Probe leaves the launch pad on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Credit: NASA/Lee Wingfield More info: On count day number 15, the Aural Spatial Structures Probe, or ASSP, was successfully launched on a NASA Oriole IV sounding rocket at 5:41 a.m. EST on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Preliminary data show that all aspects of the payload worked as designed and the principal investigator Charles Swenson at Utah State University described the mission as a “raging success.” “This is likely the most complicated mission the sounding rocket program has ever undertaken and it was not easy by any stretch," said John Hickman, operations manager of the NASA sounding rocket program office at the Wallops Flight Facility, Virginia. "It was technically challenging every step of the way.” “The payload deployed all six sub-payloads in formation as planned and all appeared to function as planned. Quite an amazing feat to maneuver and align the main payload, maintain the proper attitude while deploying all six 7.3-pound sub payloads at about 40 meters per second," said Hickman. Read more: www.nasa.gov/content/assp-sounding-rocket-launches-succes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. 77 FR 59611 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ...: Sandy Hurlocker 505-753-7331. EIS No. 20120308, Draft EIS (Tiering), NASA, AK, Sounding Rocket Program (SRP) at Poker Flat Research Range (PFRR), Continuing Sounding Rocket Launches, Alaska, Comment Period...

  13. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  14. Development of an Unmanned Aircraft Systems Program: ACUASI

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2017-12-01

    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  15. 77 FR 4290 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the Planned Alaska Pipeline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... TransCanada Alaska Company, LLC (TC Alaska) had not filed its draft Resource Reports, which we deemed necessary to properly evaluate and comment on this unique and complex project. On January 13, 2012, TC...

  16. NASA Launches Rocket Into Active Auroras

    NASA Image and Video Library

    2017-12-08

    A test rocket is launched the night of Feb. 17 from the Poker Flat Research Range in Alaska. Test rockets are launched as part of the countdown to test out the radar tracking systems. NASA is launching five sounding rockets from the Poker Range into active auroras to explore the Earth's magnetic environment and its impact on Earth’s upper atmosphere and ionosphere. The launch window for the four remaining rockets runs through March 3. Credit: NASA/Terry Zaperach NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. LWIR signature from EXCEDE SPECTRAL

    NASA Astrophysics Data System (ADS)

    Bien, F.

    1984-03-01

    EXCEDE/SPECTRAL was launched from Poker Flat Research Range, Alaska, on 19 October 1979. This report presents selected LWIR data obtained both during electron gun operation and non-operation. It presents a simplified outgassing model and discusses CO2(v2) emissions measured.

  18. The RCA-F/Delta launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Delta 3924 launch vehicle configuration which incorporates the extended long tank Thor booster, nine Castor 4 strap-on motors, the AJ-118 second stage and the TE 364-4 third stage is to place into a synchronous transfer orbit, the second in a series of high-traffic capacity, 24 transponder communications satellites. Three days after launch, the satellite's apogee kick motor circularizes the orbit at geosynchronous altitude of 19,300 NM above the equator at approximately 128 degrees W longitude. The satellite can service commercial and government voice, digital and video communications requirements between Alaska and CONUS. The communications payload, mission requirements and spacecraft systems and subsystems are described.

  19. The GOES-S Social Briefing

    NASA Image and Video Library

    2018-03-01

    Social media followers got a briefing on the upcoming launch of NOAA’s GOES-S spacecraft, set to launch March 1 from Cape Canaveral Air Force Base in Florida. Once the satellite is declared operational, late this year, it will occupy NOAA’s GOES-West position and provide faster, more accurate data for tracking wildfires, tropical cyclones, fog and other storm systems and hazards that threaten the western United States, including Hawaii and Alaska, Mexico, Central America and the Pacific Ocean, all the way to New Zealand.

  20. Sounding Rocket Launches Successfully from Alaska

    NASA Image and Video Library

    2015-01-28

    Caption: Time lapse photo of the NASA Oriole IV sounding rocket with Aural Spatial Structures Probe as an aurora dances over Alaska. All four stages of the rocket are visible in this image. Credit: NASA/Jamie Adkins More info: On count day number 15, the Aural Spatial Structures Probe, or ASSP, was successfully launched on a NASA Oriole IV sounding rocket at 5:41 a.m. EST on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Preliminary data show that all aspects of the payload worked as designed and the principal investigator Charles Swenson at Utah State University described the mission as a “raging success.” “This is likely the most complicated mission the sounding rocket program has ever undertaken and it was not easy by any stretch," said John Hickman, operations manager of the NASA sounding rocket program office at the Wallops Flight Facility, Virginia. "It was technically challenging every step of the way.” “The payload deployed all six sub-payloads in formation as planned and all appeared to function as planned. Quite an amazing feat to maneuver and align the main payload, maintain the proper attitude while deploying all six 7.3-pound sub payloads at about 40 meters per second," said Hickman. Read more: www.nasa.gov/content/assp-sounding-rocket-launches-succes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Welcome Aboard Starship MIR: Mission Is Russian

    ERIC Educational Resources Information Center

    Gullickson, Janice

    2009-01-01

    Six years ago Project Starship MIR, the Russian language "shuttle," launched at Turnagain Elementary, one of the Anchorage School District's 65 elementary schools. The MIR "peace" mission originated with encouragement from the local business community to prepare students for Alaska's future economic, social and political ties…

  2. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...

  3. 33 CFR 165.1710 - Port Valdez and Valdez Narrows, Valdez, Alaska-security zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following areas are security zones: (1) Trans-Alaska Pipeline (TAPS) Valdez Terminal complex (Terminal), Valdez, Alaska and TAPS tank vessels. All waters enclosed within a line beginning on the southern... TAPS tank vessel maneuvering to approach, moor, unmoor or depart the TAPS Terminal or transiting...

  4. KSC-00pp0624

    NASA Image and Video Library

    2000-05-08

    A pair of Sandhill Cranes searches for food with their still-fluffy fledgling close by. The trio have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  5. KSC00pp0624

    NASA Image and Video Library

    2000-05-08

    A pair of Sandhill Cranes searches for food with their still-fluffy fledgling close by. The trio have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  6. Sandhill cranes hunting food at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A pair of Sandhill Cranes searches for food with their still- fluffy fledgling close by. The trio have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  7. 77 FR 61642 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... educational institutions have conducted suborbital rocket launches from the PFRR. While the PFRR is owned and...

  8. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native and minority students into the geosciences. View them as they explore the permafrost tunnel in Fairbanks, sand dunes in Anchorage, Portage Glacier, Matanuska-Susitna Glacier, and the Trans-Alaska pipeline damage from the earthquake of 2002.

  9. A Dilemma about Homemakers' Involvement in Developing Public Policies That Affect the Family.

    ERIC Educational Resources Information Center

    Long, James S.

    As a society, we believe that persons affected by a public decision should be represented in the development of that policy. The Family Community Leadership program (FCL), recently launched in Alaska, Colorado, Hawaii, New Mexico, Oregon, and Washington, has been established to increase homemakers' understanding of social concerns that influence…

  10. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    USGS Publications Warehouse

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    The structural architecture of Alaska is the product of a complex history of tectonism that occurred along the Cordilleran and Arctic margins of North America through interactions with ancient and modern ocean plates and with continental elements derived from Laurentia, Siberia, and Baltica. To unravel the tectonic history of Alaska, we constructed maps showing the age, distribution, structural style, and kinematics of contractional and penetrative extensional deformation in Alaska north of latitude 60° N. at a scale of 1:5,000,000. These maps use the Geologic Map of the Arctic (Harrison and others, 2011) as a base map and follow the guidelines in the Tectonic Map of the Arctic project (Petrov and others, 2013) for construction, including use of the International Commission on Stratigraphy time scale (Cohen and others, 2013) divided into 20 time intervals. We find evidence for deformation in 14 of the 20 time intervals and present maps showing the known or probable extent of deformation for each time interval. Maps and descriptions of deformational style, age constraints, kinematics, and information sources for each deformational episode are discussed in the text and are reported in tabular form. This report also contains maps showing the lithologies and structural geology of Alaska, a terrane map, and the distribution of tectonically important units including post-tectonic sedimentary basins, accretionary complexes, ophiolites, metamorphic rocks.These new maps show that most deformational belts in Alaska are relatively young features, having developed during the late Mesozoic and Cenozoic. The oldest episode of deformation recognized anywhere in Alaska is found in the basement of the Farewell terrane (~1.75 Ga). Paleozoic and early Mesozoic deformational events, including Devonian deformation in the Arctic Alaska terrane, Pennsylvanian deformation in the Alexander terrane, Permian deformation in the Yukon Composite (Klondike orogeny) and Farewell terranes (Browns Fork orogeny), Early and Late Jurassic deformation in the Peninsular-Wrangellia terranes, and Early Cretaceous deformation in northern Alaska (early Brookian orogeny) show that within-terrane amalgamation events occurred prior to assembly of Alaska. Widespread episodes of deformation in the Late Cretaceous and early Cenozoic, in contrast, affected multiple terranes, indicating they occurred during or following the time of assembly of most of Alaska.The primary deformational event in northern Alaska was the Late Jurassic and Early Cretaceous (early) Brookian orogeny, which affected most terranes north and west of the early Cenozoic Tintina, Victoria Creek, Kaltag, and Poorman dextral-slip faults in central Alaska. In southern Alaska, formation of the southern Alaska accretionary complex (Chugach, Prince William, Yakutat terranes) and associated magmatism in the Peninsular-Wrangellia terrane began near the Triassic-Jurassic boundary and continued episodically throughout the remainder of the Mesozoic and the Cenozoic. The collision of these terranes with the Farewell and Yukon Composite terranes in central Alaska is recorded by contractional deformation that emanated from the intervening basins in the Late Cretaceous. The boundary between northern and central Alaska is constrained to late Early Cretaceous but is enigmatic and not obviously marked by contractional deformation. Early Cenozoic shortening and transpressional deformation is the most widespread event recorded in Alaska and produced the widespread late Brookian orogenic event in northern Alaska. Middle and late Cenozoic shortening and transpression is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin subduction zone as well as in northeastern Alaska.

  11. KSC-00pp0672

    NASA Image and Video Library

    2000-05-18

    While the sandhill crane parents search for food in front of the Vehicle Assembly Building, their still-featherless baby nearby tests its voice. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  12. KSC-00pp0671

    NASA Image and Video Library

    2000-05-18

    A family of sandhill cranes searches for food on the grounds near the Vehicle Assembly Building. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  13. KSC00pp0672

    NASA Image and Video Library

    2000-05-18

    While the sandhill crane parents search for food in front of the Vehicle Assembly Building, their still-featherless baby nearby tests its voice. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  14. KSC00pp0671

    NASA Image and Video Library

    2000-05-18

    A family of sandhill cranes searches for food on the grounds near the Vehicle Assembly Building. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  15. KSC00pp0625

    NASA Image and Video Library

    2000-05-08

    A Sandhill Crane searches for food with its still-fuzzy fledgling by its side. The two, along with another adult crane, have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  16. KSC-00pp0625

    NASA Image and Video Library

    2000-05-08

    A Sandhill Crane searches for food with its still-fuzzy fledgling by its side. The two, along with another adult crane, have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  17. Sandhill cranes browse for food near VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    While the sandhill crane parents search for food in front of the Vehicle Assembly Building, their still-featherless baby nearby tests its voice. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  18. Sandhill crane with baby

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Sandhill Crane searches for food with its still-fuzzy fledgling by its side. The two, along with another adult crane, have been seen wandering the grassy areas in the KSC Launch Complex 39 area. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  19. Sandhill cranes browse for food near VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A family of sandhill cranes searches for food on the grounds near the Vehicle Assembly Building. The cranes have been a constant sight in the Launch Complex 39 area during the month of May. Sandhill cranes range from Siberia, Alaska and Arctic islands to Michigan, Minnesota and California; from Florida to Texas. They prefer large freshwater marshes, prairie ponds and marshy tundra. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  20. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.

  1. Community-Responsive Interventions to Reduce Cardiovascular Risk in American Indians

    ERIC Educational Resources Information Center

    Jobe, Jared B.; Adams, Alexandra K.; Henderson, Jeffrey A.; Karanja, Njeri; Lee, Elisa T.; Walters, Karina L.

    2012-01-01

    American Indian and Alaska Native (AI/AN) populations bear a heavy burden of cardiovascular disease (CVD), and they have the highest rates of risk factors for CVD, such as cigarette smoking, obesity, and diabetes, of any U.S. population group. Yet, few randomized controlled trials have been launched to test potential preventive interventions in…

  2. FASTSAT-HSV01 Thermal Math Model Correlation

    NASA Technical Reports Server (NTRS)

    McKelvey, Callie

    2011-01-01

    This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72deg and an altitude of 650 kilometers. The mission has been successful to date with science experiment activities still taking place daily. The thermal control system on this spacecraft was a passive design relying on thermo-optical properties and six heaters placed on specific components. Flight temperature data is being recorded every minute from the 48 Resistance Temperature Devices (RTDs) onboard the satellite structure and many of its avionics boxes. An effort has been made to correlate the thermal math model to the flight temperature data using Cullimore and Ring's Thermal Desktop and by obtaining Earth and Sun vector data from the Attitude Control System (ACS) team to create an "as-flown" orbit. Several model parameters were studied during this task to understand the spacecraft's sensitivity to these changes. Many "lessons learned" have been noted from this activity that will be directly applicable to future small satellite programs.

  3. Inspection of the Coating on the Starshine Mirrors

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Vince Huegele of the Marshall Space Flight Center's (MSFC's) Space Optics Manufacturing Technology Center (SOMTC) inspects the coating on the mirrors for Starshine 3, a satellite that resembles a high-tech disco ball that was placed into Earth orbit. The sphere, which is covered by hundreds of quarter-sized mirrors that reflect sunlight to observers on the ground, helps students study the effects of solar activity on the Earth's atmosphere. Ed White Middle School in Huntsville, Alabama is among 500 schools worldwide whose students helped grind and polish mirrors for the Starshine 3 satellite as a part of the Starshine Project. The total of up to 1,500 mirrors will improve the sunlight flash rate and make the satellite more visible at twilight as it orbits the Earth. These mirrors have been coated with a scratch-resistant, anti-oxidizing layer of silicon dioxide by optical engineers and technicians at the Hill Air Force Base in Utah and MSFC. Starshine-3 was launched on an Athena I unmarned launch vehicle out of the Kodiak Launch Complex, Alaska, on September 29, 2001. Starshine 3 is nearly 37 inches (1 meter) in diameter, weighs 200 pounds (91 kilograms), and carries 1500 mirrors that were polished by approximately 40,000 students in 1,000 schools in 30 countries. Three small, optically-reflective spherical Starshine student satellites have been designed by the U.S. Naval Research Laboratory and built by an informal volunteer coalition of organizations and individuals in the U.S. and Canada. This coalition, called Project Starshine, is headquartered in Monument, Colorado.

  4. Space Science

    NASA Image and Video Library

    2001-04-01

    In this photograph, Vince Huegele of the Marshall Space Flight Center's (MSFC's) Space Optics Manufacturing Technology Center (SOMTC) inspects the coating on the mirrors for Starshine 3, a satellite that resembles a high-tech disco ball that was placed into Earth orbit. The sphere, which is covered by hundreds of quarter-sized mirrors that reflect sunlight to observers on the ground, helps students study the effects of solar activity on the Earth's atmosphere. Ed White Middle School in Huntsville, Alabama is among 500 schools worldwide whose students helped grind and polish mirrors for the Starshine 3 satellite as a part of the Starshine Project. The total of up to 1,500 mirrors will improve the sunlight flash rate and make the satellite more visible at twilight as it orbits the Earth. These mirrors have been coated with a scratch-resistant, anti-oxidizing layer of silicon dioxide by optical engineers and technicians at the Hill Air Force Base in Utah and MSFC. Starshine-3 was launched on an Athena I unmarned launch vehicle out of the Kodiak Launch Complex, Alaska, on September 29, 2001. Starshine 3 is nearly 37 inches (1 meter) in diameter, weighs 200 pounds (91 kilograms), and carries 1500 mirrors that were polished by approximately 40,000 students in 1,000 schools in 30 countries. Three small, optically-reflective spherical Starshine student satellites have been designed by the U.S. Naval Research Laboratory and built by an informal volunteer coalition of organizations and individuals in the U.S. and Canada. This coalition, called Project Starshine, is headquartered in Monument, Colorado.

  5. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    NASA Astrophysics Data System (ADS)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the Northwest Arctic and North Slope boroughs. On an exit survey following the 2016 First-Year Academy, 100% of participants indicated that they learned a lot, and 97% made new friends and/or increased their interest in science. Based on the success of the first two cohorts, UAF plans to offer the GeoFORCE experience to rural students across Alaska.

  6. Environment and science: Chapter 9

    USGS Publications Warehouse

    Pearce, John; Talbot, Sandra L.

    2017-01-01

    Alaska is part of an international circumpolar North, which makes the United States an Arctic nation. Alaska is a place of Indigenous ingenuity and adaptation, a place where environmental extremes challenge the ways of living. In its more recent history, Alaska has been a place of resources and influx-a land known best for what it provides. This frontier persona, with its sourdoughs and prospectors, has not been easily shed, but Alaska today is pivotal because it represents America's North and a complex and changing Arctic. North: Finding Place in Alaska explores the state's various facets through exhibitions and artifacts at the Anchorage Museum and the words of a diverse selection of writers, curators, historians, anthropologists, and artists. From romantic landscapes by Rockwell Kent and Thomas Hill, to the art and spirituality of Alaska's Native peoples represented by a bentwood feast dish and a uniquely carved hook for catching halibut, this collection examines connections throughout the circumpolar North. No longer as remote as once thought, Alaska serves as a narrative for our future.

  7. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. VOLUME 29, LAUNCH CONTROL CENTER (LCC) TITLE AND LOCATION SHEET. Sheet 29-01 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 2 - Appendices A through L

    DTIC Science & Technology

    2013-06-01

    enhanC;enwnlswonld ~nahle reoJ istk. jolll l training artd ta.~ti 1g to sup pori omergi ng tedwolo~ttt.», respond lo recent balllefiold...The military uses the JPARC to conduct testing and training and lo support joint exercises and mission rehearsals. The JPARC was originally developed...68th Ave. and Elmore Rd.) 4477 Pike’s Landing.Road Anchorage, Alaska 99507-2599 Fairbanks, Alaska 99709 I 0 a.m. to noon and I :00 lo 5:00p.m. I 0

  9. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  10. Condition assessment of main structural members of steam schooner WAPAMA

    Treesearch

    Xiping Wang; James Wacker; Robert Ross; Brian Brashaw

    2008-01-01

    The historic American ship WAPAMA is the last surviving example of the wooden steam-powered schooners designed for the 19th- and 20th-century Pacific Coast lumber trade and coastal service. Since its launching in 1915, the WAPAMA has had a long and productive life in plying cargo and passengers along the stormy West Coast from Mexico to Alaska. As the sole survivor of...

  11. Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    NASA Technical Reports Server (NTRS)

    Schumacher, James D.; Barber, Willard E.; Holt, Benjamin; Liu, Antony K.

    1991-01-01

    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features.

  12. Publications - PIR 2002-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    fortymile_eaglea1_surficial Shapefile 3.3 M Metadata - Read me Keywords Alaska, State of; Alluvial Deposits; Bison Fossils ; Boundary (Place); Caribou Fossils; Cenozoic; Colluvial Deposits; Complex Deposits; Cretaceous; Devonian ; Fortymile Mining District; Fortymile River; Geologic Map; Geology; Glacial Deposits; Holocene; Horse Fossils

  13. Distribution and characteristics of metamorphic belts in the south- eastern Alaska part of the North American Cordillera

    USGS Publications Warehouse

    Brew, D.A.; Himmelberg, G.R.; Loney, R.A.; Ford, A.B.

    1992-01-01

    The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic-metamorphic complex; the Glacier Bay-Chichagof plutonic-metamorphic complex; and the Chugach plutonic-metamorphic complex. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay-Chichagof complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. -from Authors

  14. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  15. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC TRANSVERSE SECTIONS AA & BB. Sheet 29-45 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  16. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05760, KSC-Launch Support Equipment Engineering Division, January 1967. GENERAL ARRANGEMENT. Sheet 1 of 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  17. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC FLOOR 3, LEVEL 38’-0”, AREA “P”. Sheet 29-39 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. KSC-2014-2104

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  19. Mineral deposits and metallogeny of Alaska

    USGS Publications Warehouse

    Goldfarb, Richard J.; Meighan, Corey J.; Meinert, Lawrence D.; Wilson, Frederic H.

    2016-01-01

    Alaska, the largest State within the United States, and mainly located north of latitude 60°, is an important part of the Circum-Arctic region. Alaska is a richly endowed region with a long and complex geologic history. The mining history is short by world standards but nevertheless there are a number of world-class deposits in Alaska, of which Red Dog and Pebble are among the largest of their respective types in the world. Alaska is a collection of geologic terranes or regions having distinct histories, most of which were tectonically assembled in the period from 400 million years to 50 million years ago (late Paleozoic through early Tertiary). They now occur as numerous fault-bounded blocks in the northernmost part of the North American Cordillera on the western margin of the Laurentian craton. These terranes are comprised of rocks ranging in age from Paleoproterozoic to Recent.

  20. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016. These stations have 10-20 km spacing, spanning the edge of the subducting slab, and so will provide a zone of increased resolution in the region where slab behavior is poorly understood. We will discuss these data in the context of enigmatic Wrangell volcanism and its relationship to the eastern end of the Alaska-Aleutian Wadati-Benioff zone.

  1. Geology of the Prince William Sound and Kenai Peninsula region, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.

    2012-01-01

    The Prince William Sound and Kenai Peninsula region includes a significant part of one of the world’s largest accretionary complexes and a small part of the classic magmatic arc geology of the Alaska Peninsula. Physiographically, the map area ranges from the high glaciated mountains of the Alaska and Aleutian Ranges and the Chugach Mountains to the coastal lowlands of Cook Inlet and the Copper River delta. Structurally, the map area is cut by a number of major faults and postulated faults, the most important of which are the Border Ranges, Contact, and Bruin Bay Fault systems. The rocks of the map area belong to the Southern Margin composite terrane, a Tertiary and Cretaceous or older subduction-related accretionary complex, and the Alaska Peninsula terrane. Mesozoic rocks between these two terranes have been variously assigned to the Peninsular or the Hidden terranes. The oldest rocks in the map area are blocks of Paleozoic age within the mélange of the McHugh Complex; however, the protolith age of the greenschist and blueschist within the Border Ranges Fault zone is not known. Extensive glacial deposits mantle the Kenai Peninsula and the lowlands on the west side of Cook Inlet and are locally found elsewhere in the map area. This map was compiled from existing mapping, without generalization, and new or revised data was added where available.

  2. 22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. Components of Adolescent Depression in a Cross-Cultural Setting.

    ERIC Educational Resources Information Center

    Fischer, Margaret

    Alaska has the highest rate in the nation of depression, alcohol and drug abuse, and adolescent suicide. The prevention of depression and suicide is complex because of many impinging variables. Data from a sample of 40 adolescents referred to a residential treatment center in Alaska revealed that a rapid change in life style of the Alaskan natives…

  4. American Indian Tribal Values: A Critical Consideration in the Education of American Indians/Alaska Natives Today

    ERIC Educational Resources Information Center

    Tippeconnic, John W., III; Tippeconnic Fox, Mary Jo

    2012-01-01

    The education of American Indians and Alaska Natives has increasingly become more complex given the differences in tribal languages and cultures, especially as changing demographics and issues of Indian identity are considered. There are over 200 languages and vast cultural differences between and within the 565 federally recognized tribes in…

  5. The complex Chukchi Borderland region as part of the Arctic Alaska extended margin

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Hutchinson, D. R.; Miller, E. L.

    2017-12-01

    The Chukchi Borderland region (CBR; includes the Chukchi Plateau and its surrounding component elevations) is a physiographically complex and somewhat enigmatic seafloor high adjacent to the broad Chukchi Shelf in the Alaska/Chukotka quadrant of the Amerasian Basin beneath the Arctic Ocean. The CBR includes several physiographic sub-components including the relatively high-standing Northwind Ridge and Northwind Plain as well as a lower-standing northern region (here called the North Chukchi Component Elevation or NCCE) that consists of several un-named knolls, ramps, and benches. The CBR shows numerous N-S physiographic features including ridges and escarpments related to extension. The CBR adjoins the Chukchi Shelf to the south, abuts the Canada Basin to the east, and is separated on the west and north from the Mendeleev and Alpha Ridges by the Chukchi Plain, the Mendeleev Plain, and the Nautilus Basin. Available geophysical data, comparative physiography/geomorphology, and geologic analysis show that the CBR is continuous with Arctic Alaska and the adjoining Chukchi Shelf. CBR, Arctic Alaska, and the Chukchi Shelf share common early Paleozoic basement elements as well as Ellesmerian and younger cover sequences. The CBR owes its complex physiographic and structural character to its central location relative to the multiple extensional domains associated with the multi-stage rift formation of the Amerasian Basin, large igneous province-influenced volcanism associated with the Alpha and Mendeleev regions on the north and west, and hyper-extension of continental crust to the east in the deep Canada Basin. The CBR is often portrayed as an independent tectonic element within Arctic tectonic reconstructions, but we argue that models for the formation of the Amerasian Basin should include the CBR as an integral component of the Arctic Alaska microplate.

  6. Bringing Magnetic Field Data in Real-Time for Researchers on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Wolf, V. G.; Hampton, D. L.

    2013-12-01

    Magnetometer data from eight remote stations across Alaska have been collected continuously since the early 1980's by the Geophysical Institute Magnetometer Array (GIMA). These three-axis fluxgate magnetometers, with <1 nT precision, provide data at 1 Hz, which are used to determine the currents associated with auroral activity in the Alaska polar regions. A primary function of the GIMA is to supply magnetic field deflection data in real time to researchers so they can determine when to launch a sub-orbital sounding rocket from the Poker Flat Research Range into the proper auroral conditions. The aurora is a key coupling mechanism between the Earth's magnetosphere and ionosphere, and the magnetometers are used to remotely sense the ionospheric currents associated with aurora. The web-based interface to display the real-time magnetometer data has been upgraded to be fully functional on a wide range of platforms, from desktops to mobile devices. The incoming data stream from each station is recorded in a database and used to populate the real time graphical display. Improvements in data management increased the sampling rate from 5 seconds to 1 second for the display. The displays are highly configurable to allow researchers the flexibility to interpret the magnetic signature they need to make a successful launch decision. The use of Django and Java script technology enabled the system to be structured for rapid expansion when new stations come online and input streams are improved. Data are also available for download within 24 hours of collection. The existence of real-time data has been and will continue to be critical for successful rocket launches.

  7. Geologic map of the Seldovia quadrangle, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Karl, Susan M.; Donley, D. Thomas

    1999-01-01

    This is a 1:250,000-scale map of the bedrock geology of the Seldovia quadrangle, south-central Alaska. The map area covers the southwestern end of the Kenai Peninsula, including the Kenai Lowlands and Kenai Mountains, on either side of Kachemak Bay. The waters of Cook Inlet cover roughly half of the map area, and a part of the Alaska Peninsula near Iliamna Volcano lies in the extreme northwest corner of the map. The bedrock geology is based on new reconnaissance field work by the U.S. Geological Survey during parts of the 1988-1993 field seasons, and on previous mapping from a number of sources. The new mapping focused on the previously little-known Chugach accretionary complex in the Kenai Mountains. Important new findings include the recognition of mappable subdivisions of the McHugh Complex (a subduction melange of mostly Mesozoic protoliths), more accurate placement of the thrust contact between the McHugh Complex and Valdez Group (Upper Cretaceous trench turbidites), and the recognition of several new near-trench plutons of early Tertiary age.

  8. 115. Photocopy of drawing (1964 architectural drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, SECTIONS AND ELEVATIONS, SHEET A-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. KSC-2014-2101

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  10. KSC-2014-2100

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  11. KSC-2014-2099

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  12. Publications - RI 97-14A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Complex; Mystic Terrane; Ordovician; Ores; Paleocurrent; Paleoenvironment; Paleontology; Paleozoic; Peat ; Tertiary; Triassic; Turbidites; Veleska Lake Volcanic Complex; Volcanic; Yukon-Tanana Terrane Top of Page

  13. 113. Photocopy of drawing (1964 civil engineering drawing by Koebig ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. Photocopy of drawing (1964 civil engineering drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, GRADING AND UTILITY PLAN, SHEET C3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 116. Photocopy of drawing (1964 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, FLOW SHEET 1 AND PIPING PLANS, SHEET M-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 117. Photocopy of drawing (1964 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; ABBREVIATIONS, SYMBOLS, AND SCHEDULES; SHEET M-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 114. Photocopy of drawing (1964 architectural drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; FLOOR PLANS, SECTIONS, AND DETAILS; SHEET A-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Reconnaissance bedrock geology of the southeastern part of the Kenai quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Bradley, Dwight C.; Wilson, Frederic H.

    2000-01-01

    We present a new reconnaissance geologic map of the southeastern part of the Kenai quadrangle that improves on previously published maps. Melange of the McHugh Complex is now known to form a continuous strike belt that can be traced from the Seldovia to the Valdez quadrangle; a problematic 75-km-long gap in the McHugh Complex in the Kenai and Seldovia quadrangles does not exist. An Eocene near-trench pluton underlies a range of nunataks in Harding Icefield.

  18. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  19. Constraints on the age and provenance of the Chugach accretionary complex from detrital zircons in the Sitka Graywacke near Sitka, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Gehrels, George E.; Karl, Susan M.

    2006-01-01

    The Sitka Graywacke is the westernmost and youngest unit of the Chugach accretionary complex in southeastern Alaska. Using laser-ablation inductively coupled plasma mass spectroscopy, we obtained 492 detrital-zircon ages on seven typical samples of Sitka Graywacke turbidites, which were collected in a transect across much of the unit near Sitka, Alaska. Individual grains range in age from 66 to 1,802 m.y. The youngest peak ages on relative-probability plots of the western four samples (74, 72, 74, and 74 m.y., from west to east) are distinctly younger than the youngest peak ages of the eastern three samples (105, 103, and 97 m.y., from west to east). These youngest peak ages set maximum depositional ages for each sample. We suggest that these peak ages are not significantly older (within ~5 m.y.) than the depositional age of the Sitka Graywacke because the deposits accumulated in a trench along a convergent margin, where magmatic sources likely continuously introduced juvenile zircons. The differences in the youngest cluster of detrital-zircon ages between the eastern and western sample localities is likely due to both a change in provenance and a fault. The similarity of the youngest peak ages in the Sitka Graywacke to fossil ages in the Valdez Group, in Prince William Sound, implies that the western part of the Sitka Graywacke is correlative with the Valdez Group, as previously inferred. However, the eastern part of the Sitka Graywacke has youngest detrital-zircon ages older than fossil ages in the Valdez Group and younger than fossil ages in the McHugh Complex, which in south-central Alaska is the oldest part of the accretionary complex. The age distribution of zircons in the older, eastern sequence suggests sources along the British Columbia margin. The detrital-zircon ages in the younger, western sequence are similar to igneous ages from south-central Alaska to southern British Columbia. Right-lateral strike slip on various fault systems inboard of the Sitka Graywacke implies that it lay to the south when it was deposited and offscraped. Thus, although source areas as far north as the St. Elias Mountains and south-central Alaska are possible, they were most likely in coastal and interior British Columbia.

  20. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  1. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitant resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycteria americana) and several state-listed species of special concern including the Snowy Egret (Egretta thula thula), Reddish Egret (Egretta rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egretta tricolor ruficolis), and Little Blue Heron (Egretta caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch complexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  2. MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF

    NASA Technical Reports Server (NTRS)

    1963-01-01

    MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF LOC-63C-1410.01 LOC-63C-1410.1, P-06450-A, ARCHIVE-04040 Pre-launch: Mercury-Atlas 9 stands on Pad 14 at Cape Canaveral ready for launch. Lift-off occurred at 8:04 a.m. EST, two and one half hours after Astronaut L. Gordon Cooper was inserted into the spacecraft he named FAITH 7. NASA/Mercury Complex 14, CCMTA, Test 125.

  3. A Systems Approach to Lower Cost Missions: Following the Rideshare Paradigm

    NASA Technical Reports Server (NTRS)

    Herrell, L.

    2009-01-01

    Small-satellite rideshare capabilities and opportunities for low-cost access to space have been evolving over the past 10 years. Small space launch vehicle technology is rapidly being developed and demonstrated, including the Minotaur series and the Space X Falcon, among others, along with the lower cost launch facilities at Alaska's Kodiak Launch Complex, NASA's Wallops Flight Facility, and the Reagan Test Site in the Pacific. Demonstrated capabilities for the launch of multiple payloads have increased (and continue to increase) significantly. This will allow more efficient and cost-effective use of the various launch opportunities, including utilizing the excess capacity of the emerging Evolved Expendable Launch Vehicle (EELV)-based missions. The definition of standardized interfaces and processes, along with various user guides and payload implementation plans, has been developed and continues to be refined. Top-level agency policies for the support of low-cost access to space for small experimental payloads, such as the DoD policy structure on auxiliary payloads, have been defined and provide the basis for the continued refinement and implementation of these evolving technologies. Most importantly, the coordination and cooperative interfaces between the various stakeholders continues to evolve. The degree of this coordination and technical interchange is demonstrated by the wide stakeholder participation at the recent 2008 Small Payload Rideshare Workshop, held at NASA's Wallops Flight Facility. This annual workshop has been the major platform for coordination and technical interchange within the rideshare community and with the various sponsoring agencies. These developments have provided the foundation for a robust low-cost small payload rideshare capability. However, the continued evolution, sustainment, and utilization of these capabilities will require continued stakeholder recognition, support, and nourishing. Ongoing, coordinated effort, partnering, and support between stakeholders is essential to acquire the improved organizational processes and efficiencies required to meet the needs of the growing small payload community for low-cost access to space. Further, a mix of capabilities developed within the space community for Operationally Responsive Space, an international committee investigating space systems cross-compatibility, and an industry-based organization seeking small satellite "standardization" all work toward a new paradigm: sharing or leveraging resources amongst multiple users. The challenge: where are those users, and what is the best way to leverage them? What is leveraged-mass, power, cost-sharing? And how does one sort through these options? What policies may prevent the use of some options? Who are the "other users" that might share or leverage capabilities? This paper presents a systematic look at both the users and the launch options, and suggests a way forward.

  4. KSC-2012-1860

    NASA Image and Video Library

    2012-02-17

    Launch Complex 39 Construction: Launch Complex 39 LC-39 was originally designed and built to launch American astronauts toward the moon. The complex stretches inland from the Atlantic Ocean across four miles of what, until 1963, was a land of intermittent marshes and sandy scrub growth. In less than four years, starting with 1963 and ending with 1966, it was transformed into an operational spaceport embodying a mobile concept: rockets and spacecraft are erected in one area and transported to a separate location for launch. A total of 153 vehicles have been launched from LC-39. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  5. Developing a weather observation routine during ICARUS

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.

    2016-12-01

    Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.

  6. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  7. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  8. 10. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles California). Photography by the United States Air Force, May 4, 1960. VIEW OF SOUTH FACE OF POINT ARGUELLO LAUNCH COMPLEX 1, PAD 1 (SLC-3) FROM TOP OF CONTROL CENTER (BLDG. 763). ATLAS D BOOSTER FOR THE FIRST SAMOS LAUNCH FROM POINT ARGUELLO LAUNCH COMPLEX 1 (SLC-3) ERECT IN THE SERVICE TOWER. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for > 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitat resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycferia americana) and several state-listed species of special concern including the Snowy Egret (Egretfa thula fhula), Reddish Egret (Egreffa rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egreffa tricolor ruficolis), and Little Blue Heron (Egreffa caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch colexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  10. KSC-2014-2103

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., speaks to members of the news media announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  11. KSC-2014-2098

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  12. KSC-2014-2102

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  13. Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA

    Treesearch

    Sarah A. Lewis; Andrew T. Hudak; Roger D. Ottmar; Peter R. Robichaud; Leigh B. Lentile; Sharon M. Hood; James B. Cronan; Penny Morgan

    2011-01-01

    Wildfire is a major forest disturbance in interior Alaska that can both directly and indirectly alter ecological processes. We used a combination of pre- and post-fire forest floor depths and post-fire ground cover assessments measured in the field, and high-resolution airborne hyperspectral imagery, to map forest floor conditions after the 2004 Taylor Complex in...

  14. Transforming KSC to be the World's Premier 21st Century Launch Complex

    NASA Technical Reports Server (NTRS)

    Engler, Tom

    2011-01-01

    This slide presentation reviews the work being done to transform the Kennedy Space Center into what is hoped to be the world's premier launch complex, capable of launching commercial and government satellites and manned spacecraft.

  15. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  16. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  17. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-02

    The 2017 class of astronaut candidates are at United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida for a familiarization tour. They also toured facilities at Kennedy Space Center, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, the Vehicle Assembly Building, Boeing's Commercial Crew and Cargo Facility, and SpaceX's Launch Complex 39A. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  18. KSC-07pd1284

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. At the dais is Dan LeBlanc, chief operating officer of the KSC Visitor Complex. Seated on stage are (from left) Lt. Governor of Florida Jeff Kottkamp, Center Director Bill Parsons, and former astronauts John Young and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  19. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  20. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, LOW BAY, SECTIONS J-J, K-K, & L-L. Sheet 33-32 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  2. 11. Photocopy of photograph (original photograph in possession of Val ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original photograph in possession of Val Brose, General Dynamics Space Systems Division, Vandenberg Air Force Base, California). Photographer unknown, circa July 1961. CREW OF FIRST LAUNCH FROM POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2, (SLC-3E) ON LAUNCH PAD. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. KSC-07pd1285

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Speaking to attendees is Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  4. Developing silvicultural systems based on partial cutting in western hemlock–Sitka spruce stands of southeast Alaska.

    Treesearch

    Robert L. Deal; J.C. Tappeiner; Paul E. Hennon

    2002-01-01

    The effects of partial cutting on species composition, stand structure and growth, tree size distribution, and tree disease and mortality were evaluated on 73 plots in 18 stands that were harvested 12–96 years ago in southeast Alaska. Partially-cut stands had diverse and highly complex stand structures similar to uncut stands. Sitka spruce was maintained in mixed...

  5. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, arrives at Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  6. KSC-07pd1291

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Breaking the ribbon are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  7. KSC-07pd1288

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Many former astronauts gathered at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  8. 22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  9. 21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  10. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, travels along the road toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  11. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, backs up toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  12. Seismicity of the Earth 1900-2013 offshore British Columbia-southeastern Alaska and vicinity

    USGS Publications Warehouse

    Hayes, Gavin P.; Smoczyk, Gregory M.; Ooms, Jonathan G.; McNamara, Daniel E.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio

    2014-01-01

    The tectonics of the Pacific margin of North America between Vancouver Island and south-central Alaska are dominated by the northwest motion of the Pacific plate with respect to the North America plate at a velocity of approximately 50 mm/yr. In the south of this mapped region, convergence between the northern extent of the Juan de Fuca plate (also known as the Explorer microplate) and North America plate dominate. North from the Explorer, Pacific, and North America plate triple junction, Pacific:North America motion is accommodated along the ~650-km-long Queen Charlotte fault system. Offshore of Haida Gwaii and to the southwest, the obliquity of the Pacific:North America plate motion vector creates a transpressional regime, and a complex mixture of strike-slip and convergent (underthrusting) tectonics. North of the Haida Gwaii islands, plate motion is roughly parallel to the plate boundary, resulting in almost pure dextral strike-slip motion along the Queen Charlotte fault. To the north, the Queen Charlotte fault splits into multiple structures, continuing offshore of southwestern Alaska as the Fairweather fault, and branching east into the Chatham Strait and Denali faults through the interior of Alaska. The plate boundary north and west of the Fairweather fault ultimately continues as the Alaska-Aleutians subduction zone, where Pacific plate lithosphere subducts beneath the North America plate at the Aleutians Trench. The transition is complex, and involves intraplate structures such as the Transition fault. The Pacific margin offshore British Columbia is one of the most active seismic zones in North America and has hosted a number of large earthquakes historically.

  13. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. MA-9 [FAITH 7] SITS POISED ON LAUNCH COMPLEX 14 PRIOR TO LIFTOFF

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Pre-Launch! Mercury-Atlas 9 stands on Pad 14 at Cape Canaveral ready for launch. Liftoff occurred at 8:04 a.m. EST, two and one half hours after Astronaut L. Gordon Cooper was inserted into the spacecraft he named FAITH 7. NASA-MERCURY, Complex 14.

  15. KSC-07pd1528

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- This panoramic view of Space Launch Complex 36 on Cape Canaveral Air Force Station shows the two mobile service towers on the ground after their demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  16. KSC-07pd1520

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- At Space Launch Complex 36 on Cape Canaveral Air Force Station, the 209-foot-tall mobile service tower on Pad 36-B has been identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  17. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-01

    The 2017 class of astronaut candidates tour Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  18. 2017 ASCAN Tour of KSC

    NASA Image and Video Library

    2018-05-01

    The 2017 class of astronaut candidates arrive at Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.

  19. Water Flow Test at Launch Complex 39B

    NASA Image and Video Library

    2017-12-20

    Water flowed during a test at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Complex 39B. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  20. KSC-07pd1290

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Holding the ribbon for the breaking are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  1. Interim report on the St. Elias, Alaska earthquake of 28 February 1979

    USGS Publications Warehouse

    Lahr, John C.; Plafker, George; Stephens, C.D.; Foglean, K.A.; Blackford, M.E.

    1979-01-01

    On 28 February 1979 an earthquake with surface wave magnitude (Ms) of 7.7 (W. Person, personal communication, 1979) occurred beneath the Chugach and St. Elias mountains of southern Alaska (fig. 1). This is a region of complex tectonics resulting from northwestward convergence between the Pacific and North American plates. To the east, the northwest-trending Fairweather fault accommodates the movement with dextral slip of about 5.5 cm/yr (Plafker, Hudson, and others, 1978); to the west, the Pacific plate underthrusts Alaska at the Aleutian trench, which trends southwestward (Plafker 1969). The USGS has operated a telemetered seismic network in southern Alaska since 1971 and it was greatly expanded along the eastern Gulf of Alaska in September 1974. The current configuration of stations is shown in Figure 9. Technical details of the network are available in published earthquake catalogs (Lahr, Page, and others, 1974; Fogleman, Stephens, and others, 1978). Preliminary analysis of the data from this network covering the time period September 1, 1978 through March 10, 1979, as well as worldwide data for the main shock will be discussed in this paper.

  2. Pre Capture view of Intelsat VI Over Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this pre-capture view of the Intelsat VI communications satellite over Kennedy Space Center, Florida (28.0N, 80.0W), the disabled satellite can be seen in a decaying orbit over the KSC launch complex. On the ground, both the older Mercury and Gemini series launch complexes can be seen south of the cape and the Apollo, Skylab and Space Shuttle series launch complexes are north of the cape.

  3. First night launch of a Saturn I launch vehicle

    NASA Image and Video Library

    1965-05-25

    First night time launching of a Saturn I launch vehicle took place at 2:35 a.m., May 25, 1965, with the launch of the second Pegasus meteoroid detection satellite from Complex 37, Cape Kennedy, Florida.

  4. Flame Deflector Complete at Launch Complex 39B

    NASA Image and Video Library

    2018-05-16

    Construction is complete on the main flame deflector in the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The flame deflector will safely deflect the plume exhaust from NASA's Space Launch System rocket during launch. It will divert the rocket's exhaust, pressure and intense heat to the north at liftoff. The Exploration Ground Systems Program at Kennedy is refurbishing the pad to support the launch of the SLS rocket and Orion on Exploration Mission-1, and helping to transform the space center into a multi-user spaceport.

  5. KSC-07pd1287

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Walking through the crowd is former astronaut Roy Bridges, who also is a former center director of KSC. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  6. KSC-07pd1289

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Many former astronauts gather at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In front are John Young (left) and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  7. Comparative analysis of alternative co-production approaches to conservation science in Alaska

    NASA Astrophysics Data System (ADS)

    Trammell, E. J.

    2017-12-01

    Co-production has been suggested as an important tool for reducing the gap between science and management. Although co-production can require substantial investments in time and relationship building, there are a range of possible approaches that can be utilized that honor the focus and intent of co-production. I present here a comparison of three efforts that range from relatively simple, to complex and exhaustive, that illustrate diverse approaches to co-production of conservation science in Alaska. The first example highlights a workshop-based approach to identify long-term environmental monitoring needs in Alaska, while the second example describes stakeholder-driven scenarios that identified stressors to salmon in southcentral Alaska. The third example describes a 2-year cooperative agreement to develop management questions as part of a rapid ecoregional assessment in central Alaska. Results suggest that careful stakeholder selection is essential to successful co-production. Additionally, all three examples highlight the potential disconnect between management questions and specific management decisions, even when working directly with resource managers. As the focus of the Alaska Climate Science Center will be on co-production of climate science over the next 5 years, I conclude with some key pathways forward for successful co-production efforts in the future.

  8. 4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD A MOBILE SERVICE STRUCTURE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. EFT-1 Crew Module on Display at KSC Visitor Complex

    NASA Image and Video Library

    2017-04-12

    The Orion crew module from Exploration Flight Test 1 (EFT-1) is on display at nearby NASA Kennedy Space Center Visitor Complex in Florida. The crew module is part of the NASA Now exhibit in the IMAX Theater. Also in view is a scale model of NASA's Space Launch System rocket and Orion spacecraft on the mobile launcher. The Orion EFT-1 spacecraft launched atop a United Launch Alliance Delta IV rocket Dec. 5, 2014, from Space Launch Complex 37 at Cape Canaveral Air Force Station. The spacecraft built for humans traveled 3,604 miles above Earth and splashed down about 4.5 hours later in the Pacific Ocean.

  10. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  11. KSC-07pd1294

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (left to right) John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  12. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    USGS Publications Warehouse

    Moore, Thomas; Box, Stephen E.

    2016-01-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic shortening is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin and in northeastern Alaska.

  13. KSC-07pd1527

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Smoke and dust rising from the ground of Space Launch Complex 36 on Cape Canaveral Air Force Station signifies the destruction of the 209-foot-tall mobile service tower on Pad 39-A. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  14. KSC-07pd1522

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- The destruction of the 209-foot-tall mobile service tower on Pad 39-B at Space Launch Complex 36 on Cape Canaveral Air Force Station kicks up a wall of dust. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  15. KSC-07pd1525

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- The 209-foot-tall mobile service tower on Pad 39-A of Space Launch Complex 36 on Cape Canaveral Air Force Station careens to the left after 122 pounds of explosives eliminated the base. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  16. KSC-07pd1521

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- At Space Launch Complex 36 on Cape Canaveral Air Force Station, the 209-foot-tall mobile service tower on Pad 36-B crashes to the ground. It is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  17. KSC-07pd1523

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- After the dust settles at Space Launch Complex 36 on Cape Canaveral Air Force Station, the ruins of the 209-foot-tall mobile service tower on Pad 39-B are visible. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  18. KSC-07pd1526

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Smoke and dust rising from the ground of Space Launch Complex 36 on Cape Canaveral Air Force Station signifies the destruction of the 209-foot-tall mobile service tower on Pad 39-A. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  19. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. KSC-07pd1286

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex the Shuttle Launch Experience. Former astronauts John Young (left) and Bob Crippen (right) share their impressions with the audience. Seated on stage are Lt. Governor of Florida Jeff Kottkamp and Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  1. Rocket measurement of auroral partial parallel distribution functions

    NASA Astrophysics Data System (ADS)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  2. Sounding of the Ion Energization Region: Resolving Ambiguities

    NASA Technical Reports Server (NTRS)

    LaBelle, James

    2003-01-01

    Dartmouth College provided a single-channel high-frequency wave receiver to the Sounding of the Ion Energization Region: Resolving Ambiguities (SIERRA) rocket experiment launched from Poker Flat, Alaska, in January 2002. The receiver used signals from booms, probes, preamplifiers, and differential amplifiers provided by Cornell University coinvestigators. Output was to a dedicated 5 MHz telemetry link provided by WFF, with a small amount of additional Pulse Code Modulation (PCM) telemetry required for the receiver gain information. We also performed preliminary analysis of the data. The work completed is outlined below, in chronological order.

  3. Coordination and Convening of the 2016 Arctic Science Summit Week

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.

    The Arctic Science Summit Week, Arctic Observing Summit, Arctic Council Senior Arctic Officials, Model Arctic Council, and International Arctic Assembly were convened on the campus of the University of Alaska Fairbanks with great productivity and satisfaction of the participants. We were pleased to welcome over 1000 participants from 30 different nations and over 130 different institutions. The organization and execution of these meetings was extensive and complex involving more than 250 coordinators, volunteers and contributors from across Alaska. The participants were enthusiastic in their praise of the content and accomplishments of the meeting, but they were equally happy about themore » genuine welcome offered to our guests by the people of Alaska. Hosting a complex event such as this summit required an army of supporting services and we were blessed to have volunteers from Fairbanks, North Pole, Anchorage and other communities throughout Alaska helping us meet these needs. This truly was an event hosted by the people of Alaska. The significance of these events cannot be overstated. The US and global communities are finally coming to the realization of the important role that the Arctic plays in international politics, economics, and science. The Arctic has experienced tremendous changes in recent years, offering new opportunities that may be addressed through international collaborations, and serious challenges that must be addressed through active investment, adaptation and national and international coordination. Over 10% of the meeting participants were indigenous peoples, from indigenous organizations or hailed from small remote communities. This is still lower than we had hoped, but it is greater participation than similar meetings have experienced in the past. It is through such engagement that we can attack problems related to the changing environment, stagnant economies, and social ills.« less

  4. Gemini 7 prime crew during suiting up procedures at Launch Complex 16

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr. (left), Gemini 7 prime crew pilot, talks with NASA space suit technician Clyde Teague during suiting up procedures at Launch Complex 16, Kennedy Space Center. Lovell wears the new lightweight space suit planned for use during the Gemini 7 mission (61756); Astronaut Frank Borman, comand pilot of the Gemini 7 space flight, undergoes suiting up operations in Launch Complex 16 during prelaunch countdown. Medical biosensors are attached to his scalp (61757).

  5. KSC-20170816-MH-GEB01_0002-TDRS_M_Launch_Vehicle_Roll_H265-3161082

    NASA Image and Video Library

    2017-08-16

    A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send NASA's Tracking and Data Relay Satellite, TDRS-M to orbit. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  6. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  7. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the first part of the fairing is place around the Space Infrared Telescope Facility (SIRTF). The fairing protects the spacecraft during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  8. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  9. An Estimate of the Vertical Variability of Temperature at KSC Launch Complex 39-B

    NASA Technical Reports Server (NTRS)

    Brenton, James

    2017-01-01

    The purpose of this analysis is to determine the vertical variability of the air temperature below 500 feet at Launch Complex (LC) 39-B at Kennedy Space Center (KSC). This analysis utilizes data from the LC39-B Lightning Protection System (LPS) Towers and the 500 foot Tower 313. The results of this analysis will be used to help evaluate the ambient air temperature Launch Commit Criteria (LCC) for the Exploration Mission 1 launch.

  10. KSC-07pd1292

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- A crowd of visitors to Kennedy Space Center's Visitor Complex eagerly wait to experience the newest attraction, the Shuttle Launch Experience. The attraction was officially open to the public following a ribbon breaking attended by NASA, Kennedy Space Center and State of Florida dignitaries. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  11. KSC-07pd1293

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (from left) Bob Crippen, John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  12. 24 CFR 954.4 - Other Federal requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regional or village corporation as defined or established pursuant to the Alaska Native Claims Settlement..., and affordable dwelling unit in the building/complex upon completion of the project. (2) Temporary... building/complex upon completion of the project; and (D) The provisions of paragraph (e)(2)(i) of this...

  13. Baykonur

    NASA Technical Reports Server (NTRS)

    Vladimirov, B. P.

    1978-01-01

    The 'Baykonur' cosmodrome, its functions, operations, and services are described in considerable detail. The launch complex, launching pads, launch structures, launchers with cable masts and propellant loading towers, are included. The sequence of all phases of rocket assembly and preparations for launch are depicted. Prelaunch procedures and the launch itself are described.

  14. Launch of Agena Target Docking Vehicle atop Atlas launch vehicle

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Docking Vehicle atop its Atlas launch vehicle was launched fromt the Kennedy Space Center's Launch Complex 14 at 6:05 a.m., September 12, 1966. The Agena served as a rendezvous and docking vehicle for the Gemini 11 spacecraft.

  15. Aerial view of Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.

  16. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  17. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  18. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  19. Arctic Atmospheric Measurements Using Manned and Unmanned Aircraft, Tethered Balloons, and Ground-Based Systems at U.S. DOE ARM Facilities on the North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Roesler, E. L.; Hillman, B. R.; Hardesty, J. O.

    2016-12-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data to the international Arctic research community via research sites located on the North Slope of Alaska and an open data archive maintained by the ARM program. In 2016, DOE continued investments in improvements to facilities and infrastructure at Oliktok Point Alaska to support operations of ground-based facilities and unmanned aerial systems for science missions in the Arctic. The Third ARM Mobile Facility, AMF3, now deployed at Oliktok Point, was further expanded in 2016. Tethered instrumented balloons were used at Oliktok to make measurements of clouds in the boundary layer including mixed-phase clouds and to compare measurements with those from the ground and from unmanned aircraft operating in the airspace above AMF3. The ARM facility at Oliktok Point includes Special Use Airspace. A Restricted Area, R-2204, is located at Oliktok Point. Roughly 4 miles in diameter, it facilitates operations of tethered balloons and unmanned aircraft. R-2204 and a new Warning Area north of Oliktok, W-220, are managed by Sandia National Laboratories for DOE Office of Science/BER. These Special Use Airspaces have been successfully used to launch and operate unmanned aircraft over the Arctic Ocean and in international airspace north of Oliktok Point.A steady progression towards routine operations of unmanned aircraft and tethered balloon systems continues at Oliktok. Small unmanned aircraft (DataHawks) and tethered balloons were successfully flown at Oliktok starting in June of 2016. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska.

  20. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  1. ASF: Facing the Challenges for 15 Years and Counting

    NASA Astrophysics Data System (ADS)

    La Belle-Hamer, N.; Nicoll, J.; Atwood, D.; Arko, S.

    2006-12-01

    The Alaska Satellite Facility (ASF) of the Geophysical Institute, University of Alaska Fairbanks, has just celebrated its 15th year of experience in satellite remote sensing. ASF is involved in a wide range of activities - - from downlinking satellite data to developing data analysis tools, value-added products, and training for Synthetic Aperture Radar (SAR) users. Satellite remote sensing data are acquired, processed, analyzed, and archived by ASF from several satellites; ASF has built expertise in handling and manipulating the data, SAR in particular. SAR is the only satellite imagery in the world today that can be acquired at any time of the day or night and during adverse weather conditions. It can be used to develop value-added products to aid in global climate change research. Examples include the SAR-derived coastal winds in the Gulf of Alaska and Bering Sea; monitoring of the major ice shelves in the Arctic and Antarctic; and examining the impact on sea level from the Greenland ice sheets and glaciers. The challenges facing the use of remote-sensing data in climate change research can be divided into three major categories: economical, political, and technical. The expense of designing, building, and launching a satellite is substantial. The costs of the ground segment including data management can be substantial and should not be neglected. The US agency funding climate often has the research community pushing for new missions against declining federal budgets in direct competition with ongoing missions. On the political front, data policy, data ownership, and cost recovery are issues often perceived as insurmountable by the user community. The technical issues, while challenging, are often the easiest to solve. The Japan Aerospace Exploration Agency, with the successful launch of the Advanced Land Observing System (ALOS), has embarked on a new way of handling the ground segment with the introduction of international data nodes. ASF will serve with NOAA as the Americas ALOS Data Node. With the success of the ALOS data node structure, it may well be that international cooperation will become the standard method for overcoming the challenges of global climate change research.

  2. Voyager 1's Launch Vehicle

    NASA Image and Video Library

    1977-09-05

    The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at Kennedy Space Center in Florida to complete checkout procedures in preparation for launch. The photo is dated January 1977. This launch vehicle carried Voyager 1 into space on September 5, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21739

  3. KSC-07pd1524

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Within sight of the KSC Vehicle Assembly Building (at left on the horizon), the 209-foot-tall mobile service tower on Pad 39-A of Space Launch Complex 36 on Cape Canaveral Air Force Station waits for its demise. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  4. 8. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by United States Navy, July 8, 1959. VIEW OF FORMWORK FOR NORTH WALL OF POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2 (SLC-3 EAST) LAUNCH PAD AND SERVICE BUILDING (BLDG. 751). - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. View of the Apollo 10 space vehicle at Pad B, ready for launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Ground-level view at sunset of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle at Pad B, Launch Complex 39, Kennedy Space Center. The Apollo 10 stack had just been positioned after being rolled out from the Vehicle Assemble Building (VAB) (34318); View of the Apollo 10 space vehicle (through palm trees and across water) on the way from the VAB to Pad B, Launch Complex 39. The Saturn V and its mobile launch tower are atop a crawler-transporter (34319).

  6. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Unmanned launch vehicle impacts on existing major facilities : V23

    DOT National Transportation Integrated Search

    1984-10-18

    This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...

  8. 32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific to help locate convergence zones for marine debris detection (i.e., the GhostNet project); (3) in marine sanctuaries for internal wave climatology in support of marine ecosystem studies, and vessel detection for sanctuary protection; and (4) in coastal areas for ocean feature mapping (eddies, river plumes, upwelling, fronts). These applications demonstrations have added to our understanding of ocean and atmospheric processes and their interaction, particularly in the coastal environment. A much improved knowledge of the highly variable nature of coastal winds such as gap winds and barrier jets is a good example of the contribution that SAR imagery and derived products have made to our understanding of coastal processes.

  10. Challenge '95 - The Ariane 5 Development Programme

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.; van Gaver, M.

    1987-10-01

    The Ariane-5 launcher has been assigned to the following types of missions: (1) launching geostationary and sun-synchronous commercial satellites, and scientific and trial applications satellites; (2) launching the Hermes spaceplane, and (3) launching elements of the Columbus system such as the man-tended free-flyer module, and the polar platform. A new launch complex, the ELA-3, is being built for the Ariane-5 launcher close to ESA's ELA-1 and ELA-2 launch complexes at Kourou. After two qualification flights in the automatic version in 1995 (501 and 502), it is expected that Ariane-5 will be declared operational with its first commercial flight planned for early 1996 to put an automatic payload into orbit.

  11. TDRS-M Atlas V 1st Stage Erection Launch Vehicle on Stand

    NASA Image and Video Library

    2017-07-12

    A United Launch Alliance Atlas V first stage is lifted at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  12. Modeling vulnerability to thermokarst disturbance and its consequences on regional land cover dynamic in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; Lara, M. J.; Bolton, W. R.; McGuire, A. D.

    2016-12-01

    Estimation of the magnitude and consequences of permafrost degradation in high latitude is one of the most urgent research challenges related to contemporary and future climate change. In addition to widespread vertical degradation, ice-rich permafrost can thaw laterally, often triggering abrupt subsidence of the ground surface called thermokart. In this depression, permafrost plateau vegetation will transition to wetlands or lakes, while surface water of the surrounding landscape may drain towards it. These abrupt changes in land cover and hydrology can have dramatic consequences from wildlife habitat and biogeochemical cycles. Although recent studies have documented an acceleration of the rates of thermokarst formation in boreal and arctic peatlands, the importance of thermokarst at the regional level is still poorly understood. To better understand the vulnerability of the landscape to thermokarst disturbance in Alaska, we developed the Alaska Thermokarst Model (ATM), a state-and-transition model designed to simulate land cover change associated with thermokarst disturbance. In boreal regions, the model simulates transitions from permafrost plateau forest to thermokarst lake, bog or fen, as a function of climate and fire dynamics, permafrost characteristics and physiographic information. This model is designed and parameterized based on existing literature and a new repeated imagery analysis we conducted in a major wetland complex in boreal Alaska. We will present simulation and validation of thermokarst dynamic and associated land cover change in two wetland complexes in boreal Alaska, from 2000 to 2100 for six climate scenarios associating three AR5 emission scenarios and two global circulation model simulations. By 2100, ATM is predicting decrease between 3.5 and 9.1 % in the extent of permafrost plateau forest, mostly to the benefit of thermokarst fen, and lake. This analysis allowed us to assess the importance of thermokarst dynamics and landscape evolution associated with permafrost thaw in vulnerable regions of boreal Alaska during the 21st century and could be used as a baseline for managers to incorporate projected land cover changes in designing land management strategies.

  13. Shuttle near-field environmental impacts - Conclusions and observations for launching at other locations

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Knott, W. M.

    1985-01-01

    Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.

  14. KSC-2009-2935

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.

  15. 12. DETAIL OF WEST END OF CENTRAL ATLAS CONTROL CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF WEST END OF CENTRAL ATLAS CONTROL CONSOLE IN SLC-3W CONTROL ROOM SHOWING LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 1 - Executive Summary, Chapters 1 through 10

    DTIC Science & Technology

    2013-06-01

    to short-term behavioral responses and no effects that would be measurable at a population level have been documented. Fish in their native...the sustainable multipurpose use of natural resources (hunting, fishing , trapping, and non- consumptive uses) on military lands, subject to safety...support fish populations year-round, as they freeze in winter or when iced over and lack sufficient dissolved oxygen for fish to survive (USARAK 2004-1

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  18. Agena Target Vehicle atop Atlas Launch vehicle launched from KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Vehicle atop its Atlas Launch vehicle is launched from the Kennedy Space Center (KSC) Launch Complex 14 at 10:15 am.m., May 17, 1966. The Agena was intended as a rendezvous and docking vehicle for the Gemini 9 spacecraft. However, since the Agena failed to achieve orbit, the Gemini 9 mission was postponed.

  19. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  20. Electron currents associated with an auroral band

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  1. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.

    PubMed

    Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W

    2011-03-01

    Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.

  2. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    USGS Publications Warehouse

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  3. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, passes through the entrance to NASA’s Kennedy Space Center in Florida. The arm will be installed on the Complex 41 Crew Access Tower at Cape Canaveral Air Force Station. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  4. 2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...

  6. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...

  7. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...

  8. 41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans

    USGS Publications Warehouse

    Misarti, Nicole; Finney, Bruce P.; Jordan, James W.; Maschner, Herbert D. G.; Addison, Jason A.; Shapley, Mark D.; Krumhardt, Andrea P.; Beget, James E.

    2012-01-01

    The debate over a coastal migration route for the First Americans revolves around two major points: seafaring technology, and a viable landscape and resource base. Three lake cores from Sanak Island in the western Gulf of Alaska yield the first radiocarbon ages from the continental shelf of the Northeast Pacific and record deglaciation nearly 17 ka BP (thousands of calendar years ago), much earlier than previous estimates based on extrapolated data from other sites outside the coastal corridor in the Gulf of Alaska. Pollen data suggest an arid, terrestrial ecosystem by 16.3 ka BP. Therefore glaciers would not have hindered the movement of humans along the southern edge of the Bering Land Bridge for two millennia before the first well-recognized “New World” archaeological sites were inhabited.

  10. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    Commercial Crew Astronauts Bob Behnken , Eric Boe, Doug Hurley, and Suni Williams survey SpaceX's progress at Launch Complex 39 A. The survey helped ensure the was familiar with the launch complex and recovery ship prior to missions to station.

  11. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Overall view from south to north of remote sprint launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND

  15. Collisional Tectonics of the Saint Elias Orogen, Alaska, Observed by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J. L.; Freymueller, J. T.; Larsen, C. F.

    2005-12-01

    The Saint Elias orogen of south central Alaska and the adjacent area of Canada is the highest coastal mountain range on earth, with peaks that exceed 6000 meters in elevation. It is located in the complex transition zone between transform motion along the Queen Charlotte-Fairweather fault system and subduction along the Aleutian Megathrust. The Yakutat terrane lies in the gap between the end of the Megathrust and the end of the transform system. Roughly 4 cm/yr of convergence is accommodated within the continental crust, onshore and possibly offshore, as the Yakutat terrane collides with southern Alaska. This collision provides the driving force behind the stunning topographic relief of the orogen. As part of the STEEP project designed to unravel the tectonic complexities of this region, we made GPS measurements at 47 sites in south central Alaska during the summer of 2005. Here we present results from 13 campaign GPS sites that had prior measurements. The span of measurements at these campaign sites range from one to twelve years. All of the sites show northwestward motion and uplift. The highest amounts of uplift occur at several coastal sites near Icy Bay where average rates surpass 24 mm/yr. Further north, sites along the Bagley Icefield display an average uplift rate of about 20 mm/yr. A significant portion of this uplift is caused by the melting of regional icefields and the redistribution of mass in large glacier systems such as the Bering Glacier. We also examine the impact of the Denali Fault earthquake on the rates of motion in this area.

  16. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, departs from Oak Hill, Florida, and heads to NASA’s Kennedy Space Center in Florida. The arm will be installed on the Complex 41 Crew Access Tower at Cape Canaveral Air Force Station. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  17. Bridging the Scientific and Indigenous Communities to Study Sea Ice Change in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Zappa, C. J.; Betcher, S. R.; Hauser, D.; Whiting, A.; Goodwin, J.; Harris, C.; Schaefer, B.; Schaefer, R.

    2017-12-01

    Ikaavik Sikukuun (Ice Bridges) is a newly-launched research partnership in Kotzebue, Alaska, that adopts an end-to-end community-based approach to study fundamental processes underlying the mechanisms and impacts of the changing sea ice in coastal Alaska. Under guidance from a local advisory council, we will use state-of-the-art observing techniques including long-range unmanned aerial systems (UAS) to study under-observed sea ice regions during critical periods of marine mammal migration, molting and reproduction. Here, we describe what, to the best of our knowledge, is a precedent-setting approach to co-creating research questions and hypotheses that integrate indigenous knowledge (IK) and interdisciplinary scientific methods. A key element of this approach is that we established an advisory committee of local IK holders before defining specific research questions. This has enabled us to iteratively develop hypotheses that incorporate IK and respond to the research needs of the local community while also addressing key geophysical and ecological questions related to changes in the seasonal ice zone. The advisory committee will be key participants in the project team, ensuring that IK is incorporated into the design of the observing plan and the synthesis and dissemination of findings. In addition to building bridges between the scientific community and indigenous residents of Kotzebue, the legacy of our project will include a video documentary that will allow us to share the story of this partnership and our findings with a broad audience.

  18. Building University Capacity to Visualize Solutions to Complex Problems in the Arctic

    NASA Astrophysics Data System (ADS)

    Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.

    2016-12-01

    Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.

  19. Active Tectonics of the Far North Pacific Observed with GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.

    2017-12-01

    The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.

  20. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Image and Video Library

    1990-09-05

    S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.

  1. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core arrives by truck at Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  2. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core is transported by truck inside Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  3. Launch of Apollo 8 lunar orbit mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle launched from Pad A, Launch Complex 39, Kennedy Space Center, at 7:51 a.m., December 21, 1968. In this view there is water in the foreground and seagulls.

  4. Orion Launch from Helicopter - Aerials

    NASA Image and Video Library

    2014-12-05

    This helicopter view of Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida shows the United Launch Alliance Delta IV Heavy rocket as it stands ready to boost NASA's Orion spacecraft on a 4.5-hour mission.

  5. Orbiting Carbon Observatory-2 Ready to Blast Off

    NASA Image and Video Library

    2014-06-30

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 OCO-2 satellite onboard, is seen at Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif.

  6. 5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. Project Aether Aurora: STEM outreach near the arctic circle

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Bering, E. A.

    2012-12-01

    Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.

  8. Performance Assessment of Refractory Concrete Used on the Space Shuttle's Launch Pad

    NASA Technical Reports Server (NTRS)

    Trejo, David; Calle, Luz Marina; Halman, Ceki

    2005-01-01

    The John F. Kennedy Space Center (KSC) maintains several facilities for launching space vehicles. During recent launches it has been observed that the refractory concrete materials that protect the steel-framed flame duct are breaking away from this base structure and are being projected at high velocities. There is significant concern that these projected pieces can strike the launch complex or space vehicle during the launch, jeopardizing the safety of the mission. A qualification program is in place to evaluate the performance of different refractory concretes and data from these tests have been used to assess the performance of the refractory concretes. However, there is significant variation in the test results, possibly making the existing qualification test program unreliable. This paper will evaluate data from past qualification tests, identify potential key performance indicators for the launch complex, and will recommend a new qualification test program that can be used to better qualify refractory concrete.

  9. KSC-2014-2615

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  10. KSC-2014-2622

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter carries Mobile Launcher Platform-2, or MLP-2, away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  11. A Citizen Science Campaign to Validate Snow Remote-Sensing Products

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.

    2017-12-01

    The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.

  12. 13. DETAIL OF CENTER OF CENTRAL CONTROL CONSOLE IN SLC3W ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF CENTER OF CENTRAL CONTROL CONSOLE IN SLC-3W CONTROL ROOM SHOWING USAF LAUNCH CONTROLLER AND ASSISTANT USAF LAUNCH CONTROLLER PANELS. CONSOLES AND CHAIRS NEAR NORTH WALL IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 78 FR 73794 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Air Force Launches...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... operations from VAFB launch complexes and Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging in support of the Delta IV/Evolved Expendable Launch Vehicle (EELV) launch activity on... Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging. The Delta Mariner...

  14. STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.

  15. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Confetti is launched as the spaceport's historic countdown clock is dedicated as the newest display at the Kennedy Space Center Visitor Complex. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock operated through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  16. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, crosses the Haulover Canal Bridge on its way to the entrance of NASA’s Kennedy Space Center in Florida. The arm will be installed on the Complex 41 Crew Access Tower at Cape Canaveral Air Force Station. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  17. KSC-98pc1818

    NASA Image and Video Library

    1998-11-28

    The first stage of a Delta II rocket is lifted up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  18. KSC-98pc1817

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket arrives at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  19. KSC-98pc1888

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  20. TDRS-M: Atlas V 2nd Stage Erection/Off-site Verticle Integration (OVI)

    NASA Image and Video Library

    2017-07-13

    A United Launch Alliance Atlas V Centaur upper stage arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. United Launch Alliance team members monitor the operation progress as the Centaur upper stage is lifted and mated to the Atlas V booster in the vertical position. The rocket is scheduled to help launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 in early August.

  1. 32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: UMBILICAL MAST ELEVATIONS-REMOVAL WORK, STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. 26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: SOUTH AND EAST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. 24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. 33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: PAD AREA PLAN-REMOVAL WORK, CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  5. 27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: NORTH AND WEST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  6. Field-trip guide to volcanic and volcaniclastic deposits of the lower Jurassic Talkeetna formation, Sheep Mountain, south-central Alaska

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Blodgett, Robert B.

    2006-01-01

    This guide provides information for a one-day field trip in the vicinity of Sheep Mountain, just north of the Glenn Highway in south-central Alaska. The Lower Jurassic Talkeetna Formation, consisting of extrusive volcanic and volcaniclastic sedimentary rocks of the Talkeetna arc complex, is exposed on and near Sheep Mountain. Field-trip stops within short walking distance of the Glenn Highway (approximately two hours’ drive from Anchorage) are described, which will be visited during the Geological Society of America Penrose meeting entitled Crustal Genesis and Evolution: Focus on Arc Lower Crust and Shallow Mantle, held in Valdez, Alaska, in July 2006. Several additional exposures of the Talkeetna Formation on other parts of Sheep Mountain that would need to be accessed with longer and more strenuous walking or by helicopter are also mentioned.

  7. Permian Tethyan Fusulinina from the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Stevens, C.H.; Davydov, V.I.; Bradley, D.

    1997-01-01

    Two samples from a large, allochthonous limestone block in the McHugh Complex of the Chugach terrane on the Kenai Peninsula, Alaska, contain species of 12 genera of Permian Fusulinina including Abadehella, Kahlerina, Pseudokahlerina?, Nankinella, Codonofusiella, Dunbarula, Parafusulina?, Chusenella, Verbeekina, Pseudodoliolina, Metadoliolina?, Sumatrina?, and Yabeina, as well as several other foraminiferans and one alga. The assemblage of fusulinids is characteristically Tethyan, belonging to the Yabeina archaica zone of early Midian (late Wordian) age. Similar faunas are known from the Pamirs, Transcaucasia, and Japan, as well as from allochthonous terranes in British Columbia, northwestern Washington, and Koryakia in eastern Siberia.

  8. APOLLO/SATURN (A/S) 201 - LAUNCH - CAPE

    NASA Image and Video Library

    1966-02-26

    A/S 201 was launched from the Kennedy Space Center Launch Complex 34 at 11:12 a.m., 02/26/1966. The instrumented Apollo Command and Service Module, and, a spacecraft Lunar Excursion Module Adapter, was successfully launched on the unmanned suborbital mission by the Saturn 1B to check spacecraft launch vehicle mechanical compatibility and to test the spacecraft heat shield in a high-velocity re-entry mode. CAPE KENNEDY, FL

  9. 53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH PAD A GANTRY AT CENTER, LAUNCH PAD B GANTRY AT RIGHT; THIS VIEW MATCHES FL-8-5-1 TO FORM PANORAMIC SWEEP OF SITE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. 14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. KSC-2009-2946

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket blasts off from Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., at 1:24 p.m. PDT. The Delta II successfully carried the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. Photo by Carleton Bailie, United Launch Alliance.

  13. Delta II JPSS-1 Launch Vehicle on Stand

    NASA Image and Video Library

    2016-07-12

    The first stage of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is raised at Space Launch Complex 2 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  14. Apollo 16 liftoff

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m., April 16, 1972. The launch is framed on the left by a large piece of dead wood in a body of water near the launch pad.

  15. Presentations - Emond, A.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    : Download below or please see our publication sales page for more information. Quadrangle(s): Big Delta Creek Schist; Bush Prospect; Chicken Metamorphic Complex; Chicken Pluton; DIGHEM-V EM System; Delta

  16. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  18. Improved Background Removal in Sounding Rocket Neutral Atom Imaging Data

    NASA Astrophysics Data System (ADS)

    Smith, M. R.; Rowland, D. E.

    2017-12-01

    The VISIONS sounding rocket, launched into a substorm on Feb 7, 2013 from Poker Flat, Alaska had a novel miniaturized energetic neutral atom (ENA) imager onboard. We present further analysis of the ENA data from this rocket flight, including improved removal of ultraviolet and electron contamination. In particular, the relative error source contributions due to geocoronal, auroral, and airglow UV, as well as energetic electrons from 10 eV to 3 keV were assessed. The resulting data provide a more clear understanding of the spatial and temporal variations of the ion populations that are energized to tens or hundreds of eV.

  19. Heat pipes in space and on earth

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1978-01-01

    The performance of heat pipes used in the thermal control system of spacecraft such as OAO-III and ATS-6 is discussed, and applications of heat pipes to permafrost stabilization on the Alaska Pipeline and to heat recovery systems are described. Particular attention is given to the ATS-6, launched in 1974, which employs 55 heat pipes to carry solar and internal power loads to radiator surfaces. In addition, experiments involving radiative cooling based on cryogenic heat pipes have been planned for the Long Duration Exposure Facility spacecraft and for Spacelab. The role of heat pipes in Space Shuttle heat rejection services is also mentioned.

  20. Space Science

    NASA Image and Video Library

    1992-09-01

    This photograph of aurora borealis, northern aurora, was taken during the Spacelab-J (SL-J) mission (STS-47). People who live in the northernmost areas like Alaska or work in the southernmost regions like Antarctica often see colorful lights produced by Earth's natural electromagnetic generator; these shimmering expanses of light are auroras, commonly called the northern and southern lights. Charged particles from the magnetosphere follow magnetic fields and are accelerated toward Earth at the magnetic poles where they strike molecules in the upper atmosphere, staining the sky with the red and green lights of oxygen and hydrogen, and the purples and pinks of nitrogen. The altitude and inclination of the Spacelab will give scientists unique views of auroras, which occur at altitudes ranging from about 90 to 300 kilometers (56 to 186 miles). Most views of the auroras have been from the ground where only limited parts can be seen. These Spacelab views will give scientists information on their complex structure and chemical composition. The Spacelab-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. The SL-J was launched aboard the Space Shuttle Orbiter Endeavour (STS-47) on September 12, 1992.

  1. Space Science

    NASA Image and Video Library

    1992-09-01

    This photograph of aurora borealis, northern aurora, was taken during the Spacelab-J (SL-J) mission (STS-47). People who live in the northernmost areas like Alaska or work in the southernmost regions like Antarctica often see colorful lights produced by Earth's natural electromagnetic generator; these shimmering expanses of light are auroras, commonly called the northern and southern lights. Charged particles from the magnetosphere follow magnetic fields and are accelerated toward Earth at the magnetic poles where they strike molecules in the upper atmosphere, staining the sky with the red and green lights of oxygen and hydrogen, and the purples and pinks of nitrogen. The altitude and inclination of the Spacelab will give scientists unique views of auroras, which occur at altitudes ranging from about 90 to 300 kilometers (56 to 186 miles). Most views of the auroras have been from the ground where only limited parts can be seen. These Skylab views will give scientists information on their complex structure and chemical composition. The Spacelab-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. The SL-J was launched aboard the Space Shuttle Orbiter Endeavour (STS-47) on September 12, 1992.

  2. 14. DETAIL OF EAST END OF CENTRAL CONTROL CONSOLE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF EAST END OF CENTRAL CONTROL CONSOLE IN SLC-3W CONTROL ROOM SHOWING BLANK PANEL AND COMPLEX SAFETY OFFICER PANEL. CONSOLES AND CHAIRS NEAR NORTH WALL IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PLAN-RAIL BEAMS AND HURRICANE ANCHOR FOUNDATIONS, STRUCTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. KSC-98pc1887

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  5. KSC-98pc1890

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  6. KSC-98pc1820

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket hangs in place in the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  7. KSC-98pc1886

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander spacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  8. KSC-98pc1819

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- Workers guide the lifting of the first stage of a Delta II rocket up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  9. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  10. Magnetospheric MultiScale Mission (MMS) Overview

    NASA Technical Reports Server (NTRS)

    Schiff, Conrad

    2015-01-01

    The MMS mission was launched on March 13, 2015 aboard an Atlas V rocket from Space Launch Complex 40, Cape Canaveral, Florida Each of the four observatories were successfully released at five minute intervals spinning at 3 rpm approximately 1.5 hours after launch.

  11. 67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. View from northeast to southwest of remote launch operations building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from northeast to southwest of remote launch operations building, showing (left to right) diesel exhaust, diesel intake, and entrance tunnel - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  13. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.

  14. APOLLO XII - LAUNCH DAY ACTIVITIES - LAUNCH COMPLEX 39A - KSC

    NASA Image and Video Library

    1969-11-14

    S69-58880 (14 Nov. 1969) --- Astronaut Alan L. Bean, Apollo 12 lunar module pilot, suits up in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building during the Apollo 12 prelaunch countdown. Minutes later astronauts Bean; Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot, rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited. The Apollo 12 liftoff occurred at 11:22 a.m. (EST), Nov. 14, 1969. Apollo 12 is the United States' second lunar landing mission.

  15. JPSS-1 Spacecraft Transport to Pad and Lift and Mate

    NASA Image and Video Library

    2017-10-24

    At Vandenberg Air Force Base in California, the Joint Polar Satellite System-1, or JPSS-1, is transported to Space Launch Complex 2 packaged in a protective container. At the pad, JPSS-1 is lifted and mated atop a United Launch Alliance Delta II rocket. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg's Space Launch Complex.

  16. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  17. 160. Photocopy of drawing (1967 electrical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    160. Photocopy of drawing (1967 electrical drawing by Koebig & Koebig, Inc.) MST MODIFICATION AND REFURBISHMENT; ELECTRICAL MODIFICATIONS OF LAUNCH DECK, SHEET E-3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. View of the early morning launch of STS 41-G Challenger

    NASA Image and Video Library

    1984-10-05

    View of the early morning launch of STS 41-G Challenger. The dark launch complex is illuminated by spotlights as the orbiter begins its ascent from the pad. The light is reflected off the clouds of smoke from the orbiter's engines.

  20. 1. View from southeast to northwest of remote launch operations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from southeast to northwest of remote launch operations buildings, showing diesel exhaust and intake shafts, with tunnel on the right - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  1. KSC-2014-2617

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  2. KSC-2014-2623

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- The flame trench comes into view on Launch Pad 39A as a crawler-transporter hauls Mobile Launcher Platform-2, or MLP-2, off the pad at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  3. KSC-2014-2619

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter nears the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  4. KSC-2014-2616

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb to the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  5. KSC-2014-2618

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter creeps toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-2620

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter rolls under the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-2624

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, rolling away from Launch Pad 39A atop a crawler-transporter, was positioned over the pad's flame trench only moments before. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  8. KSC-2014-2621

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  9. KSC-2014-2626

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A, in the background, to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  10. KSC-2014-2627

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- The crawler-transporter transporting Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A creeps along the crawlerway toward the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  11. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  12. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early seasonal timing of surveys, strip transects).

  13. Hydraulic characteristics near streamside structures along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1995-01-01

    Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity, depth, or flow direction. During this investigation, many of these subtle effects could not be separated from ambient hydraulic conditions. The jetty significantly altered stream channel area and therefore affected stream hydraulics more than the other structures that were investigated. Data indicated that velocity increased from 1.9 to 5.8 feet per second near the point of the jetty during measurements in May, June, and August. Rock wall and jetty structures also divert flow away from near-shore areas in proportion to their projection lengths into the river. For the jetty, the effect on surface flow was observed downstream for a distance of about 10 times the length of the jetty's projection into the river and upstream for about 4 to 5 times the length of the projection. For the rock wall, the diversion of flow was evident for 10 to 15 feet downstream.

  14. Anticipating Future Extreme Climate Events for Alaska Using Dynamical Downscaling and Quantile Mapping

    NASA Astrophysics Data System (ADS)

    Lader, R.; Walsh, J. E.

    2016-12-01

    Alaska is projected to experience major changes in extreme climate during the 21st century, due to greenhouse warming and exacerbated by polar amplification, wherein the Arctic is warming at twice the rate compared to the Northern Hemisphere. Given its complex topography, Alaska displays extreme gradients of temperature and precipitation. However, global climate models (GCMs), which typically have a spatial resolution on the order of 100km, struggle to replicate these extremes. To help resolve this issue, this study employs dynamically downscaled regional climate simulations and quantile-mapping methodologies to provide a full suite of daily model variables at 20 km spatial resolution for Alaska, from 1970 to 2100. These data include downscaled products of the: ERA-Interim reanalysis from 1979 to 2015, GFDL-CM3 historical from 1970 to 2005, and GFDL-CM3 RCP 8.5 from 2006 to 2100. Due to the limited nature of long-term observations and high-resolution modeling in Alaska, these data enable a broad expansion of extremes analysis. This study uses these data to highlight a subset of the 27 climate extremes indices, previously defined by the Expert Team on Climate Change Detection and Indices, as they pertain to climate change in Alaska. These indices are based on the statistical distributions of daily surface temperature and precipitation and focus on threshold exceedance, and percentiles. For example, the annual number of days with a daily maximum temperature greater than 25°C is anticipated to triple in many locations in Alaska by the end of the century. Climate extremes can also refer to long duration events, such as the record-setting warmth that defined the 2015-16 cold season in Alaska. The downscaled climate model simulations indicate that this past winter will be considered normal by as early as the mid-2040s, if we continue to warm according to the business-as-usual RCP 8.5 emissions scenario. This represents an accelerated warming as compared to projections form the coarse scale GCMs, and this greater rate of change in the downscaled products is noted with other extremes indices as well.

  15. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  16. 15. Photocopy of drawing (1958 architectural drawing by Ralph M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of drawing (1958 architectural drawing by Ralph M. Parsons Company. Original drawing in possession of Vandenberg Air Force Base Civil Engineering Office). SITE PLAN FOR POINT ARGUELLO LAUNCH COMPLEX 1 (SLC-3) SHOWING POTENTIAL SITES OF FUTURE PADS. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Apollo 14 crew arrive at White Room atop Pad A, Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The three Apollo 14 astronauts arrive at the White Room atop Pad A, Launch Complex 39, during the Apollo 14 prelaunch countdown. Note identifying red bands on the sleeve and leg of Shepard. Standing in the center background is Astronaut Thomas P. Stafford, Chief of the Manned Spacecraft Center Astronaut Office.

  18. History of San Marco

    NASA Technical Reports Server (NTRS)

    Caporale, A. J.

    1968-01-01

    A brief history is reported of the first San Marco project, a joint program of the United States and Italy. The Project was a three phase effort to investigate upper air density and associated ionosphere phenomena. The initial phase included the design and development of the spacecraft, the experiments, the launch complex, and a series of suborbital flights, from Wallops Island. The second phase, consisting of designing, fabricating, and testing a spacecraft for the first orbital mission, culminated in an orbital launch also from Wallops Island. The third phase consisted of further refining the experiments and spacecraft instrumentation and of establishing a full-bore scout complex in Kenya. The launch of San Marco B, in April 1967, from this complex into an equatorial orbit, concluded the initial San Marco effort.

  19. Saturn 5 Launch Vehicle Flight Evaluation Report, SA-513, Skylab 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Saturn V SA-513 (Skylab-1) was launched at 13:30:00 Eastern Daylight Time (EDT) on May 14, 1973, from Kennedy Space Center, Complex 39, Pad A. The vehicle lifted off on a launch azimuth of 90 degrees east of north and rolled to a flight azimuth of 40.88 degrees east of north. The launch vehicle successfully placed the Saturn Work Shop in the planned earth orbit. All launch vehicle objectives were accomplished. No launch vehicle failures or anomalies occurred that seriously affected the mission.

  20. Wernher von Braun

    NASA Image and Video Library

    1965-05-25

    This image depicts the tension in the Launch Control Center of the Launch Complex 37 at Cape Canaveral, Florida, during the SA-8 on May 25, 1965. Pointing, center is Dr. Kurt Debus, Director, Launch Operations Directorate, MSFC. To the right is Dr. Hans Gruene, Deputy Director, Launch Operations Directorate, MSFC; Dr. von Braun, Director, Marshall Space Flight Center (MSFC); and leaning, Dr. Eberhard Rees, Director, Deputy Director for Research and Development, MSFC. The SA-8 mission, with a Saturn I launch vehicle, made the first night launch and deployed Pegasus II, micrometeoroid detection satellite.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  2. 261. Photocopy of drawing (1976 electrical drawing by the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    261. Photocopy of drawing (1976 electrical drawing by the Space and Missile Test Center, VAFB, USAF) FLOODLIGHT PLAN FOR LAUNCH PAD AREA, SHEET E9 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. 40. Photocopy of engineering drawing. LC17B LONG TANK DELTA UPBUILD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of engineering drawing. LC-17B LONG TANK DELTA UPBUILD LAUNCH DECK: NEW PLATE AT LAUNCH MOUNT AREA-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  5. 74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST SHOWING ADJUSTABLE STAIRS ON THE LEFT AND LAUNCHING TUBE ON THE RIGHT, Date unknown, circa 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. Wernher von Braun

    NASA Image and Video Library

    1965-05-25

    In this photo, Dr. von Braun anxiously awaits the launch of the Saturn I vehicle (SA-8) in the Launch Complex Control Center at the Kennedy Space Center in Florida on May 25, 1965. The SA-8 mission made the first night launch and deployed the Pegasus II micro meteoroid detection satellite.

  7. 8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CASTINPLACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CAST-IN-PLACE CONCRETE WALLS AND STEEL STRUCTURE FOR NEW SOUTH-FACING FLAME DEFLECTOR; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. KSC-2011-7889

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – Families visiting the Kennedy Space Center Visitor Complex in Florida participate in a LEGO "Build the Future" event. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  9. Floodlights illuminate view of Skylab 3 vehicle at Pad B, Launch Complex 39

    NASA Image and Video Library

    1973-07-20

    S73-32568 (20 July 1973) --- Floodlights illuminate this nighttime view of the Skylab 3/Saturn 1B space vehicle at Pad B, Launch Complex 39, Kennedy Space Center, Florida, during prelaunch preparations. The reflection is the water adds to the scene. In addition to the Command/Service Module and its launch escapte system, the Skylab 3 space vehicle consists of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-IVB) stage. The crew for the scheduled 59-day Skylab 3 mission in Earth orbit will be astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma. Skylab 3 was launched on July 28, 1973. Photo credit: NASA

  10. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  11. KSC-2011-1962

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  12. KSC-2011-1963

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  13. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  16. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  17. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-98pc1889

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, the protective covering on the Mars Polar Lander is lifted up and out of the way. The lander, in the opening below, is being mated to the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  19. KSC-2009-3750

    NASA Image and Video Library

    2009-06-17

    CAPE CANAVERAL, Fla. – A wide view captures both Launch Complex-41 on Cape Canaveral Air Force Station at right and Launch Pad 39A at NASA's Kennedy Space Center in Florida at left. Space shuttle Endeavour is still on the pad after launch was officially scrubbed at 1:55 a.m. this morning when a gaseous hydrogen leak occurred at the Ground Umbilical Carrier Plate. NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are on Complex 41 waiting for launch on the Atlas V/Centaur rocket. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA, CRATER, Mini-RF and LROC. Launch is scheduled for 5:22 p.m. EDT June 18 . Photo credit: NASA/Jack Pfaller

  20. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  1. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  2. Mars Polar Lander arrives at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Polar Landerspacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  3. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  4. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  5. KSC-2012-3053

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-3052

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2889

    NASA Image and Video Library

    2012-05-21

    CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, cranes are enlisted to lift helium tank cars from their trucks onto flat cars in preparation for a journey to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s tank cars will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The yard is located in Kennedy’s Launch Complex 39 near the 525-foot-tall Vehicle Assembly Building, in the background. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3056

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train has crossed the Indian River on the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-3050

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-3051

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. 1. View top of warhead handling building (northwest to southeast) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View top of warhead handling building (northwest to southeast) of missile launch area. Sprint silos are seen on the left; Spartan silos on the right; and the missile site control building in the distant background and to the right. Launch area antennae and launch chamber covers can be seen - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  12. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  13. 44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  15. Unraveling tectonics and climate forcing in the late-Neogene exhumation history of South Alaska

    NASA Astrophysics Data System (ADS)

    Valla, Pierre; Champagnac, Jean-Daniel; Shuster, David; Herman, Frédéric; Giuditta Fellin, Maria

    2015-04-01

    The southern Alaska range presents an ideal setting to study the complex interactions between tectonics, climate and surface processes in landscape evolution. It exhibits active tectonics with the ongoing subduction/collision between Pacific and North America, and major active seismogenic reverse and strike-slip faults. The alpine landscape, rugged topography and the important ice-coverage at present reveal a strong glacial imprint associated with high erosion and sediment transport rates. Therefore, the relative importance of climatically-driven glacial erosion and tectonics for the observed late-exhumation history appears to be quite complex to decipher. Here, we first perform a formal inversion of an extensive bedrock thermochronological dataset from the literature to quantify the large-scale 20-Myr exhumation history over the entire southern Alaska. We show that almost half of the variability within the thermochronological record can be explained by modern annual precipitations spatial distribution, the residuals clearly evidencing localized exhumation along major tectonic structures of the frontal fold and thrust belt. Our results confirm high exhumation rates in the St Elias "syntaxis" and frontal zones for the last 0-2 Myr, where major ice fields and high precipitation rates likely sustained high exhumation rates; however the impact of late Cenozoic glaciations is difficult to constrain because of the low resolution on the exhumation history older than ~2 Myr. On the contrary, our inversion outcomes highlight that north of the Bagley Icefield the long-term exhumation has remained quite slow and continuous over the last ~20 Myr, with no late-stage signal of exhumation change since the onset of glaciations despite a clear glacial imprint on the landscape. We thus focus on the Granite Range (Wrangell-St Elias National Park, Alaska), an area presenting a strong glacial imprint but minor tectonic activity with only localized brittle deformation. We sampled four elevation profiles over an East-West transect for low-temperature thermochrometry. Apatite (U-Th-Sm)/He dating provides ages between ~10 and 30 Ma, in agreement with published data, and shows apparent low long-term exhumation rates (~0.1 km/Myr). 4He/3He thermochronometry on a subset of samples reveals a more complex exhumation history, with a significant increase in exhumation since ~6-4 Ma that we relate to the early onset of glaciations and associated glacial erosion processes. Our results, in agreement with offshore sediment records, thus confirm an early glacial activity and associated erosion response in Alaska, well before the onset of Pliocene-Pleistocene Northern Hemisphere glaciations.

  16. Intercontinental migratory connectivity and population structuring of Dunlins from western Alaska

    USGS Publications Warehouse

    Gill, Robert E.; Handel, Colleen M.; Ruthrauff, Daniel R.

    2013-01-01

    The Dunlin (Calidris alpina) is a polytypic shorebird with complex patterns of distribution and migration throughout its holarctic range. We analyzed mark-re sighting data obtained between 1977 and 2010 from birds captured at two major staging areas in western Alaska to test the hypothesis that the migration patterns of Alaskan populations are a mixture of parallel and chain, similar to those of Dunlin populations in the western Palearctic. Birds marked on the Yukon—Kuskokwim Delta were found wintering in both Asia and North America, which documented the unexpected mixing of C. a. arcticola from northern Alaska and C. a. pacifica from western Alaska and contradicted our initial prediction of parallel migration pathways for these two subspecies. In its North American winter range C. a. pacifica segregated according to location of marking, confirming our prediction of a chain migration pattern within this population. Individuals of C. a. pacifica marked on the delta were resighted significantly farther north, mostly in southern British Columbia and Washington, than birds marked on the second, more southerly staging area on the Alaska Peninsula, which were resighted primarily in the San Francisco Bay area of northern California. We recommend additional studies use a combination of intrinsic and extrinsic markers to quantify the strength of migratory connectivity between breeding, staging, and wintering areas. Such information is needed to guide conservation efforts because the Dunlin and other waterbirds are losing intertidal habitats at an unprecedented rate and scale, particularly in the Yellow Sea and other parts of Asia.

  17. A Framework for Conducting a National Study of Substance Abuse Treatment Programs Serving American Indian and Alaska Native Communities

    PubMed Central

    Novins, Douglas K.; Moore, Laurie A.; Beals, Janette; Aarons, Gregory A.; Rieckmann, Traci; Kaufman, Carol E.

    2013-01-01

    Background Because of their broad geographic distribution, diverse ownership and operation, and funding instability, it is a challenge to develop a framework for studying substance abuse treatment programs serving American Indian and Alaska Native communities at a national level. This is further complicated by the historic reluctance of American Indian and Alaska Native communities to participate in research. Objectives and Methods We developed a framework for studying these substance abuse treatment programs (n = 293) at a national level as part of a study of attitudes toward, and use of, evidence-based treatments among substance abuse treatment programs serving AI/AN communities with the goal of assuring participation of a broad array of programs and the communities that they serve. Results Because of the complexities of identifying specific substance abuse treatment programs, the sampling framework divides these programs into strata based on the American Indian and Alaska Native communities that they serve: (1) the 20 largest tribes (by population); (2) urban AI/AN clinics; (3) Alaska Native Health Corporations; (4) other Tribes; and (5) other regional programs unaffiliated with a specific AI/AN community. In addition, the recruitment framework was designed to be sensitive to likely concerns about participating in research. Conclusion and Scientific Significance This systematic approach for studying substance abuse and other clinical programs serving AI/AN communities assures the participation of diverse AI/AN programs and communities and may be useful in designing similar national studies. PMID:22931088

  18. Origin of narrow terranes and adjacent major terranes occurring along the denali fault in the eastern and central alaska range, alaska

    USGS Publications Warehouse

    Nokleberg, W.J.; Richter, D.H.

    2007-01-01

    Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5) formation and dextral transport along the Denali fault of the m??lange of the Windy terrane from fragments of the Gravina-Nutzotin-Gambier volcanic-plutonic-sedimentary belt and from the North American Continental Margin. Copyright ?? 2007 The Geological Society of America.

  19. LIFTOFF - APOLLO/SATURN (A/S)-202 MISSION - KSC

    NASA Image and Video Library

    1966-08-25

    A/S Mission 202 was launched from the KSC Launch Complex (LC)-34 at 12:15 p.m., 08/25/1966. The mission was a step toward qualifying the Apollo Command and Service Modules (CSM)'s and the uprated Saturn I launch vehicle for manned flight. KSC, FL

  20. Apollo 6 unmanned space mission launch

    NASA Image and Video Library

    1968-04-04

    S68-27364 (4 April 1968) --- The Apollo 6 (Spacecraft 020/Saturn 502) unmanned space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The liftoff of the huge Apollo/Saturn V space vehicle occurred at 7:00:01.5 a.m. (EST), April 4, 1968.

  1. 50 CFR 216.154 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Of Marine Mammals Incidental To Missile Launch Activities from San Nicolas Island, CA § 216.154... haul-out sites below the missile's predicted flight path for 2 hours prior to planned missile launches... must not launch missiles from the Alpha Complex at low elevation (less than 1,000 feet (305 m)) on...

  2. 50 CFR 216.154 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Of Marine Mammals Incidental To Missile Launch Activities from San Nicolas Island, CA § 216.154... haul-out sites below the missile's predicted flight path for 2 hours prior to planned missile launches... must not launch missiles from the Alpha Complex at low elevation (less than 1,000 feet (305 m)) on...

  3. 50 CFR 216.154 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Of Marine Mammals Incidental To Missile Launch Activities from San Nicolas Island, CA § 216.154... haul-out sites below the missile's predicted flight path for 2 hours prior to planned missile launches... must not launch missiles from the Alpha Complex at low elevation (less than 1,000 feet (305 m)) on...

  4. 50 CFR 217.50 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Missile Launch Activities From San Nicolas Island, CA § 217.50 Specified activity and specified... those persons it authorizes to engage in target missile launch activities and associated aircraft and..., MSST, Terrier, SM-3, or similar) from Alpha Launch Complex and smaller missiles and targets from...

  5. 50 CFR 216.154 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Of Marine Mammals Incidental To Missile Launch Activities from San Nicolas Island, CA § 216.154... haul-out sites below the missile's predicted flight path for 2 hours prior to planned missile launches... must not launch missiles from the Alpha Complex at low elevation (less than 1,000 feet (305 m)) on...

  6. 10. PAYLOAD CONTROL CONSOLE NEAR SOUTH WALL OF SLC3W CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PAYLOAD CONTROL CONSOLE NEAR SOUTH WALL OF SLC-3W CONTROL ROOM. DECALS ON CONSOLE IN FOREGROUND INDICATE PAYLOAD PROGRAMS LAUNCHED FROM SLC-3W. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 16. DETAIL OF SOUTH END OF ATLAS CONTROL CONSOLE NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF SOUTH END OF ATLAS CONTROL CONSOLE NEAR WEST WALL OF SLC-3W CONTROL ROOM SHOWING CONTROLS FOR STILL CAMERAS POSITIONED AROUND THE LAUNCH PAD - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 9. PAYLOAD CONTROL CONSOLE NEAR EAST WALL OF SLC3W CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. PAYLOAD CONTROL CONSOLE NEAR EAST WALL OF SLC-3W CONTROL ROOM. PAYLOAD CONTROLS INSTALLED IN CONSOLE BY THE PAYLOAD SPONSOR PRIOR TO EACH LAUNCH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. 149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH SKID 2 IN FOREGROUND; FUEL LINE TO LAUNCH VEHICLE ENTERING WALL ON LEFT BEHIND SKID 2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END OF LAUNCH PAD. FIRE SUPPRESSION EQUIPMENT RIGHT OF FLAME BUCKET. SOUTH FACE OF MST IS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... camera system designed to detect pinniped responses to rocket launches for at least the first five..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and...) Assess the cumulative impacts on pinnipeds and other marine mammals from multiple rocket launches. ...

  12. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... camera system designed to detect pinniped responses to rocket launches for at least the first five..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and...) Assess the cumulative impacts on pinnipeds and other marine mammals from multiple rocket launches. ...

  13. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden answers social media attendees questions from just outside the launch pad where the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard sits ready to launch, Monday, June 30, 2014, Space Launch Complex 2 Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  14. KSC-07pd1219

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  15. KSC-07pd1218

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  16. SpaceX Launches Tenth Cargo Mission to the International Space Station

    NASA Image and Video Library

    2017-02-19

    On Feb. 19, SpaceX launched almost 5,500 pounds of scientific research and other supplies on a Dragon spacecraft to the International Space Station. The Dragon launched on top of the company’s Falcon 9 rocket from historic Launch Complex 39A at NASA’s Kennedy Space Center, where Apollo and Shuttle missions flew. This was the first commercial launch from Kennedy, and highlights the center’s transition to providing support for both government and commercial aerospace activities.

  17. Orbital ATK CRS-7 Post Launch News Conference

    NASA Image and Video Library

    2017-04-18

    Members of the news media attend a press conference at NASA's Kennedy Space Center in Florida, after the launch of the Orbital ATK Cygnus pressurized cargo module atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. It was Orbital ATK's seventh commercial resupply services mission to the International Space Station. Liftoff was at 11:11 a.m. EDT. Speaking to the media is Vern Thorp, program manager, commercial missions, United Launch Alliance.

  18. APOLLO VIII - LAUNCH - KSC

    NASA Image and Video Library

    1968-12-21

    S68-56002 (21 Dec. 1968) --- The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 7:51 a.m. (EST), Dec. 21, 1968. The crew of the Apollo 8 lunar orbit mission is astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot. Apollo 8 was the first manned Saturn V launch. (F-ls 1/3 way from top of mobile launch tower.)

  19. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments focus on the benefits scientists received from networking with K-12 teachers. The classroom lessons resulting from STEP have been so popular among teachers, the Alaska Department of Education and Early Development recently contracted with the PI to create a website that will make the STEP database open to teachers across Alaska. When the Alaska Department of Education and Early Development launched the new website in August 2011, the name of the STEP program was changed to the Alaska K-12 Science Curricular Initiative (AKSCI). The STEP courses serving as the foundation to the new AKSCI site are located under the "History" tab of the new website.

  20. Petrology of the Plutonic Rocks of west-central Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    1970-01-01

    A series of plutons in west-central Alaska defines the Hogatza plutonic belt which extends for about 200 miles in an east-west direction from the northeastern Seward Peninsula to the Koyukuk River. The plutonic rocks have an aggregate area of about 1,200 square miles and their composition, distribution, and possible petrogenesis are discussed for the first time in this report. Field, petrographic and chemical data supported by K/Ar age dating indicate the plutonic rocks are divisible into two suites differing in age, location, and composition. The western plutons are mid-Cretaceous (~100 m.y.) in age and consist of a heterogeneous assemblage of monzonite, syenite, quartz monzonite. Associated with these granitic rocks is a group of alkaline sub-silicic rocks that forma belt of intrusive complexes extending for a distance of at least 180 miles from west-central Alaska to the Bering Sea. The complex at Granite Mountain shows a rare example of zoning from an alkaline rim to a quartz-bearing core. The occurrence of a similar complex at Cape Dezhnev on the easternmost tip of Siberia suggests the alkaline province may extend into Siberia. The easternmost plutons are Late Cretaceous (180 m.y.) in age and composed primarily of granodiorite and quartz monzonite similar to calc-alkaline plutons found throughout the North America Cordillera. The plutons are epizonal and intrude deformed but unmetamorphosed Lower Cretaceous andesitic volcanics and volcanic graywacke which constitute the highly mobile Yukon-Koyukuk volcanogenic province of west-central Alaska. No older rocks have been found within the confines of this vast tract; the occurrence of a bounding ophiolite sequence has lead to the suggestion that the province was formed by large-scale rifting and is underlain by oceanic crust. The possibility of no juvenile sialic crust over much of the area suggests that the potassium-rich magma now represented by the alkaline rocks originated in the mantle. The distribution of the alkaline rocks appears to be related to regional structural features, particularly the boundary between the Mesozoic volcanogenic province of west-central Alaska and the thrust-faulted province of metamorphic-plutonic and sedimentary rocks of Paleozoic and Precambrian age that forms the eastern Seward Peninsula. This boundary may have been a zone of structural weakness along which alkaline magma was generated. Modal and chemical trends suggest that the potassium-rich magma influenced the composition of more granitic magmas forming at higher levels. The latter may have been forming as a result of anatexis of andesite and mixing of mantle-derived mafic magma. The result is the heterogeneous assemblage of generally potassium-rich plutonic rocks that forms the west end of the Hogataza plutonic belt. The loci of magmatism in west-central Alaska shifted east in Late Cretaceous time and the eastern plutons show only local signs of potassium enrichment. They are compositionally homogeneous and differences within plutons appear due to local contamination.

  1. STS-45 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad

    NASA Image and Video Library

    1992-03-24

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, lifts off from a Kennedy Space Center (KSC) Launch Complex (LC) Pad at 8:13:40:048 am (Eastern Standard Time (EST)). Exhaust billows out the solid rocket boosters (SRBs) as OV-104 atop its external tank (ET) soars above the mobile launcher platform and is nearly clear of the fixed service structure (FSS) tower. The diamond shock effect produced by the space shuttle main engines (SSMEs) is visible. The glow of the SRB/SSME firings is reflected in a nearby waterway. An exhaust cloud covers the launch pad area.

  2. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left, Suni Williams, Eric Boe, Bob Behnken and Doug Hurley take in the view from the top of Launch Complex 39A at Kennedy Space Center. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. Tower modifications included l removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  3. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left Doug Hurley, Eric Boe, Bob Behnken and Suni Williams, pose just outside Launch Complex 39A at NASA's Kennedy Space Center in Florida. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. The tower modifications included removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  4. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.

  5. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.

  6. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Therrin Protze, chief operating officer of the Kennedy Space Center Visitor Complex, left, and center director Bob Cabana watch as confetti was launched as the spaceport's historic countdown clock is dedicated as the newest display at the entrance to Kennedy's visitor complex. The spaceport's historic countdown clock was used beginning with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock was used through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  7. MARINER 10 LAUNCH VEHICLE ATLAS CENTAUR 34 UNDERGOES TANKING TEST AT LAUNCH COMPLEX 36B

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Atlas Centaur 34, undergoes tanking test on NASA Complex 36B at Cape Kennedy, Fla. Atlas Centaur 34 is under preparation to launch history's first duel-planet flight, the Mariner mission to Venus and Mercury, scheduled for early November. With all events going as planned, the Mariner spacecraft will fly by Venus in early February, 1974, and reach Mercury in late march, 1974. The spacecraft, Mariner 10, will carry two television cameras to photograph the planets, and six other scientific experiments to return planetary and interplanetary data back to Earth.

  8. 7. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by Ralph M. Parsons Co. circa August 1959. AERIAL VIEW OF ORIGINAL CONSTRUCTION OF POINT ARGUELLO LAUNCH COMPLEX 1 (SLC-3) FROM THE SOUTHEAST. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  10. KENNEDY SPACE CENTER, FLA. - Smoke from a successful controlled burn near KSC’s Launch Complex 39 surrounds the Vehicle Assembly Building and spreads across the horizon. The water in the foreground is the Banana River.

    NASA Image and Video Library

    2003-11-24

    KENNEDY SPACE CENTER, FLA. - Smoke from a successful controlled burn near KSC’s Launch Complex 39 surrounds the Vehicle Assembly Building and spreads across the horizon. The water in the foreground is the Banana River.

  11. Kilbuck terrane: oldest known rocks in Alaska

    USGS Publications Warehouse

    Box, S.E.; Moll-Stalcup, E. J.; Wooden, J.L.; Bradshaw, J.Y.

    1990-01-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2070 ?? 16 and 2040 ?? 74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite (??Nd[T] = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton (??Nd[T] = -5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded. -from Authors

  12. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  13. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  14. 4. Photographic copy of photograph, dated June 1993 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photographic copy of photograph, dated June 1993 (original print in possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. View of Spartan silo "headworks." In front center is personnel access hatch leading to launch preparation equipment vault (LPEV); On right is launch area antenna; behind are the two launch cell protective covers - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  15. Crew Members - First Manned Apollo Flight - Unmanned Mission Launch - Cape

    NASA Image and Video Library

    1968-01-22

    S68-18700 (22 Jan. 1968) --- Two prime crew members of the first manned Apollo space flight were present at Cape Kennedy for the launch of the Apollo V (LM-1/Saturn 204) unmanned space mission. On left is astronaut Walter M. Schirra Jr.; and on right is astronaut R. Walter Cunningham. In background is the Apollo V stack at Launch Complex 37 ready for launch.

  16. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Lights shine on the umbilical tower shortly after a United Launch Alliance Delta II rocket launched with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  17. Risk Analysis of On-Orbit Spacecraft Refueling Concepts

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Stromgren, Chel; Cates, Grant R.

    2010-01-01

    On-orbit refueling of spacecraft has been proposed as an alternative to the exclusive use of Heavy-lift Launch Vehicles to enable human exploration beyond Low Earth Orbit (LEO). In these scenarios, beyond LEO spacecraft are launched dry (without propellant) or partially dry into orbit, using smaller or fewer element launch vehicles. Propellant is then launched into LEO on separate launch vehicles and transferred to the spacecraft. Refueling concepts are potentially attractive because they reduce the maximum individual payload that must be placed in Earth orbit. However, these types of approaches add significant complexity to mission operations and introduce more uncertainty and opportunities for failure to the mission. In order to evaluate these complex scenarios, the authors developed a Monte Carlo based discrete-event model that simulates the operational risks involved with such strategies, including launch processing delays, transportation system failures, and onorbit element lifetimes. This paper describes the methodology used to simulate the mission risks for refueling concepts, the strategies that were evaluated, and the results of the investigation. The results of the investigation show that scenarios that employ refueling concepts will likely have to include long launch and assembly timelines, as well as the use of spare tanker launch vehicles, in order to achieve high levels of mission success through Trans Lunar Injection.

  18. CCP Astronaut Eric Boe, GOES-S Prepared for Launch

    NASA Image and Video Library

    2018-02-28

    NASA astronaut Eric Boe, one of four astronauts working with the agency’s Commercial Crew Program, had the opportunity to check out the Crew Access Tower at Space Launch Complex 41 (SLC-41) Wednesday with a United Launch Alliance Atlas V on the pad. Boe, along with launch operations engineers from NASA, Boeing, and ULA, climbed the launch pad tower to evaluate lighting and spotlights after dark. The survey helped ensure crew members will have acceptable visibility as they prepare to launch aboard Boeing’s Starliner spacecraft on the Crew Flight Test to the International Space Station targeted for later this year.

  19. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  20. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier behavior during the last millennium.

  1. Sunset at Vandenberg

    NASA Image and Video Library

    2015-01-21

    The sun sets behind Space Launch Complex 2, Vandenberg Air Force Base, California, where NASA Soil Moisture Active Passive SMAP mission satellite is being prepared for liftoff. Launch is scheduled for Jan. 29.

  2. KSC-2013-4396

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  3. KSC-2013-4394

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  4. KSC-2013-4428

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4395

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  6. KSC-2013-4429

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. KSC-2011-7888

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – Parents and children of all ages participate in a LEGO "Build the Future" event at the Kennedy Space Center Visitor Complex in Florida. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  8. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  9. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  10. Blue Origin Facility - Construction Progress

    NASA Image and Video Library

    2017-03-21

    Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.

  11. KSC-2009-3931

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage arrives on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  12. 119. Photocopy of drawing (1959 civil engineering drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Photocopy of drawing (1959 civil engineering drawing by the Ralph M. Parsons Company) PLOT PLAN AND PROFILE LINES OF WAVE GUIDE ENCLOSURE AND CABLE TRAY INSTALLATION FOR LAUNCH OPERATIONS BUILDING, SHEET C41 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 120. Photocopy of drawing (1958 civil engineering drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Photocopy of drawing (1958 civil engineering drawing by the Ralph M. Parsons Company) STRUCTURAL DETAILS OF WAVE GUIDE ENCLOSURE AND CABLE TRAY INSTALLATION FOR LAUNCH OPERATIONS BUILDING, SHEET C42 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. View (southwest to northeast) of remote launch operations building, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View (southwest to northeast) of remote launch operations building, showing diesel exhaust shaft on the left and intake shaft on the right. To the far right is the tunnel entrance - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Buildings, Near Service Road exit from patrol Road, Nekoma, Cavalier County, ND

  15. KSC-2014-2625

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, is glimpsed across the water as it departs Launch Pad 39A atop a crawler-transporter. A pad on Cape Canaveral Air Force Station is in view in the background. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  16. Launching Native Health Leaders: Reducing Mistrust of Research Through Student Peer Mentorship

    PubMed Central

    McGlone West, Kathleen; Madrid, Teresa M.

    2013-01-01

    Objectives. We assessed the impact of Launching Native Health Leaders (LNHL), a peer-mentoring and networking program that introduced American Indian/Alaska Native (AI/AN) undergraduates to health and research careers and concepts of community-based participatory research (CBPR). Methods. We conducted 15 interviews and 1 focus group with students who had attended 1 or more LNHL meetings, which took place during 9 professional health research conferences in 2006 to 2009. We completed data collection in 2010, within 1 to 4 years of LNHL participant engagement in program activities. Results. Participants described identity and cultural challenges they encountered in academic institutions and how their views shifted from perceiving research as an enterprise conducted by community outsiders who were not to be trusted toward an understanding of CBPR as contributing to AI/AN health. Conclusions. LNHL provided a safe environment for AI/AN students to openly explore their place in the health and research arenas. Programs such as LNHL support AI/AN student development as leaders in building trust for academic–tribal partnerships. PMID:24134376

  17. 9. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by the Ralph M. Parsons Co. circa 1959. VIEW FROM THE SOUTH OF ORIGINAL CONSTRUCTION OF A-FRAME ATLAS GANTRY AT POINT ARGUELLO LAUNCH COMPLEX 1, PAD 1 (SLC-3W) - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Launch of Apollo 8 lunar orbit mission

    NASA Image and Video Library

    1968-12-21

    S68-56001 (21 Dec. 1968) --- The Apollo 8 (Spacecraft 103/Saturn 503) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, at 7:51 a.m. (EST), Dec. 21, 1968. The crew of the Apollo 8 lunar orbit mission is astronauts Frank Borman, commander; James A. Lovell Jr., command module pilot; and William A. Anders, lunar module pilot. Apollo 8 was the first manned Saturn V launch. (Just after ignition)

  19. 70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Overview (northeast to southwest) of remote sprint launch site #4. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  1. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen as the launch gantry is moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  2. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  3. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  4. SpaceX CRS-12 Live Launch Coverage

    NASA Image and Video Library

    2017-08-14

    Live Launch Coverage of the SpaceX Falcon 9 launch vehicle lift off from Launch Complex 39A at NASA's Kennedy Space Center carrying the Dragon resupply spacecraft to the International Space Station. Liftoff was at 12:31 p.m. EDT. On its 12th commercial resupply services mission to the International Space Station, Dragon will bring up more than 6,400 pounds of supplies and new science experiments and equipment for technology research.

  5. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  6. KSC-2012-3046

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-3044

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3043

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-3045

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Manatees relax in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatees were spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-3040a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Bubbles form around a dolphin splashing in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3041a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin plays in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3042

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  17. NASA rocket to display artificial clouds in space

    NASA Image and Video Library

    2017-12-08

    A NASA sounding rocket to be launched from the Poker Flat Research Range, Alaska, between February 13 and March 3, 2017, will form white artificial clouds during its brief, 10-minute flight. The rocket is one of five being launched January through March, each carrying instruments to explore the aurora and its interactions with Earth’s upper atmosphere and ionosphere. Scientists at NASA's Goddard Space Center in Greenbelt, Maryland, explain that electric fields drive the ionosphere, which, in turn, are predicted to set up enhanced neutral winds within an aurora arc. This experiment seeks to understand the height-dependent processes that create localized neutral jets within the aurora. For this mission, two 56-foot long Black Brant IX rockets will be launched nearly simultaneously. One rocket is expected to fly to an apogee of about 107 miles while the other is targeted for 201 miles apogee. Only the lower altitude rocket will form the white luminescent clouds during its flight. Read more: go.nasa.gov/2kYaBgV NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Field guide to the Mesozoic accretionary complex along Turnagain Arm and Kachemak Bay, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Karl, Susan M.; Haeussler, Peter J.

    1997-01-01

    Turnagain Arm, just east of Anchorage, provides a readily accessible, world-class cross section through a Mesozoic accretionary wedge. Nearly continuous exposures along the Seward Highway, the Alaska Railroad, and the shoreline of Turnagain Arm display the two main constituent units of the Chugach terrane: the McHugh Complex and Valdez Group. In this paper we describe seven bedrock geology stops along Turnagain Arm, and two others in the Chugach Mountains just to the north (Stops 1-7 and 9), which will be visited as part of the May, 1997 field trip of the Alaska Geological Society. Outcrops along Turnagain Arm have already been described in two excellent guidebook articles (Clark, 1981; Winkler and others 1984), both of which remain as useful and valid today as when first published. Since the early 1980's, studies along Turnagain Arm have addressed radiolarian ages of chert and conodont ages of limestone in the McHugh Complex (Nelson and others, 1986, 1987); geochemistry of basalt in the McHugh Complex (Nelson and Blome, 1991); post-accretion brittle faulting (Bradley and Kusky, 1990; Kusky and others, 1997); and the age and tectonic setting of gold mineralization (Haeussler and others, 1995). Highlights of these newer findings will described both in the text below, and in the stop descriptions.Superb exposures along the southeastern shore of Kachemak Bay show several other features of the McHugh Complex that are either absent or less convincing along Turnagain Arm. While none of these outcrops can be reached via the main road network, they are still reasonably accessible - all are within an hour by motorboat from Homer, seas permitting. Here, we describe seven outcrops along the shore of Kachemak Bay that we studied between 1989 and 1993 during geologic mapping of the Seldovia 1:250,000- scale quadrangle. These outcrops (Stops 61-67) will not be part of the 1997 itinerary, but are included here tor the benefit of those who may wish to visit them later.

  19. SLC-41 Water Deluge Test

    NASA Image and Video Library

    2017-11-02

    NASA, Boeing and United Launch Alliance personnel run a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  20. SLC-41 Water Deluge Test

    NASA Image and Video Library

    2017-11-02

    NASA, Boeing and United Launch Alliance personnel begin a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  1. KSC-2015-1245

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  2. KSC-2015-1246

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  3. High shrew diversity on Alaska's Seward Peninsula: Community assembly and environmental change

    USGS Publications Warehouse

    Hope, Andrew G.

    2012-01-01

    In September 2010, 6 species of shrews (genus: Sorex) were collected at a single locality on the Seward Peninsula of Alaska. Such high sympatric diversity within a single mammalian genus is seldom realized. This phenomenon at high latitudes highlights complex Arctic community dynamics that reflect significant turnover through time as a consequence of environmental change. Each of these shrew species occupies a broad geographic distribution collectively spanning the entire Holarctic, although the study site lies within Eastern Beringia, near the periphery of all individual ranges. A review of published genetic evidence reflects a depauperate shrew community within ice-free Beringia through the last glaciation, and recent assembly of current diversity during the Holocene.

  4. KSC-2011-1971

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  5. KSC-2011-1966

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  6. KSC-2011-1967

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  7. KSC-2011-1968

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  8. KSC-2011-1969

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  9. KSC-2011-1964

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  10. KSC-2011-1965

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  11. KSC-2011-1970

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  12. Review of the Lightning Strike Incident at Launch Complex 37 on July 27, 1967, and Comparison to a Gemini Lightning Strike

    NASA Technical Reports Server (NTRS)

    Llewellyn, J. A.

    1967-01-01

    The Launch Complex 37 lightning strike of July 27, 1967, was reviewed and compared to a similar incident on the Gemini Program. Available data indicate little likelihood of damaging currents having been present in SA-204 Launch Vehicle or the ground equipment during the July 27th incident. Based on the results of subsystem and system testing after the strike, anticipated results of future testing, the six months elapsed time between the strike-and launch, and the fact that much of the critical airborne electrical/electronic equipment has been removed since the strike for other reasons, no new actions are considered necessary at this time in the Gemini case, significant failures occurred in both airborne and ground circuits. Due to the resultant semi, condlictor uncertainty, and the relatively' short time prior to planned launch, all critical airborne components containing semiconduetors were replaced, and a sophisticated data comparison task was implemented.

  13. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17B, Cape Canaveral Air Station, the protective covering on the Mars Polar Lander is lifted up and out of the way. The lander, in the opening below, is being mated to the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  14. KSC-2012-3057

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – The drawbridge span of the NASA Railroad’s Jay Jay Railroad Bridge over the Indian River north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida is reopened following the passage of a NASA Railroad train. The permanent configuration of the bridge is open the span is lowered only for a train to cross. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. JPSS-1 Spacecraft Canning and Lift to Transport Trailer

    NASA Image and Video Library

    2017-10-23

    In the Astrotech Processing Facility at Vandenberg Air Force Base in California, technicians and engineers place the Joint Polar Satellite System-1, or JPSS-1, spacecraft in a protective container. It then will be mounted on a transport trailer for its move to Space Launch Complex 2. At the pad, JPSS-1 will be lifted for mating atop a United Launch Alliance Delta II rocket. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg's Space Launch Complex 2.

  16. JPSS-1 Spacecraft Canning and Lift to Transport Trailer

    NASA Image and Video Library

    2017-10-23

    At Vandenberg Air Force Base in California, technicians and engineers have placed the Joint Polar Satellite System-1, or JPSS-1, spacecraft in a protective container. It then will be mounted on a transport trailer for its move from the Astrotech Processing Facility to Space Launch Complex 2. At the pad, JPSS-1 will be lifted for mating atop a United Launch Alliance Delta II rocket. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg's Space Launch Complex 2.

  17. Saturn 1B space vehicle for ASTP moves from VAB to launch complex

    NASA Image and Video Library

    1975-03-24

    S75-24007 (24 March 1975) --- The Saturn 1B space vehicle for the Apollo-Soyuz Test Project mission, with its launch umbilical tower, rides atop a huge crawler-transporter as it moves slowly away from the Vehicle Assembly Building on its 4.24-mile journey to Pad B, Launch Complex 39, at NASA's Kennedy Space Center. The ASTP vehicle is composed of a Saturn 1B (first) stage, a Saturn IVB (second) stage, and a payload consisting of a Command/Service Module and a Docking Module. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for July 1975.

  18. TDRS-M Spacecraft Lift to Transport Vehicle

    NASA Image and Video Library

    2017-08-08

    Inside the Astrotech facility in Titusville, Florida, the payload fairing for NASA's Tracking and Data Relay Satellite, TDRS-M, is lifted and placed into position on the transport vehicle, in preparation for transport to Launch Complex 41. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18, 2017.

  19. JPSS-1 Spacecraft Canning and Lift to Transport Trailer

    NASA Image and Video Library

    2017-10-23

    In the Astrotech Processing Facility at Vandenberg Air Force Base in California, technicians and engineers place the Joint Polar Satellite System-1, or JPSS-1, spacecraft in a protective container. It is then mounted on a transport trailer for its move to Space Launch Complex 2. At the pad, JPSS-1 will be lifted for mating atop a United Launch Alliance Delta II rocket. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg's Space Launch Complex 2.

  20. Evaluation of Alternative Refractory Materials for the Main Flame Deflectors at KSC Launch Complexes

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Trejo, David; Rutkowsky, Justin

    2006-01-01

    The deterioration of the refractory materials used to protect the KSC launch complex steel base structures from the high temperatures during launches results in frequent and costly repairs and safety hazards. KSC-SPEC-P-0012, Specification for Refractory Concrete, is ineffective in qualifying refractory materials. This study of the specification and of alternative refractory materials recommends a complete revision of the specification and further investigation of materials that were found to withstand the environment of the Solid Rocket Booster main flame deflector better than the refractory materials in current use in terms of compressive strength, tensile strength, modulus of rupture, shrinkage, and abrasion.

  1. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., during, and 2 hours after launch; (2) Ensure a remote camera system will be in place and operating in a..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and... camera system designed to detect pinniped responses to rocket launches for at least the first five...

  2. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., during, and 2 hours after launch; (2) Ensure a remote camera system will be in place and operating in a..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and... camera system designed to detect pinniped responses to rocket launches for at least the first five...

  3. KSC-2009-3933

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls into the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  4. KSC-2009-3929

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-3932

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls toward the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-3930

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  7. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send the Geostationary Operational Environmental Satellite (GOES-R) to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  8. 57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, STAIRS AND PORTION OF LAUNCHING DECK. NOTE SUPPORT CARRIAGE ASSEMBLY IN DISTANCE. Date unknown, circa March 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. KSC-2014-3111

    NASA Image and Video Library

    2014-07-02

    VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket is seen eight minutes before launching from Space Launch Complex 2 at Vandenberg Air Force Base in California on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: NASA/Bill Ingalls

  10. SpaceX/Dragon CRS-12 What's on Board Science Briefing

    NASA Image and Video Library

    2017-08-13

    The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  11. 50 CFR 216.235 - Letter of Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MAMMALS Taking of Marine Mammals Incidental to Rocket Launches from the Kodiak Launch Complex, Kodiak... determination that the number of marine mammals taken by the activity will be small, and that the total taking...

  12. Satellite in a Can

    NASA Image and Video Library

    2015-01-21

    NASA Soil Moisture Active Passive SMAP satellite is transported across Vandenberg Air Force Base in California to Space Launch Complex 2, where it will be mated to a Delta II rocket for launch, targeted for Jan. 29.

  13. 32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN 1991 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. KSC-2013-4406

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  15. KSC-2013-4431

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  16. KSC-2013-4407

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-4415

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  18. KSC-2013-4418

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-2013-4421

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a technician supports preparations for lifting the Centaur second stage of the United Launch Alliance rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  20. KSC-2013-4427

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

Top