Sample records for launch control capsule

  1. 26. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBER LIEUTENANT KEVIN R. MCCLUNEY AT COMMUNICATIONS CONSOLE. LAUNCH CONTROL CONSOLE IN FOREGROUND. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  2. 27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; LAUNCH CONTROL CONSOLE AT RIGHT. PADLOCKED PANEL AT TOP CENTER CONTAINS MISSILE LAUNCH KEYS. SHOCK ISOLATOR AT FAR LEFT. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  3. Launch Pad Activities

    NASA Image and Video Library

    1959-09-08

    Big Joe Capsule Launch Pad Activities: This film covers both the Big Joe and a Little Joe Project Mercury flight test with a research and development version of the Mercury capsule. Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959. The lower half of the capsule was created at NASA Lewis. The scenes include coverage of the assembly and erection of the boosters, delivery of the capsules, mating of the capsules to the boosters, prelaunch views of the capsule and boosters on launchers, mission control, the launches, and recovery.

  4. 31. LAUNCH CONTROL CAPSULE. LOOKING TOWARD BLAST DOOR AND TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LAUNCH CONTROL CAPSULE. LOOKING TOWARD BLAST DOOR AND TUNNEL VESTIBULE. VIEW TO SOUTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  5. 24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  6. 30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS CONSOLE IN FOREGROUND. ELECTRONIC EQUIPMENT RACK AT LEFT; LAUNCH CONTROL CONSOLE WITH CAPTAIN JAMES L. KING, JR. IN CENTER. LIEUTENANT KEVIN R. MCCLUNEY IN BACKGROUND. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  7. 25. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) CAPTAIN JAMES L. KING, JR. AT LAUNCH CONTROL CONSOLE AND LIEUTENANT KEVIN R. MCCLUNEY AT COMMUNICATIONS CONSOLE. RADIO TRANSMITTER AND RECEIVER RACKS AT FAR RIGHT; ELECTRONIC EQUIPMENT RACKS AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  8. 28. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) LIEUTENANT KEVIN R. MCCLUNEY AND CAPTAIN JAMES L. KING, JR. SHOCK ISOLATOR AND ELECTRONIC EQUIPMENT RACK AT FAR LEFT. VIEW TO SOUTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  9. 29. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) LIEUTENANT KEVIN R. MCCLUNEY AND CAPTAIN JAMES L. KING, JR. AT CONSOLES. REFRIGERATOR AT RIGHT FLANKED BY RADIO EQUIPMENT (RIGHT) AND FILE CABINETS (LEFT). VIEW TO SOUTHWEST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  10. Mercury Capsule Construction at the NASA Lewis Research Center

    NASA Image and Video Library

    1959-08-21

    A NASA mechanic secures the afterbody to a Mercury capsule in the hangar at the Lewis Research Center. The capsule was one of two built at Lewis for the “Big Joe” launches scheduled for September 1959. The initial phase of Project Mercury consisted of a series of unmanned launches using the Air Force’s Redstone and Atlas boosters and the Langley-designed Little Joe boosters. The first Atlas launch, referred to as “Big Joe”, was a single attempt early in Project Mercury to use a full-scale Atlas booster to simulate the reentry of a mock-up Mercury capsule without actually placing it in orbit. The overall design of Big Joe had been completed by December 1958, and soon thereafter project manager Aleck Bond assigned NASA Lewis the task of designing the electronic instrumentation and automatic stabilization system. Lewis also constructed the capsule’s lower section, which contained a pressurized area with the electronics and two nitrogen tanks for the retrorockets. Lewis technicians were responsible for assembling the entire capsule: the General Electric heatshield, NASA Langley afterbody and recovery canister, and Lewis electronics and control systems. On June 9, 1959, the capsule was loaded on an air force transport aircraft and flown to Cape Canaveral. A team of 45 test operations personnel from Lewis followed the capsule to Florida and spent the ensuing months preparing it for launch. The launch took place in the early morning hours of September 9, 1959.

  11. 20. TUNNEL JUNCTION. STACKED EMERGENCY FOOD RATIONS AT LEFT. LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TUNNEL JUNCTION. STACKED EMERGENCY FOOD RATIONS AT LEFT. LAUNCH CONTROL CAPSULE BLAST DOOR AT CENTER. VIEW TO NORTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  12. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    PubMed

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mercury Project

    NASA Image and Video Library

    1959-09-01

    An Atlas launch vehicle carrying the Big Joe capsule leaves its launching pad on a 2,000-mile ballistic flight to the altitude of 100 miles. The Big Joe capsule is a boilerplate model of the marned orbital capsule under NASA's Project Mercury. The capsule was recovered and studied for the effect of re-entry heat and other flight stresses.

  14. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  15. Entry Trajectory Issues for the Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    1999-01-01

    The Stardust mission was successfully launched on February 7, 1999. It will be the first mission to return samples from a comet. The sample return capsule, which is passively controlled during the fastest Earth entry ever, will land by parachute in Utah. The present study describes the analysis of the entry, descent, and landing of the returning sample capsule utilizing the final, launch configuration capsule mass properties. The effects of two aerodynamic instabilities are revealed (one in the high altitude free molecular regime and the other in the transonic/subsonic flow regime). These instabilities could lead to unacceptably large excursions in the angle-of-attack near peak heating and main parachute deployment, respectively. To reduce the excursions resulting from the high altitude instability, the entry spin rate of the capsule is increased. To stabilize the excursions from the transonic/subsonic instability, a drogue chute with deployment triggered by a gravity-switch and timer is added prior to main parachute deployment. A Monte Carlo dispersion analysis of the modified entry (from which the impact of off-nominal conditions during the entry is ascertained) predicts that the capsule attitude excursions near peak heating and drogue chute deployment are within Stardust mission limits. Additionally, the size of the resulting 3-sigma landing ellipse is 60.8 km in downrange by 19.9 km in crossrange, which is within the Utah Test and Training Range boundaries.

  16. Database Tool for Master Console Operators

    NASA Technical Reports Server (NTRS)

    Ferrell, Sean

    2018-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires highly trained and knowledgeable personnel. Master Console Operators (MCO) are currently working on familiarizing themselves with any possible scenario that they may encounter. An intern was recruited to help assist them with creating a tool to use for the process.

  17. Capsule Escape Tests - Wallops Island

    NASA Image and Video Library

    1959-05-14

    Caption: Off the pad abort shot at Wallops using Langley PARD designed full scale capsule with Recruit rocket and extended skirt main parachute. Shows sequential images of launch and capsule splashdown.

  18. Multi-Axis Space Inertia Test Facility inside the Altitude Wind Tunnel

    NASA Image and Video Library

    1960-04-21

    The Multi-Axis Space Test Inertial Facility (MASTIF) in the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Although the Mercury astronaut training and mission planning were handled by the Space Task Group at Langley Research Center, NASA Lewis played an important role in the program, beginning with the Big Joe launch. Big Joe was a singular attempt early in the program to use a full-scale Atlas booster and simulate the reentry of a mockup Mercury capsule without actually placing it in orbit. A unique three-axis gimbal rig was built inside Lewis’ Altitude Wind Tunnel to test Big Joe’s attitude controls. The control system was vital since the capsule would burn up on reentry if it were not positioned correctly. The mission was intended to assess the performance of the Atlas booster, the reliability of the capsule’s attitude control system and beryllium heat shield, and the capsule recovery process. The September 9, 1959 launch was a success for the control system and heatshield. Only a problem with the Atlas booster kept the mission from being a perfect success. The MASTIF was modified in late 1959 to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control.

  19. Big Joe Capsule Assembly Activities

    NASA Image and Video Library

    1959-08-01

    Big Joe Capsule Assembly Activities in 1959 at NASA Glenn Research Center (formerly NASA Lewis). Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959.

  20. Spaceport Command and Control System Automated Testing

    NASA Technical Reports Server (NTRS)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  1. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  2. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  3. Video File - NASA on a Roll Testing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.

  4. MERCURY-ATLAS (MA)-2 - LIFTOFF - CAPE

    NASA Image and Video Library

    1961-02-21

    S61-01226 (21 Feb. 1961) --- Launch of the unmanned Mercury-Atlas 2 (MA-2) vehicle for a suborbital test flight of the Mercury capsule. The upper part of Atlas is stengthened by an eight-inch wide stainless steel band. The capsule was recovered less than one hour after launch. The altitude was 108 miles. Speed was 13,000 mph. Recovered 1,425 miles downrange. Photo credit: NASA

  5. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  6. Mercury: impact studies

    NASA Image and Video Library

    1958-08-05

    Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  7. Mercury: impact studies

    NASA Image and Video Library

    1958-09-07

    Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  8. KSC-2012-2520

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-2519

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians prepare to close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. Project Mercury; Little Joe

    NASA Image and Video Library

    1959-07-30

    Assembling the Little Joe capsules. The capsules were manufactured in-house by Langley technicians. Three capsules are shown here in various stages of assembly. The escape tower and rocket motors shown on the completed capsule would be removed before shipping and finally assembly for launching at Wallops Island. Joseph Shortal wrote (vol. 3, p. 32): Design of the Little Joe capsules began at Langley before McDonnell started on the design of the Mercury capsule and was, therefore, a separate design. Although it was not designed to carry a man, it did have to carry a monkey. It had to meet the weight and center of gravity requirements of Mercury and withstand the same aerodynamic loads during the exit trajectory. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. Project Mercury: Little Joe: Boilerplate Mercury spacecraft undergo fabrication at the shops of the Langley Research Center. They will launched atop Little Joe rockets to test the spacecraft recovery systems. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition. L59-4947 Technicians prepare a Little Joe launch vehicle prototype for the Mercury space program, 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 76, by James Schultz

  11. NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  12. NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  13. KSC-2012-2862

    NASA Image and Video Library

    2012-05-18

    CAPE CANAVERAL, Fla. – A photographer sets up his remote camera at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. In the background, final preparations are under way to launch the SpaceX Falcon 9 rocket. Liftoff with the Dragon capsule on top is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Ken Thornsley

  14. KSC-2012-2861

    NASA Image and Video Library

    2012-05-18

    CAPE CANAVERAL, Fla. – A strongback provides connections to the SpaceX Falcon 9 rocket as final preparations for launch are completed at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the Dragon capsule on top is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Ken Thornsley

  15. KSC-2012-1567

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  16. KSC-2012-1569

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  17. KSC-2012-1565

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  18. KSC-2012-1568

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. – The Space Exploration Technologies Corp. SpaceX Falcon 9 rocket with Dragon capsule attached on top sits fully fueled on Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida during a launch dress rehearsal for the company’s next demonstration test flight for NASA’s Commercial Orbital Transportation Services-2 COTS-2) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Gianni Woods

  19. Russian Mission Control Center

    NASA Image and Video Library

    2004-04-20

    Helen Conijn, fiancée of European Space Agency astronaut Andre Kuipers of the Netherlands, far right, joins Renita Fincke, second from right, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, along with family members at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004 to view the docking of the Soyuz capsule to the International Space Station that brought Kuipers, Fincke and Expedition 9 Commander Gennady Padalka to the complex following their launch Monday from Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  20. Mercury Project

    NASA Image and Video Library

    1958-06-24

    Testing of Mercury Capsule Shape A by the Hydrodynamics Division of Langley. Joseph Shortal wrote (vol. 3, p. 19): The Hydrodynamics Division provided assistance in determining landing loads. In this connection, after PARD engineers had unofficially approached that division to make some water impact tests with the boilerplate capsule, J.B. Parkinson, Hydrodynamics Chief visited Shortal to find out if the request had his support. Finding out that it did, Parkinson said, Its your capsule. If you want us to drop it in the water, we will do it. From Shortal (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  1. KSC-2011-5105

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, shows off its Launch Control Center during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  2. KSC-2011-5103

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, opens its doors for a media tour of its Launch Control Center at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  3. Project Mercury: NASA's first manned space programme

    NASA Astrophysics Data System (ADS)

    Catchpole, John

    Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.

  4. KSC-2012-3710

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. - The SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  5. KSC-2012-3713

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  6. KSC-2012-3715

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  7. KSC-2012-3720

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  8. KSC-2012-2850

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket makes its way to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-3714

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – Under the watchful eye of technicians, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  10. KSC-2012-3722

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3721

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3711

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – In this nose-on view, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  13. Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry

    NASA Astrophysics Data System (ADS)

    Zuppardi, G.; Savino, R.; Mongelluzzo, G.

    2016-10-01

    The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can be an alternative to the current ;conventional; recovery capsules. The present authors already analyzed the trajectory and the aerodynamic behavior of low ballistic coefficient capsules during Earth re-entry and Mars entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and rarefied regimes. The present study is aimed at providing preliminary information about thermal and aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack and unstable around the reverse attitude or at 180° angle of attack. The analysis also pointed out the presence of extra statically stable equilibrium trim points.

  14. KSC-2012-2511

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-2513

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-2512

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-2510

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, preparations are under way to load cargo into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-2514

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians stow cargo in the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  19. KSC-2012-2516

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag slides through the docking ring into the Space Exploration Technologies Dragon capsule for stowage for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. LITTLE JOE 2 - LAUNCH VEHICLES - VA

    NASA Image and Video Library

    1961-04-13

    G61-00030 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  1. KSC-2012-4805_

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-4802_

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-4798

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  4. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Security controls access to the Soyuz capsule and test stand area, Friday, Oct. 5, 2004, at the Baikonur Cosmodrome. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  5. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The launch of the Little Joe booster for the LJ1B mission on the launch pad from the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury capsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  6. Mariner Mars 1971: Press kit

    NASA Technical Reports Server (NTRS)

    Mittauer, R. T.

    1971-01-01

    The news release describes the 1971 launches of Mariner 8 and 9 which were to be the first attempt by NASA to orbit another planet, Mars. Described are: (1) mission capsule; (2) planetary missions; (3) aiming zones; (4) the spacecraft; (5) scientific experiments to be performed; (6) Atlas Centaur launch vehicle; (7) launch operations; (8) tracking and data system and mission operations; and (9) Mariner Mars 71 team and subcontractors.

  7. Launch of Little Joe I-B from Wallops Island

    NASA Image and Video Library

    1960-01-21

    B60-00364 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  8. Project Mercury Escape Tower Rockets Tests

    NASA Image and Video Library

    1960-04-21

    A Mercury capsule is mounted inside the Altitude Wind Tunnel for a test of its escape tower rockets at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In October 1959 NASA’s Space Task Group allocated several Project Mercury assignments to Lewis. The Altitude Wind Tunnel was quickly modified so that its 51-foot diameter western leg could be used as a test chamber. The final round of tests in the Altitude Wind Tunnel sought to determine if the smoke plume from the capsule’s escape tower rockets would shroud or compromise the spacecraft. The escape tower, a 10-foot steel rig with three small rockets, was attached to the nose of the Mercury capsule. It could be used to jettison the astronaut and capsule to safety in the event of a launch vehicle malfunction on the pad or at any point prior to separation from the booster. Once actuated, the escape rockets would fire, and the capsule would be ejected away from the booster. After the capsule reached its apex of about 2,500 feet, the tower, heatshield, retropackage, and antenna would be ejected and a drogue parachute would be released. Flight tests of the escape system were performed at Wallops Island as part of the series of Little Joe launches. Although the escape rockets fired prematurely on Little Joe’s first attempt in August 1959, the January 1960 follow-up was successful.

  9. KSC-2011-5104

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  10. KSC-2011-5107

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  11. KSC-2011-5106

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  12. KSC-2011-5108

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Space Exploration Technologies Corp., or SpaceX, displays a mock-up of its Dragon capsule during a media tour at Cape Canaveral Air Force Station, or CCAFS, in Florida. In December 2010, SpaceX launched its Falcon 9 rocket and Dragon spacecraft from CCAFS's Launch Complex 40. The Dragon capsule went through several maneuvers before it re-entered the atmosphere and splashed down in the Pacific Ocean about 500 miles west of the coast of Mexico. That was the first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. The company is preparing for another launch in late 2011, in which the Dragon spacecraft and trunk will fly close to the space station so the station’s robotic arm can grab the spacecraft and bring it in for a docking. Photo credit: NASA/Frankie Martin

  13. KSC-2012-2521

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, the hatch of the Space Exploration Technologies Dragon capsule has been closed following stowage of cargo in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-2517

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a Space Exploration Technologies technician attaches a cargo bag to the crane that will lift it toward the Dragon capsule where it will be stowed in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-2515

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag is lowered into the hands of a Space Exploration Technologies technician who will load it into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2011-7523

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  17. KSC-2011-7526

    NASA Image and Video Library

    2011-10-23

    Workers lift the transportation canister from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  18. KSC-2011-7527

    NASA Image and Video Library

    2011-10-23

    Workers lower the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  19. KSC-2011-7521

    NASA Image and Video Library

    2011-10-23

    A truck brings the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  20. KSC-2011-7529

    NASA Image and Video Library

    2011-10-23

    Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  1. KSC-2011-7524

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  2. KSC-2011-7522

    NASA Image and Video Library

    2011-10-23

    A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  3. KSC-2011-7528

    NASA Image and Video Library

    2011-10-23

    Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  4. KSC-2011-7525

    NASA Image and Video Library

    2011-10-23

    Workers lift the transportation canister away from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser

  5. KSC-2012-2854

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – Umbilical lines connect the strongback to the SpaceX Falcon 9 rocket which has just arrived on the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-2852

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – A strongback lifts the SpaceX Falcon 9 rocket into a vertical position on the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2847

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – Preparations are under way to roll the SpaceX Falcon 9 rocket out of the processing facility to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3718

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – Partially hidden behind a flame and exhaust deflector, the SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  9. KSC-2012-2849

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket rolls between the lightning protection system towers surrounding the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-4793

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-4780

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-4794

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-4776

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-4779

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-4788

    NASA Image and Video Library

    2012-08-31

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-2528

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – The van transporting the cargo bag packed with NanoRacks-CubeLabs Module-9 experiments, arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida for cold stowage. The bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-2506

    NASA Image and Video Library

    2012-04-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, refrigerated NanoRacks-CubeLabs Module-9 experiments are being prepared for transport to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bags will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-6433

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  19. KSC-2012-6444

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  20. KSC-2012-6434

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  1. KSC-2012-6442

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  2. KSC-2012-6441

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  3. KSC-2012-6440

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  4. KSC-2012-6432

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  5. KSC-2012-6443

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  6. KSC-2012-6431

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  7. KSC-2012-6437

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  8. KSC-2012-6435

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  9. KSC-2012-6436

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  10. KSC-2012-6439

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  11. KSC-2012-6438

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  12. Mercury Project

    NASA Image and Video Library

    1961-01-01

    Ham, a three-year-old chimpanzee, in the spacesuit he would wear for the second Mercury- Redstone (MR-2) suborbital test flight in January, 1961. NASA used chimpanzees and other primates to test the Mercury capsule before launching the fisrt American astronaut, Alan Shepard, in May 1961. The Mercury capsule rode atop a modified Redstone rocket, developed by Dr. Wernher von Braun and the German Rocket Team in Huntsville, Alabama.

  13. Ham in Spacesuit

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Ham, a three-year-old chimpanzee, in the spacesuit he would wear for the second Mercury- Redstone (MR-2) suborbital test flight in January, 1961. NASA used chimpanzees and other primates to test the Mercury capsule before launching the fisrt American astronaut, Alan Shepard, in May 1961. The Mercury capsule rode atop a modified Redstone rocket, developed by Dr. Wernher von Braun and the German Rocket Team in Huntsville, Alabama.

  14. MERCURY-ATLAS (MA)-9 - LAUNCH - CAPSULE - ASTRONAUT COOPER - CAPE

    NASA Image and Video Library

    1963-05-15

    S63-07602 (15 May 1963) --- This is the launch of Mercury-Atlas 9 (MA-9) on May 15, 1963, at 8:04 a.m. (EST) carrying astronaut L. Gordon Cooper Jr., pilot. Astronaut Cooper made 22 orbits in 34 hours and 19 minutes, in a spacecraft designated the ?Faith 7." Photo credit: NASA

  15. KSC-2012-2908

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Elon Musk, chief executive officer and chief designer for SpaceX, participates in a post-launch news conference being held in the Press Site auditorium at NASA’s Kennedy Space Center in Florida by video teleconference. The SpaceX Falcon 9 rocket launched into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4315

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground are the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  17. KSC-2012-4321

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  18. KSC-2012-4318

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  19. KSC-2011-7853

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-8275

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-7854

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-7852

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is readied for lifting and placement to its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett

  3. Comparison of Two Recent Launch Abort Platforms

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  4. Video capsule endoscopy: Perspectives of a revolutionary technique

    PubMed Central

    Bouchard, Simon; Ibrahim, Mostafa; Van Gossum, Andre

    2014-01-01

    Video capsule endoscopy (VCE) was launched in 2000 and has revolutionized direct endoscopic imaging of the gut. VCE is now a first-line procedure for exploring the small bowel in cases of obscure digestive bleeding and is also indicated in some patients with Crohn’s disease, celiac disease, and polyposis syndrome. A video capsule has also been designed for visualizing the esophagus in order to detect Barrett’s esophagus or esophageal varices. Different capsules are now available and differ with regard to dimensions, image acquisition rate, battery life, field of view, and possible optical enhancements. More recently, the use of VCE has been extended to exploring the colon. Within the last 5 years, tremendous developments have been made toward increasing the capabilities of the colon capsule. Although colon capsule cannot be proposed as a first-line colorectal cancer screening procedure, colon capsule may be used in patients with incomplete colonoscopy or in patients who are unwilling to undergo colonoscopy. In the near future, new technological developments will improve the diagnostic yield of VCE and broaden its therapeutic capabilities. PMID:25516644

  5. Liberty Bell 7 Space Capsule Exhibit previews at Visitor Complex

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Children on a tour at the KSC Visitor Complex get an early look at the Discovery Channel's Liberty Bell 7 Space Capsule Exhibit, which opens to the public on Saturday, June 17. They are on a re- creation of the deck of Ocean Project, the ship that located and recovered the space capsule from the floor of the Atlantic Ocean. Liberty Bell 7 launched U.S. Air Force Captain Virgil '''Gus''' Grissom July 21, 1961, on a mission that lasted 15 minutes and 37 seconds before sinking. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule, now restored and preserved, is part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit also includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot.

  6. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at the safety design aspects for a launch pad escape system.

  7. Achieving reliability - The evolution of redundancy in American manned spacecraft computers

    NASA Technical Reports Server (NTRS)

    Tomayko, J. E.

    1985-01-01

    The Shuttle is the first launch system deployed by NASA with full redundancy in the on-board computer systems. Fault-tolerance, i.e., restoring to a backup with less capabilities, was the method selected for Apollo. The Gemini capsule was the first to carry a computer, which also served as backup for Titan launch vehicle guidance. Failure of the Gemini computer resulted in manual control of the spacecraft. The Apollo system served vehicle flight control and navigation functions. The redundant computer on Skylab provided attitude control only in support of solar telescope pointing. The STS digital, fly-by-wire avionics system requires 100 percent reliability. The Orbiter carries five general purpose computers, four being fully-redundant and the fifth being soley an ascent-descent tool. The computers are synchronized at input and output points at a rate of about six times a second. The system is projected to cause a loss of an Orbiter only four times in a billion flights.

  8. Little Joe Launch

    NASA Image and Video Library

    1959-10-04

    Launching of the LJ6 Little Joe on Oct. 4, 1959 took place at Wallops Island, Va. This was the first attempt to launch an instrumented capsule with a Little Joe booster. Only the LJ1A and the LJ6 used the space metal chevron plates as heat reflector shields, as they kept shattering. Caption title ...and ascending skyward on a plume of exhaust. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 77, by James Schultz

  9. KSC-2013-3565

    NASA Image and Video Library

    2013-06-24

    CAPE CANAVERAL, Fla. –Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  10. KSC-2013-3562

    NASA Image and Video Library

    2011-06-29

    CAPE CANAVERAL, Fla. – This prototype VEGGIE hardware was designed and built by Orbital Technologies Corp. of Madison, Wisc. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  11. KSC-2013-3563

    NASA Image and Video Library

    2012-09-25

    CAPE CANAVERAL, Fla. – A 28-day-old Outredgeous red romaine lettuce plant grows in a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  12. KSC-2013-3567

    NASA Image and Video Library

    2013-06-06

    CAPE CANAVERAL, Fla. – Outredgeous red romaine lettuce plants grow inside the bellows of a prototype VEGGIE flight pillow. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Bryan Onate

  13. KSC-2012-2525

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a cargo bag packed with NanoRacks-CubeLabs Module-9 experiments is weighed before it is transported to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station for cold stowage. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-2526

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – A cargo bag designed to keep its contents cool, packed with NanoRacks-CubeLabs Module-9 experiments, departs the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida for its trip to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-2527

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – A cargo bag designed to keep its contents cool, packed with NanoRacks-CubeLabs Module-9 experiments, is loaded into a van at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida for its trip to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-2524

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a cargo bag designed to keep its contents cool is packed with NanoRacks-CubeLabs Module-9 experiments in preparation to transport it to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. Deployment System and Method for Subsurface Launched Unmanned Aerial Vehicle

    DTIC Science & Technology

    2006-11-15

    conditions exterior to the capsule are satisfactory for deployment. For example, weather gauges, accelerometers, tiltmeters and/or other sensors 30 can...the surface. [0009) Upon surfacing, or after a predetermined delay, and preferably at a time when sensors on and/or within the tube determine that... sensors for obtaining measurements of ambient conditions at least one of within and exterior to the capsule. The sensors can measure a depth of the

  18. Boeing CST-100 Starliner/ULA Atlas V Wind Tunnel Demonstration

    NASA Image and Video Library

    2016-10-13

    An engineer works with a model of a United Launch Alliance Atlas V rocket with a Boeing CST-100 Starliner capsule inside a wind tunnel at NASA's Ames Research Center in California. The Starliner/Atlas V system is under development by Boeing and ULA in partnership with NASA's Commercial Crew Program to launch astronauts to the International Space Station.

  19. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  20. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    Security Officers with their dog watch as the Soyuz TMA-4 capsule and its booster rocket begin to roll to the launch pad at the Baikonur Cosmodrome on Saturday, April 17, 2004, in Baikonur, Kazakhstan in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station on April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  1. KSC-99pp1035

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- This photograph shows two mercury dimes that were found inside the recently recovered Liberty Bell 7 Project Mercury capsule. Thirty-eight years ago, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil "Gus" Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. In an expedition sponsored by the Discovery Channel, underwater salvage expert Curt Newport fulfilled a 14-year dream in finding and, after one abortive attempt, successfully raising the capsule and bringing it to Port Canaveral. The dimes had apparently been placed in the capsule before its launch July 21, 1961. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  2. ARC-2006-ACD06-0177-002

    NASA Image and Video Library

    2006-09-20

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot

  3. ARC-2006-ACD06-0177-003

    NASA Image and Video Library

    2006-09-20

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot

  4. A space exploration strategy that promotes international and commercial participation

    NASA Astrophysics Data System (ADS)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  5. Early Rockets

    NASA Image and Video Library

    1959-05-18

    A squirrel monkey, Able, is being ready for placement into a capsule for a preflight test of Jupiter, AM-18 mission. AM-18 was launched on May 28, 1959 and also carried a rhesus monkey, Baker, into suborbit.

  6. KSC-2012-2507

    NASA Image and Video Library

    2012-04-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a cargo bag designed to keep its contents cool is readied to receive the NanoRacks-CubeLabs Module-9 experiments. The module’s experiments requiring cold stowage are being prepared for transport to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bags will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2509

    NASA Image and Video Library

    2012-04-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, the NanoRacks-CubeLabs Module-9 experiments requiring refrigeration are placed in a cargo bag designed to keep its contents cool. The module’s experiments requiring cold stowage are being prepared for transport to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bags will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-2508

    NASA Image and Video Library

    2012-04-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, the NanoRacks-CubeLabs Module-9 experiments requiring refrigeration are prepared for placement in a cargo bag designed to keep its contents cool. The module’s experiments requiring cold stowage are being prepared for transport to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bags will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. Reliability, Maintainability, and Availability: Consideration During the Design Phase in Ground Systems to Ensure Successful Launch Support

    NASA Technical Reports Server (NTRS)

    Gillespie, Amanda M.

    2012-01-01

    The future of Space Exploration includes missions to the moon, asteroids, Mars, and beyond. To get there, the mission concept is to launch multiple launch vehicles months, even years apart. In order to achieve this, launch vehicles, payloads (satellites and crew capsules), and ground systems must be highly reliable and/or available, to include maintenance concepts and procedures in the event of a launch scrub. In order to achieve this high probability of mission success, Ground Systems Development and Operations (GSDO) has allocated Reliability, Maintainability, and Availability (RMA) requirements to all hardware and software required for both launch operations and, in the event of a launch scrub, required to support a repair of the ground systems, launch vehicle, or payload. This is done concurrently with the design process (30/60/90 reviews).

  10. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  11. Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,

  12. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    Alexander Zelenschikov, the Deputy Chief Designer of RSC-Energia, stands outside a processing facility at the Baikonur Cosmodrome as the Soyuz TMA-4 capsule and its booster rocket start the rollout to the launch pad on Saturday, April 17, 2004, in Baikonur, Kazakhstan, in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  13. KSC-00pp0753

    NASA Image and Video Library

    2000-06-13

    Children on a tour at the KSC Visitor Complex get an early look at the Discovery Channel's Liberty Bell 7 Space Capsule Exhibit, which opens to the public on Saturday, June 17. They are on a re-creation of the deck of Ocean Project, the ship that located and recovered the space capsule from the floor of the Atlantic Ocean. Liberty Bell 7 launched U.S. Air Force Captain Virgil “Gus” Grissom July 21, 1961, on a mission that lasted 15 minutes and 37 seconds before sinking. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule, now restored and preserved, is part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit also includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot

  14. KSC00pp0753

    NASA Image and Video Library

    2000-06-13

    Children on a tour at the KSC Visitor Complex get an early look at the Discovery Channel's Liberty Bell 7 Space Capsule Exhibit, which opens to the public on Saturday, June 17. They are on a re-creation of the deck of Ocean Project, the ship that located and recovered the space capsule from the floor of the Atlantic Ocean. Liberty Bell 7 launched U.S. Air Force Captain Virgil “Gus” Grissom July 21, 1961, on a mission that lasted 15 minutes and 37 seconds before sinking. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule, now restored and preserved, is part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit also includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot

  15. KSC-2012-2907

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Participating in a post-launch news conference in the Press Site auditorium at NASA’s Kennedy Space Center in Florida are, from left, George H. Diller, NASA Public Affairs, William Gerstenmaier, associate administrator of NASA’s Human Exploration and Operations Directorate, Alan Lindenmoyer, manager of NASA’s Commercial Crew and Cargo Program, and Gwynne Shotwell, president of SpaceX. Also participating by video teleconference, on the screen at right, is Elon Musk, chief executive officer and chief designer for SpaceX. The SpaceX Falcon 9 rocket launched into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Kim Shiflett

  16. Mercury: testing of the Little Joe booster

    NASA Image and Video Library

    1959-08-02

    Testing of the Little Joe booster on its launcher. The launcher is positioned at its normal launch angle of 80 degrees. Joseph Shortal wrote (vol. 3, p. 33): The Little Joe booster was assembled at Wallops on its special launcher in a vertical attitude. It is shown in the on the left with the work platform in place. The launcher was located on a special concrete slab in Launching Area 1. The capsule was lowered onto the booster by crane.... After the assembly was completed, the scaffolding was disassembled and the launcher pitched over to its normal launch angle of 80 degrees.... Little Joe had a diameter of 80 inches and an overall length, including the capsule and escape tower of 48 feet. The total weight at launch was about 43,000 pounds. The overall span of the stabilizing fins was 21.3 feet. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  17. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  18. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  19. KSC-2011-3333

    NASA Image and Video Library

    2011-05-05

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, invited guests tour the blockhouse at Complex 5/6 during a celebration of Alan Shepard's historic flight 50 years ago. From left are Robert Sieck, former shuttle launch director; Andy Anderson, former manager for communications in the Mercury Mission Control Center; Bob Moser, former chief test conductor for the Mercury-Redstone launches; and John Twigg, former backup chief test conductor for the Mercury-Redstone launches. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett

  20. GRC-2007-C-02471

    NASA Image and Video Library

    2003-12-19

    Orion Capsule and Launch Abort System (LAS) installed in the NASA Glenn 8x6 Supersonic Wind Tunnel for testing. This test is an Aero Acoustic test of the LAS. Pictured is the calibration of the model's angle of attack

  1. GRC-2007-C-02472

    NASA Image and Video Library

    2003-12-19

    Orion Capsule and Launch Abort System (LAS) installed in the NASA Glenn 8x6 Supersonic Wind Tunnel for testing. This test is an Aero Acoustic test of the LAS. Pictured is the calibration of the model's angle of attack

  2. 8. 320 FOOT LEVEL, SWING ARM NINE SHOWING BACK SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. 320 FOOT LEVEL, SWING ARM NINE SHOWING BACK SIDE OF ENVIRONMENTAL CHAMBER (WHITE ROOM). WHITE ROOM MADE CONNECTION WITH CAPSULE ON LAUNCH VEHICLE. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  3. KSC-2012-2938

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  4. KSC-2012-2919

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – An exhaust cloud begins to form around the SpaceX Falcon 9 rocket as it lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  5. KSC-2012-2928

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  6. KSC-2012-2914

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  7. KSC-2012-2924

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer

  8. KSC-2012-2923

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The nine Merlin engines beneath the SpaceX Falcon 9 rocket roar to life at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer

  9. KSC-2012-2904

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. ksc-2012-2897

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  11. KSC-2012-2927

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  12. KSC-2012-2930

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket begins its ascent after liftoff at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  13. ksc-2012-2914

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  14. KSC-2012-2942

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  15. KSC-2012-2905

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, delivering the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-2913

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket lifts off at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  17. KSC-2012-2920

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket begins to lift off from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  18. KSC-2012-2897

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  19. KSC-2012-2911

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  20. KSC-2012-2943

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry

  1. ksc-2012-2896

    NASA Image and Video Library

    2012-05-22

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault

  2. Investigation of the LMJ ignition target sensitivity to the laser pulse shape with 2D integrated calculations

    NASA Astrophysics Data System (ADS)

    Cherfils, Catherine; Malinie, Guy; Boniface, Claude; Gauthier, Pascal; Laffite, Stephane; Loiseau, Pascal

    2010-11-01

    The A943 cryogenic target in a Rugby hohlraum is our current nominal design for ignition with 160 beams on the Laser MegaJoule (Laffite et al 2007, 49th Annual Meeting of the Division of Plasma Physics, Loiseau et al 2010, 40th Annual Anomalous Absorption Conference). In this study we redesign the laser pulse of the target under the form of a sum of six supergaussians, which is more amenable to a sensitivity study : four supergaussians are used to launch the four main shocks in the capsule, and two additional supergaussians are used first to remove the LEH windows and then to control the acceleration of the first shock, respectively. We use our 2D FCI2 code to compare the radiation hydro of the capsule, obtained with this new pulse, to what was previously obtained. We investigate the sensitivity of the yield on some parameters, which are the maximum powers and respective timings of the different components of the laser pulse.

  3. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a microgravity project at the Drop Tower Bremen, interesting experimentalists should keep in mind generally reducing dimensions and masses of their common laboratory setups to meet the capsule constraints: overall payload height 980mm/1730mm (short/long drop capsule) and 950mm (catapult capsule); area of each capsule platform 0,359sqm; maximum payload mass 274kg/234kg (short/long drop capsule) and 163,8kg (catapult capsule). The base equipments of each capsule are the Capsule Control System (CCS) to remote control the experiment and the rechargeable battery pack (24V/40A) for the experiment operation. Moreover, the exper-iment components must be able to withstand maximum decelerations of 50g while the short capsule impact of about 200ms, and maximum accelerations of 30g while catapult launch with a duration of about 300ms. In our second talk concerning ZARM`s drop tower facility we will go on with detailed infor-mations about the technical base setups of the drop and the catapult capsule structure to completely handle a freely falling experiment. Furthermore, we will summarize interesting current drop tower projects as an outlook to present you the range of opportunities at the ground-based short-term microgravity laboratory of ZARM.

  4. Orion Launch Abort Vehicle Separation Analysis Using OVERFLOW

    NASA Technical Reports Server (NTRS)

    Booth, Tom

    2010-01-01

    This slide presentation reviews the use of OVERFLOW, a flow solver, to analyze the effect of separation for a launch abort vehicle (i.e., Orion capsule) if required. Included in the presentation are views of the geometry, and the Overset grids, listing of the assumptions, the general run strategy, inputs into the Overflow solver, the required computational resources, the results of the convergence study. Charts and graphics are presented to show the results.

  5. Visualization of Flow Separation Around an Atmospheric Entry Capsule at Low-Subsonic Mach Number Using Background-Oriented Schlieren (BOS)

    NASA Technical Reports Server (NTRS)

    Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.

    2014-01-01

    This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).

  6. KSC-S63-01207

    NASA Image and Video Library

    1962-02-20

    CAPE CANAVERAL, Fla. -- Astronaut John H. Glenn Jr. enters his Mercury capsule, "Friendship 7," as he prepares for launch of the Mercury-Atlas rocket. On February 20, 1962, Glenn lifted off into space aboard his Mercury Atlas 6 MA-6 rocket and became the first American to orbit the Earth. After orbiting the Earth 3 times, Friendship 7 landed in the Atlantic Ocean 4 hours, 55 minutes and 23 seconds later, just East of Grand Turk Island in the Bahamas. Glenn and his capsule were recovered by the Navy Destroyer Noa, 21 minutes after splashdown. Photo credit: NASA

  7. KSC-98pc1864

    NASA Image and Video Library

    1998-12-04

    In the Payload Hazardous Servicing Facility, the Stardust spacecraft is ready for the sample return capsule to be attached. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the re-entry capsule to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999

  8. Close-up view of Mercury-Atlas 4 at Cape Canaveral

    NASA Image and Video Library

    1961-09-13

    S90-27205 (13 Sept. 1961) --- The unmanned Mercury-Atlas (MA-4) capsule sits atop its Atlas launch vehicle. The successful orbital flight followed the MA-3 mission, which was aborted earlier this year. Photo credit: NASA

  9. KSC-2013-1669

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  10. KSC-2013-1665

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  11. KSC-2013-1663

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  12. KSC-2013-1661

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  13. KSC-2013-1662

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  14. KSC-2013-1667

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  15. KSC-2013-1668

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  16. KSC-2013-1666

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  17. KSC-2013-1664

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-1660

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  19. SpaceX CRS-11 Pre-Launch News Conference

    NASA Image and Video Library

    2017-05-31

    In the NASA Kennedy Space Center's Press Site auditorium, agency and industry leaders informed the media about the upcoming launch of SpaceX’s eleventh commercial resupply services mission to the International Space Station. A Falcon 9 rocket will lift off from Space Launch Complex-39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon capsule will deliver almost 6,000 pounds of cargo to the orbiting laboratory. Briefing participants: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX -Camille Alleyne, Associate Program Scientist, ISS -Mike McAleenan, Launch Weather Officer, 45th Weather Squadron

  20. KSC-99pc12

    NASA Image and Video Library

    1999-01-05

    The first stage of a Boeing Delta II rocket is in position on the mobile tower (at right) at Launch Complex 17. At left is the launch tower. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999

  1. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    The Engineer of the rollout locomotive waves hello as he prepares to back the train away from the launch pad leaving the Soyuz TMA-4 capsule and its booster rocket at the Baikonur Cosmodrome in Kazakhstan on on Saturday, April 17, 2004, in Baikonur, Kazakhstan in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station on April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  2. Orion rolled out and mated on This Week @NASA - November 14, 2014

    NASA Image and Video Library

    2014-11-14

    In preparation for its first spaceflight test next month, NASA’s Orion spacecraft was transported from Kennedy Space Center’s Launch Abort System Facility to Space Launch Complex 37 at nearby Cape Canaveral Air Force Station on November 11, arriving at the launch pad early Nov. 12. NASA’s new deep space exploration capsule then was attached to the top of the Delta IV Heavy rocket that will carry it to space for the Dec. 4 test. Also, ISS crew returns safely, Earth Science research to continue with developing nations, Rosetta update, Rocks and Robots and more!

  3. KSC-2013-3564

    NASA Image and Video Library

    2011-05-09

    CAPE CANAVERAL, Fla. – Several different types of 21-day-old plants grow in analog VEGGIE pillows include, from right, Outredgeous red romaine lettuce, Bright Lights Swiss chard, Cherry Bomb II radish, Tokyo Bekana Chinese cabbage and Sugar Pod II snow pea. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  4. KSC-2012-3633

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – David Beaman, NASA Space Launch System spacecraft and payload integration manager, addresses the audience assembled in Kennedy Space Center's Operations and Checkout Building high bay for an event marking the arrival of NASA's first space-bound Orion capsule in Florida. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-3636

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – NASA astronaut Rex Walheim talks to Michael Leinbach, director of Human Spaceflight Operations for United Launch Alliance, in Kennedy Space Center's Operations and Checkout Building high bay during an event marking the arrival of NASA's first space-bound Orion capsule in Florida. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-5909

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s New Shepard crew capsule touched down 1,630 feet from the its simulated propulsion module launch pad at the company's West Texas launch site, completing a successful test of its New Shepard crew capsule escape system. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  7. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    NASA Technical Reports Server (NTRS)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating innovative risk assessment capabilities.

  8. History of rocketry in India

    NASA Astrophysics Data System (ADS)

    Vasant, Gowarikar; Suresh, B. N.

    2009-12-01

    The Indian Space programme took birth on November 21, 1963, with the launch of Nike-Apache, an American sounding rocket from the shores of Thumba near Thiruvananthapuram on the west coast of India. From a family of operational sounding rockets known as the Rohini Sounding Rockets, India's launch vehicles have now grown up through SLV-3 and Augmented Satellite Launch Vehicle (ASLV) to the current gigantic satellite launchers, PSLV and Geosynchronous Satellite Launch Vehicle (GSLV). Though we had failures in the initial launches of SLV-3, ASLV and PSLV, these failures gave Indian Space Research Organisation (ISRO) a thorough and in depth understanding of the nuances of launch vehicle technology that later led to successful missions. An entirely new dimension was added to the Indian space programme when a space capsule was recovered very precisely after it had orbited the Earth for 12 days. The future for launch vehicles in ISRO looks bright with the GSLV MKIII, which is currently under development and the pursuit of cutting edge technologies such as reusable launch vehicles and air-breathing propulsion.

  9. KSC-2011-7886

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. -- Media learn about the plans Space Exploration Technologies Corp. (SpaceX) has to take NASA astronauts to the International Space Station at Space Launch Complex-40 on Cape Canaveral Air Force Station. SpaceX is working to make its Falcon 9 rocket and Dragon capsule safe for humans for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. SpaceX already is developing these systems under NASA's Commercial Orbital Transportation System (COTS) Program to take supplies to the space station. Scott Henderson, director of SpaceX mission assurance, explained that the company is drafting designs to make the Dragon capsule crew-capable with life support systems while meeting CCP's safety requirements. One such option under discussion is a launch abort system that would push astronauts away from the launch pad in the event of an emergency, which is different than traditional pull systems. It's the freedom to develop innovative solutions such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. CCP, which is based at NASA's Kennedy Space Center in Florida, partnered with seven aerospace companies to mature launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  10. KSC-2011-7885

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. -- Media learn about the plans Space Exploration Technologies Corp. (SpaceX) has to take NASA astronauts to the International Space Station at Space Launch Complex-40 on Cape Canaveral Air Force Station. SpaceX is working to make its Falcon 9 rocket and Dragon capsule safe for humans for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. SpaceX already is developing these systems under NASA's Commercial Orbital Transportation System (COTS) Program to take supplies to the space station. Scott Henderson, director of SpaceX mission assurance, explained that the company is drafting designs to make the Dragon capsule crew-capable with life support systems while meeting CCP's safety requirements. One such option under discussion is a launch abort system that would push astronauts away from the launch pad in the event of an emergency, which is different than traditional pull systems. It's the freedom to develop innovative solutions such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. CCP, which is based at NASA's Kennedy Space Center in Florida, partnered with seven aerospace companies to mature launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  11. Mars Sample Return Landed with Red Dragon

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged spacecraft designs capable of meeting mission requirements. Subsystems modeled in this study included structures, power system, propulsion system, nose fairing, thermal insulation, actuation devices, and GN&C. Best practice application of loads and design margins for all resources were used. Both storable and cryogenic propellant systems were examined. The landed mass and lander capsule size provide boundary conditions for the MAV design and packaging. We estimated the maximum mass the Dragon capsule is capable of landing. This and the volume capability to store the MAV was deduced from publically available data from SpaceX as well as our own engineering and aerodynamic estimates. Minimum gross-liftoff mass (GLOM) for the MAV were obtained for configurations that used pump-fed storable bi-propellant rocket engines for both the MAV and the ERV stage. The GLOM required fits within our internal estimate of the mass that Dragon can land at low elevation/optimal seasons on Mars. Based on the analysis, we show that a single Mars launch sample return mission is feasible using current commercial capabilities to deliver the return spacecraft assets.

  12. KSC-2013-3566

    NASA Image and Video Library

    2013-06-14

    CAPE CANAVERAL, Fla. –Outredgeous red romaine lettuce plants grow inside in a prototype VEGGIE flight pillow. The bellows of the hardware have been lowered to better observe the plants. A small temperature and relative humidity data logger is placed between the pillows small white box, central. U.S. astronauts living and working aboard the International Space Station are going to receive a newly developed Vegetable Production System VEGGIE. VEGGIE is set to launch aboard SpaceX's Dragon capsule on NASA's third Commercial Resupply Services mission targeted to launch Dec. 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Gioia Massa

  13. KSC-99pp1033

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- Media and photographers get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil "Gus" Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.

  14. KSC-99pp1032

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- Media and spectators get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil "Gus" Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y

  15. Astronaut John Glenn inspects decal for side of his Mercury capsule

    NASA Image and Video Library

    1962-02-02

    S64-14854 (20 Feb. 1962) --- Astronaut John H. Glenn Jr. and technicians inspect a decal ready for application to the side of his Mercury spacecraft prior to launch on Feb. 20, 1962. The decal reads "Friendship 7". Photo credit: NASA

  16. 6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. PROTRUSION ON UPPER RIGHT HAND SIDE OF LUT IS SWING ARM NINE WHICH PROVIDED ACCESS TO CAPSULE OF LAUNCH VEHICLE WHILE ON LAUNCHER. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  17. Orion Versus Poseidon: Understanding How Nasa's Crewed Capsule Survives Nature's Fury

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-Earth orbit and is currently undergoing a series of tests including Exploration Flight Test (EFT)-1. This design must address the natural environment to which the capsule and launch vehicle are exposed during all mission phases. In addition, the design must, to the best extent possible, implement the same process and data to be utilized on launch day. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  18. KSC-2012-3712

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – As technicians monitor the progress of the transporter, the SpaceX Falcon 9 rocket with its Dragon spacecraft arrive at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Falcon 9 is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  19. A locomotion mechanism with external magnetic guidance for active capsule endoscope.

    PubMed

    Wang, Xiaona; Meng, Max Q H; Chen, Xijun

    2010-01-01

    Gastrointestinal (GI) disorder is one of the most common diseases in human body. The swallowable wireless capsule endoscopy has been proved to be a convenient, painless and effective way to examine the whole GI tract. However, lack of motion control makes the movement of the capsule substantially random, resulting in missing diagnosis. In this paper, a locomotion mechanism is developed for the next-generation active capsule endoscope. An internal actuator integrated on-board the capsule is designed to provide driving force and improve the dexterity. A small permanent magnet enclosed inside the capsule interacts with an external magnetic field to control the capsule's orientation and offer extra driving force. This mechanism avoids sophisticated and bulky control system and reduces power consumption inside the capsule. Ex-vivo experimental results showed that it can make a controllable movement inside the porcine large intestine. The mechanism also has the potential to be a platform for further development, such as devices of operations, spraying medicine, biopsy etc.

  20. Magnetic control system targeted for capsule endoscopic operations in the stomach--design, fabrication, and in vitro and ex vivo evaluations.

    PubMed

    Lien, Gi-Shih; Liu, Chih-Wen; Jiang, Joe-Air; Chuang, Cheng-Long; Teng, Ming-Tsung

    2012-07-01

    This paper presents a novel solution of a hand-held external controller to a miniaturized capsule endoscope in the gastrointestinal (GI) tract. Traditional capsule endoscopes move passively by peristaltic wave generated in the GI tract and the gravity, which makes it impossible for endoscopists to manipulate the capsule endoscope to the diagnostic disease areas. In this study, the main objective is to present an endoscopic capsule and a magnetic field navigator (MFN) that allows endoscopists to remotely control the locomotion and viewing angle of an endoscopic capsule. The attractive merits of this study are that the maneuvering of the endoscopic capsule can be achieved by the external MFN with effectiveness, low cost, and operation safety, both from a theoretical and an experimental point of view. In order to study the magnetic interactions between the endoscopic capsule and the external MFN, a magnetic-analysis model is established for computer-based finite-element simulations. In addition, experiments are conducted to show the control effectiveness of the MFN to the endoscopic capsule. Finally, several prototype endoscopic capsules and a prototype MFN are fabricated, and their actual capabilities are experimentally assessed via in vitro and ex vivo tests using a stomach model and a resected porcine stomach, respectively. Both in vitro and ex vivo test results demonstrate great potential and practicability of achieving high-precision rotation and controllable movement of the capsule using the developed MFN.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  2. Regenerated cellulose capsules for controlled drug delivery: Part III. Developing a fabrication method and evaluating extemporaneous utility for controlled-release.

    PubMed

    Bhatt, Bhavik; Kumar, Vijay

    2016-08-25

    In this article, we describe a method to utilize cellulose dissolved in dimethyl sulfoxide and paraformaldehyde solvent system to fabricate two-piece regenerated cellulose hard shell capsules for their potential use as an oral controlled drug delivery a priori vehicle. A systematic evaluation of solution rheology as well as resulting capsule mechanical, visual and thermal analysis was performed to develop a suitable method to repeatedly fabricate RC hard shell capsule halves. Because of the viscoelastic nature of the cellulose solution, a combination of dip-coating and casting method, herein referred to as dip-casting method, was developed. The dip-casting method was formalized by utilizing two-stage 2(2) full factorial design approach in order to determine a suitable approach to fabricate capsules with minimal variability. Thermal annealing is responsible for imparting shape rigidity of the capsules. Proof-of-concept analysis for the utility of these capsules in controlled drug delivery was performed by evaluating the release of KCl from them as well as from commercially available USP equivalent formulations. Release of KCl from cellulose capsules was comparable to extended release capsule formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules

    NASA Astrophysics Data System (ADS)

    Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.

    2014-01-01

    Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.

  4. Dynamics of tether-assisted reentry vehicle systems

    NASA Astrophysics Data System (ADS)

    Zhu, Renzhang; Misra, A. K.; Lin, Huabao

    The dynamics of tether-assisted reentry of a capsule is considered in this paper. A major advantage in tethered-assisted reentry is the ability to replace a retro-rocket by a tether. In this reentry procedure, a capsule is deployed down to a design altitude near the local vertical, and at an appropriate time the capsule is disconnected from the tether and enters into a reentry trajectory. In addition to static release, swing release is also considered in this paper. Three deployment schemes appropriate for swing release are considered. A two-stage accelerated-exponential/decelerated-exponential deployment appears to be the best of the three. In comparison with static release, for the same duration of return, this swing release can lead to about 22 percent reduction in tether length at the cost of an increase in tension in the tether by only 8 to 12 percent, and thus, it could decrease the tether mass launched into space. The paper analyzes the detailed dynamics of the tethered system before release as well as the reentry dynamics of the capsule after release along with the heat generated during reentry.

  5. Orion moved at Kennedy Space Center on This Week @NASA - October 3, 2014

    NASA Image and Video Library

    2014-10-03

    On Sept. 28, NASA’s Orion spacecraft was moved from Kennedy Space Center’s Payload Hazardous Servicing Facility to its Launch Abort System Facility, for installation of its launch abort system, one of the many critical safety systems that will be evaluated during Orion’s un-crewed Exploration Flight Test -1, in December. NASA’s new deep space capsule is being developed to safely transport astronauts to and from Mars and other destinations on future missions. Also, Delta IV Heavy moved to the launch pad, U.S. spacewalks previewed, NASA and India to discuss joint exploration, Helicopter safety crash test, Combined Federal Campaign underway and Stop, Think, Connect!

  6. The cable catapult - Putting it there and keeping it there

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-01-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  7. The cable catapult - Putting it there and keeping it there

    NASA Astrophysics Data System (ADS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-07-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  8. Entry Descent and Landing Workshop Proceedings. Volume 1; Inflatable Reentry Vehicle Experiment-3 (IRVE-3) Project Overview & Instrumentation

    NASA Technical Reports Server (NTRS)

    Dillman, Robert

    2015-01-01

    Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).

  9. KSC-2010-5800

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft race toward orbit after launching from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. The Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Kevin O'Connell

  10. KSC-2010-5801

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft race toward orbit after launching from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. The Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray

  11. COTS-1

    NASA Image and Video Library

    2010-12-08

    The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX

  12. KSC-99pp1031

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- Gunther Wendt takes a turn at the podium after viewing the recovered Liberty Bell 7 Project Mercury capsule, seen in the background. At right is Curt Newport who led the expedition to find and retrieve the capsule. The expedition was sponsored by the Discovery Channel. Wendt worked on the Liberty Bell 7 before its launch July 21, 1961. After its successful 16-minute suborbital flight, the Liberty Bell 7, with astronaut Virgil "Gus" Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y

  13. Experimental measurement on movement of spiral-type capsule endoscope

    PubMed Central

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability. PMID:26848279

  14. Experimental measurement on movement of spiral-type capsule endoscope.

    PubMed

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability.

  15. KSC-2012-5907

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s pusher escape system rockets its New Shepard crew capsule away from a simulated propulsion module launch pad at the company's West Texas launch site, demonstrating a key safety system for both suborbital and orbital flights. The pad escape test took the company's suborbital crew capsule to an altitude of 2,307 feet during the flight test before descending safely by parachute to a soft landing 1,630 feet away. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  16. Neutron Activation Analysis of Single Grains Recovered by the Hayabusa Spacecraft

    NASA Technical Reports Server (NTRS)

    Ebihara, M.; Sekimoto, S.; Hamajima, Y.; Yamamoto, M.; Kumagai, K.; Oura, Y.; Shirai, N.; Ireland. T. R.; Kitajima, F.; Nagao, K.; hide

    2011-01-01

    The Hayabusa spacecraft was launched on May 9, 2003 and reached an asteroid Itokawa (25143 Itokawa) in September 2005. After accomplishing several scientific observations, the spacecraft tried to collect the surface material of Itokawa by touching down to the asteroid in November. The spacecraft was then navigated for the earth. In encountering several difficulties, Hayabusa finally returned to the earth on June 12, 2010 and the entry capsule was successfully recovered. Initially, a g-scale of solid material was aimed to be captured into the entry capsule. Although the sample collection was not perfectly performed, it was hoped that some extraterrestrial material was stored into the capsule. After careful and extensive examination, more than 1500 particles were recognized visibly by microscopes, most of which were eventually judged to be extraterrestrial, highly probably originated from Itokawa [1]. Several years before the launching of the Hayabusa spacecraft, the initial analysis team was officially formed under the selection panel at ISAS. As a member of this team, we have been preparing for the initial inspection of the returned material from many scientific viewpoints [2]. Once the recovered material had been confirmed to be much less than 1 g, a scheme for the initial analysis was updated accordingly [3]. In this study, we aim to analyze tiny single grains by instrumental neutron activation analysis (INAA). As the initial analysis is to be started in mid-January, 2011, some progress for the initial analysis using INAA is described here. Analytical procedure

  17. Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques.

    PubMed

    Vilanova, Neus; Rodríguez-Abreu, Carlos; Fernández-Nieves, Alberto; Solans, Conxita

    2013-06-12

    A novel approach for the synthesis of silicone capsules using double W/O/W emulsions as templates is introduced. The low viscosity of the silicone precursors enables the use of microfluidic techniques to accurately control the size and morphology of the double emulsion droplets, which after cross-linking result in the desired monodisperse silicone capsules. Their shell thickness can be finely tuned, which in turn allows control over their permeability and mechanical properties; the latter are particularly important in a variety of practical applications where the capsules are subjected to large external forces. The potential of these capsules for controlled release is also demonstrated using a model hydrophilic substance.

  18. KSC-99pp1034

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- Waiting for the arrival of the Liberty Bell 7 after its raising from the ocean floor. Liberty Bell 7 launched U.S. Air Force Captain Virgil "Gus" Grissom July 21, 1961 on a mission that lasted 15 minutes and 37 seconds before sinking to the floor of the Atlantic Ocean, three miles deep. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule is now restored and preserved, and part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot.

  19. Closed Loop Control of a Tethered Magnetic Capsule Endoscope

    PubMed Central

    Taddese, Addisu Z.; Slawinski, Piotr R.; Obstein, Keith L.; Valdastri, Pietro

    2017-01-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy. PMID:28286886

  20. Closed Loop Control of a Tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-06-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy.

  1. Chimpanzee 'Ham' In Biopack Couch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee 'Ham' over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  2. KSC-2010-5802

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX

  3. Mercury Project

    NASA Image and Video Library

    1961-01-31

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  4. Mercury Project

    NASA Image and Video Library

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  5. KSC-99pc49

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, workers look over the solar panels on the Stardust spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  6. KSC-99pc43

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, workers adjust the solar panels of the Stardustspacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  7. KSC-99pc38

    NASA Image and Video Library

    1999-01-11

    Workers in the Payload Hazardous Servicing Facility deploy a solar panel on the Stardust spacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  8. KSC-99pc41

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, a worker (left) conducts lighting tests on the fully extended solar panels of the Stardustspacecraft. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  9. KSC-2014-2184

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - An image of SpaceX CEO and chief designer Elon Musk is displayed in the NASA Press Site news auditorium at Kennedy Space Center in Florida during a SpaceX-3 post-launch news conference. Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  10. Pain & resistance in patients with adhesive capsulitis during contrast material injection phase of MR arthrography.

    PubMed

    Yilmaz, Mehmet Halit; Kantarci, Fatih; Adaletli, Ibrahim; Ulus, Sila; Gulsen, Fatih; Ozer, Harun; Aktas, Ilknur; Akgun, Kenan; Kanberoglu, Kaya

    2007-04-01

    Adhesive capsulitis of the shoulder is a condition of unknown aetiology that results in the development of restricted active and passive glenohumeral motion. It has been reported that magnetic resonance (MR) imaging is useful in diagnosing adhesive capsulitis. We carried out this study to assess how pain and/or resistance during contrast material injection affects the diagnosis of adhesive capsulitis on magnetic resonance (MR) arthrography. The study included MR arthrography examinations of 21 patients with a diagnosis of adhesive capsulitis. The control group consisted of 20 patients who presented clinically with rotator cuff tear. The pain (visual analog scale, VAS), resistance to injection and the amount of contrast material that could be injected during injection phase of MR arthrography was assessed and compared between groups. The patients in adhesive capsulitis group (mean VAS score 66.5+/-25.5) experienced more pain when compared with the control group (mean VAS score 34.9+/-27.7, P<0.001). A statistically significant difference (P<0.001) in terms of the amount of the injected fluid (4.3+/-2.6 ml for adhesive capsulitis group, and 10.9+/-4.1 ml for control group) was seen into the joint cavity. Resistance to injection was significantly more (P<0.001) in patients with adhesive capsulitis when compared to control group. Experience of pain during injection, a decreased amount of contrast material injected and resistance to injection in patients during injection phase of MR arthrography may suggest adhesive capsulitis.

  11. KSC-05PD-1267

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This is Launch Complex 5/6 blockhouse, now a museum at the Cape Canaveral Air Force Station (CCAFS) in Florida, where long-lost space suits were found. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  12. KSC-05PD-1274

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This is Launch Complex 5/6 blockhouse, now a museum at the Cape Canaveral Air Force Station (CCAFS) in Florida, where long-lost spacesuits were found. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, with Delaware North Parks and Resorts, which oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  13. Polyelectrolyte multilayer capsules as vehicles with tunable permeability.

    PubMed

    Antipov, Alexei A; Sukhorukov, Gleb B

    2004-11-29

    This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.

  14. Cell cycle constraints on capsulation and bacteriophage susceptibility.

    PubMed

    Ardissone, Silvia; Fumeaux, Coralie; Bergé, Matthieu; Beaussart, Audrey; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Dufrêne, Yves F; Viollier, Patrick H

    2014-11-25

    Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.

  15. KSC-2012-4198

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4200

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-4202

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as he gets a close look at the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-4201

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  19. Ballistics Analysis of Orion Crew Module Separation Bolt Cover

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Konno, Kevin E.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    NASA is currently developing a new crew module to replace capabilities of the retired Space Shuttles and to provide a crewed vehicle for exploring beyond low earth orbit. The crew module is a capsule-type design, which is designed to separate from the launch vehicle during launch ascent once the launch vehicle fuel is expended. The separation is achieved using pyrotechnic separation bolts, wherein a section of the bolt is propelled clear of the joint at high velocity by an explosive charge. The resulting projectile must be contained within the fairing structure by a containment plate. This paper describes an analytical effort completed to augment testing of various containment plate materials and thicknesses. The results help guide the design and have potential benefit for future similar applications.

  20. The influence of encapsulated embryos on the timing of hatching in the brooding gastropod Crepipatella dilatata

    NASA Astrophysics Data System (ADS)

    Andrade-Villagrán, P. V.; Baria, K. S.; Montory, J. A.; Pechenik, J. A.; Chaparro, O. R.

    2018-01-01

    Encapsulated embryos are generally thought to play an active role in escaping from egg capsules or egg masses. However, for species that brood their egg capsules, the factors controlling the timing of hatching are largely unclear, particularly the degree to which hatching is controlled by the embryos rather than by the mother, and the degree to which the hatching of one egg capsule influences the hatching of sister egg capsules within the same egg mass. We studied aspects of hatching using the direct-developing gastropod Crepipatella dilatata, which includes nurse eggs in its egg capsules and broods clusters of egg capsules for at least several weeks before metamorphosed juveniles are released. Isolated egg capsules were able to hatch successfully, in the absence of the mother. Moreover, the hatching of one capsule did not cause adjacent sister capsules to hatch. Hatched and un-hatched sister egg capsules from the same egg mass differed significantly in the number of metamorphosed juveniles, average shell size, offspring biomass (juveniles + veliger larvae), and the number of nurse eggs remaining per egg capsule. Differences in when egg capsules hatched within a single egg mass were not explained by differences in egg capsule age. Hatching occurred only after most nurse eggs had been ingested, most offspring had metamorphosed into juveniles, and juveniles had reached a mean shell length > 1.36 mm. Whether the mother has any role to play in coordinating the hatching process or juvenile release remains to be determined.

  1. A survey of the efficacy of sustained-release monensin capsules in the control of bloat in dairy cattle.

    PubMed

    Cameron, A R; Malmo, J

    1993-01-01

    Thirty-four farms in the Macalister Irrigation District in Gippsland, Victoria, using sustained-release monensin capsules in 5102 cattle in the 1990 bloat season were surveyed. Questions were asked about the prevention and incidence of bloat in 1989 and 1990. Eight farms not using the capsules were selected to act as controls. Relatively low rates of broken capsules (0.6%), injury to animals at administration (0.06%) and regurgitation (1.02%) were reported. A variety of preventive techniques were used. There was a significant decrease in the use of pasture spraying, drinking water administration and flank spraying of anti-bloat substances on the farms using the capsules in the 1990 season, with no compensatory rise in the use of other techniques. There was no significant change in bloat prevention techniques used on the control farms over the same period. Significantly fewer cattle on the farms using capsules were treated for, and fewer died of clinical bloat in 1990 than in 1989. There was no significant change in the incidence of bloat on the control farms over the same period. It was considered that the anti-bloat capsules were effective in reducing the incidence of clinical bloat in pasture-fed dairy cattle.

  2. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.

    PubMed

    Zhang, Cheng; Liu, Hao; Tan, Renjia; Li, Hongyi

    2014-03-01

    Active capsule endoscope could also be called capsule robot, has been developed from laboratory research to clinical application. However, the system still has defects, such as poor controllability and failing to realize automatic checks. The imperfection of the interaction model between capsule robot and intestine is one of the dominating reasons causing the above problems. A model is hoped to be established for the control method of the capsule robot in this article. It is established based on nonlinear viscoelasticity. The interaction force of the model consists of environmental resistance, viscous resistance and Coulomb friction. The parameters of the model are identified by experimental investigation. Different methods are used in the experiment to obtain different values of the same parameter at different velocities. The model is proved to be valid by experimental verification. The achievement in this article is the attempted perfection of an interaction model. It is hoped that the model can optimize the control method of the capsule robot in the future.

  3. KSC-2012-6430

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  4. KSC-2012-6447

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  5. KSC-2012-6428

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  6. KSC-2012-6429

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  7. KSC-2012-6446

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  8. KSC-2012-6445

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  9. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  10. A Chimpanzee, 'Ham,' in the Biopack Couch for the MR-2 Flight

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee 'Ham' over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  11. KSC-99pc45

    NASA Image and Video Library

    1999-01-11

    Bright white light (left) and blue light (upper right) appear on the solar panels of the Stardust spacecraft during lighting tests in the Payload Hazardous Servicing Facility. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  12. KSC-99pc48

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, workers get ready to rotate the Stardust spacecraft before deploying the solar panels (at left and right) for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  13. KSC-99pc47

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, workers raise the Stardust spacecraft from its workstand to move it to another area for lighting tests on the solar panels. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006

  14. KSC-99pc40

    NASA Image and Video Library

    1999-01-11

    Workers in the Payload Hazardous Servicing Facility watch as the Stardust spacecraft is rotated and lowered before deploying the solar panels for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (seen on top of the spacecraft) to be jettisoned as it swings by Earth in January 2006

  15. KSC-99pc44

    NASA Image and Video Library

    1999-01-11

    In the Payload Hazardous Servicing Facility, a worker looks over the solar panels of the Stardust spacecraft before it undergoes lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (its white cap is seen on the left) to be jettisoned as it swings by Earth in January 2006

  16. Capsule endoscopy: no longer limited to the small bowel.

    PubMed

    Niv, Yaron

    2010-03-01

    Capsule endoscopy is the latest evolution in gastrointestinal endoscopy and the first to enable complete investigation of the small bowel. Recent new developments in the field of capsule endoscopy include the esophageal capsule (Pilcam ESO) and the colonic capsule (PillCam Colon). esophageal and colonic capsules have two heads with two lenses and cameras. The new capsules have the capability of taking more frames from both sides. The indications for the esophageal capsule examination are diagnosis and follow-up of Barrett's esophagus and esophageal varices. The colonic capsule can be used for colorectal cancer screening and for incomplete colonoscopy. Regarding other new technologies, continuous quality control is needed for the performance, appropriateness of the indications, diagnostic yield, procedure-specific outcome assessment, and cost-effectiveness.

  17. Impact of Heparan Sulfate Chains and Sulfur-Mediated Bonds on the Mechanical Properties of Bovine Lens Capsule

    PubMed Central

    Dyksterhuis, L.D.; White, J.F.; Hickey, M.; Kirby, N.; Mudie, S.; Hawley, A.; Vashi, A.; Nigro, J.; Werkmeister, J.A.; Ramshaw, J.A.M.

    2011-01-01

    We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale. PMID:21539774

  18. NASA Photographer Prepares to Film a Mercury Capsule

    NASA Image and Video Library

    1959-06-21

    National Aeronautics and Space Administration (NASA) photographer Arthur Laufman sets up a camera to film a Mercury capsule that was constructed by the Lewis Research Center staff. Lewis engineers and mechanics built two of the capsules for the upcoming Big Joe launches in September 1959. Big Joe was an attempt early in Project Mercury to use a full-scale Atlas booster to simulate the reentry of a mock-up Mercury capsule without actually placing it in orbit. The Photographic Branch, referred to as the Photo Lab, was part of the center’s Technical Reports Division. Originally the group performed normal and high-speed still image and motion picture photography. The photographers documented construction, performed publicity work, created images for reports, photographed data on manometer boards, and recorded test footage. Laufman joined the Photo Lab staff in 1948 and began producing full-length technical films as a tool to educate those outside of the agency on the research being conducted at Lewis. He worked with engineers to determine proper subjects for these films and develop a script. Laufman not only filmed tests, but also supporting footage of facilities, models, and staff members. He then edited the footage and added audio, visuals, and narration. The film masters were assigned standard identification numbers and add to the Photo Lab’s catalogue.

  19. Controlled enzyme-catalyzed degradation of polymeric capsules templated on CaCO₃: influence of the number of LbL layers, conditions of degradation, and disassembly of multicompartments.

    PubMed

    Marchenko, Irina; Yashchenok, Alexey; Borodina, Tatiana; Bukreeva, Tatiana; Konrad, Manfred; Möhwald, Helmuth; Skirtach, Andre

    2012-09-28

    Enzyme-catalyzed degradation of CaCO₃-templated capsules is presented. We investigate a) biodegradable, b) mixed biodegradable/synthetic, and c) multicompartment polyelectrolyte multilayer capsules with different numbers of polymer layers. Using confocal laser scanning microscopy we observed the kinetics of the non-specific protease Pronase-induced degradation of capsules is slowed down on the order of hours by either increasing the number of layers in the wall of biodegradable capsules, or by inserting synthetic polyelectrolyte multilayers into the shell comprised of biodegradable polymers. The degradation rate increases with the concentration of Pronase. Controlled detachment of subcompartments of multicompartment capsules, with potential for intracellular delivery or in-vivo applications, is also shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cell cycle constraints on capsulation and bacteriophage susceptibility

    PubMed Central

    Ardissone, Silvia; Fumeaux, Coralie; Bergé, Matthieu; Beaussart, Audrey; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Dufrêne, Yves F; Viollier, Patrick H

    2014-01-01

    Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity. DOI: http://dx.doi.org/10.7554/eLife.03587.001 PMID:25421297

  1. Polyelectrolyte capsules preloaded with interconnected alginate matrix: An effective capsule system for encapsulation and release of macromolecules.

    PubMed

    Sundaramurthy, Anandhakumar; Sundramoorthy, Ashok K

    2018-02-01

    In recent years, the design of stimuli-responsive hollow polymeric capsules is of tremendous interest for the scientific community because of the broad application of these capsules in the biomedical field. The use of weak polyelectrolytes as layer components for capsule fabrication is especially interesting as it results in hollow capsules that show unique release characteristics under physiological conditions. In this work, a methodology to prepare sub-micron sized alginate doped calcium carbonate (CaCO 3 ) particles through controlled precipitation in the presence of alginate is reported. Hollow capsules obtained by Layer-by-Layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are showing an interconnected alginate matrix in the interior of the capsules. Investigations showed that the presence of alginate matrix enhances the encapsulation of cationic molecules (e.g. doxorubicin hydrochloride) manifold by charge controlled attraction mechanism. Capsule permeability investigated by confocal laser scanning microscopy revealed that the transformation from an open state to closed state is accompanied by an intermediate state where capsules are neither open nor closed. Furthermore, time dependent study indicated that the encapsulation process is linear as a function of time. The cell viability experiments demonstrated excellent biocompatibility of hollow capsules with mouse embryonic fibroblast cells. Anticancer investigations showed that DOX loaded capsules have significant anti-proliferative characteristics against HeLa cells. Such capsules have high potential for use as drug carrier for cationic drugs in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Control and monitoring of oxygen fugacity in piston cylinder experiments

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Brooker, Richard A.; Tattitch, Brian; Blundy, Jon D.; Stamper, Charlotte C.

    2015-01-01

    We present a newly developed capsule design that resolves some common problems associated with the monitoring and control of oxygen fugacity ( fO2) in high-pressure piston cylinder experiments. The new fO2 control assembly consists of an AuPd outer capsule enclosing two inner capsules: one of AuPd capsule containing the experimental charge (including some water), and the other of Pt containing a solid oxygen buffer plus water. The inner capsules are separated by crushable alumina. The outer capsule is surrounded by a Pyrex sleeve to simultaneously minimise hydrogen loss from the cell and carbon infiltration from the graphite furnace. Controlled fO2 experiments using this cell design were carried out at 1.0 GPa and 1,000 °C. We used NiPd, CoPd and (Ni, Mg)O fO2 sensors, whose pressure sensitivity is well calibrated, to monitor the redox states achieved in experiments buffered by Re-ReO2, Ni-NiO and Co-CoO, respectively. Results for the fO2 sensors are in good agreement with the intended fO2 established by the buffer, demonstrating excellent control for durations of 24-48 h, with uncertainties less than ± 0.3 log bar units of fO2.

  3. Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome.

    PubMed

    Batur, Muhammed; Seven, Erbil; Tekin, Serek; Yasar, Tekin

    2017-11-01

    The aim of this study was to evaluate anatomic properties of the lens capsule and iris by anterior segment optical coherence tomography (AS-OCT) in patients with pseudoexfoliation (PEX). This prospective study included 62 eyes of 62 patients with PEX syndrome and 43 eyes of 43 age- and gender-matched controls. All subjects underwent full ophthalmologic examinations including AS-OCT. Pupillary diameter, midperipheral stromal iris thickness, central and temporal lens capsule thicknesses, and peripheral pseudoexfoliation material thickness on the anterior lens capsule surface were measured and recorded. Mean age was 66.8 ± 9.3 years in the PEX group and 65.5 ± 8.9 years in the control group (p = 0.44). The PEX group consisted of 62 patients: 38 men (61.3%) and 24 women (38.7%); the control group included 43 subjects: 25 men (58.1%) and 18 women (41.9%). Pupillary diameter after pharmacologic mydriasis was 21% smaller in the PEX group than controls. Mean midperipheral iris thickness was 36 ± 7.2 μm (7.8%) thinner in the PEX group than that of control group (p = 0.047). The central anterior capsule was a mean of 3.40 ± 0.51 μm (18%) thicker in the PEX group compared to the control group (p = 0.0001). The temporal anterior lens capsule was a mean of 0.17 ± 0.15 μm thicker in the PEX group compared to the control group (p = 0.81). With high-resolution OCT imaging, it has become possible to evaluate the anterior lens capsule without histologic examination and demonstrate that it is thicker than normal in PEX patients.

  4. KSC-2012-4203

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-4199

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  6. Statistical tools and control of internal lubricant content of inhalation grade HPMC capsules during manufacture.

    PubMed

    Ayala, Guillermo; Díez, Fernando; Gassó, María T; Jones, Brian E; Martín-Portugués, Rafael; Ramiro-Aparicio, Juan

    2016-04-30

    The internal lubricant content (ILC) of inhalation grade HPMC capsules is a key factor to ensure good powder release when the patient inhales a medicine from a dry powder inhaler (DPI). Powder release from capsules has been shown to be influenced by the ILC. The characteristics used to measure this are the emitted dose, fine particle fraction and mass median aerodynamic diameter. In addition the ILC level is critical for capsule shell manufacture because it is an essential part of the process that cannot work without it. An experiment has been applied to the manufacture of inhalation capsules with the required ILC. A full factorial model was used to identify the controlling factors and from this a linear model has been proposed to improve control of the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. KSC-2014-2076

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson

  8. KSC-2014-2074

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson

  9. KSC-2014-2073

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson

  10. KSC-2014-2183

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Media representatives participate in a post-launch news conference in the NASA Press Site news auditorium at Kennedy Space Center in Florida following the SpaceX-3 launch. On the dais are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-5729

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- The participants of a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida are all smiles following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. On the dais are, from left, Michael Curie, NASA Public Affairs, Sam Scimemi, director of International Space Station at NASA Headquarters, and Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-5728

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- Sam Scimemi, director of International Space Station at NASA Headquarters, addresses news and social media representatives during a post-launch news conference in the Press Site auditorium at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Also participating in the conference are Michael Curie, at left, NASA Public Affairs, and Gwynne Shotwell, at right, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-2012-5731

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- News and social media representatives participate in a post-launch news conference in the Press Site auditorium at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. On the dais are, from left, Michael Curie, NASA Public Affairs, Sam Scimemi, director of International Space Station at NASA Headquarters, and Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-5717

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden addresses news and social media representatives at the Press Site at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Beside him on the podium is Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-5718

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden addresses news and social media representatives at the Press Site at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Beside him on the podium is Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-5719

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden addresses news and social media representatives at the Press Site at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Beside him on the podium is Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-5720

    NASA Image and Video Library

    2012-10-07

    CAPE CANAVERAL, Fla. -- Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX, takes her turn at the podium from NASA Administrator Charlie Bolden, at right. Bolden and Shotwell are addressing news and social media representatives at the Press Site at NASA's Kennedy Space Center in Florida following the successful launch of NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. SpaceX built both the Falcon 9 rocket and Dragon capsule that launched at 8:35 p.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2182

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  19. KSC-2014-2179

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-4054

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Rocket University participants launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-6448

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lower a special fixture around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  2. KSC-2012-6449

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lower a special fixture around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  3. KSC-2012-6450

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – A special fixture stands in place around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  4. KSC-98pc1639

    NASA Image and Video Library

    1998-11-12

    The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006

  5. KSC-98pc1640

    NASA Image and Video Library

    1998-11-12

    The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006

  6. Prefabricated foldable lunar base modular systems for habitats, offices, and laboratories

    NASA Technical Reports Server (NTRS)

    Hijazi, Yousef

    1992-01-01

    The first habitat and work station on the lunar surface undoubtedly has to be prefabricated, self-erecting, and self-contained. The building structure should be folded and compacted to the minimum size and made of materials of minimum weight. It must also be designed to provide maximum possible habitable and usable space on the Moon. For this purpose the concept of multistory, foldable structures was further developed. The idea is to contain foldable structural units in a cylinder or in a capsule adapted for launching. Upon landing on the lunar surface, the cylinder of the first proposal in this paper will open in two hinge-connected halves while the capsule of the second proposal will expand horizontally and vertically in all directions. In both proposals, the foldable structural units will self-erect providing a multistory building with several room enclosures. The solar radiation protection is maintained through regolith-filled pneumatic structures as in the first proposal, or two regolith-filled expandable capsule shells as in the second one, which provide the shielding while being supported by the erected internal skeletal structure.

  7. Stardust Entry: Landing and Population Hazards in Mission Planning and Operations

    NASA Technical Reports Server (NTRS)

    Desai, P.; Wawrzyniak, G.

    2006-01-01

    The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.

  8. Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane

    2015-02-15

    Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Right lateral position improves complete examination rate of capsule endoscope: a prospective randomized, controlled trial.

    PubMed

    Liao, Z; Li, F; Li, Z-S

    2008-06-01

    In 20% of patients, capsule endoscopes fail to reach the cecum within the 8-hour battery life. This is the most common cause of incomplete small-bowel examination. The aim of this study was to determine whether keeping patients in the right lateral position (RLP) improves the complete examination rate (CER) of the small bowel by reducing the gastric transit time (GTT) of the capsule. Patients were randomized into the RLP group (n = 30) or control group (n = 30). Patients in the RLP group were instructed to lie on their right side postingestion until the capsule had passed through the pylorus. The patients in the control group were free to walk or sit (upright position). The main outcomes were the CER and GTT between the groups. There was no significant difference in the sex, mean age, and indications between the two groups. The CER was significantly higher in the RLP group than in the controls (96.7% vs. 73.3%, P = 0.030). GTT was significantly shorter in the RLP group than in the control group (medians [range]: 32 [8-108] vs. 58 [9-208] minutes, P = 0.007). Small-bowel imaging time was significantly longer in the RLP group than in the control group (372 [135-425] vs. 292 [146-422] minutes, P = 0.039). There were no significant differences in the diagnostic yields between the two groups. Placing patients in the RLP after ingestion of the capsule endoscope and before the capsule enters the pylorus is a simple method to increase the CER of the small bowel by reducing the GTT of the capsule.

  10. Redox-controlled molecular permeability of composite-wall microcapsules

    NASA Astrophysics Data System (ADS)

    Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.

    2006-09-01

    Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.

  11. A review of drug delivery systems for capsule endoscopy.

    PubMed

    Munoz, Fredy; Alici, Gursel; Li, Weihua

    2014-05-01

    The development of a highly controllable drug delivery system (DDS) for capsule endoscopy has become an important field of research due to its promising applications in therapeutic treatment of diseases in the gastrointestinal (GI) tract and drug absorption studies. Several factors need to be considered to establish the minimum requirements for a functional DDS. Environmental factors of the GI tract and also pharmaceutical factors can help determine the requirements to be met by a DDS in an endoscopic capsule. In order to minimize the influence of such factors on the performance of an effective DDS, at least two mechanisms should be incorporated into a capsule endoscope: an anchoring mechanism to control the capsule position and a drug release mechanism to control variables such as the drug release rate, number of doses and amount of drug released. The implementation of such remotely actuated mechanisms is challenging due to several constraints, including the limited space available in a swallowable capsule endoscope and the delicate and complex environment within the GI tract. This paper presents a comprehensive overview of existing DDS. A comparison of such DDS for capsule endoscopy based on the minimum DDS requirements is presented and future work is also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The effects of hematoma on implant capsules.

    PubMed

    Caffee, H H

    1986-02-01

    Hematoma surrounding an implant is one of the many factors that have been suggested as possible causes for scar capsule contracture. In this study, experiments were designed to determine the influence of hematoma on the incidence and severity of capsule contracture in rabbits. Two implants were placed in each animal, 1 with a surrounding hematoma and 1 control. Capsules were evaluated subjectively and compared objectively with measurements of deformability, surface area, and capsule thickness. No differences were found with any of the objective criteria, which suggests that hematoma may not be a noteworthy cause of implant capsule contracture.

  13. Crossed-swords, capsule-pinch technique for capsulotomy in pediatric and/or loose lens cataract extraction.

    PubMed

    Snyder, Michael E; Lindsell, Luke B

    2010-02-01

    Puncturing the anterior capsule in a patient with a very soft lens, an elastic capsule, and/or deficient zonular countertraction can be challenging even with a sharp needle or blade. The crossed-swords, capsule-pinch technique capitalizes on opposing forces from 2 needles directed toward each other with a "pinch" of the capsule between their tips. This affords a controlled and facile puncture of the capsule without creating stress on the zonules or anteroposterior displacement of the lens. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Preliminary observations on the effects of vector-averaged gravity on the embryonic and larval development of the gastropod mollusk, Ilyanassa obsoleta Stimpson

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Stephens, A. P.; Conrad, A. H.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Fertilized eggs of Ilyanassa obsoleta Stimpson were collected immediately after their deposition in egg capsules. Unopened egg capsules then were affixed to glass slides, and incubated either statically (controls) or on a clinostat (experimentals). After incubation for 9-14 days, hatching occurred sooner and in a higher percentage of clinostated capsules than in controls. Embryos that hatched while undergoing clinostat incubation were abnormal in morphology, whereas other embryos present in non-hatched capsules in the same tubes appeared normal, as did embryos in the control tubes. Although the results are compatible with a conclusion that vector-averaged gravity in the experimental tubes caused the altered development, some other aspects of how the incubations were done may have contributed to the differences between the control and experimental results.

  15. Mars Sample Return Using Commercial Capabilities: ERV Trajectory and Capture Requirements

    NASA Technical Reports Server (NTRS)

    Faber, Nicolas F.; Foster, Cyrus James; Wilson, David; Gonzales, Andrew; Stoker, Carol R.

    2013-01-01

    Mars Sample Return was presented as the highest priority planetary science mission of the next decade [1]. Lemke et al. [2] present a Mars Sample Return mission concept in which the sample is returned directly from the surface of Mars to an Earth orbit. The sample is recovered in Earth Orbit instead of being transferred between spacecraft in Mars Orbit. This paper provides the details of this sample recovery in Earth orbit and presents as such a sub-element of the overall Mars sample return concept given in [2]. We start from the assumption that a Mars Ascent Vehicle (MAV), initially landed on Mars using a modified SpaceX Dragon capsule, has successfully delivered the sample, already contained within an Earth Return Vehicle (ERV), to a parking orbit around Mars. From the parking orbit, the ERV imparts sufficient Delta-V to inject itself into an earthbound trajectory and to be captured into an Earth orbit eventually. We take into account launch window and Delta-V considerations as well as the additional constraint of increased safety margins imposed by planetary protection regulations. We focus on how to overcome two distinct challenges of the sample return that are driven by the issues of planetary protection: (1) the design of an ERV trajectory meeting all the requirements including the need to avoid contamination of Earth's atmosphere; (2) the concept of operations for retrieving the Martian samples in Earth orbit in a safe way. We present an approach to retrieve the samples through a rendezvous between the ERV and a second SpaceX Dragon capsule. The ERV executes a trajectory that brings it from low Mars orbit (LMO) to a Moon-trailing Earth orbit at high inclination with respect to the Earth-Moon plane. After a first burn at Trans-Earth Injection (TEI), the trajectory uses a second burn at perigee during an Earth flyby maneuver to capture the ERV in Earth orbit. The ERV then uses a non-propulsive Moon flyby to come to a near-circular Moon-trailing orbit. To perform the Earth Orbit Rendezvous (EOR), a second Dragon capsule is then launched from Earth and a similar lunar flyby is performed to rendezvous with the ERV. The requirements for rendezvous, close proximity operations and capture of the sample canister are described. A concept of operations for sample retrieval is presented along with design specifications of the ERV, the required modifications to the Dragon capsule, as well as the hardware, software, sensors, actuators, and capture mechanisms used. In our concept, a container is mounted to the front hatch of Dragon, capable of accommodating the sample canister and sealing it from the rest of the capsule. The sample canister is captured using a robotic arm with a magnetic grappling mechanism. Dragon then performs a propulsive maneuver to return to Earth for a controlled re-entry while the ERV (sans sample container) is left in the Moon trailing orbit. Contingency cases and related mitigation strategies are also discussed, including the advantages and disadvantages of performing the ERV rendezvous with a crew.

  16. The development of sine vibration test requirements for Viking lander capsule components

    NASA Technical Reports Server (NTRS)

    Barrett, S.

    1974-01-01

    In connection with the Viking project for exploring the planet Mars, two identical spacecraft, each consisting of an orbiter and a lander, will be launched in the third quarter of 1975. Upon arrival at the planet, the Viking lander will separate from the Viking orbiter and descend to a soft landing at a selected site on the Mars surface. It was decided to perform a sine vibration test on the Viking spacecraft, in its launch configuration, to qualify it for the booster-induced transient-dynamic environment. It is shown that component-level testing is a cost- and schedule-effective prerequisite to the system-level, sine-vibration test sequences.

  17. Heroes and Legends Exhibit

    NASA Image and Video Library

    2016-11-07

    Inside the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex, the Sigma 7 Mercury spacecraft in this exhibit was piloted by astronaut Wally Schirra during his six-orbit mission on Oct. 3, 1962. For display purposes, it is shown here attached to a Redstone launch vehicle like the one that boosted astronauts Alan Shepard and Gus Grissom on sub-orbital flights in 1961. Schirra's capsule was actually launched by the more powerful Atlas rocket in order to reach orbit. The new facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  18. Remote magnetic control of a wireless capsule endoscope in the esophagus is safe and feasible: results of a randomized, clinical trial in healthy volunteers.

    PubMed

    Keller, Jutta; Fibbe, Christiane; Volke, Frank; Gerber, Jeremy; Mosse, Alexander C; Reimann-Zawadzki, Meike; Rabinovitz, Elisha; Layer, Peter; Swain, Paul

    2010-11-01

    Remote control of esophageal capsule endoscopes could enhance diagnostic accuracy. To assess the safety and efficacy of remote magnetic manipulation of a modified capsule endoscope (magnetic maneuverable capsule [MMC]; Given Imaging Ltd, Yoqneam, Israel) in the esophagus of healthy humans. Randomized, controlled trial. Academic hospital. This study involved 10 healthy volunteers. All participants swallowed a conventional capsule (ESO2; Given Imaging) and a capsule endoscope with magnetic material, the MMC, which is activated by a thermal switch, in random order (1 week apart). An external magnetic paddle (EMP; Given Imaging) was used to manipulate the MMC within the esophageal lumen. MMC responsiveness was evaluated on a screen showing the MMC film in real time. Safety and tolerability of the procedure (questionnaire), responsiveness of the MMC to the EMP, esophageal transit time, and visualization of the Z-line. No adverse events occurred apart from mild retrosternal pressure (n = 5). The ability to rotate the MMC around its longitudinal axis and to tilt it by defined movements of the EMP was clearly demonstrated in 9 volunteers. Esophageal transit time was highly variable for both capsules (MMC, 111-1514 seconds; ESO2, 47-1474 seconds), but the MMC stayed longer in the esophagus in 8 participants (P < .01). Visualization of the Z-line was more efficient with the ESO2 (inspection of 73% ± 18% of the circumference vs 33% ± 27%, P = .01). Magnetic forces were not strong enough to hold the MMC against peristalsis when the capsule approached the gastroesophageal junction. Remote control of the MMC in the esophagus of healthy volunteers is safe and feasible, but higher magnetic forces may be needed. Copyright © 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  19. Testing low-mode symmetry control with low-adiabat, extended pulse-lengths in BigFoot implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.

    2017-10-01

    The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Beaty, James R.; Lepsch, Roger A.; Gilbert, Michael G.

    2015-01-01

    This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome.

  1. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-01-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.

  2. KSC-2012-4320

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. To the left is the aerodynamic shell that will cover the capsule during launch. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  3. KSC-2012-1472

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  4. KSC-2012-1474

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  5. KSC-2012-4049

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-4050

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-4053

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-4044

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  9. Expedition 9 Soyuz Assembly

    NASA Image and Video Library

    2004-04-15

    As engineers at the Baikonur Cosmodrome prepare to mate the Soyuz TMA-4 capsule with its booster rocket in preparation for a launch on April 19 of the Expedition 9 crew and a European astronaut to the International Space Station, a worker sits next to the book where technicians sign off after each step is completed of the Soyuz mating procedure, Friday, April 16, 2004 in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  10. Vice President Mike Pence visits Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence, second from right; NASA Acting Administrator Robert Lightfoot, left; Deputy Director, Kennedy Space Center, Janet Petro, second from left; NASA astronaut Reid Wiseman, center; and Director, Kennedy Space Center, Robert Cabana, right, look at the Orion capsule that will fly on the first integrated flight with the Space Launch System rocket in 2019, during a tour of the Kennedy Space Center's Operations and Checkout Building.

  11. Activity of the nematophagous fungi Pochonia chlamydosporia, Duddingtonia flagrans and Monacrosporium thaumasium on egg capsules of Dipylidium caninum.

    PubMed

    Araujo, Juliana Milani; de Araújo, Jackson Victor; Braga, Fabio Ribeiro; Carvalho, Rogério Oliva; Ferreira, Sebastião Rodrigo

    2009-12-03

    Nematophagous fungi are potential biological control agents of helminths. The in vitro ovicidal effect of four isolates of the nematophagous fungi Pochonia chlamydosporia (VC1 and VC4), Duddingtonia flagrans (AC001) and Monacrosporium thaumasium (NF34) was evaluated on egg capsules of Dipylidium caninum, a cestode parasite of dogs, cats and humans. One thousand egg capsules of D. caninum were plated on 2% water-agar with the grown isolates and control without fungus. The ovicidal activity of these fungi was evaluated 5, 10 and 15 days after incubation. Only P. chlamydosporia showed ovicidal activity (p<0.05) on D. caninum egg capsules, of 19.6% (VC1) and 20% (VC4) on the 5th day; 44.2% (VC1) and 31.5% (VC4) on the 10th day; and 49.2% (VC1) and 41.9% (VC4) on the 15th day. D. flagrans and M. thaumasium caused no morphological damage to egg capsules. The results demonstrated that P. chlamydosporia was in vitro effective against capsules and eggs of D. caninum, and can be considered as a potential biological control agent for this helminth.

  12. [Effect analysis on Deanxit combined with Shuganjieyu capsule in the treatment of refractory gastroesophageal reflux disease].

    PubMed

    Yang, X Y; Guo, C Y; Zhang, X; Zhong, Y Q; Tian, C

    2017-11-28

    Objective: To investigate the curative effect of Deanxit combined with Shuganjieyu capsule on the treatment of refractory gastroesophageal reflux disease. Methods: A total of 125 patients with refractory gastroesophageal reflux disease who had failed in standard lansolazole capsule treatment in the Department of Gastroenterology, First People's Hospital of Neijiang were selected. According to the symptom scores and mood scores of gastroesophageal reflux disease, patients were randomly and double-blindly divided into five groups. Group A(Lansoprazole Capsules + Mosapride Citrate + Deanxit), B(Lansoprazole Capsules + Mosapride Citrate + Shuganjieyu capsule), C(Lansoprazole Capsules + Mosapride Citrate+ Deanxit + Shuganjieyu capsule) and D(Deanxit) groups are study groups, the other was control group (Lansoprazole Capsules + Mosapride Citrate). The scores of symptoms and mood were compared after 4 weeks and 8 weeks of treatment. Results: The clinical symptoms score, HAMA and HAMD scores were significantly lower in the all study groups in comparison to the control group after 4 weeks and 8 weeks therapy. The clinical symptoms score, HAMA and HAMD scores in group C were significantly lower than those in group A and B ( P <0.05), while the difference between group A and B was not statistically significant( P >0.05). The HAMA and HAMD scores of group D were significantly higher than those of group A, B, C and control group, and the differences were statistically significant ( P <0.05). The total effective rate of study groups were significantly higher than those of the control group, and the difference was statistically significant ( P <0.05). The total effective rate of group C was significantly higher than that of group A and B (χ(2)=6.47, P <0.05). The total effective rate of group A at the end of the 8th week was significantly higher than that of group B (χ(2)=6.52, P <0.05). The total effective rate of group D at the end of the 4th and 8th week was significantly lower than those of the group A, B, C and control group, the difference was statistically significant (χ(2)=5.85, P <0.05). Conclusions: Deanxit combined with Shuganjieyu capsule is significantly effective in treatment of refractory gastroesophageal reflux disease, which can effectively improve the total treatment efficiency, reduce the symptom scores and mood scores of gastroesophageal reflux disease patients.

  13. Clinical application of a gadolinium-based capsule as an MRI contrast agent in slow transit constipation diagnostics.

    PubMed

    Zhi, M; Zhou, Z; Chen, H; Xiong, F; Huang, J; He, H; Zhang, M; Su, M; Gao, X; Hu, P

    2017-06-01

    As a traditional method for the assessment of colon dynamics, radio-opaque markers (ROMs) are limited in clinical use because of their ionizing radiation. We compared the accuracy and applicability of gadolinium-based capsules with ROMs in the measurement of colon dynamics in healthy controls and slow transit constipation (STC) patients. Seven patients with STC and nine healthy controls under a normal diet orally consumed ROMs and gadolinium-based capsules simultaneously. All subjects underwent X-ray and magnetic resonance imaging (MRI). Healthy control images were acquired at 12, 24, and 48 h, and STC patient images were acquired at 24, 48, and 72 h. The scores based on the position of the labeling capsules and ROMs in the colon and the colon transit times (CTTs) in the two groups were compared. The CTTs obtained via the ROMs were 34.7±17.4 and 67.3±6.5 h in the healthy controls and STC patients, respectively (P<.05). The CTTs obtained via MRI were 30.9±15.9 and 74.1±7.2 h in the healthy controls and STC patients, respectively (P<.05). The CTTs of the STC patients were significantly longer than the healthy controls. The correlation (r s ) between the scores based on the position of the labeling capsule and ROMs in the healthy group and the STC patients was .880 (P<.05) and .889 (P<.05), respectively. As a MRI contrast label, gadolinium-based capsules exhibit results comparable to ROMs in colon motility measurements. © 2017 John Wiley & Sons Ltd.

  14. KSC-98pc1638

    NASA Image and Video Library

    1998-11-12

    In the Payload Hazardous Service Facility, a worker looks over the re-entry capsule on top of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006

  15. Genesis Radiation Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.

    2007-01-01

    The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.

  16. 3D Printed Programmable Release Capsules.

    PubMed

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.

  17. Field Trials of Attenuated Salmonella Typhi Live Oral Vaccine TY21A in Liquid and Enteric-Coated Capsule Formulations in Santiago, Chile

    DTIC Science & Technology

    1990-06-01

    inactive piacebo, children in the control group received viable Lactobacillus acidophilus because some experimental data suggest that L. acidophilus may...was the enteric-coating used to make the capsules acid-resistant. Such capsules, each containing 1-3 x 109 viable vaccine (or Lactobacillus ) organisms...formulation of vaccine (or of the Lactobacillus control preparation) consisted of two aluminum foil packets, one containing lyophilized vaccine (or

  18. The OSIRIS-REx Contamination Control and Witness Strategy

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L.; Ajluni, T. M.; Andronikov, A. V.; Ballou, D. M.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Boynton, W. V.; Brucato, J. R.; hide

    2015-01-01

    The OSIRIS-REx mission (Origins, Spectral Interpretation, Resource Identification, and Security Regolith Explorer) is the third NASA New Frontiers mission. It is scheduled for launch in 2016. The primary objective of the mission is to return at least 60 g of "pristine" material from the B-type near- Earth asteroid (101955) Bennu, which is spectrally similar to organic-rich CI or CM meteorites [1]. The study of these samples will advance our understanding of materials available for the origin of life on Earth or elsewhere. The spacecraft will rendezvous with Bennu in 2018 and spend at least a year characterizing the asteroid before executing a maneuver to recover a sample of regolith in the touch-and-go sample acquisition mechanism (TAGSAM). The TAGSAM and sample is stowed in the sample return capsule (SRC) and returned to Earth in 2023.

  19. KSC-2014-2079

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. - Social media representatives get an up-close view of the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson

  20. KSC-2014-2075

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. - Social media representatives get an up-close view of the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson

  1. [Review of the active locomotion system for capsule endoscope].

    PubMed

    Zhao, Dechun; Guo, Yijun; Peng, Chenglin

    2010-02-01

    This review summarized the progress of researches on the active locomotion system for capsule endoscope, analyzed the moving and controlling principles in different locomotion systems, and compared their merits and shortcomings. Owing to the complexity of human intestines and the limits to the size and consumption of locomotion system from the capsule endoscope, there is not yet one kind of active locomotion system currently used in clinical practice. The locomotive system driven by an outer rotational magnetic field could improve the commercial endoscope capsule, while its magnetic field controlling moving is complex. Active locomotion system driven by shape memory alloys will be the orientated development and the point of research in the future.

  2. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  3. Impact of lunar oxygen production on direct manned Mars missions

    NASA Technical Reports Server (NTRS)

    Young, Roy M., Jr.; Tucker, William B.

    1992-01-01

    A manned Mars program made up of six missions is evaluated to determine the impact of using lunar liquid oxygen (LOX) as a propellant. Two departure and return nodes, low Earth orbit and low lunar orbit, are considered, as well as two return vehicle configurations, a full 70,000-kg vehicle and a 6800-kg capsule. The cost of lunar LOX delivered to orbit is expressed as a ratio of Earth launch cost.

  4. KSC-2012-4045

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Alejandro Azocar, a Rocket University participant, prepares an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  5. RTG Safety Tests

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of STS-34 was to launch Galileo on its trip to Jupiter. The Galileo spacecraft contains two Radioisotope Thermoelectric Generators (RTG), which contains plutonium. This videotape shows and the accompanying material explains the tests that the RTG containment vessel has been subjected to, and the results of the tests. The videotape shows the trajectory of the Galileo spacecraft, a cutaway view of an RTG, the Plutonium-238 fuel capsule, and seven of the tests on the RTG.

  6. KSC-2012-5684

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- Scott Smith, NASA nutritionist at NASA's Johnson Space Center, explains one method of urine collection on the space station during a mission science briefing in Kennedy Space Center's Press Site auditorium in Florida. The briefing provided media with an overview of the experiments and payloads scheduled for launch on NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  7. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind placards for flight. PA-1 flight data is shown, as well as a comparison of PA-1 flight data to nonlinear simulation Monte Carlo data.

  8. SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS

    PubMed Central

    Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.

    1959-01-01

    Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197

  9. KSC-2012-3637

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – Distinguished speakers are seated in the front row in Kennedy Space Center's Operations and Checkout Building high bay for an event marking the arrival of NASA's first space-bound Orion capsule in Florida. From left are Dan Dumbacher, NASA deputy associate administrator for Exploration Systems Development, NASA Kennedy Space Center Director Robert Cabana, NASA Deputy Administrator Lori Garver, U.S. Senator Bill Nelson, Mark Geyer, Orion program manager, David Beaman, NASA Space Launch System spacecraft and payload integration manager, Pepper Phillips, program manager for NASA's Ground Systems Development and Operations, and John Karas, vice president and general manager of Human Spaceflight for Lockheed Martin Space Systems. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  10. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids.

    PubMed

    Okada, Tomoko; Mizuno, Yasuyuki; Sibayama, Shinichi; Hosokawa, Masashi; Miyashita, Kazuo

    2011-01-01

    Based on previous research findings, a capsule was developed containing n-3 polyunsaturated fatty acid rich scallop phospholipids (PLs) with an incorporation of brown seaweed (Undaria pinnatifida) lipids (ULs) containing fucoxanthin. The antiobesity effects of the capsules were evaluated with an animal model using 3-wk-old male KK-A(y) mice. Each group received different combinations of lipid (UL, PL, UL + PL, or UL + PL capsule) either incorporated into the diet or into drinking water. Animals were sacrificed after a 4-wk experimental feeding period, and adipose tissues and organs were dissected and weighed. Blood samples were obtained to determine plasma lipid profiles. Uncoupling protein 1 (UCP1) mRNA expression levels were determined by real-time polymerase chain reaction analysis, and UCP1 expression was determined by western blotting analysis. Treatment with either UL alone or UL + PL (capsule) through drinking water resulted in a significant reduction in body weight, compared to the control group. The total white adipose tissue weight of mice fed the UL + PL capsule in drinking water was significantly reduced. Both UCP1 and UCP1 mRNA expression in epididymal fat from mice fed the capsule were significantly higher than in the control group. These results suggest that incorporation of UL into scallop-derived PL by means of capsulation may lead to an additive increase in the antiobesity properties of these bioactive lipids.

  11. KSC-05PD-1265

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. This locker reveals a long-lost spacesuit recently uncovered at the Cape Canaveral Air Force Station (CCAFS) in Florida. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a bygone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. NASA Special Agent Dan E. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  12. KSC-05PD-1266

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. NASA Special Agent Dan Oakland holds up a long-lost spacesuit recently uncovered at the Cape Canaveral Air Force Station (CCAFS) in Florida. A recent venture into a long-locked room at CCAFS uncovered interesting artifacts of a by-gone era: retired space suits from Americans who trained in the 1960s to be astronauts aboard an Air Force orbiting reconnaissance laboratory. Two security officers were doing a check of a facility at Launch Complex 5/6 blockhouse. Oakland and Security Manager Henry Butler, who is with Delaware North Parks and Resorts, the company that oversees the museum, discovered a locked room. Space suits from the Air Forces planned Manned Orbiting Laboratory (MOL) program were found in the room Begun in 1964, the MOL program was an Air Force initiative that would have sent Air Force astronauts to a space station in a Gemini capsule. After spending a few weeks in orbit, the crew would undock and return to Earth. A test launch from Complex 40 on Nov. 30, 1966, of a MOL was conducted with an unmanned Gemini capsule. The MOL was constructed from tankage of a Titan II rocket. The operational MOL was planned to be launched into a polar orbit from Vandenberg Air Force Base in California. The Air Force abandoned the program in 1969, but the program produced a great deal of technological development, and three groups of military officers trained to be MOL astronauts. When the program was cancelled, seven of the younger astronauts were transferred to the agencys human space flight program and went on to have standout careers. Among them were Robert Crippen, pilot of the first Space Shuttle mission, and Richard H. 'Dick' Truly, who later became NASA Administrator.

  13. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its associated centers across the US. KSC has found itself at the blunt end of change as the entire center has transitioned from an operations mindset to a development mentality. The author of this paper has had the fortunate privilege and opportunity to be part of a transforming NASA during the fall months of 2014. The following is a high level account of projects that he had the chance to work on including the Spaceport Command and Control System, the Advanced Ground System and Maintenance Program Project, Customer Avionics Development & Analysis (CAIDA) Lab and Swamp Works.

  14. Demonstration of the sustained anthelmintic efficacy of a controlled-release capsule formulation of ivermectin in weaner lambs under field conditions in New Zealand.

    PubMed

    Gogolewski, R P; Allerton, G R; Rugg, D; Kawhia, D; Barrick, R A; Eagleson, J S

    1997-08-01

    Ten field trials were conducted in the North and South Islands of New Zealand to evaluate the anthelmintic efficacy and production responses attributable to treatment of weaner lambs with an intra-ruminal controlled-release capsule formulation of ivermectin. A total of 800 Coopworth, Perendale and Romney lambs weighing on average 20.8-34.8 kg were used. Lambs were either untreated or treated shortly after weaning with an ivermectin controlled-release capsule which delivers ivermectin at 0.8 mg per day for 100 days (minimum dose rate 20 microg/kg/day). Bodyweights, faecal nematode egg counts and dag scores (assessment of faecal soiling in the breech area) were determined before treatment and at about 4,8, 12, 14 and 16 weeks after treatment. Sheep treated with the Ivermectin capsule gained significantly more weight (11.6 kg) over the 16 weeks of the trials compared to untreated sheep (7.3 kg) (p < 0.01). Before treatment, faecal strongylid and Nematodirus spp. egg counts were equivalent (p > 0.10) but, at each time point thereafter, egg counts in ivermectin capsule-treated sheep were significantly lower (p < 0.01 or p < 0.05). Dag scores were not different at the start of the trial (p > 0.10), but at the end of the trial control sheep had significantly greater dags (p < 0.05) than sheep treated with the ivermectin capsule. These findings indicate that treated animals contributed significantly fewer nematode eggs to the contamination of pasture and therefore pasture contamination should be significantly reduced for at least 112 days. The productivity of the ivermectin capsule-treated sheep over the I6 weeks of the trials was also significantly increased compared to salvage-treated controls. Furthermore, the presence of dags, which predispose sheep to blowfly strike in the breech area and result in production losses due to the costs of dagging and downgrading of breech wool, were also significantly (p < 0.05) reduced in the ivermectin capsule-treated sheep.

  15. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  16. Imprinting on empty hard gelatin capsule shells containing titanium dioxide by application of the UV laser printing technique.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru; Terada, Katsuhide

    2014-08-01

    The purpose of this study was to examine the application of ultraviolet (UV) laser irradiation to printing hard gelatin capsule shells containing titanium dioxide (TiO2) and to clarify how the color strength of the printing by the laser could be controlled by the power of the irradiated laser. Hard gelatin capsule shells containing 3.5% TiO2 were used in this study. The capsules were irradiated with pulsed UV laser at a wavelength of 355 nm. The color strength of the printed capsule was determined by a spectrophotometer as total color difference (dE). The capsules could be printed gray by the UV laser. The formation of many black particles which were agglomerates of oxygen-defected TiO2 was associated with the printing. In the relationship between laser peak power of a pulse and dE, there were two inflection points. The lower point was the minimal laser peak power to form the black particles and was constant regardless of the dosage forms, for example film-coated tablets, soft gelatin capsules and hard gelatin capsules. The upper point was the minimal laser peak power to form micro-bubbles in the shells and was variable with the formulation. From the lower point to the upper point, the capsules were printed gray and the dE of the printing increased linearly with the laser peak power. Hard gelatin capsule shells containing TiO2 could be printed gray using the UV laser printing technique. The color strength of the printing could be controlled by regulating the laser energy between the two inflection points.

  17. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos).

    PubMed

    Kim, Hee Man; Yang, Sungwook; Kim, Jinseok; Park, Semi; Cho, Jae Hee; Park, Jeong Youp; Kim, Tae Song; Yoon, Eui-Sung; Song, Si Young; Bang, Seungmin

    2010-08-01

    Capsule endoscopy that could actively move and approach a specific site might be more valuable for the diagnosis or treatment of GI diseases. We tested the performance of active locomotion of a novel wired capsule endoscope with a paddling-based locomotion mechanism, using 3 models: a silicone tube, an extracted porcine colon, and a living pig. In vitro, ex vivo, and in vivo experiments in a pig model. Study in an animal laboratory. For the in vitro test, the locomotive capsule was controlled to actively move from one side of a silicone tube to the other by a controller-operated automatic traveling program. The velocity was calculated by following a video recording. We performed ex vivo tests by using an extracted porcine colon in the same manner we performed the in vitro test. In in vivo experiments, the capsule was inserted into the rectum of a living pig under anesthesia, and was controlled to move automatically forward. After 8 consecutive trials, the velocity was calculated. Elapsed time, velocity, and mucosal damage. The locomotive capsule showed stable and active movement inside the lumen both in vitro and ex vivo. The velocity was 60 cm/min in the silicone tube, and 36.8 and 37.5 cm/min in the extracted porcine colon. In the in vivo experiments, the capsule stably moved forward inside the colon of a living pig without any serious complications. The mean velocity was 17 cm/min over 40 cm length. We noted pinpoint erythematous mucosal injuries in the colon. Porcine model experiments, wired capsule endoscope. The novel paddling-based locomotive capsule endoscope performed fast and stable movement in a living pig colon with consistent velocity. Further investigation is necessary for practical use in humans. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  18. Multishell encapsulation using a triple coaxial electrospray system.

    PubMed

    Kim, Woojin; Kim, Sang Soo

    2010-06-01

    To overcome the limitations of the conventional encapsulation methods and improve the potential use of the electrospray method as a drug delivery system, an electrospray system using a triple coaxial nozzle was developed to generate multishell capsules. Two conducting fluids, ethylene glycol and 4-hydroxybutyl acrylate, and one nonconducting fluid, olive oil, were chosen to manufacture the multishell capsules. The capsules were solidified by a photopolymerization device. We investigated the size distributions and visualized the capsules changing fluid flow rates. Dispersive Raman spectra were also monitored to determine the chemical composition of the capsules. The multishell capsules were generated in the overlapped cone-jet mode regime of the conducting fluids, and the sizes and shell thicknesses were controlled by the flow rates and applied voltages.

  19. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  20. The Marble Experiment: Overview and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  1. A polar-drive shock-ignition design for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; Betti, R.; McKenty, P. W.; Collins, T. J. B.; Hohenberger, M.; Theobald, W.; Craxton, R. S.; Delettrez, J. A.; Lafon, M.; Marozas, J. A.; Nora, R.; Skupsky, S.; Shvydky, A.

    2013-05-01

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  2. SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures

    NASA Astrophysics Data System (ADS)

    Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.

    2011-05-01

    In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.

  3. Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture.

    PubMed

    Ni, Yun-Zhou; Jiang, Wen-Feng; Tong, Gang-Sheng; Chen, Jian-Xin; Wang, Jie; Li, Hui-Mei; Yu, Chun-Yang; Huang, Xiao-hua; Zhou, Yong-Feng

    2015-01-21

    A miscible tetrahydrofuran-tris buffer mixture has been used to fabricate polydopamine hollow capsules with a size of 200 nm and with a shell thickness of 40 nm. An unusual non-emulsion soft template mechanism has been disclosed to explain the formation of capsules. The results indicate that the capsule structure is highly dependent on the volume fraction of tetrahydrofuran as well as the solvent, and the shell thickness of capsules can be controlled by adjusting the reaction time and dopamine concentration.

  4. Application of carvedilol in a dog with pseudoephedrine toxicosis-induced tachycardia.

    PubMed

    Kang, Min-Hee; Park, Hee-Myung

    2012-07-01

    A 15-year-old Yorkshire terrier dog was presented after ingesting 1 capsule of an over-the-counter cold medication containing pseudoephedrine (120 mg/capsule) and cetirizine (5 mg/capsule). Treatment was initiated with acepromazine and carvedilol. The dog responded well to treatment. This is the first known case report using carvedilol to control pseudoephedrine toxicosis.

  5. Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion.

    PubMed

    Usta, O Berk; Alexeev, Alexander; Zhu, Guangdong; Balazs, Anna C

    2008-03-01

    Using simulation and theory, we demonstrate how nanoparticles can be harnessed to regulate the interaction between two initially stationary microcapsules on a surface and promote the self-propelled motion of these capsules along the substrate. The first microcapsule, the "signaling" capsule, encases nanoparticles, which diffuse from the interior of this carrier and into the surrounding solution; the second capsule is the "target" capsule, which is initially devoid of particles. Nanoparticles released from the signaling capsule modify the underlying substrate and thereby initiate the motion of the target capsule. The latter motion activates hydrodynamic interactions, which trigger the signaling capsule to follow the target. The continued release of the nanoparticles sustains the motion of both capsules. In effect, the system constitutes a synthetic analogue of biological cell signaling and our findings can shed light on fundamental physical forces that control interactions between cells. Our findings can also yield guidelines for manipulating the interactions of synthetic microcapsules in microfluidic devices.

  6. Engineering multifunctional capsules through the assembly of metal-phenolic networks.

    PubMed

    Guo, Junling; Ping, Yuan; Ejima, Hirotaka; Alt, Karen; Meissner, Mirko; Richardson, Joseph J; Yan, Yan; Peter, Karlheinz; von Elverfeldt, Dominik; Hagemeyer, Christoph E; Caruso, Frank

    2014-05-26

    Metal-organic coordination materials are of widespread interest because of the coupled benefits of inorganic and organic building blocks. These materials can be assembled into hollow capsules with a range of properties, which include selective permeability, enhanced mechanical/thermal stability, and stimuli-responsiveness. Previous studies have primarily focused on the assembly aspects of metal-coordination capsules; however, the engineering of metal-specific functionality for capsule design has not been explored. A library of functional metal-phenolic network (MPN) capsules prepared from a phenolic ligand (tannic acid) and a range of metals is reported. The properties of the MPN capsules are determined by the coordinated metals, allowing for control over film thickness, disassembly characteristics, and fluorescence behavior. Furthermore, the functional properties of the MPN capsules were tailored for drug delivery, positron emission tomography (PET), magnetic resonance imaging (MRI), and catalysis. The ability to incorporate multiple metals into MPN capsules demonstrates that a diverse range of functional materials can be generated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Examination of Expense and Investment Policy for Centrally Managed Items in the Air Force and Navy

    DTIC Science & Technology

    2009-12-01

    managed items. The contractor discovered that TFSMS was already a repository for the majority of items purchased in the Marine Corps; however, TFSMS...Surface and Submarine launched non-Tactical All-Up- Rounds • Capsules and canisters for cognizance symbol 2D items • Shipping containers for cognizance...included is as follows: • Bombs (all types except nuclear bombs), bomb components including fin assemblies, fuses, primer detonators, etc., and

  8. KSC-2012-4051

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Alejandro Azocar, foreground, and Page Attany, Rocket University participants, prepare an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-4052

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – The instrument package built by Rocket University participants for a high-altitude balloon flight sits on the ground moments before launch. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  10. Modulation of the Foreign Body Reaction for Implants in the Subcutaneous Space: Microdialysis Probes as Localized Drug Delivery/Sampling Devices

    PubMed Central

    Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A

    2011-01-01

    Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577

  11. KSC-2012-1477

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  12. KSC-2012-1476

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  13. KSC-2012-1473

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  14. KSC-2012-4317

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System. In the background is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  15. Active multilayered capsules for in vivo bone formation

    PubMed Central

    Facca, S.; Cortez, C.; Mendoza-Palomares, C.; Messadeq, N.; Dierich, A.; Johnston, A. P. R.; Mainard, D.; Voegel, J.-C.; Caruso, F.; Benkirane-Jessel, N.

    2010-01-01

    Interest in the development of new sources of transplantable materials for the treatment of injury or disease has led to the convergence of tissue engineering with stem cell technology. Bone and joint disorders are expected to benefit from this new technology because of the low self-regenerating capacity of bone matrix secreting cells. Herein, the differentiation of stem cells to bone cells using active multilayered capsules is presented. The capsules are composed of poly-L-glutamic acid and poly-L-lysine with active growth factors embedded into the multilayered film. The bone induction from these active capsules incubated with embryonic stem cells was demonstrated in vitro. Herein, we report the unique demonstration of a multilayered capsule-based delivery system for inducing bone formation in vivo. This strategy is an alternative approach for in vivo bone formation. Strategies using simple chemistry to control complex biological processes would be particularly powerful, as they make production of therapeutic materials simpler and more easily controlled. PMID:20160118

  16. Application of carvedilol in a dog with pseudoephedrine toxicosis-induced tachycardia

    PubMed Central

    Kang, Min-Hee; Park, Hee-Myung

    2012-01-01

    A 15-year-old Yorkshire terrier dog was presented after ingesting 1 capsule of an over-the-counter cold medication containing pseudoephedrine (120 mg/capsule) and cetirizine (5 mg/capsule). Treatment was initiated with acepromazine and carvedilol. The dog responded well to treatment. This is the first known case report using carvedilol to control pseudoephedrine toxicosis. PMID:23277647

  17. Vice President Pence Visits NASA's Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.

  18. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  19. The solar panels of the spacecraft Stardust are deployed before undergoing lighting test in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, workers look over the solar panels on the Stardust spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006.

  20. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  1. Remote controlled capsules in human drug absorption (HDA) studies.

    PubMed

    Wilding, Ian R; Prior, David V

    2003-01-01

    The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.

  2. An efficient approach for Mars Sample Return using emerging commercial capabilities

    NASA Astrophysics Data System (ADS)

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as ;Red Dragon;, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit-an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.

  3. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.

    PubMed

    Gonzales, Andrew A; Stoker, Carol R

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.

  4. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities

    PubMed Central

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-01-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth’s biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022. PMID:27642199

  5. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GN&C), Thrust Vector Control (TVC), liquid engines, and the astronaut crew office. Since the algorithms are realized using model-based engineering (MBE) methods from a hybrid of the Unified Modeling Language (UML) and Systems Modeling Language (SysML), SFE methods are a natural fit to provide an in depth analysis of the interactive behavior of these algorithms with the SLS LV subsystem models. For this, the M&FM algorithms and the SLS LV subsystem models are modeled using constructs provided by Matlab which also enables modeling of the accompanying interfaces providing greater flexibility for integrated testing and analysis, which helps forecast expected behavior in forward VMET integrated testing activities. In VMET, the M&FM algorithms are prototyped and implemented using the same C++ programming language and similar state machine architectural concepts used by the FSW group. Due to the interactive complexity of the algorithms, VMET testing thus far has verified all the individual M&FM subsystem algorithms with select subsystem vendor models but is steadily progressing to assessing the interactive behavior of these algorithms with LV subsystems, as represented by subsystem models. The novel SFE applications has proven to be useful for quick look analysis into early integrated system behavior and assessment of the M&FM algorithms with the modeled LV subsystems. This early MBE analysis generates vital insight into the integrated system behaviors, algorithm sensitivities, design issues, and has aided in the debugging of the M&FM algorithms well before full testing can begin in more expensive, higher fidelity but more arduous environments such as VMET, FSW testing, and the Systems Integration Lab7 (SIL). SFE has exhibited both expected and unexpected behaviors in nominal and off nominal test cases prior to full VMET testing. In many findings, these behavioral characteristics were used to correct the M&FM algorithms, enable better test coverage, and develop more effective test cases for each of the LV subsystems. This has improved the fidelity of testing and planning for the next generation of M&FM algorithms as the SLS program evolves from non-crewed to crewed flight, impacting subsystem configurations and the M&FM algorithms that control them. SFE analysis has improved robustness and reliability of the M&FM algorithms by revealing implementation errors and documentation inconsistencies. It is also improving planning efficiency for future VMET testing of the M&FM algorithms hosted in the LV flight computers, further reducing risk for the SLS launch infrastructure, the SLS LV, and most importantly the crew.

  6. Feasibility and safety of a novel magnetic-assisted capsule endoscope system in a preliminary examination for upper gastrointestinal tract.

    PubMed

    Lien, Gi-Shih; Wu, Ming-Shun; Chen, Chun-Nan; Liu, Chih-Wen; Suk, Fat-Moon

    2018-04-01

    Current capsule endoscopy procedures are ineffective for upper gastrointestinal (GI) tract examination because they do not allow for operator-controlled navigation of the capsule. External controllability of a capsule endoscope with an applied magnetic field is a possible solution to this problem. We developed a novel magnetic-assisted capsule endoscope (MACE) system to visualize the entire upper GI tract. The present study evaluated the safety and feasibility of the MACE system for the examination of the upper GI tract, including the esophagus, stomach, and duodenum. The present open clinical study enrolled ten healthy volunteers. All participants swallowed a MACE, and an external magnetic field navigator was used for magnetic capsule manipulation in the upper GI tract. We assessed the maneuverability of the magnetic capsule and completeness of the MACE examination as well as the safety and tolerability of the procedure. The present study enrolled ten healthy volunteers with a mean age and body mass index of 47.7 years and 25.6 kg/m 2 , respectively. One volunteer withdrew because of difficulty in swallowing the capsule. In total, nine volunteers underwent the MACE examination. The average examination time was 27.1 min. The maneuverability of the capsule was assessed as good and fair in 55.6 and 44.4% of the participants, respectively. The overall completeness of the examination in the esophagus, stomach, and duodenum was 100, 85.2, and 86.1%, respectively. No severe adverse events occurred during this study. All participants exhibited satisfactory tolerance of the MACE examination. The MACE system has satisfactory maneuverability and visualization completeness with excellent acceptance and tolerance.

  7. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  8. Flying U.S. science on the U.S.S.R. Cosmos biosatellites

    NASA Technical Reports Server (NTRS)

    Ballard, R. W.; Rossberg Walker, K.

    1992-01-01

    The USSR Cosmos Biosatellites are unmanned missions with durations of approximately 14 days. They are capable of carrying a wide variety of biological specimens such as cells, tissues, plants, and animals, including rodents and rhesus monkeys. The absence of a crew is an advantage with respect to the use of radioisotopes or other toxic materials and contaminants, but a disadvantage with respect to the performance of inflight procedures or repair of hardware failures. Thus, experiments hardware and procedures must be either completely automated or remotely controlled from the ground. A serious limiting factor for experiments is the amount of electrical powers available, so when possible experiments should be self-contained with their own batteries and data recording devices. Late loading is restricted to approximately 48 hours before launch and access time upon recovery is not precise since there is a ballistic reentry and the capsule must first be located and recovery vehicles dispatched to the site. Launches are quite reliable and there is a proven track record of nine previous Biosatellite flights. This paper will present data and experience from the seven previous Cosmos flights in which the US has participated as well as the key areas of consideration in planning a flight investigation aboard this Biosatellite platform.

  9. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  10. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    PubMed

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  11. Biocatalytic response of multi-layer assembled collagen/hyaluronic acid nanoengineered capsules.

    PubMed

    Sousa, Fernanda; Kreft, Oliver; Sukhorukov, Gleb B; Möhwald, Helmuth; Kokol, Vanja

    2014-01-01

    Biodegradable hollow capsules filled with fluorescently labelled bovine serum albumin (BSA) as a model drug were prepared via layer-by-layer (LbL) self-assembly of type-I collagen (COL) and hyaluronic acid (HA) using calcium carbonate micro-particles and co-precipitation method. Capsules loaded with fluorescein isothiocyanate (FITC)-BSA, tetramethylrhodamin isothiocyanate (TRITC)-BSA or Alex-Fluor-488-BSA, respectively, were characterised before and after core removal using Confocal Laser Scanning Microscopy (CLSM), whilst the morphologies of individual hollow capsules were assessed using Atomic Force Microscopy (AFM). The sustained release of the encapsulated FITC-BSA protein was attained using enzymatic degradation of the capsule shells by collagenase. The released profile of the fluorescently-labelled BSA indicated that it could be successfully controlled by modulating the number of layers and/or by collagen crosslinking either before or after the capsule's assembly.

  12. KSC-98pc1631

    NASA Image and Video Library

    1998-11-12

    In the Payload Hazardous Service Facility, the Stardust spacecraft sits wrapped in plastic covering. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles and interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006

  13. KSC-98pc1835

    NASA Image and Video Library

    1998-12-02

    In the Payload Hazardous Servicing Facility, workers install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006

  14. KSC-2012-4046

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Ron Sterick, left to right, Nicole Otermat and Page Attany, participants in the Rocket University program, prepare an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  15. Two-speed phacoemulsification for soft cataracts using optimized parameters and procedure step toolbar with the CENTURION Vision System and Balanced Tip.

    PubMed

    Davison, James A

    2015-01-01

    To present a cause of posterior capsule aspiration and a technique using optimized parameters to prevent it from happening when operating soft cataracts. A prospective list of posterior capsule aspiration cases was kept over 4,062 consecutive cases operated with the Alcon CENTURION machine and Balanced Tip. Video analysis of one case of posterior capsule aspiration was accomplished. A surgical technique was developed using empirically derived machine parameters and customized setting-selection procedure step toolbar to reduce the pace of aspiration of soft nuclear quadrants in order to prevent capsule aspiration. Two cases out of 3,238 experienced posterior capsule aspiration before use of the soft quadrant technique. Video analysis showed an attractive vortex effect with capsule aspiration occurring in 1/5 of a second. A soft quadrant removal setting was empirically derived which had a slower pace and seemed more controlled with no capsule aspiration occurring in the subsequent 824 cases. The setting featured simultaneous linear control from zero to preset maximums for: aspiration flow, 20 mL/min; and vacuum, 400 mmHg, with the addition of torsional tip amplitude up to 20% after the fluidic maximums were achieved. A new setting selection procedure step toolbar was created to increase intraoperative flexibility by providing instantaneous shifting between the soft and normal settings. A technique incorporating a reduced pace for soft quadrant acquisition and aspiration can be accomplished through the use of a dedicated setting of integrated machine parameters. Toolbar placement of the procedure button next to the normal setting procedure button provides the opportunity to instantaneously alternate between the two settings. Simultaneous surgeon control over vacuum, aspiration flow, and torsional tip motion may make removal of soft nuclear quadrants more efficient and safer.

  16. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.

    PubMed

    Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang

    2015-01-11

    The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.

  17. KSC-2012-5688

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- Sam Scimemi, director of International Space Station at NASA Headquarters, participates in a prelaunch news conference in Kennedy Space Center's Press Site auditorium in Florida. Also pictured are, from left, Michael Curie, NASA Public Affairs, Bob Cabana, director of NASA Kennedy Space Center, and to Scimemi's right, Mike Suffredini, program manager of International Space Station at NASA Johnson Space Center. The news conference provided the media with a status on the readiness to launch NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Jim Grossmann

  18. Alginate Encapsulation of Pluripotent Stem Cells Using a Co-axial Nozzle

    PubMed Central

    Horiguchi, Ikki; Sakai, Yasuyuki

    2015-01-01

    Pluripotent stem cells (PS cells) are the focus of intense research due to their role in regenerative medicine and drug screening. However, the development of a mass culture system would be required for using PS cells in these applications. Suspension culture is one promising culture method for the mass production of PS cells, although some issues such as controlling aggregation and limiting shear stress from the culture medium are still unsolved. In order to solve these problems, we developed a method of calcium alginate (Alg-Ca) encapsulation using a co-axial nozzle. This method can control the size of the capsules easily by co-flowing N2 gas. The controllable capsule diameter must be larger than 500 µm because too high a flow rate of N2 gas causes the breakdown of droplets and thus heterogeneous-sized capsules. Moreover, a low concentration of Alg-Na and CaCl2 causes non-spherical capsules. Although an Alg-Ca capsule without a coating of Alg-PLL easily dissolves enabling the collection of cells, they can also potentially leak out from capsules lacking an Alg-PLL coating. Indeed, an alginate-PLL coating can prevent cellular leakage but is also hard to break. This technology can be used to research the stem cell niche as well as the mass production of PS cells because encapsulation can modify the micro-environment surrounding cells including the extracellular matrix and the concentration of secreted factors. PMID:26168084

  19. Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses

    PubMed Central

    2015-01-01

    We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA–(poly(N-vinylpyrrolidone) (PMAA–PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA–PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake. PMID:24848786

  20. Ethical aspects of capsule endoscopy.

    PubMed

    Niv, Yaron

    2008-01-01

    Capsule endoscopy is the most recent innovation in gastrointestinal endoscopy. The capsule contains a video camera that photographs the bowel for 8 h after the capsule has been orally ingested and transmits the images for interpretation to a computerized workstation. Ethical considerations of the use of capsule endoscopy should cover the following main issues: justification of the procedure, its potential benefits and harm, and patient autonomy. Capsule endoscopy has several advantages over traditional endoscopy. The procedure is painless, does not require sedation, is easy to perform and for the first time enables exploration of the entire small bowel at high magnification. However, the clinician cannot control its passive advance along the bowel. In addition, the examination may be incomplete, as the capsule reaches the cecum in only 80% of cases. This paper discusses the problems related to the new endoscopic procedure, the diagnostic yield in comparison with other procedures, proper indications for the procedure, outcome and complications. Copyright 2008 S. Karger AG, Basel.

  1. Simethicone for small bowel preparation for capsule endoscopy: a systematic, single-blinded, controlled study.

    PubMed

    Albert, Jörg; Göbel, Christa-Maria; Lesske, Joachim; Lotterer, Erich; Nietsch, Hubert; Fleig, Wolfgang E

    2004-04-01

    Capsule endoscopy is a new imaging method for visualization of the entire small bowel. However, no standardized protocol for bowel preparation for capsule endoscopy has been evaluated. Capsule endoscopy was performed in 36 consecutive patients, all of whom fasted for 12 hours before ingestion of the capsule. Before capsule endoscopy, 18 patients received 80 mg simethicone and 18 had no supplemental medication for bowel preparation. Two observers, both experienced endoscopists, independently reviewed the examinations in a single-blinded and randomly assigned fashion. Mucosal visibility and intraluminal gas bubbles were assessed and graded by both observers. Bowel preparation with simethicone resulted in significantly better visibility because of fewer intraluminal bubbles (p<0.01). Interobserver agreement was excellent (r>/=0.8; k 0.78: 95% CI[0.57, 0.98] ). No adverse effect of simethicone was observed. Simethicone may be added to the routine preparation for capsule endoscopy to improve the visibility of small bowel mucosa.

  2. Development of a gastroretentive pulsatile drug delivery platform.

    PubMed

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  3. Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-10-01

    In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend.

  4. Capsule endoscopy of the future: What’s on the horizon?

    PubMed Central

    Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2015-01-01

    Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today’s standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years. PMID:26457013

  5. Lithographic Printing Via Two-Photon Polymerization of Engineered Foams

    DOE PAGES

    Herman, Matthew J.; Peterson, Dominic; Henderson, Kevin; ...

    2017-11-29

    Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distributionmore » may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated in this paper are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. Finally, with this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Matthew J.; Peterson, Dominic; Henderson, Kevin

    Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distributionmore » may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated in this paper are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. Finally, with this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.« less

  7. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    NASA Astrophysics Data System (ADS)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  8. Hyperthyroidism is a Risk Factor for Developing Adhesive Capsulitis of the Shoulder: A Nationwide Longitudinal Population-Based Study

    PubMed Central

    Huang, Shih-Wei; Lin, Jia-Wei; Wang, Wei-Te; Wu, Chin-Wen; Liou, Tsan-Hon; Lin, Hui-Wen

    2014-01-01

    The purpose of this study was to investigate the prevalence and risk of adhesive capsulitis among hyperthyroidism patients. The data were obtained from the Longitudinal Health Insurance Database 2005 (LHID 2005) in Taiwan, using 1 million participants and a prospective population-based 7-year cohort study of survival analysis. The ambulatory-care claim records of patients diagnosed according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes relating to hyperthyroidism between January 1, 2004 and December 31, 2007, were obtained. The prevalence and the adjusted hazard ratio (HR) of adhesive capsulitis among hyperthyroid patients and the control group were estimated. Of 4472 hyperthyroid patients, 162 (671/100 000 person-years) experienced adhesive capsulitis during the 24 122 person-year follow-up period. The crude HR of stroke was 1.26 (95% confidence interval [CI], 1.06 to 1.49), which was larger than that of the control group. The adjusted HR of developing adhesive capsulitis was 1.22 (95% CI, 1.03 to 1.45) for hyperthyroid patients during the 7-year follow-up period, which achieved statistical significance. The results of our large-scale longitudinal population-based study indicated that hyperthyroidism is an independent risk factor of developing adhesive capsulitis. PMID:24567049

  9. Hyperthyroidism is a risk factor for developing adhesive capsulitis of the shoulder: a nationwide longitudinal population-based study.

    PubMed

    Huang, Shih-Wei; Lin, Jia-Wei; Wang, Wei-Te; Wu, Chin-Wen; Liou, Tsan-Hon; Lin, Hui-Wen

    2014-02-25

    The purpose of this study was to investigate the prevalence and risk of adhesive capsulitis among hyperthyroidism patients. The data were obtained from the Longitudinal Health Insurance Database 2005 (LHID 2005) in Taiwan, using 1 million participants and a prospective population-based 7-year cohort study of survival analysis. The ambulatory-care claim records of patients diagnosed according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes relating to hyperthyroidism between January 1, 2004 and December 31, 2007, were obtained. The prevalence and the adjusted hazard ratio (HR) of adhesive capsulitis among hyperthyroid patients and the control group were estimated. Of 4472 hyperthyroid patients, 162 (671/100,000 person-years) experienced adhesive capsulitis during the 24,122 person-year follow-up period. The crude HR of stroke was 1.26 (95% confidence interval [CI], 1.06 to 1.49), which was larger than that of the control group. The adjusted HR of developing adhesive capsulitis was 1.22 (95% CI, 1.03 to 1.45) for hyperthyroid patients during the 7-year follow-up period, which achieved statistical significance. The results of our large-scale longitudinal population-based study indicated that hyperthyroidism is an independent risk factor of developing adhesive capsulitis.

  10. Expanded polytetrafluoroethylene membrane alters tissue response to implanted Ahmed glaucoma valve.

    PubMed

    DeCroos, Francis Char; Ahmad, Sameer; Kondo, Yuji; Chow, Jessica; Mordes, Daniel; Lee, Maria Regina; Asrani, Sanjay; Allingham, R Rand; Olbrich, Kevin C; Klitzman, Bruce

    2009-07-01

    Long-term intraocular pressure control by glaucoma drainage implants is compromised by the formation of an avascular fibrous capsule that surrounds the glaucoma implant and increases aqueous outflow resistance. It is possible to alter this fibrotic tissue reaction and produce a more vascularized and potentially more permeable capsule around implanted devices by enclosing them in a porous membrane. Ahmed glaucoma implants modified with an outer 5-microm pore size membrane (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) and unmodified glaucoma implants were implanted into paired rabbit eyes. After 6 weeks, the devices were explanted and subject to histological analysis. A tissue response containing minimal vascularization, negligible immune response, and a thick fibrous capsule surrounded the unmodified Ahmed glaucoma implant. In comparison, the tissue response around the PRIME-Ahmed demonstrated a thinner fibrous capsule (46.4 +/- 10.8 microm for PRIME-Ahmed versus 94.9 +/- 21.2 microm for control, p < 0.001) and was highly vascularized near the tissue-material interface. A prominent chronic inflammatory response was noted as well. Encapsulating the aqueous outflow pathway with a porous membrane produces a more vascular tissue response and thinner fibrous capsule compared with a standard glaucoma implant plate. Enhanced vascularity and a thinner fibrous capsule may reduce aqueous outflow resistance and improve long-term glaucoma implant performance.

  11. [A randomized, controlled, double-blind trial of Huannao Yicong capsule in senile patients with mild cognitive impairment].

    PubMed

    Li, Hao; Yao, Ming-Jiang; Zhao, Wen-Ming; Guan, Jie; Cai, Lin-Lin; Cui, Ling

    2008-01-01

    To observe the effect and explore the mechanism of Huannao Yicong capsule in treating senile patients with mild cognitive impairment (MCI). The investigational drugs were packed by blind method. A randomized, double-blind and controlled trial was conducted on ninety senile patients with MCI. Other forty-five senile healthy persons were recruited to the healthy control group. The ninety senile patients were randomly divided into the Huannao Yicong capsule-treated group (45 patients administered with three Huannao Yicong capsules and two aniracetam capsule analogues) and aniracetam-treated group (45 patients treated with two aniracetam capsules and three Huannao Yicong capsule analogues). Patients in the two groups were treated three times daily for 16 weeks. Memory, traditional Chinese medicine syndrome, cerebral blood flow, free radicals and inflammatory mediators, such as superoxide dismutase (SOD), malondialdehyde (MDA), acetylcholinesterase (AchE), interleukin-1alpha (IL-1alpha) and interleukin-6 (IL-6) were determined before and after the treatment. Blood lipids, including triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), apolipoprotein A-1 (ApoA-1) and apolipoprotein B-100 (ApoB-100), were detected before and after the treatment. The safety indexes, such as routine tests of blood and urine, hepatic and renal function tests and electrocardiogram (ECG) were taken before and after the treatment. Index score of clinical memory scale in senile healthy people was significantly higher than that in MCI patients before treatment (P<0.01), and the content of AchE, IL-1alpha and IL-6 was obviously lower (P<0.01, P<0.05), the activity of SOD was higher (P<0.05). No significant difference was found in direction memory of clinical memory scale between the two treatment groups. Other index scores of clinical memory scale and traditional Chinese medicine syndrome in patients of Huannao Yicong capsule-treated group were significantly improved as compared with those of the aniracetam-treated group (P<0.05, P<0.01). The blood flow parameters of anterior cerebral artery, posterior cerebral artery and resistant index in patients of Huannao Yicong capsule-treated group were increased significantly (P<0.01, P<0.05). Huannao Yicong capsule could significantly increase the activity of serum SOD and decrease the content of AchE, IL-1alpha and IL-6 (P<0.01, P<0.05), better than aniracetam. Furthermore, Huannao Yicong capsule could significantly improve the blood lipid, such as the level of TG, LDL-C, HDL-C, ApoA-1 and ApoB-100 (P<0.01, P<0.05), and better than aniracetam (P<0.01, P<0.05). No significant changes were found after treatment in safety indexes, such as routine tests of blood and urine, hepatic and renal function tests and ECG. Huannao Yicong capsule has better therapeutic effect than aniracetam capsule in treating senile mild cognitive impairment.

  12. Magnesium Ion Acts as a Signal for Capsule Induction in Cryptococcus neoformans.

    PubMed

    Rathore, Sudarshan S; Raman, Thiagarajan; Ramakrishnan, Jayapradha

    2016-01-01

    Cryptococcal meningitis caused by Cryptococcus neoformans, is a common opportunistic neural infection in immunocompromised individuals. Cryptococcus meningitis is associated with fungal burden with larger capsule size in cerebrospinal fluid (CSF). To understand the role of CSF constituents in capsule enlargement, we have evaluated the effect of artificial CSF on capsule induction in comparison with various other capsule inducing media. Two different strains of C. neoformans, an environmental and a clinical isolates were used in the present study. While comparing the various capsule inducing media for the two different strains of C. neoformans, it was observed that the capsule growth was significantly increased when grown in artificial CSF at pH 5.5, temperature 34°C for ATCC C. neoformans and 37°C for Clinical C. neoformans and with an incubation period of 72 h. In addition, artificial CSF supports biofilm formation in C. neoformans. While investigating the individual components of artificial CSF, we found that Mg(2+) ions influence the capsule growth in both environmental and clinical strains of C. neoformans. To confirm our results we studied the expression of four major CAP genes namely, CAP10, CAP59, CAP60, and CAP64 in various capsule inducing media and in different concentrations of Mg(2+) and Ca(2+). Our results on gene expression suggest that, Mg(2+) does have an effect on CAP gene expression, which are important for capsule biosynthesis and virulence. Our findings on the role of Mg(2+) ion as a signal for capsule induction will promote a way to elucidate the control mechanisms for capsule biosynthesis in C. neoformans.

  13. KSC-2012-5584

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule seen ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-5580

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule seen ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-5583

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule seen ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-5585

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule falls during tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-5587

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule falls during tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-5589

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule following a test inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-5582

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule seen ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-5586

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - A model capsule falls during tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  1. Effect of a controlled-release albendazole capsule on parasitism and productivity of sheep.

    PubMed

    Corba, J; Krupicer, I; Legény, J; Juris, P; Veselý, L

    1991-11-01

    The efficacy of intraruminal albendazole (ABZ) capsules (Profitril-Captec) and the effect of treatment on productivity were studied in 300 ewes infected with gastrointestinal nematodes and the trematode Dicrocoelium dendriticum. Coprological tests revealed that treated animals remained negative for 10 weeks after the administration of capsules. Contamination of pasture with nematode larvae was significantly reduced during the whole experiment. Necropsy of 14 animals (seven treated and seven untreated) showed 96.9-99.2% efficacy against the nematodes Nematodirus spp., Oesophagostomum spp., Cooperia spp., Trichostrongylus spp. and Trichuris ovis, while efficacy was 88.5% against D. dendriticum. During the 6 month pasture season (May-October 1989), treated ewes produced on average 2.56 kg cheese and 0.6 kg wool per ewe more than untreated controls. Our study confirms the reliability of the ABZ slow-release capsules over 90 days and the positive effect of treatment on nematode contamination of pasture and ewe productivity.

  2. KSC-2012-4214

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. -- This is an artist's conception of Space Exploration Technologies', or SpaceX, crewed Dragon capsule atop the company's Falcon 9 rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, SpaceX will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: SpaceX

  3. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Wen, Dongsheng; Tarakina, Nadezda V.; Liang, Jierong; Bushby, Andy J.; Sukhorukov, Gleb B.

    2016-02-01

    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06666b

  4. Corrosion Protection for Space and Beyond

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2007-01-01

    Florida is home to NASA's Launch Operations Center. Since its establishment in July 1962, the spaceport has served as the departure gate for every American manned mission and hundreds of advanced scientific spacecraft under the Launch Services Program. The center was renamed the John F. Kennedy Space Center in late 1963 to honor the president who put America on the path to the moon. Today, NASA is on the edge of a bold new chaIlenge: the ConsteIlation Program. ConsteIlation is a NASA program to create a new generation of spacecraft for human spaceflight, consisting primarily of the Ares I and Ares V launch vehicles, the Orion crew capsule, the Earth Departure stage and the Lunar access module. These spacecraft will be capable of performing a variety of missions, from Space Station resupply to lunar landings. The ambitious new endeavor caIls for NASA to return human explorers to the moon and then venture even farther, to Mars and beyond. As the nation's premier spaceport, Kennedy Space Center (KSC) will playa critical role in this new chapter in exploration, particularly in the conversion of the launch facilities to accommodate the new launch vehicles. To prepare for this endeavor, the launch site and facilities for the next generation of crew and cargo vehicles must be redesigned, assembled and tested. One critical factor that is being carefuIly considered during the renovation is protecting the new facilities and structures from corrosion and deterioration.

  5. A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing

    NASA Astrophysics Data System (ADS)

    Salerno, Marco; Ciuti, Gastone; Lucarini, Gioia; Rizzo, Rocco; Valdastri, Pietro; Menciassi, Arianna; Landi, Alberto; Dario, Paolo

    2012-01-01

    Recent achievements in active capsule endoscopy have allowed controlled inspection of the bowel by magnetic guidance. Capsule localization represents an important enabling technology for such kinds of platforms. In this paper, the authors present a localization method, applied as first step in time-discrete capsule position detection, that is useful for establishing a magnetic link at the beginning of an endoscopic procedure or for re-linking the capsule in the case of loss due to locomotion. The novelty of this approach consists in using magnetic sensors on board the capsule whose output is combined with pre-calculated magnetic field analytical model solutions. A magnetic field triangulation algorithm is used for obtaining the position of the capsule inside the gastrointestinal tract. Experimental validation has demonstrated that the proposed procedure is stable, accurate and has a wide localization range in a volume of about 18 × 103 cm3. Position errors of 14 mm along the X direction, 11 mm along the Y direction and 19 mm along the Z direction were obtained in less than 27 s of elaboration time. The proposed approach, being compatible with magnetic fields used for locomotion, can be easily extended to other platforms for active capsule endoscopy.

  6. Quality of compounded hydrocortisone capsules used in the treatment of children.

    PubMed

    Neumann, Uta; Burau, Daniela; Spielmann, Sarah; Whitaker, Martin J; Ross, Richard J; Kloft, Charlotte; Blankenstein, Oliver

    2017-08-01

    Due to the lack of paediatric-licensed formulations, children are often treated with individualized pharmacy-compounded adult medication. An international web-based survey about the types of medication in children with adrenal insufficiency (AI) revealed that the majority of paediatric physicians are using pharmacy-compounded medication to treat children with AI. Observations of loss of therapy control in children with congenital adrenal hyperplasia with compounded hydrocortisone capsules and regained control after prescribing a new hydrocortisone batch led to this 'real world' evaluation of pharmacy-compounded paediatric hydrocortisone capsules. Capsule samples were collected randomly from volunteering parents of treated children suffering from congenital adrenal hyperplasia from all over Germany. Analysis of net mass and hydrocortisone content by high-performance liquid chromatography with ultraviolet (HPLC-UV) detection method was performed based on the European Pharmacopeia. In a total of 61 batches that were sent, 5 batches could not be analysed because of missing dose information, insufficient number of capsules or were not possible to be evaluated. Fifty-six batches containing 1125 capsules were evaluated. 21.4% of the batches revealed insufficiency in uniformity of net mass or drug content and additional 3.6% failed because they did not contain the labelled drug. Compounded medication is a possible cause of variation of steroid doses in children with adrenal insufficiency or congenital adrenal hyperplasia, putting these vulnerable patients at risk of poor disease control and adrenal crisis. These data may apply to other individualized compounded oral medication as well, emphasizing the need for development of licensed paediatric formulations approved by regulatory authorities. © 2017 European Society of Endocrinology.

  7. Efficacy of an ivermectin controlled-release capsule against nematode and arthropod endoparasites in sheep.

    PubMed

    Rehbein, S; Batty, A F; Barth, D; Visser, M; Timms, B J; Barrick, R A; Eagleson, J S

    1998-03-28

    Five controlled trials were conducted in Germany or in the United Kingdom, using 74 female sheep of merino or Dorset horn breeds, to evaluate the efficacy of an ivermectin controlled-release capsule against naturally acquired or induced infections of gastrointestinal nematodes, lungworms and nasal bot larvae and against incoming infections with gastrointestinal and pulmonary nematodes. Half of the animals were treated with one ivermectin controlled-release capsule that delivered ivermectin at the rate of 1.6 mg per day for 100 days while the other half remained untreated. Parasites were counted 21, 28, 35 or 56 days after administration of the capsule. The treatment was highly effective (> or = 99 per cent) against established parasites of the following species: Haemonchus contortus (adults and fourth-stage larvae), Ostertagia circumcincta, O pinnata, O trifurcata, Ostertagia species fourth-stage larvae, Trichostrongylus axei, T colubriformis, T vitrinus, Cooperia curticei, Nematodirus battus, N filicollis, Strongyloides papillosus, Chabertia ovina, Oesophagostomum venulosum, Trichuris ovis, Tr skrjabini, Dictyocaulus filaria, Protostrongylus rufescens and Oestrus ovis (larvae). The treatment prevented the establishment of the gastrointestinal nematodes H contortus, O circumcincta, T axei, T colubriformis, C curticei, N battus, N filicollis, Ch ovina, Oe vennulosum and the establishment of the lungworm D filaria by > 99 per cent compared with untreated controls (P < or = 0.01).

  8. On-Orbit Maneuver Calibrations for the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Nandi, Sumita; Kennedy, Brian; Williams, Kenneth E.; Byrnes, Dennis V.

    2006-01-01

    The Stardust spacecraft, launched February 7, 1999, successfully delivered its sample return capsule to the Utah Test and Training Range on January 15, 2006. The entry maneuver strategy included a trajectory correction at entry minus 10 days (TCM18) targeted to entry with the inclusion of a final biased fixed direction maneuver at entry minus 29 hours (TCM19). To meet the stringent entry targeting requirements necessary for human safety and capsule integrity, a campaign of maneuver calibrations were undertaken in summers of 2003 and 2005 to improve performance for both maneuvers. The results of the calibration program are reported here. The in-flight calibrations included a series of several turns to various final attitudes via deadband walks about each of the three spacecraft axes, as well as 12 in-place burns with magnitudes between 0.5 and 1.0 m/s, the range initially expected for TCM19. The turn and burn calibrations as well as the performance of TCM 17, 18 and 19 are discussed.

  9. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  10. KSC-2012-5690

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- A prelaunch news conference is held in NASA Kennedy Space Center's Press Site auditorium in Florida. From left are Michael Curie, NASA Public Affairs, Bob Cabana, director of NASA Kennedy Space Center, Sam Scimemi, director of International Space Station at NASA Headquarters, Mike Suffredini, program manager of International Space Station at NASA Johnson Space Center, Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX, and Mike McAleenan, launch weather officer from the 45th Weather Squadron at Cape Canaveral Air Force Station. The news conference provided the media with a status on the readiness to launch NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-5687

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- A prelaunch news conference is held in NASA Kennedy Space Center's Press Site auditorium in Florida. From left are Michael Curie, NASA Public Affairs, Bob Cabana, director of NASA Kennedy Space Center, Sam Scimemi, director of International Space Station at NASA Headquarters, Mike Suffredini, program manager of International Space Station at NASA Johnson Space Center, Gwynne Shotwell, president of Space Exploration Technologies Corp., or SpaceX, and Mike McAleenan, launch weather officer from the 45th Weather Squadron at Cape Canaveral Air Force Station. The news conference provided the media with a status on the readiness to launch NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Jim Grossmann

  12. Exploring symmetry in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.

    2015-11-01

    Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  13. Lubiprostone neither decreases gastric and small-bowel transit time nor improves visualization of small bowel for capsule endoscopy: a double-blind, placebo-controlled study.

    PubMed

    Hooks, S Bennett; Rutland, Travis J; Di Palma, Jack A

    2009-11-01

    Lubiprostone, a selective activator of type 2 chloride channels, is approved for treatment of chronic idiopathic constipation and recently constipation-predominant irritable bowel syndrome. It has been suggested that lubiprostone has a prokinetic effect. This investigation was designed to evaluate lubiprostone as a preparation and propulsive agent for small-bowel capsule endoscopy. The PillCam Small Bowel capsule endoscopy system with the PillCam SB1 capsule and Rapid 5 software platform were used. The study was designed as a double-blind, placebo-controlled trial. Forty healthy adults. Gastric transit time (GTT), small-bowel transit time (SBTT), and adequacy of small-bowel cleansing preparation. The study subjects received 24 mug lubiprostone or placebo 30 minutes before PillCam capsule ingestion. Capsule endoscopy studies were read by 2 independent investigators unaware of the study medication received, and differences in interpretation were resolved by consensus. Anatomical landmarks were identified, and GTT and SBTT were calculated. Overall preparation quality assessment of the proximal, mid, and distal small bowel was determined by using a 4-step scale. The percentage of visualized bowel was determined by review of 10-minute video segments at 1-hour intervals after the capsule passed through the pylorus. In the lubiprostone group (n = 20), 2 subjects did not pass the capsule through the pylorus in the 8-hour battery life of the capsule. An additional 3 capsules did not pass into the colon. In the placebo group (n = 20), all capsules passed into the small bowel, but 1 did not pass into the colon. The subjects in whom the capsule did not pass into the small bowel were excluded from the small-bowel analysis. In the subjects in whom the capsule did reach the colon, the SBTT could not be calculated and they were excluded from SBTT analysis. The mean GTT in the lubiprostone group was 126 minutes and 43 minutes in the placebo group (P = .0095). The mean SBTT in the lubiprostone group was 188 minutes and 219 minutes in the placebo group (P = .130). The overall preparation assessment of the small bowel was not statistically significant between the 2 groups in the proximal, mid, or distal small bowel (proximal, P = .119; mid, P = .118; distal, P = .121). There was no significant difference in lubiprostone compared with placebo in the percentage of visualized small bowel. Some capsules did not leave the stomach or reach the cecum. Lubiprostone produced a significant increase in GTT but did not result in a significant decrease in SBTT compared with placebo. The administration of lubiprostone before capsule ingestion did not result in improved overall preparation of the small bowel for capsule endoscopy or increase the percentage of visualized small bowel. (The trial was registered at www.clinicaltrials.gov, identifier NCT00746395.).

  14. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2014-03-15

    Chitosan-coated alginate microcapsules containing high-density biofilm Lactobacillus rhamnosus have been previously shown to exhibit higher freeze drying- and thermal-tolerance than their planktonic counterparts. However, their cell release profile remains poor due to the capsules' susceptibility to the gastric environment. Herein the effects of adding locust bean (LB) and xanthan (XT) gums to alginate (AGN) capsules on the stress tolerance and cell release profiles in simulated gastrointestinal fluids are investigated. Compared to the AGN-only capsules, the AGN-LB capsules exhibit improved stress tolerance (i.e. ≈ 6x for freeze drying, 100x for thermotolerance, 10x for acid), whereas the AGN-XT capsules only improve the acid tolerance. Importantly, the AGN-LB capsules possess the optimal cell release profile with a majority of cells released in the simulated intestinal juice than in the gastric juice. The AGN-LB capsules' superiority is attributed to their stronger interaction with the chitosan coating and high swelling capacity, thus delaying their bulk dissolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SLS Payload Transportation Beyond LEO

    NASA Technical Reports Server (NTRS)

    Creech, S. D.; Baker, J. D.; Jackman, A. L.; Vane, G.

    2017-01-01

    NASA has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards the first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion capsule to the lunar vicinity every year after the first 2 flights starting in the early 2020's. As early as 2021, in addition to delivering an Orion capsule to a cislunar destination, SLS will also deliver ancillary payload, termed "Co-manifested Payload (CPL)", with a mass of at least 5.5 mT and volume up to 280 m3 simultaneously to that same destination. Later SLS flights have a goal of delivering as much as 10 mT of CPL to cislunar destinations. In addition to cislunar destinations, SLS flights may deliver non-crewed, science-driven missions with Primary Payload (PPL) to more distant destinations. SLS PPL missions will utilize a unique payload fairing offering payload volume (ranging from 320 m3 to 540 m3) that greatly exceeds the largest existing Expendable Launch Vehicle (ELV) fairing available. The Characteristic Energy (C3) offered by the SLS system will generate opportunities to deliver up to 40 mT to cislunar space, and deliver double PPL mass or de-crease flight time by half for some outer planet destinations when compared to existing capabilities. For example, SLS flights may deliver the Europa Clipper to a Jovian destination in under 3 years by the mid 2020's, compared to the 7+ years cruise time required for current launch capabilities. This presentation will describe ground and flight accommodations, interfaces, resources, and performance planned to be made available to potential CPL and PPL science users of SLS. In addition, this presentation should promote a dialogue between vehicle developers, potential payload users, and funding sources in order to most efficiently evolve required SLS capabilities to meet diverse payload needs as they are identified over the next 35 years and beyond.

  16. Magnesium Ion Acts as a Signal for Capsule Induction in Cryptococcus neoformans

    PubMed Central

    Rathore, Sudarshan S.; Raman, Thiagarajan; Ramakrishnan, Jayapradha

    2016-01-01

    Cryptococcal meningitis caused by Cryptococcus neoformans, is a common opportunistic neural infection in immunocompromised individuals. Cryptococcus meningitis is associated with fungal burden with larger capsule size in cerebrospinal fluid (CSF). To understand the role of CSF constituents in capsule enlargement, we have evaluated the effect of artificial CSF on capsule induction in comparison with various other capsule inducing media. Two different strains of C. neoformans, an environmental and a clinical isolates were used in the present study. While comparing the various capsule inducing media for the two different strains of C. neoformans, it was observed that the capsule growth was significantly increased when grown in artificial CSF at pH 5.5, temperature 34°C for ATCC C. neoformans and 37°C for Clinical C. neoformans and with an incubation period of 72 h. In addition, artificial CSF supports biofilm formation in C. neoformans. While investigating the individual components of artificial CSF, we found that Mg2+ ions influence the capsule growth in both environmental and clinical strains of C. neoformans. To confirm our results we studied the expression of four major CAP genes namely, CAP10, CAP59, CAP60, and CAP64 in various capsule inducing media and in different concentrations of Mg2+ and Ca2+. Our results on gene expression suggest that, Mg2+ does have an effect on CAP gene expression, which are important for capsule biosynthesis and virulence. Our findings on the role of Mg2+ ion as a signal for capsule induction will promote a way to elucidate the control mechanisms for capsule biosynthesis in C. neoformans. PMID:27014245

  17. Systematic review and meta-analysis of the efficacy and safety of Biqi capsule in rheumatoid arthritis patients.

    PubMed

    Chen, Xiu-Min; Wu, Jia-Qi; Huang, Qing-Chun; Zhang, Jian-Yong; Pen, Jian-Hong; Huang, Zhi-Sheng; Chu, Yong-Liang; He, Xiao-Hong; Wang, Mao-Jie; Huang, Run-Yue

    2018-06-01

    Biqi capsule is a Traditional Chinese Medicine preparation for treating rheumatoid arthritis (RA), and clinical studies have indicatedthat its effect may be more beneficial than that of Western medicine. The present study aimed to estimate the efficacy and safety of Biqi capsule alone or combined with methotrexate (MTX) compared with MTX alone for treating RA by performing a meta-analysis of randomized controlled trials and controlled clinical trials. A systematic literature search of studies published until March 2017 was performed. References from relevant studies were screened to obtain additional articles. The results were independently evaluated for relevance, and full-text studies were assessed for eligibility. The risk of bias was assessed using the Cochrane collaboration tool for assessing risk of bias. Out of 558 citations that were initially retrieved, a total of 5 studies comprising 522 patients met the inclusion criteria. The risk of bias of these trials was generally unclear or high. Meta-analysis indicated that Biqi capsule had better effects on C-reactive protein [standardized mean difference (SMD), -7.05; 95% CI -(10.77-3.33)] and tender joint count [SMD, -3.02; 95% CI, -(3.81-2.22)] and fewer adverse effects (AEs) than MTX [relative risk (RR), 0.19; 95% CI, 0.08-0.43]. Biqi capsule plus MTX was superior to MTX in terms of the total effect (RR, 1.17; 95% CI, 1.06-1.28), rheumatoid factor [SMD, -12.54; 95% CI, -(16.87-8.20)], swollen joint count [SMD, -1.50; 95% CI, -(1.99-1.01)], score of joint swelling [SMD -2.07; 95% CI, -(2.76-1.38)], tender joint count [SMD, -2.16; 95% CI, -(2.86-1.47)] and score of joint tenderness [SMD, -4.69; 95% CI, -(5.92-3.47)]. There was no difference in AEs between Biqi capsule plus MTX and MTX (RR, 0.71; 95% CI, 0.34-1.50). In conclusion, the present study indicated that compared with MTX, Biqi capsule plus MTX appeared to have more benefits but that Biqi capsule alone was not better for RA patients than MTX. In the other words, Biqi capsule plus MTX is more effective and has fewer AEs compared to MTX. However, the trials selected in the present meta-analysis have various limitations, including the lack of blinding and the short duration of the treatment; therefore, the conclusions are not sufficiently definitive. More randomized controlled trials are necessary to evaluate the use of Biqi capsule for managing RA.

  18. Antioxidant functionalized polymer capsules to prevent oxidative stress.

    PubMed

    Larrañaga, Aitor; Isa, Isma Liza Mohd; Patil, Vaibhav; Thamboo, Sagana; Lomora, Mihai; Fernández-Yague, Marc A; Sarasua, Jose-Ramon; Palivan, Cornelia G; Pandit, Abhay

    2018-02-01

    Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    PubMed

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  20. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    PubMed

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  1. On-the-fly detection of images with gastritis aspects in magnetically guided capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Mewes, P. W.; Neumann, D.; Juloski, A. L.; Angelopoulou, E.; Hornegger, J.

    2011-03-01

    Capsule Endoscopy (CE) was introduced in 2000 and has since become an established diagnostic procedure for the small bowel, colon and esophagus. For the CE examination the patient swallows the capsule, which then travels through the gastrointestinal tract under the influence of the peristaltic movements. CE is not indicated for stomach examination, as the capsule movements can not be controlled from the outside and the entire surface of the stomach can not be reliably covered. Magnetically-guided capsule endoscopy (MGCE) was introduced in 2010. For the MGCE procedure the stomach is filled with water and the capsule is navigated from the outside using an external magnetic field. During the examination the operator can control the motion of the capsule in order to obtain a sufficient number of stomach-surface images with diagnostic value. The quality of the examination depends on the skill of the operator and his ability to detect aspects of interest in real time. We present a novel computer-assisted diagnostic-procedure (CADP) algorithm for indicating gastritis pathologies in the stomach during the examination. Our algorithm is based on pre-processing methods and feature vectors that are suitably chosen for the challenges of the MGCE imaging (suspended particles, bubbles, lighting). An image is classified using an ada-boost trained classifier. For the classifier training, a number of possible features were investigated. Statistical evaluation was conducted to identify relevant features with discriminative potential. The proposed algorithm was tested on 12 video sequences stemming from 6 volunteers. A mean detection rate of 91.17% was achieved during leave-one out cross-validation.

  2. KSC-2012-5576

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - Astronauts Mike Fossum and Cady Coleman look over a model capsule fit with rotor blades ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-5575

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - NASA's Johnson Space Center Aerospace Engineer Jeff Hagen attaches a rotor to the top of a model capsule ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-5588

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - Test operators examine a model capsule after a of test inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-5581

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - Test operators prepare a model capsule ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-5579

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - NASA Aerospace Engineer Jeff Hagen prepares a model capsule ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to test a rotor system landing design. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  7. Two-speed phacoemulsification for soft cataracts using optimized parameters and procedure step toolbar with the CENTURION Vision System and Balanced Tip

    PubMed Central

    Davison, James A

    2015-01-01

    Purpose To present a cause of posterior capsule aspiration and a technique using optimized parameters to prevent it from happening when operating soft cataracts. Patients and methods A prospective list of posterior capsule aspiration cases was kept over 4,062 consecutive cases operated with the Alcon CENTURION machine and Balanced Tip. Video analysis of one case of posterior capsule aspiration was accomplished. A surgical technique was developed using empirically derived machine parameters and customized setting-selection procedure step toolbar to reduce the pace of aspiration of soft nuclear quadrants in order to prevent capsule aspiration. Results Two cases out of 3,238 experienced posterior capsule aspiration before use of the soft quadrant technique. Video analysis showed an attractive vortex effect with capsule aspiration occurring in 1/5 of a second. A soft quadrant removal setting was empirically derived which had a slower pace and seemed more controlled with no capsule aspiration occurring in the subsequent 824 cases. The setting featured simultaneous linear control from zero to preset maximums for: aspiration flow, 20 mL/min; and vacuum, 400 mmHg, with the addition of torsional tip amplitude up to 20% after the fluidic maximums were achieved. A new setting selection procedure step toolbar was created to increase intraoperative flexibility by providing instantaneous shifting between the soft and normal settings. Conclusion A technique incorporating a reduced pace for soft quadrant acquisition and aspiration can be accomplished through the use of a dedicated setting of integrated machine parameters. Toolbar placement of the procedure button next to the normal setting procedure button provides the opportunity to instantaneously alternate between the two settings. Simultaneous surgeon control over vacuum, aspiration flow, and torsional tip motion may make removal of soft nuclear quadrants more efficient and safer. PMID:26355695

  8. Development of three-layered rumen escapable capsules for cattle

    PubMed Central

    SEYAMA, Tomohiro; HIRAYASU, Hirofumi; YAMAWAKI, Kenji; ADACHI, Takuhiko; SUGIMOTO, Takayuki; KASAI, Koji

    2016-01-01

    A new rumen escapable tool is presented for cattle in prospect of developing medical treatment or supplementing trace elements for disease prevention. This tool consists of a three-layered capsule that dissolves in the lower digestive tract, but not in the rumen. The capsule was manufactured by capsule-forming techniques through the use of liquid surface tension. This method does not involve high-temperature treatment, so the capsule can contain not only lipophilic substances but also hydrophilic or heat-sensitive substances. Furthermore, the capsule has a specific gravity of 1.3 and diameter of 6.0 mm, which were previously shown to be appropriate to avoid rumination. The objective of this study was to confirm the effectiveness of the capsule pertinent to rumen escaping. In order to validate rumen escape, capsules containing 30 g of water-soluble vitamin (thiamine hydrochloride) per head were administered to four lactating cows assigned in a crossover trial. In the group administered encapsulated thiamine hydrochloride, blood thiamine levels increased from 12.4 ± 1.03 ng/ml before administration to 54.8 ± 2.21 ng/ml at 6 hr following administration, whereas the level remained at 13.3 ± 2.05 ng/ml in the control group administered via aqueous solution. This indicates that the three-layered capsules passed through the rumen and dissolved in the lower digestive tract, thus functioning as a rumen escapable tool. PMID:27546371

  9. KSC-2010-5796

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  10. KSC-2010-5797

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  11. KSC-2010-5792

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  12. KSC-2010-5793

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  13. KSC-2010-5798

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Kevin O'Connell

  14. KSC-2010-5794

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  15. KSC-2010-5795

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Tony Gray and Kevin O'Connell

  16. KSC-2010-5799

    NASA Image and Video Library

    2010-12-08

    CAPE CANAVERAL, Fla. -- SpaceX’s Falcon 9 rocket and Dragon spacecraft lift off from Launch Complex-40 at Cape Canaveral Air Force Station, Fla., at 10:43 a.m. EST. In orbit, the Dragon capsule will go through several maneuvers before it re-enters the atmosphere and splashes down in the Pacific Ocean about 500 miles west of the coast of Mexico. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: NASA/Kevin O'Connell

  17. KSC-98pc1836

    NASA Image and Video Library

    1998-12-02

    In the Payload Hazardous Servicing Facility, workers adjust a science panel they are installing on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006

  18. KSC-98pc1834

    NASA Image and Video Library

    1998-12-02

    In the Payload Hazardous Servicing Facility, workers get ready to install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006

  19. KSC-98pc1724

    NASA Image and Video Library

    1998-11-16

    In the Payload Hazardous Servicing Facility, workers begin removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006

  20. Design Options for the High-Foot Ignition Capsule Series on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Ma, T.; Pak, A. E.; Park, H.-S.; Salmonson, J. D.; Weber, C. R.; Zimmerman, G. B.; Olson, R. E.; Kline, J. L.; Leeper, R. J.

    2015-11-01

    Several options exist for improving implosion performance in the High-Foot series of ignition capsules on NIF. One option is to modify the fill tube used to supply DT to the capsule. Simulations indicate that a gold-coated glass tube may reduce implosion hydro effects and allow fielding a larger diameter tube capable of supporting the capsule, eliminating the need for the nominal tent support. A second option adds a fourth shock to the implosion history. According to simulation, this extra shock improves fuel confinement and capsule performance. A third option studies the feasibility of holding the DT fuel in liquid form in a foam layer inside the shell. This ``wetted foam'' concept, advanced by Olson, has existed for several years and may allow some control over the convergence of the capsule during implosion. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  1. Mars Sample Return mission utilizing in-situ propellant production

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Price, Steve

    1995-01-01

    This report presents the results of a study examining the potential of in-situ propellant production (ISPP) on Mars to aid in achieving a low cost Mars Sample Return (MSR) mission. Two versions of such a mission were examined: a baseline version employing a dual string spacecraft, and a light weight version employing single string architecture with selective redundancy. Both systems employed light weight avionics currently being developed by Lockheed Martin, Jet Propulsion Lab and elsewhere in the aerospace community, both used a new concept for a simple, light weight parachuteless sample return capsule, both used a slightly modified version of the Mars Surveyor lander currently under development at Lockheed Martin for flight in 1998, and both used a combination of the Sabatier-electrolysis and reverse water gas shift ISPP systems to produce methane/oxygen propellant on Mars by combining a small quantity of imported hydrogen with the Martian CO2 atmosphere. It was found that the baseline mission could be launched on a Delta 7925 and return a 0.5 kg sample with 82 percent mission launch margin;over and beyond subsystem allocated contingency masses . The lightweight version could be launched on a Mid-Lite vehicle and return a 0.25 kg sample with 11 percent launch margin, over and above subsystem contingency mass allocations.

  2. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the launch vehicle matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and its service module. The co-manifested payload is located below the Orion and its service module in a 10 m high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. Various approaches that utilize this comanifested payload capability to build up infrastructure in deep space have been explored in support of future asteroid, lunar, and Mars mission scenarios. This paper reports on the findings of the Advanced Concepts Office study team at NASA Marshall Space Flight Center (MSFC) working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume of the SLS. Findings include a set of module designs that can be developed in 10 mt increments to support these co-manifested payload missions along with a comparison of this approach to a large-module payload flight configuration for the SLS.

  3. Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function

    PubMed Central

    Yim, Sehyuk; Goyal, Kartik; Sitti, Metin

    2014-01-01

    In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01–0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule’s collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy. PMID:25378896

  4. Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.

    2007-01-01

    The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

  5. Study and Development of a Sub-Orbital Re-Entry Demonstrator

    NASA Astrophysics Data System (ADS)

    Savino, R.

    The Italian and European Space Agencies are supporting a research programme, developed in Campania region by a cluster of industries, research institutes and universities, on a low-cost re-entry capsule, able to return payloads from the ISS to Earth and/or to perform short-duration scientific missions in Low Earth Orbit (LEO). The ballistic capsule is characterized by a deployable, disposable "umbrella-like" heat shield that allows relatively small dimensions at launch and a sufficient exposed surface area in re-entry conditions, reducing the ballistic coefficient and leading to acceptable heat fluxes, mechanical loads and final descent velocity. ESA is supporting a preliminary study to develop a flight demonstrator of the capsule to be embarked as a secondary payload onboard a sub-orbital sounding rocket. The deployable thermal protection system concept may be applied to future science and robotic exploration mission requiring planetary entry and, possibly also to missions in the framework of Human Space flight, requiring planetary entry or re-entry. The technology offers also an interesting potential for aerobraking, aerocapture and for de-orbiting. This paper summarizes the results of these activities, which are being more and more refined as the work proceeds, including the definition and analysis of the mission scenario, the aerodynamic, aerothermodynamic, mechanical and structural analyses and the technical definition of avionics, instrumentation and main subsystems.

  6. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability of a second launch not occurring in a timely fashion (i.e., before the assets waiting in LEO expire). An overview of the launch strategy evaluation process is presented, along with results of specific cases that were analyzed. A high-level comparison of options is then presented, along with the conclusion derived from the analysis.

  7. KSC-2012-1470

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  8. KSC-2012-1469

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  9. Report of the committee on a commercially developed space facility

    NASA Technical Reports Server (NTRS)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  10. KSC-2011-3331

    NASA Image and Video Library

    2011-05-05

    CAPE CANAVERAL, Fla. -- During a celebration at Complex 5/6 on Cape Canaveral Air Force Station in Florida, Mercury astronaut Scott Carpenter greets Calvin Fowler, the launch conductor for Carpenter's Mercury-Atlas 7 mission on May 24, 1962. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-3334

    NASA Image and Video Library

    2011-05-05

    CAPE CANAVERAL, Fla. -- Bob Moser, former chief test conductor for the Mercury-Redstone launches, tours the blockhouse at Complex 5/6 on Cape Canaveral Air Force Station in Florida. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-8117

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dragon capsule under development by Space Exploration Technologies (SpaceX) of Hawthorne, Calif., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  13. KSC-2014-4034

    NASA Image and Video Library

    2014-09-21

    CAPE CANAVERAL, Fla. – A U.S. flag at NASA's Press Site is a fitting setting for the liftoff from American soil of the Falcon 9 rocket and Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. The rocket is carrying the SpaceX CRS-4 mission to orbit. Liftoff was at 1:52 a.m. EDT. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Frankie Martin

  14. KSC-99pc0120

    NASA Image and Video Library

    1999-01-27

    In the Payload Hazardous Servicing Facility, the Stardust spacecraft waits to be encased in a protective canister for its move to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006

  15. Epigenetic Regulation of Werner Syndrome Gene in Age-Related Cataract

    PubMed Central

    Guan, Huaijin

    2015-01-01

    Purpose. To examine the promoter methylation and histone modification of WRN (Werner syndrome gene), a DNA repair gene, and their relationship with the gene expression in age-related cataract (ARC) lens. Methods. We collected the lenses after cataract surgery from 117ARC patients and 39 age-matched non-ARC. WRN expression, DNA methylation and histone modification around the CpG island were assessed. The methylation status of Human-lens-epithelium cell (HLEB-3) was chemically altered to observe the relationship between methylation and expression of WRN. Results. The WRN expression was significantly decreased in the ARC anterior lens capsules comparing with the control. The CpG island of WRN promoter in the ARC anterior lens capsules displayed hypermethylation comparing with the controls. The WRN promoter was almost fully methylated in the cortex of ARC and control lens. Acetylated H3 was lower while methylated H3-K9 was higher in ARC anterior lens capsules than that of the controls. The expression of WRN in HLEB-3 increased after demethylation of the cells. Conclusions. A hypermethylation in WRN promoter and altered histone modification in anterior lens capsules might contribute to the ARC mechanism. The data suggest an association of altered DNA repair capability in lens with ARC pathogenesis. PMID:26509079

  16. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    PubMed

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  17. Application of Bio-digestion for Capsule Gelatin-- From the Pharmaceutical Wastes to the Manure

    NASA Astrophysics Data System (ADS)

    Pan, C.; Huang, S.; Chang, Y.; Wen, J.

    2013-12-01

    The purpose of this study was to bio-digest the capsule gelatin from the waste of pharmaceutical processes such as cutting and stamping for capsule shells producing. We screened soil bacterial flora for capsule gelatin biolysis, and found the most competent one named Yuntech-7. A 15% (w/w) of capsule gelatin could fully digested by Yuntech-7 for 3 days growth with an N-limited medium in a 37°C incubator. In order to recycle and reuse the gelatin waste, the different percentages of capsule gelatin were co-composted with the vegetable residues to produce manure in an anaerobic fermentation by an extra Yuntech-7 inoculation. After 14 days incubation, we collected the filtrate to examine the contents of N, P, and K. The data shows that the P and K keep the same value by roughly between the blank and the control sets, but the total N values were approximately a 5-fold increase in 20% and a 10-fold increase in 40% of capsule gelatin integrated. We suggested that the capsule gelatin was majorly decomposed by Yuntech-7, because the total N value was no observable change in the capsule gelatin and vegetable residues co-compost with a Yuntech-7-free condition. We also performed some field tests using the capsule gelatin generated liquid manure, and the preliminary test shows the plants got great benefits on culture size and in environmental resistance. In conclusion, the process in bio-digestion of waste capsule gelatin by soil bacteria, Yuntech-7, was produced a valuable manure not only aliment the plants but also complement the soil bacterial populations.

  18. Synthesis of size-controlled acid-resistant hybrid calcium carbonate microparticles as templates for fabricating "micelles-enhanced" polyelectrolyte capsules by the LBL technique.

    PubMed

    Li, Xiaodong; Hu, Qiaoling; Yue, Linhai; Shen, Jiacong

    2006-07-24

    Size-controlled, low-dispersed calcium carbonate microparticles were synthesized in the presence of the amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) by modulating the concentration of block copolymer in the reactive system. This type of hybrid microparticles have acid-resistant properties. By investigating the aggregation behaviors of PS-b-PAA micelles by transmission electron microscopy (TEM), the mechanism of hybrid calcium carbonate formation illustrated that the block copolymer served not only as "pseudonuclei" for the growth of calcium carbonate nanocrystals, but also forms the supramicelle congeries, a spherical framework, as templates for calcium carbonate nanocrystal growth into hybrid CaCO(3) particles. Moreover, this pilot study shows that the hybrid microparticle is a novel candidate as a template for fabricating multilayer polyelectrolyte capsules, in which the block copolymer is retained within the capsule interior after core removal under soft conditions. This not only facilitates the encapsulation of special materials, but also provides "micelles-enhanced" polyelectrolyte capsules.

  19. Subject-friendly entire gastrointestinal screening with a single capsule endoscope by magnetic navigation and the Internet.

    PubMed

    Ohta, Hidetoshi; Katsuki, Shinichi

    2014-01-01

    Ever since capsule endoscopy (CE) was introduced into clinical practice, we gastroenterologists have been dreaming of using this less invasive modality to explore the entire gastrointestinal (GI) tract. To realize this dream, we have developed a magnetic navigation system which includes real-time internet streaming of endoscopic video and some useful gadgets (position detection by means of magnetic impedance (MI) sensors and a modified capsule that is "weightless" in water). The design of the weightless capsule made it possible with 0.5T (Tesla) extracorporeal magnets to control the capsule beyond 20cm. A pair of MI sensors on the body surface could detect subtle magnetic flux generated by an intra-capsular magnet in the GI tract by utilizing the space diversity effect which eliminated the interference of terrestrial magnetism. Subjects underwent CE, during which they were free from confinement in the hospital, except for 1 hour when the capsule was manipulated in the stomach and colon. This study had a completion rate of 97.5%. The high completion rate indicates that our system (single capsule endoscopy-SCE) with further improvements could become a viable modality for screening of the entire GI tract.

  20. Oxygen fugacity and piston cylinder capsule assemblies

    NASA Astrophysics Data System (ADS)

    Jakobsson, S.

    2011-12-01

    A double capsule assembly designed to control oxygen fugacity in piston cylinder experiments has been tested at 1200 °C and 10 kbar. The assembly consists of an outer Pt-capsule containing a solid buffer (Ni-NiO or Co-CoO plus H2O) and an inner AuPd-capsule containing the sample, H2O and a Pt-wire. To prevent direct contact with the buffer phases the AuPd-capsule is embedded in finely ground Al2O3 along with some coarser, fractured Al2O3 facilitating fluid inclusion formation. No water loss is observed in the sample even after 48 hrs but a slight increase in water content is observed in longer duration runs due to oxygen and hydrogen diffusion into the AuPd-capsule. Carbon from the furnace also diffuses through the outer Pt-capsule but reacts with H2O in the outer capsule to form CO2 and never reaches the inner capsule. Oxygen fugacity of runs in equilibrium with the Ni-NiO and Co-CoO buffers was measured by analyzing the Fe content of the Pt-wire in the sample1 and by analyzing Fe dissolved in the AuPd capsule2. The second method gives values that are in good agreement with established buffer whereas results from the first method are one half to one log units higher than the established values. References 1. E. Medard, C. A. McCammon, J. A. Barr, T. L. Grove, Am. Mineral. 93, 1838 (2008). 2. J. Barr, T. Grove, Contrib. Mineral. Petrol. 160, 631 (2010)

  1. Application of the UV laser printing technique to soft gelatin capsules containing titanium dioxide in the shells.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru

    2012-03-01

    The purpose of this study was to examine application of ultraviolet (UV) laser irradiation to printing soft gelatin capsules containing titanium dioxide (TiO(2)) in the shells and to study effect of UV laser power on the color strength of printing on the soft gelatin capsules. Size 6 Oval type soft gelatin capsules of which shells contained 0.685% TiO(2) and 0.005% ferric dioxide were used in this study. The capsules were irradiated pulsed UV laser at a wavelength 355 nm. The color strength of the printed capsules was determined by a spectrophotometer as total color difference (dE). The soft gelatin capsules which contained TiO(2) in the shells could be printed gray by the laser. Many black particles, which were associated with the printing, were formed at the colored parts of the shells. It was found that there were two inflection points in relationship between output laser energy of a pulse and dE. Below the lower point, the capsules were not printed. From the lower point to the upper point, the capsules were printed gray and total color difference of the printing increased linearly in proportion with the output laser energy. Beyond the upper point, total color difference showed saturation because of micro-bubbles formation at the laser irradiated spot. Soft gelatin capsules containing TiO(2) in the shells could be performed stable printing using the UV laser printing technique. Color strength of the printing could be controlled by regulating the laser energy between the two inflection points.

  2. Artist's Concept- Ares I On Launchpad 39B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  3. [Post-marketing clinical study of traditional Chinese medicine--lessons learned from comprehensive evaluation of Fufang Zaoren capsule].

    PubMed

    Qing, Shan; Gao, Lin; Zhang, Li; Jia, Jian-Ping; Liu, Xin-Min; Ji, Shao-Liang; Yang, Xiao-Hui

    2013-11-01

    By comprehensive review and analysis of post-marketing clinical research on the efficacy and safety,we concluded that Fufang Zaoren capsule has certain therapeutic effects for insomnia, although current clinical research design needs improving. The post-marketing clinical studies also showed that it causes several adverse reactions at the recommended doses, such as chills, fever, dizziness, nausea, shortness of breath, chest tightness and palpitations, whereas high doses of Fufang Zaoren capsule can cause delayed extrapyramidal symptoms. Health Canada government website also prompted the L-tetrahydropalmatine in Fufang Zaoren capsule caused liver damage in pregnant women. The authors summarized the risk points, factors and risk control in the clinical use of Fufang Zaoren capsule and also present their perspective on the research status, existing problems and corresponding countermeasures in the post-marketing clinical re-evaluation of traditional Chinese medicine.

  4. Rare and Severe Maxillofacial Injury Due to Tear Gas Capsules: Report of Three Cases.

    PubMed

    Çorbacɩoğlu, Şeref Kerem; Güler, Sertaç; Er, Erhan; Seviner, Meltem; Aslan, Şahin; Aksel, Gökhan

    2016-03-01

    Tear gases are used by police or armed forces for control of riots or social events or by the general population for private self-defense. These agents are used widely throughout the world, but some harmful effects have reported. In addition, despite well-defined chemical side effects documented in the literature, data are insufficient regarding mechanical injury due to tear gas capsules. We report three cases of severe maxillofacial injury in patients who had these capsules fired from tear gas guns directly to their faces. The capsules penetrated the patients' faces, causing potentially fatal injuries. To our knowledge, reports of this kind of injury related to tear gas capsules are very rare in the literature. In conclusion, tear gas guns may be very dangerous in terms of human health and they may cause severe injuries, especially when they are not used according to strict guidelines. © 2015 American Academy of Forensic Sciences.

  5. KSC-2012-5574

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. - NASA's Johnson Space Center Aerospace Engineer Jeff Hagen, left, and engineering intern Emmanuel Nyangweso attach rotors to the top of a model capsule ahead of tests inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation. The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or parking lot. In other words, wherever a helicopter could land, a spacecraft could land, too. Photo credit: NASA/Kim Shiflett

  6. Effect of Ginger and Chamomile on Nausea and Vomiting Caused by Chemotherapy in Iranian Women with Breast Cancer.

    PubMed

    Sanaati, Fateme; Najafi, Safa; Kashaninia, Zahra; Sadeghi, Masoud

    2016-01-01

    Chemotherapy-induced nausea and vomiting (CINV) places a significant burden on the patient. Herbal agents are the most commonly complementary therapies used among the public. This study was done to determine the effect of ginger and chamomile capsules on nausea and vomiting in cases undergoing chemotherapy for breast cancer (BC). In a randomized, double-blind and clinical trial study, 65 women with BC undergoing chemotherapy were referred to Breast Cancer Research Center, Tehran, Iran, between May 2013 to June 2014. Regimen for ginger group for 5 days before and 5 days after chemotherapy was: 2 times a day and 500 mg capsules of powdered ginger root in addition to a routine antiemetic regimen consisting of dexamethasone, metoclopramide and aprepitant (DMA) capsules. Chamomile group similarly was: 2 times a day and 500 mg capsules of Matricaria chamomilla extract in addition to a routine antiemetic regimen consisting of DMA capsules. Control group, routine antiemetic regimen consisting of DMA capsules. There were no significant differences between the ginger, chamomile and control groups regarding age. Drugs used for chemotherapy were identical and duration of disease was also matched (1-4 months). Ginger and chamomile were both significantly effective for reducing the frequency of vomiting, there being no significant difference between the ginger and chamomile groups. Moreover, unlike the chamomile, ginger significantly influenced the frequency of nausea. According to the findings of this study, it should be declared that taking ginger capsules (1 g/day) might relieve CINV safely. Nurses dealing directly with cancer patients should be responsible for providing educational programs for patients and their families about how to deal with their drug regimens and associated side effects.

  7. Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment

    PubMed Central

    Do, Thanh Nho; Seah, Tian En Timothy; Yu, Ho Khek; Phee, Soo Jay

    2016-01-01

    Intra-gastric balloons (IGB) have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient’s stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon. To inflate the balloon, biocompatible effervescent chemicals are used. As the source of the actuation is provided via external magnetic fields, the magnetic capsule size can be significantly reduced compared to current weight-loss capsules in the literature. In addition, there are no limitations on the power supply. To lose weight, the obese subject needs only to swallow the magnetic capsule with a glass of water. Once the magnetic capsule has reached the patient’s stomach, the balloon will be wirelessly inflated to occupy gastric space and give the feeling of satiety. The balloon can be wirelessly deflated at any time to allow the magnetic capsule to travel down the intestine and exit the body via normal peristalsis. The optimal ratio between the acid and base to provide the desired gas volume is experimentally evaluated and presented. A prototype capsule (9.6mm x 27mm) is developed and experimentally validated in ex-vivo experiments. The unique ease of delivery and expulsion of the proposed magnetic capsule is slated to make this development a good treatment option for people seeking to lose excess weight. PMID:26815309

  8. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management

    PubMed Central

    Palea, Ovidiu; Granville, Michelle

    2017-01-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066

  9. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management.

    PubMed

    Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle

    2017-09-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.

  10. Morpho-functional evaluation of small bowel using wireless motility capsule and video capsule endoscopy in patients with known or suspected Crohn's disease: pilot study.

    PubMed

    Yung, Diana; Douglas, Sarah; Hobson, Anthony R; Giannakou, Andry; Plevris, John N; Koulaouzidis, Anastasios

    2016-04-01

    SmartPill(®) (Given Imaging Corp.,Yoqneam,Israel) is an ingestible, non-imaging capsule that records physiological data including contractions and pH throughout the gastrointestinal tract. There are scarce data looking at SmartPill(®) assessment of patients with known/suspected small-bowel Crohn's Disease (CD). This pilot study aims to investigate feasibility and safety of SmartPill(®) to assess gut motility in this group.  Over 1 year, patients with known/suspected CD, referred for small-bowel capsule endoscopy (SBCE), were invited to participate and 12 were recruited (7 female, 5 male, mean age 44.2 ± 16.6 years). They underwent hydrogen breath test to exclude small-bowel bacterial overgrowth, patency capsule (Agile(®)), and provided stool samples for fecal calprotectin (FC). Patients ingested PillCam(®)SB2 and SmartPill(®) 4 hours apart. Using unpublished data, 33 healthy controls also were identified for the study. P < 0.05 was considered statistically significant. Of the 12 patients enrolled, 10 underwent complete Smartpill(®) examination (1 stomach retention, 1 dropout). Pillcam(®) was complete in 10 (1 dropout, 1 stomach retention). Mean fecal calprotectin was 340 ± 307.71 mcg/g. The study group had longer transit times and lower gut motility index than did the controls. The difference in motility appears to be statistically significant (P < 0.05). Longer transit times for SmartPill(®) (not statistically significant) may have been due to different specifications between the capsules. Limitations included transient Smartpill(®) signal loss (5/10 studies). This is the first pilot to attempt combining SBCE and SmartPill(®) to assess small-bowel CD. Data on motility in CD are scarce. Multimodal information can provide a clearer clinical picture. Despite concerns about capsule retention in CD patients, SmartPill(®) seems safe for use if a patency capsule is employed beforehand.

  11. Formulation, stability testing, and analytical characterization of melatonin-based preparation for clinical trial.

    PubMed

    Filali, Samira; Bergamelli, Charlotte; Lamine Tall, Mamadou; Salmon, Damien; Laleye, Diane; Dhelens, Carole; Diouf, Elhadji; Pivot, Christine; Pirot, Fabrice

    2017-08-01

    A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens (0.5 mg, 2 mg, and 6 mg daily) for one month. The objectives of present study were to (i) prepare low-dose melatonin hard capsules for pediatric use controlled by two complementary methods and (ii) carry out a stability study in order to determine a use-by-date. Validation of preparation process was claimed as ascertained by mass uniformity of hard capsules. Multicomponent analysis by attenuated total reflectance Fourier transformed infrared (ATR-FTIR) of melatonin/microcrystalline cellulose mixture allowed to identify and quantify relative content of active pharmaceutical ingredients and excipients. Absolute melatonin content analysis by high performance liquid chromatography in 0.5 mg and 6 mg melatonin capsules was 93.6%±4.1% and 98.7%±6.9% of theoretical value, respectively. Forced degradation study showed a good separation of melatonin and its degradation products. The capability of the method was 15, confirming a risk of false negative <0.01%. Stability test and dissolution test were compliant over 18 months of storage with European Pharmacopoeia. Preparation of melatonin hard capsules was completed manually and melatonin in hard capsules was stable for 18 months, in spite of low doses of active ingredient. ATR-FTIR offers a real alternative to HPLC for quality control of high-dose melatonin hard capsules before the release of clinical batches.

  12. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media.

    PubMed

    Cao, Wei; Huang, Renliang; Qi, Wei; Su, Rongxin; He, Zhimin

    2015-01-14

    Encapsulation of enzymes during the creation of an emulsion is a simple and efficient route for enhancing enzyme catalysis in organic media. Herein, we report a capsule with a shell comprising a monolayer of silica Janus particles (JPs) (referred to as a monolayer capsule) and a Pickering emulsion for the encapsulation of enzyme molecules for catalysis purposes in organic media using amphiphilic silica JPs as building blocks. We demonstrate that the JP capsules had a monolayer shell consisting of closely packed silica JPs (270 nm). The capsules were on average 5-50 μm in diameter. The stability of the JP capsules (Pickering emulsion) was investigated with the use of homogeneous silica nanoparticles as a control. The results show that the emulsion stabilized via amphiphilic silica JPs presented no obvious changes in physical appearance after 15 days, indicating the high stability of the emulsions and JP capsules. Furthermore, the lipase from Candida sp. was chosen as a model enzyme for encapsulation within the JP capsules during their formation. The catalytic performance of lipase was evaluated according to the esterification of 1-hexanol with hexanoic acid. It was found that the specific activity of the encapsulated enzymes (28.7 U mL(-1)) was more than 5.6 times higher than that of free enzymes in a biphasic system (5.1 U mL(-1)). The enzyme activity was further increased by varying the volume ratio of water to oil and the JPs loadings. The enzyme-loaded capsule also exhibited high stability during the reaction process and good recyclability. In particular, the jellification of agarose in the JP capsules further enhanced their operating stability. We believe that the monolayer structure of the JP capsules, together with their high stability, rendered the capsules to be ideal enzyme carriers and microreactors for enzyme catalysis in organic media because they created a large interfacial area and had low mass transfer resistance through the monolayer shell.

  13. A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.

    2014-01-01

    The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities.

  14. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.

    2013-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft, makes a controlled Earth re-entry preventing any unintended release of pristine Martian materials into the Earth's biosphere. Other capsule type vehicles and associated launchers may be applicable. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX; published analyses from other sources; as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, has been made. And shows no significant stressors. A useful mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report on alternate propellant options for the MAV and options for the ERV, including propulsion systems; crewed versus robotic retrieval mission; as well as direct Earth entry. International Planetary Protection Policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. This work shows that emerging commercial capabilities can be used to effectively integrated into a mission to achieve an important planetary science objective.

  15. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. [Evaluation of nopal capsules in diabetes mellitus].

    PubMed

    Frati Munari, A C; Vera Lastra, O; Ariza Andraca, C R

    1992-01-01

    To find out if commercial capsules with dried nopal (prickle-pear cactus, Opuntia ficus indica may have a role in the management of diabetes mellitus, three experiments were performed: 30 capsules where given in fasting condition to 10 diabetic subjects and serum glucose was measured through out 3 hours; a control test was performed with 30 placebo capsules. OGTT with previous intake of 30 nopal or placebo capsules was performed in ten healthy individuals. In a crossover and single blinded study 14 diabetic patients withdrew the oral hypoglycemic treatment and received 10 nopal or placebo capsules t.i.d. during one week; serum glucose, cholesterol and tryglycerides levels were measured before and after each one-week period. Five healthy subjects were also studied in the same fashion. Opuntia capsules did not show acute hypoglycemic effect and did not influence OGTT. In diabetic patients serum glucose, cholesterol and tryglycerides levels did not change with Opuntia, but they increased with placebo (P < 0.01 glucose and cholesterol, P = NS triglycerides). In healthy individuals glycemia did not change with nopal, while cholesterol and triglycerides decreased (P < 0.01 vs. placebo). The intake of 30 Opuntia capsules daily in patients with diabetes mellitus had a discrete beneficial effect on glucose and cholesterol. However this dose is unpractical and at present it is not recommended in the management of diabetes mellitus.

  17. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.

  18. "Salmonella arizona" Infections in Latinos Associated with Rattlesnake Folk Medicine.

    ERIC Educational Resources Information Center

    Waterman, Stephen H.; And Others

    1990-01-01

    Conducted a case-control study to determine the magnitude of the problem of Latino patients who ingested rattlesnake capsules and then developed serious "Salmonella arizona" infections. Eighty-two percent of infected Latinos in 1986-87 who were questioned reported ingesting snake capsules. Discusses the association of ingesting snake…

  19. [Liposomes: support for the formation of stable capsules made of reticulated polyelectrolytes or silicum].

    PubMed

    Germain, M; Paquereau, L; Winterhalter, M; Hochepied, J-F; Fournier, D

    2007-03-01

    Uses of enzymes for therapeutic purpose or for biosensing require a well-controlled nanoenvironnement to avoid degradation by proteolytic agents, pH variations or dilution effects. A solution is encapsulation under undenaturating conditions into a nanometer sized and stable capsule. The nanometer scall decreases recognition by the reticulo-endothelial system recognition and subsequent immune reaction. Liposomes are the method of choice since they allow protein encapsulation under mild conditions. However they lack in stability. In contrast, other type of capsules exhibit strong stability but with conditions required for formation that are incompatible with enzyme integrity. Here we combine different capsule formation techniques and use liposomes as templates for further stabilization. Here we demonstrate two types of multicomposite capsules. The first type is to coat the liposome surface with polyelectrolytes followed by secondary covalent crosslinking of the polyelectrolytes multilayer. In the second type of capsules we used silica to build an inorganic shell around liposome. Both techniques allow the formation of detergent stable nanocapsules which exhibits properties protective against acetylcholinesterase protein degradation, an enzyme of much interest for pesticide detection.

  20. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    PubMed

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top