Sample records for launch escape system

  1. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  2. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  3. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at the safety design aspects for a launch pad escape system.

  4. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  5. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  6. Ascent abort capability for the HL-20

    NASA Technical Reports Server (NTRS)

    Naftel, J. C.; Talay, T. A.

    1993-01-01

    The HL-20 has been designed with the capability for rescue of the crew during all phases of powered ascent from on the launch pad until orbital injection. A launch-escape system, consisting of solid rocket motors located on the adapter between the HL-20 and the launch vehicle, provides the thrust that propels the HL-20 to a safe distance from a malfunctioning launch vehicle. After these launch-escape motors have burned out, the adapter is jettisoned and the HL-20 executes one of four abort modes. In three abort modes - return-to-launch-site, transatlantic-abort-landing, and abort-to-orbit - not only is the crew rescued, but the HL-20 is recovered intact. In the ocean-landing-by-parachute abort mode, which occurs in between the return-to-launch-site and the transatlantic-abort-landing modes, the crew is rescued, but the HL-20 would likely sustain damage from the ocean landing. This paper describes the launch-escape system and the four abort modes for an ascent on a Titan III launch vehicle.

  7. KSC-2012-5909

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s New Shepard crew capsule touched down 1,630 feet from the its simulated propulsion module launch pad at the company's West Texas launch site, completing a successful test of its New Shepard crew capsule escape system. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  8. KSC-2012-5907

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s pusher escape system rockets its New Shepard crew capsule away from a simulated propulsion module launch pad at the company's West Texas launch site, demonstrating a key safety system for both suborbital and orbital flights. The pad escape test took the company's suborbital crew capsule to an altitude of 2,307 feet during the flight test before descending safely by parachute to a soft landing 1,630 feet away. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  9. Stacked Buoyant Payload Launcher

    DTIC Science & Technology

    2013-05-14

    unit, the signal ejector , or through the escape hatch lockout trunk. Each of these deployment methods has disadvantages. [0005] Torpedo tubes are... ejector tube can accommodate payloads approximately three inches in diameter. Thus, payload size is extremely limited. The escape hatch lockout trunk...signal ejector tube. Additionally, the system 10 can launch multiple payloads during one launch sequence, or can provide multiple launches at

  10. LITTLE JOE 2 - LAUNCH VEHICLES - VA

    NASA Image and Video Library

    1961-04-13

    G61-00030 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  11. Launch of Little Joe I-B from Wallops Island

    NASA Image and Video Library

    1960-01-21

    B60-00364 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  12. KSC-2012-5908

    NASA Image and Video Library

    2012-10-19

    VAN HORN, Texas – Blue Origin’s New Shepard crew capsule escaped to an altitude of 2,307 feet before deploying parachutes for a safe return for a pad escape test at the company's West Texas launch site. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  13. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  14. Applications of nuclear reactor power systems to electric propulsion missions.

    NASA Technical Reports Server (NTRS)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  15. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a DELTA V penalty. Usually, because of the DELTA V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Highly Elliptical Orbit (HEO) (2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) (3) One impulsive maneuver from a Low Earth Orbit (LEO) (4) Two impulsive maneuvers from LEO (5) Three impulsive maneuvers from LEO.

  16. Human Exploration Missions Study Launch Window from Earth Orbit

    NASA Technical Reports Server (NTRS)

    Young, Archie

    2001-01-01

    The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.

  17. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy; Bosworth, John T.

    2007-01-01

    This viewgraph presentation is an overview of the Launch Abort System (LAS) for the Constellation Program. The purpose of the paper is to review the planned tests for the LAS. The program will evaluate the performance of the crew escape functions of the Launch Abort System (LAS) specifically: the ability of the LAS to separate from the crew module, to gather flight test data for future design and implementation and to reduce system development risks.

  19. 40. Launch Area, Underground Missile Storage Structure, detail of escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Launch Area, Underground Missile Storage Structure, detail of escape hatch and decontamination shower VIEW WEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  20. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  1. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.

  2. 42. Launch Area, Underground Missile Storage Structure, detail of escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Launch Area, Underground Missile Storage Structure, detail of escape hatch, elevator and air vent VIEW SOUTH - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  3. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The Little Joe launch vehicle for the LJ1 mission on the launch pad at the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury cupsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  4. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18547 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox, STS-82 mission commander, chats with a crewmate (out of frame) prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the middeck.

  5. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The launch of the Little Joe booster for the LJ1B mission on the launch pad from the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury capsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  6. STS-26 MS Lounge floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Lounge pulls cord on life raft and enlists the aid of a SCUBA-equipped diver. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle. Lounge is wearing gear like that each STS-26 crewmember and subsequent crews will carry onboard during launch.

  7. Longitudinal and lateral-directional static aerodynamic characteristics of an unpowered escape system extraction rocket model with attached launch tubes

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Satterthwaite, R. E.

    1977-01-01

    An escape system extraction rocket proposed for use on the Rotor Systems Research Aircraft was tested at Mach numbers of 0.1 and 0.3 through an angle of attack range from -2 deg to 102 deg and an angle of sideslip range from 0 deg to 15 deg in the Langley 7- by 10-foot high speed tunnel. The data are presented without analysis.

  8. STS-26 MS Nelson during Crew escape system (CES) testing in JSC WETF Bldg 29

    NASA Image and Video Library

    1988-07-08

    S88-42409 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson participates in crew escape system (CES) testing in JSC Weightless Environment Training Facility (WETF) Bldg 29. Nelson, wearing the newly designed (navy blue) launch and entry suit (LES), floats in WETF pool with the aid of an underarm flotation device (modern version of Mas West floats). He awaits the assistance of SCUBA-equipped divers during a simulation of escape and rescue operations utilizing a new CES pole for emergency exit from the Space Shuttle.

  9. Preliminary analysis of space mission applications for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  10. Heart rate and pulmonary function while wearing the launch-entry crew escape suit (LES) during + Gx acceleration and simulated Shuttle launch

    NASA Technical Reports Server (NTRS)

    Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.

    1990-01-01

    Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.

  11. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This cutaway illustration shows the Apollo Spacecraft with callouts of the major components. The spacecraft consisted of the lunar module, the service module, the command module, and the launch escape system.

  13. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  14. Project Mercury Escape Tower Rockets Tests

    NASA Image and Video Library

    1960-04-21

    A Mercury capsule is mounted inside the Altitude Wind Tunnel for a test of its escape tower rockets at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In October 1959 NASA’s Space Task Group allocated several Project Mercury assignments to Lewis. The Altitude Wind Tunnel was quickly modified so that its 51-foot diameter western leg could be used as a test chamber. The final round of tests in the Altitude Wind Tunnel sought to determine if the smoke plume from the capsule’s escape tower rockets would shroud or compromise the spacecraft. The escape tower, a 10-foot steel rig with three small rockets, was attached to the nose of the Mercury capsule. It could be used to jettison the astronaut and capsule to safety in the event of a launch vehicle malfunction on the pad or at any point prior to separation from the booster. Once actuated, the escape rockets would fire, and the capsule would be ejected away from the booster. After the capsule reached its apex of about 2,500 feet, the tower, heatshield, retropackage, and antenna would be ejected and a drogue parachute would be released. Flight tests of the escape system were performed at Wallops Island as part of the series of Little Joe launches. Although the escape rockets fired prematurely on Little Joe’s first attempt in August 1959, the January 1960 follow-up was successful.

  15. SLC-41 Water Deluge Test

    NASA Image and Video Library

    2017-11-02

    NASA, Boeing and United Launch Alliance personnel run a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  16. SLC-41 Water Deluge Test

    NASA Image and Video Library

    2017-11-02

    NASA, Boeing and United Launch Alliance personnel begin a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  17. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing newly designed launch and entry suit (LES), floats in single-occupant life raft during simulations in the JSC Weightless Environment Training Facility Bldg 29 pool. During the simulation of escape and rescue operations, the crew escape system (CES) pole mode of egress from the Space Shuttle was utilized.

  18. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  19. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  20. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Image and Video Library

    1988-07-08

    S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  1. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18563 (30 Oct. 1996) --- Astronaut Steven L. Smith, mission specialist, participates in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Smith and his crewmates simulated an emergency ejection, using the escape pole (left center in hatchway) on the mid deck, as well as other phases of their scheduled February mission.

  2. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  3. SLC-41 Water Deluge Test

    NASA Image and Video Library

    2017-11-02

    NASA and Boeing personnel experience conditions during a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  4. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18557 (30 Oct. 1996) --- Astronauts Steven A. Hawley (left) and Gregory J. Harbaugh participate in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the two STS-82 mission specialists and their crewmates simulated an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  5. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  6. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  7. Labeled line drawing of launch and entry suit identifies various components

    NASA Image and Video Library

    1988-09-22

    Line drawings illustrate the front and back of the space shuttle launch and entry suit (LES) and labels identify various components. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life preserver unit (LPU), life raft unit (LRU), LES gloves, suit oxygen manifold and valves, boots, and survival gear. Details of larger components are also identified.

  8. Advanced Concept

    NASA Image and Video Library

    2004-04-15

    It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.

  9. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  10. Orbiter fire rescue and crew escape training for EVA crew systems support

    NASA Image and Video Library

    1993-01-28

    Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).

  11. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  12. STS-26 MS Hilmers floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  13. STS-26 Commander Hauck floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  14. In situ propellant production - A new potential for round-trip spacecraft

    NASA Technical Reports Server (NTRS)

    Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Ash, R. L.

    1979-01-01

    In situ propellant production (ISPP) greatly reduces the Earth escape requirements for some roundtrip missions, particularly Mars Sample Return. ISPP systems are described which produce oxygen or oxygen and methane from available atmospheric and surface materials. With ISPP, a 1 kg sample can be returned direct from Mars using a single Shuttle launch. Mars entry can be either direct or from orbit. Comet and asteroid sample return is also accomplished within a single Shuttle launch. Launch requirements for round-trip missions to Ganymede and Callisto are reduced by 15 to 40%.

  15. STS-47 Payload Specialist Mohri at side hatch during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing launch and entry suit (LES), prepares to enter the Crew Compartment Trainer (CCT) side hatch during launch emergency egress (bailout) in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Mohri's right hand rests on the extended crew escape system (CES) pole which will be used in the exercise. Mohri represents Japan's National Development Space Agency (NASDA).

  16. Lockheed Martin Response to the OSP Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Robert T.; Munkres, Randy; Megna, Thomas D.; Beckham, Joanne

    2003-01-01

    The Lockheed Martin Orbital Space Plane System provides crew transfer and rescue for the International Space Station more safely and affordably than current human space transportation systems. Through planned upgrades and spiral development, it is also capable of satisfying the Nation's evolving space transportation requirements and enabling the national vision for human space flight. The OSP System, formulated through rigorous requirements definition and decomposition, consists of spacecraft and launch vehicle flight elements, ground processing facilities and existing transportation, launch complex, range, mission control, weather, navigation, communication and tracking infrastructure. The concept of operations, including procurement, mission planning, launch preparation, launch and mission operations and vehicle maintenance, repair and turnaround, is structured to maximize flexibility and mission availability and minimize program life cycle cost. The approach to human rating and crew safety utilizes simplicity, performance margin, redundancy, abort modes and escape modes to mitigate credible hazards that cannot be designed out of the system.

  17. Historical Footage of John Glenn Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Friendship mission launch on the 20th day of February marked the first time that an American attempts to orbit the Earth. Historical footage of John Glenn's suit up, ride out to the launch pad, countdown, liftoff, booster engine cutoff, and separation of the booster engine escape tower is shown. Views of the Earth, Glenn's manual control of the electrical fly-by wire system, and the recovery of the landing vehicle from the ocean are presented.

  18. STS-47 MS Jemison extends side hatch mockup CES pole during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison extends crew escape system (CES) pole through a side hatch mockup during launch emergency egress (bailout) training in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. MS Jerome Apt (right) looks on. The crewmembers practiced extending the CES pole prior to donning their launch and entry suits (LESs) and conducting the simulation in the Crew Compartment Trainer (CCT).

  19. SKYLAB IV - LAUNCH

    NASA Image and Video Library

    1973-11-27

    S73-37285 (16 Nov. 1973) --- The Skylab 4/Saturn 1B space vehicle is launched from Pad B, Launch Complex 39, Kennedy Space Center, Florida, at 9:01:23 a.m. (EST), Friday, Nov. 16, 1973. Skylab 4 is the third and last of three scheduled manned Skylab missions. Aboard the Skylab 4 Command/Service Module were astronauts Gerald P. Carr, Edward G. Gibson and William R. Pogue. In addition to the CSM and its launch escape system, the Skylab 4 space vehicle consisted of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-IVB) stage. (The Skylab 1/Saturn V unmanned space vehicle with the space station payload was launched from Pad A on May 14, 1973). Photo credit: NASA

  20. SKYLAB IV - LAUNCH

    NASA Image and Video Library

    1973-11-27

    S73-37286 (16 Nov. 1973) --- The Skylab 4/Saturn 1B space vehicle is launched from Pad B, Launch Complex 39, Kennedy Space Center, Florida, at 9:01:23 a.m. (EST), Friday, Nov. 16, 1973. Skylab 4 is the third and last of three scheduled manned Skylab missions. Aboard the Skylab 4 Command/Service Module were astronauts Gerald P. Carr, Edward G. Gibson and William R. Pogue. In addition to the CSM and its launch escape system, the Skylab 4 space vehicle consisted of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-IVB) stage. (The Skylab 1/Saturn V unmanned space vehicle with the space station payload was launched from Pad A on May 14, 1973). Photo credit: NASA

  1. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Buhler, Janessa L.; Minow, Joseph I.; Trout, Dawn H.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle andor payload design and controlling the risk through operational launch constraints to avoid significant charging environments.

  2. Orion Pad Abort 1 GN and C Design and Development

    NASA Technical Reports Server (NTRS)

    Medina, Edgar A.; Stachowiak, Susan J.

    2010-01-01

    The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.

  3. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  4. 2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. STS-38 Pilot Culbertson rolls through CCT side hatch during egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.

  6. STS-38 Pilot Culbertson rolls through CCT side hatch during egress training

    NASA Image and Video Library

    1990-03-05

    STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.

  7. KSC-2013-3008

    NASA Image and Video Library

    2013-05-14

    CAPE CANAVERAL, Fla. -- Inside the Launch Equipment Test Facility at NASA’s Kennedy Space in Florida, a second firing of the escape hold down post has occurred during a pyrotechnic bolt test on the Orion ground test vehicle. Lockheed Martin performed tests over a series of days on the explosive bolts that separate Orion from the launch abort system. Data was collected on the effect of shock waves on Orion during the explosive bolt separation. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  8. 46 CFR 112.15-1 - Temporary emergency loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... spaces sufficient to allow passengers and crew to find their way to open decks and to survival craft...) Illuminated signs with the word “EXIT” in red letters throughout a passenger vessel so the direction of escape... the area of the water where it is to be launched. (h) Electric communication systems that are...

  9. Design for effective development and prototyping of the HL-20

    NASA Astrophysics Data System (ADS)

    Urie, David M.; Floreck, Paul A.; McMorris, John A.; Elvin, John D.

    1993-10-01

    A feasibility study of the HL-20 personnel launch system (PLS) concept was conducted by a team which focused on creating a PLS design approach and an accelerated development plan consistent with the historical 'Skunk Works' approach to rapid prototyping. Technical design, manufacturing, system testing, and operations and support elements of the predefined baseline concept were evaluated. An initial phase program, featuring a concurrent system test during design and development, leading to the orbital flight of an unmanned HL-20 prototype on a Titan III launch system, was prescribed. A second-phase development and manufacturing plan leading to system operational status was also formulated. Baseline design feature modifications were made when necessary, without compromise to performance, to satisfy the prototype development plan. Technical design details and off-the-shelf hardware candidates were also identified for several subsystems, including the launch-system interface adapter/emergency escape system. The technical feasibility of the system and applicability of the Skunk Works approach to development of the HL-20/PLS were verified.

  10. SKYLAB (SL)-III - LAUNCH - KSC

    NASA Image and Video Library

    1973-08-17

    S73-32570 (28 July 1973) --- The Skylab 3/Saturn 1B space vehicle is launched from Pad B, Launch Complex 39, Kennedy Space Center, Florida, at 7:11 a.m. (EDT), Saturday, July 28, 1973. Skylab 3 is the second of three scheduled Skylab manned missions. Aboard the Skylab 3 Command/Service Module were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma. The Skylab 3 CSM later docked with the Skylab space station cluster in Earth orbit. In addition to the CSM and its launch escape system, the Skylab 3 space vehicle consisted of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-1VB) stage. (The Skylab 1/Saturn V space vehicle with the space station payload was launched from Pad A on May 14, 1973). Photo credit: NASA

  11. Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.

  12. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  13. Comparison of current Shuttle and pre-Challenger flight suit reach capability during launch accelerations

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Schafer, Lauren E.

    1992-01-01

    The Challenger accident prompted the creation of a crew escape system which replaced the former Launch Entry Helmet (LEH) ensemble with the current Launch Entry Suit (LES). However, questions were raised regarding the impact of this change on crew reach capability. This study addressed the question of reach capability and its effects on realistic ground-based training for Space Shuttle missions. Eleven subjects performed reach sweeps in both the LEH and LES suits during 1 and 3 Gx acceleration trials in the Brooks AFB centrifuge. These reach sweeps were recorded on videotape and subsequently analyzed using a 3D motion analysis system. The ANOVA procedure of the Statistical Analysis System program was used to evaluate differences in forward and overhead reach. The results showed that the LES provided less reach capability than its predecessor, the LEH. This study also demonstrated that, since there was no substantial difference between 1 and 3 Gx reach sweeps in the LES, realistic Shuttle launch training may be accomplished in ground based simulators.

  14. Research Opportunities in Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used to get propellants off the ground to be burned later. A modem launch vehicle is usually able to put no more than 1.5%-3% of its total liftoff weight into low earth orbit.

  15. STS-26 crew during emergency egress exercise at LC 39 launch pad B

    NASA Image and Video Library

    1988-05-04

    S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).

  16. Mars NanoOrbiter: A CubeSat for Mars System Science

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal

    2017-10-01

    The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.

  17. Next Generation Launch Technology Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  18. STS-26 MS Hilmers during egress training at JSC's MAIL full fuselage trainer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), tries out the new crew escape system (CES) inflated slide during an emergency egress training exercise in JSC's Shuttle Mockup and Integration Laboratory (MAIL) Bldg 9A. Technicians stand on either side of the slide ready to help Hilmers to his feet once he reaches the bottom. Watching from floor level at the far left is astronaut Steven R. Nagel. A second crewmember stands in the open side hatch of the Full Fuselage Trainer (FFT) awaiting his turn to slide to 'safety'. During Crew Station Review (CSR) #3, the crew donned the new (navy blue) partial pressure suits (LESs) and checked out CES slide and other CES configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. The CES pole extends out the side hatch just above Hilmers' head.

  19. Comparison of Two Recent Launch Abort Platforms

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  20. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  1. KSC-08pd1486

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- In the NASA News Center at NASA's Kennedy Space Center, Shuttle Crew Escape System Manager KC Chhipwadia describes for the media the elements of the helmet that is part of the launch and entry suit (seen on the table) used by shuttle crews during their missions. He is holding onto the bar that latches to secure the closed visor. The helmet provides oxygen when needed plus a communication system. Photo credit: NASA/Amanda Diller

  2. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  3. Integrated Flight Performance Analysis of a Launch Abort System Concept

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  4. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; Petit, Jean-Marc; Durda, Daniel D.; Greenberg, Richard; Bottke, William; Nolan, Michael; Moore, Jeffrey

    1996-03-01

    Galileo images of Asteroid 243 Ida and its satellite Dactyl show surfaces which are dominantly shaped by impact cratering. A number of observations suggest that ejecta from hypervelocity impacts on Ida can be distributed far and wide across the Ida system, following trajectories substantially affected by the low gravity, nonspherical shape, and rapid rotation of the asteroid. We explore the processes of reaccretion and escape of ejecta on Ida and Dactyl using three-dimensional numerical simulations which allow us to compare the theoretical effects of orbital dynamics with observations of surface morphology. The effects of rotation, launch location, and initial launch speed are first examined for the case of an ideal triaxial ellipsoid with Ida's approximate shape and density. Ejecta launched at low speeds (V≪Vesc) reimpact near the source craters, forming well-defined ejecta blankets which are asymmetric in morphology between leading and trailing rotational surfaces. The net effect of cratering at low ejecta launch velocities is to produce a thick regolith which is evenly distributed across the surface of the asteroid. In contrast, no clearly defined ejecta blankets are formed when ejecta is launched at higher initial velocities (V∼Vesc). Most of the ejecta escapes, while that which is retained is preferentially derived from the rotational trailing surfaces. These particles spend a significant time in temporary orbit around the asteroid, in comparison to the asteroid's rotation period, and tend to be swept up onto rotational leading surfaces upon reimpact. The net effect of impact cratering with high ejecta launch velocities is to produce a thinner and less uniform soil cover, with concentrations on the asteroids' rotational leading surfaces. Using a realistic model for the shape of Ida (P. Thomas, J. Veverka, B. Carcich, M. J. S. Belton, R. Sullivan, and M. Davies 1996,Icarus120, 000-000), we find that an extensive color/albedo unit which dominates the northern and western hemispheres of the asteroid can be explained as the result of reaccretion of impact ejecta from the large and evidently recent crater “Azzurra.” Initial ejection speeds required to match the color observations are on the order of a few meters per second, consistent with models (e.g., M. C. Nolan, E. Asphaug, H. J. Melosh, and R. Greenberg 1996,Icarus, submitted; E. Asphaug, J. Moore, D. Morrison, W. Benz, and R. Sullivan 1996,Icarus120, 158-184) that multikilometer craters on Ida form in the gravity-dominated regime and are net producers of locally retained regolith. Azzurra ejecta launched in the direction of rotation at speeds near 10 m/sec are lofted over the asteroid and swept up onto the rotational leading surface on the opposite side. The landing locations of these particles closely match the distribution of large ejecta blocks observed in high resolution images of Ida (P. Lee, J. Veverka, P. Thomas, P. Helfstein, M. J. S. Belton, C. Chapman, R. Greeley, R. Pappalardo, R. Sullivan, and J. W. Head 1996,Icarus120, 87-105). Ida's shape and rotation allow escape of ejecta launched at speeds far below the escape velocity of a nonrotating sphere of Ida's volume and presumed density. While little ejecta from Ida is captured by Dactyl, about half of the mass ejected from Dactyl at speeds of up to 20 m/sec eventually falls on Ida. Particles launched at speeds just barely exceeding Dactyl's escape velocity can enter relatively long-term orbit around Ida, but few are ultimately reaccreted by the satellite. Because of its low gravity, erosion of Dactyl would take place on exceedingly short time scales if unconsolidated materials compose the satellite and crater formation is in the gravity regime. If Dactyl is a solid rock, then its shape has evolved from a presumably irregular initial fragment to its present remarkably rounded figure by collision with a population of impactors too small to be detected by counting visible craters. As the smallest solar system object yet imaged by a spacecraft, the morphology of Dactyl is an important clue to the asteroid population at the smallest sizes.

  5. Peer Review of Launch Environments

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  6. STS-100 crew take a group photo before walkou

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  7. The Delta launch vehicle Model 2914 series

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1973-01-01

    Description of a new, medium-class Delta launch-vehicle configuration, the three-stage Model 2914. The first stage of this vehicle is composed of a liquid-propellant core which is thrust-augmented with up to nine strap-on solid-propellant motors. The second stage, recently uprated with a strap-down inertial guidance system, is now being modified to adapt the liquid-propellant descent engine from the Apollo Lunar Excursion Module. The third stage is a spin-stabilized solid-propellant motor. The Model 2914 is capable of injecting 2040 kg into low earth orbit, 705 kg into geosynchronous transfer orbit, or 455 kg into an escape trajectory.

  8. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort. Key Words: PRA, space launches, human space program, ascent abort, spacecraft, launch vehicles

  9. Annual Systems Engineering Conference: Focusing on Improving Performance of Defense Systems Programs (10th). Volume 3. Thursday Presentations

    DTIC Science & Technology

    2007-10-25

    the Phit <.0001 requirement) restricts tactical delivery conditions, the probability of a fragment hit may be further qualified by considering only...Pkill – UK uses “self damage” metric • Risk Analysis: “If the above procedures ( Phit or Pkill <.0001) still result in restricting tactical delivery...10 (From NAWCWD Briefing) 4 Safe Escape Analysis Requirements Calculate Phit ,Pkill, and Pdet Is Phit <= .0001 for all launch conditions Done NO YES

  10. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort.

  11. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  12. KSC-2012-1810

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians prepare for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  13. KSC-2012-1818

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians have released the seven slidewire baskets from the 195-foot level for the final time. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  14. KSC-2012-1811

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians prepare for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  15. KSC-2012-1815

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians prepare for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  16. KSC-2012-1816

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians have released the seven slidewire baskets from the 195-foot level for the final time. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  17. KSC-2012-1814

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians prepare for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  18. KSC-2012-1812

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians prepare for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  19. KSC-2012-1817

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, technicians have released the seven slidewire baskets from the 195-foot level for the final time. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  20. Implementation hurdles of an interactive, integrated, point-of-care computerised decision support system for hospital antibiotic prescription.

    PubMed

    Chow, A L; Ang, A; Chow, C Z; Ng, T M; Teng, C; Ling, L M; Ang, B S; Lye, D C

    2016-02-01

    Antimicrobial stewardship is used to combat antimicrobial resistance. In Singapore, a tertiary hospital has integrated a computerised decision support system, called Antibiotic Resistance Utilisation and Surveillance-Control (ARUSC), into the electronic inpatient prescribing system. ARUSC is launched either by the physician to seek guidance for an infectious disease condition or via auto-trigger when restricted antibiotics are prescribed. This paper describes the implementation of ARUSC over three phases from 1 May 2011 to 30 April 2013, compared factors between ARUSC launches via auto-trigger and for guidance, examined factors associated with acceptance of ARUSC recommendations, and assessed user acceptability. During the study period, a monthly average of 9072 antibiotic prescriptions was made, of which 2370 (26.1%) involved ARUSC launches. Launches via auto-trigger comprised 48.1% of ARUSC launches. In phase 1, 23% of ARUSC launches were completed. This rose to 38% in phase 2, then 87% in phase 3, as escapes from the ARUSC programme were sequentially disabled. Amongst completed launches for guidance, 89% of ARUSC recommendations were accepted versus 40% amongst completed launches via auto-trigger. Amongst ARUSC launches for guidance, being from a medical department [adjusted odds ratio (aOR)=1.20, 95% confidence interval (CI) 1.04-1.37] and ARUSC launch during on-call (aOR=1.81, 95% CI 1.61-2.05) were independently associated with acceptance of ARUSC recommendations. Junior physicians found ARUSC useful. Senior physicians found ARUSC reliable but admitted to having preferences for antibiotics that may conflict with ARUSC. Hospital-wide implementation of ARUSC encountered hurdles from physicians. With modifications, the completion rate improved. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  2. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  3. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability of a second launch not occurring in a timely fashion (i.e., before the assets waiting in LEO expire). An overview of the launch strategy evaluation process is presented, along with results of specific cases that were analyzed. A high-level comparison of options is then presented, along with the conclusion derived from the analysis.

  4. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  5. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  6. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  7. Fusion-Driven Space Plane for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Cassenti, B.

    A fusion hybrid reactor where the fusion component is the gasdynamic mirror (GDM) is proposed as the driver of a rocket that would allow a space vehicle of the size of Boeing 747 to travel to the moon in about one day. The energy produced by the reactor is induced by fusion neutrons that impinge on a thorium-232 blanket where they breed uranium-233 and simultane- ously burn it to produce power. For a vehicle of mass 500 metric tons (mT), the thrust required to accelerate it at 1 g is 5 MN, and the specific impulse, Isp, necessary to accelerate 90% of the launch mass to the escape velocity of 11,200 m/sec is found to be 10,182 seconds. For these propulsion parameters, the coolant mass flow rate would be 49 kg/sec. We note that the time it takes the launch mass, initially at rest and accelerated at 1g, to reach the escape velocity is 1,020 seconds. At the above noted rate, the total propellant mass is approximately 50 mT, which is about 10% of the launch mass, validating the Isp needed to accelerate the remainder to the escape velocity. If we assume that the trajectory to the moon is linear, and we account for the deceleration of the vehicle by the earth's gravitational force, and its acceleration by the moon's gravitational force, we can calculate the average velocity and the time it takes to reach the moon. We find that the travel time is about 1.66 days, which in this model is effectively the time for a fly-by. A more rigorous calculation using the restricted three body approach with the third body being the spacecraft, and allowing for a coordinate system that rotates at the circular frequency of the larger masses, shows that the transit time is about 0.65 days, which is comparable to the flight time between New York and Sidney, Australia.

  8. KSC-2012-1822

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – A panoramic view of the seven slidewire baskets on the ground near Launch Pad 39A at NASA’s Kennedy Space Center in Florida, is seen here after technicians released them from the 195-foot level for the final time. The baskets will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  9. KSC-2012-1813

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, a technician prepares for the final release of the seven slidewire baskets from the 195-foot level. After the baskets reach the ground they will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  10. KSC-2012-1819

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, the seven slidewire baskets have traveled down the wires to the ground after technicians released them from the 195-foot level for the final time. The baskets will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  11. KSC-2012-1821

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, the seven slidewire baskets have traveled down the wires to the ground after technicians released them from the 195-foot level for the final time. The baskets will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  12. KSC-2012-1820

    NASA Image and Video Library

    2012-03-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39A at NASA’s Kennedy Space Center in Florida, the seven slidewire baskets have traveled down the wires to the ground after technicians released them from the 195-foot level for the final time. The baskets will be removed and put in storage. The system of seven slidewire baskets at launch pads A and B provided an escape route for personnel inside the orbiter or on the orbiter access arm. The baskets are suspended from slidewires that extend from the pad’s Fixed Service Structure to a landing zone 1,200 feet to the west. Each basket could hold up to three people. A braking system catch net and drag chain slowed and then halted the baskets sliding down the wire approximately 55 miles per hour in about half a minute. Photo credit: NASA/Frankie Martin

  13. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Image and Video Library

    1990-03-05

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  14. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  15. STS-54 MS2 Harbaugh and MS3 Helms during slidewire egress training at KSC

    NASA Image and Video Library

    1992-12-15

    S93-25030 (15 Dec 1992) --- Two astronauts assigned to fly aboard Endeavour for the STS-54 mission are briefed on the slidewire escape system at the launch pad. Pictured in the slidewire litter are astronauts Gregory J. Harbaugh (left) and Susan J. Helms, mission specialists. They are assisted by Max Kandler of Lockheed, Houston. All five crewmembers are in Florida this week to participate in countdown demonstration tests.

  16. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  17. Near-Field Cosmology with Low-Mass Galaxies: Constraining the Escape of Radiation from the UV-slopes of Local Galaxies

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Rosenberg, Jessica L.; Salzer, John Joseph; Gronke, Max; Cannon, John M.; Miller, Christopher J.; Dijkstra, Mark

    2018-06-01

    Low-mass galaxies are thought to play a large role in reionizing the Universe at redshifts, z > 6. However, due to limited UV data on low-mass galaxies, the models used to estimate the escape of radiation are poorly constrained. Using theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of a sample of low-mass low-z KISSR galaxies to their escape fraction values in Ly-alpha radiation, fesc (LyA), and in the Ly-continuum, fesc (LyC). These low-mass starforming systems have potentially steep UV slopes, and could provide a much-needed relation between easily measured spectral properties such as UV slope or LyA line properties, and the escape of LyA/LyC radiation. Such a relation could advance studies of primordial star clusters and the underlying physical conditions characterizing early galaxies, one of the target observation goals of the soon to-be-launched James Webb Space Telescope. This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-01

    A technician can be seen working atop the white room across from the escape tower of the Apollo 11 spacecraft a few days prior to the launch of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams

  19. Capsule Escape Tests - Wallops Island

    NASA Image and Video Library

    1959-05-14

    Caption: Off the pad abort shot at Wallops using Langley PARD designed full scale capsule with Recruit rocket and extended skirt main parachute. Shows sequential images of launch and capsule splashdown.

  20. STS-47 Commander Gibson and Pilot Brown at CCT side hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson (right) and Pilot Curtis L. Brown, Jr, wearing launch and entry suits (LESs), pose in front of the Crew Compartment Trainer (CCT) mockup side hatch during post landing emergency egress procedures held at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note that the crew escape system (CES) pole is in position at side hatch but is not extended.

  1. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  2. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  3. Study of radioisotope safety devices for electric propulsion system, Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. B.; Homeyer, W. G.; Postula, F. D.; Steeger, E. J.

    1972-01-01

    A new reference design was prepared for the 5 kW(e) thermionic power supply. The safety equipment in this design is a passive containment system which does not rely on the operation of any mechanisms such as a launch escape rocket or deployment of parachutes. It includes: (1) a blast shield to protect against the explosion of the launch vehicle; (2) a combination of refractory thermal insulation and heat storage material to protect against a sustained launch pad fire; (3) a reentry body with a spherical nose and a large conical flare at the aft end to stabilize the reentry attitude and lower the terminal velocity in air; (4) composite graphite thermal protection to sustain the reentry heat pulse; (5) crushable honeycomb behind the nose to limit the deceleration of the radioisotope source due to impact on land at terminal velocity; (6) a double-walled secondary containment vessel surrounding the isotopic capsules; (7) neutron shielding to reduce external dose rates; (8) an auxiliary cooling system employing redundant heat pipes to remove the radioactive decay heat from the heat source and reject it to the surroundings or to a forced convection loop.

  4. 25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF SLC-3W CONTROL ROOM. CONSOLE INCLUDES TELEVISION CONTROL, FACILITIES, AND VEHICLE (MISSILE) POWER PANELS. FROM LEFT TO RIGHT IN BACKGROUND: MILITARY-TIME CLOCK, BASE OF BUNKER PERISCOPE, AND STAIRS TO ESCAPE TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. ARC-2006-ACD06-0177-002

    NASA Image and Video Library

    2006-09-20

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot

  6. ARC-2006-ACD06-0177-003

    NASA Image and Video Library

    2006-09-20

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot

  7. Artist's Concept- Ares I On Launchpad 39B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  8. Study of extraterrestrial disposal of radioactive wastes. Part 3: Preliminary feasibility screening study of space disposal of the actinide radioactive wastes with 1 percent and 0.1 percent fission product contamination

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.

    1973-01-01

    A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.

  9. STS-100 crew members pose on the FSS after emergency escape training on the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew poses for a photo on the 195-foot level of Launch Pad 39A'''s Fixed Service Structure. Standing, from left, are Mission Specialists Scott Umberto Guidoni, Scott E. Parazynski, Chris A. Hadfield, Yuri V. Lonchakov, and John L. Phillips; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. Hadfield is with the Canadian Space Agency, Guidoni with the European Space Agency and Lonchakov with the Russian Aviation and Space Agency. Behind them can be seen the tip of one white solid rocket booster and the orange external tank. The STS-100 mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  10. A Supersonic/Hypersonic Aerodynamic Investigation of the Saturn 1B/Apollo Upper Stage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The static stability and axial force characteristics of an upper stage Saturn 1B/Apollo model were investigated in a series of wind tunnel tests at Mach numbers between 1. 93 and 8. 05. This report presents and analyzes the results of these small-scale studies. Test procedures and models are described, and consideration of boundary layer characteristics and violated modeling rules yields an assessment of the validity of the data. Four basic models provided evaluation of the basic launch vehicle characteristics, as well as the effects of two modes of mission abort and jettison of the launch escape system. The launch configuration experienced sudden, strong changes in stability derivatives and axial force coefficients near Mach 5. No similar changes were observed on the other configurations. Effects of Reynolds number, Mach number and boundary layer trips were obtained for each shape. The faired curves are believed to be valid for full-scale flight of the Saturn 1B/Apollo upper stage.

  11. Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,

  12. A technician works adjacent to the Apollo 11 spacecraft atop the white room.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A technician can be seen working atop the white room across from the escape tower of the Apollo 11 spacecraft a few days prior to the launch of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams

  13. KSC-08pd2858

    NASA Image and Video Library

    2008-09-23

    CAPE CANAVERAL, Fla. - STS-125 Pilot Gregory C. Johnson serves as a “guinea pig” to demonstrate emergency escape apparatus from the 195-foot level of the fixed service structure on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Looking on are Mission Specialists Andrew Feustel, Megan McArthur and Mike Massimino. The crew is at Kennedy to take part in terminal countdown demonstration test, or TCDT, activities before launching on space shuttle Atlantis’ mission to service NASA’s Hubble Space Telescope. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization, emergency training and a simulated launch countdown. Atlantis is targeted to launch Oct. 10. Photo credit: NASA/Kim Shiflett

  14. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  15. STS-26 Preflight Press Briefing: 5 Man Crew. Part 6 of 9

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This NASA KSC video release presents part of a press conference held prior to Discovery flight STS-26, the first shuttle mission flown following the 51-L Challenger accident. The video opens with a statement from Commander Frederick H. Hauck, and the introductions of crew members, Richard O. Covey, Pilot, and mission specialists, John M. Lounge, George D. Nelson, and David C. Hilmers. Some of the questions posed by scientific journalists addressed the following subjects: launch preparation in the month prior to flight, astronaut family anxieties in light of the Challenger accident, extent of safety measures made prior to flight, flight readiness firing, the crew escape system, civilians in space, conservative mission design, astronaut selection, mission turnaround and launch rate, and the ability to maintain a high level of scrutiny regarding safety on future missions.

  16. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  17. Launch window analysis in a new perspective with examples of departures from Earth to Mars

    NASA Technical Reports Server (NTRS)

    Thibodeau, J. R., III; Bond, V. R.

    1972-01-01

    Earth-departure windows are investigated for two round trip stopover missions to Mars. These are the 1981 inbound Venus swingby mission and the 1986 direct minimum-energy mission. The secular effects of planetary oblateness are used to predict the motion of the parking orbit. A procedure is developed for matching the motion of the parking orbit and the escape asymptote. Earth-departure velocity penalties, caused by orbital plane misalinement, are reduced by synchronizing the motion of the parking orbit and the escape trajectory.

  18. Tracking and data system support for the Pioneer project. Volume 1: Pioneer 10-prelaunch planning through second trajectory correction, 4 December 1969 - 1 April 1972

    NASA Technical Reports Server (NTRS)

    Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.

    1973-01-01

    The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.

  19. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  20. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  1. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  2. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  3. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-06-09

    Engineers assemble the Soyuz TMA-14 spacecraft, escape tower and all three stages Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  4. KSC-01pp0777

    NASA Image and Video Library

    2001-04-08

    STS-100 Commander Kent V. Rominger is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  5. KSC-01pp0779

    NASA Image and Video Library

    2001-04-08

    STS-100 Mission Specialist Chris A. Hadfield is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  6. KSC-08pd3441

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialists Sandra Magnus, Shane Kimbrough and Heidemarie Stefanyshyn-Piper have taken their seats in a slidewire basket, part of the emergency escape system on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  7. STS-36 Commander Creighton in LES outside CCT side hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Standing on an inflated cushion outside the side hatch of the crew compartment trainer (CCT), STS-36 Commander John O. Creighton, wearing launch and entry suit (LES), smiles before climbing into the shuttle mockup. The crew escape system (CES) pole extends beyond the side hatch opening. Mission Specialist (MS) Richard M. Mullane is seen at the lower corner of the frame rolling on the safety cushion. CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The crewmembers are practicing egress procedures that might be necessary in the event of an emergency aboard the shuttle.

  8. Historic and Current Launcher Success Rates

    NASA Technical Reports Server (NTRS)

    Rust, Randy

    2002-01-01

    This presentation reviews historic and current space launcher success rates from all nations with a mature launcher industry. Data from the 1950's through present day is reviewed for possible trends such as when in the launch timeline a failure occurred, which stages had the highest failure rate, overall launcher reliability, a decade by decade look at launcher reliability, when in a launchers history did failures occur, and the reliability of United States human-rated launchers. This information is useful in determining where launcher reliability can be improved and where additional measures for crew survival (i.e., Crew Escape systems) will have the greatest emphasis

  9. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-03-22

    Russian engineers attach the escape tower to the Soyuz TMA-14 spacecraft and boosters Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  10. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-06-09

    The Soyuz escape tower is being attached to the Soyuz TMA-14 spacecraft and boosters Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  11. Shuttle: forever young?

    PubMed

    Sietzen, Frank

    2002-01-01

    NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.

  12. A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.

    2014-01-01

    The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities.

  13. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Relaxing after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, are(left to right) STS-102 Mission Specialists Andrew Thomas and Paul Richards and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Also flying on the mission are the Expedition Two crew, who will replace the Expedition One crew on Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  14. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-06-09

    The Soyuz TMA-14 spacecraft, escape tower, first, second and third stages are seen after final assembly Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  15. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  16. KSC-01pp0776

    NASA Image and Video Library

    2001-04-08

    Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Umberto Guidoni. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  17. KSC-01pp0775

    NASA Image and Video Library

    2001-04-08

    Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist John L. Phillips. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  18. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  19. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Beers, Benjamin R.

    2015-01-01

    The Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the sun, within 10 years. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature Hall thruster, a solar sail and an electric sail. A second analysis was conducted to determine which solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming a characteristic energy capability provided by a Space Launch System Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist. Results indicated that if the Technology Readiness Level of an electric sail could be increased in time, this technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so in even less time.

  20. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-06-09

    The escape tower, Soyuz TMA-14 spacecraft and third stage are moved for assembly to the first and second stages Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  1. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-03-22

    Russian engineers prepare the escape tower prior to attaching it to the Soyuz TMA-14 spacecraft and boosters Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  2. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-06-09

    The escape tower is slowly moved into position so it may be attached to the Soyuz TMA-14 spacecraft and boosters Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  3. Pilot Fullerton dons anti-g and ejection escape suit (EES) on middeck

    NASA Image and Video Library

    1982-03-31

    S82-28922 (30 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, floats upside down in the zero-gravity environment of the middeck area of the Earth-orbiting space shuttle Columbia as he dons a modified USAF high altitude pressure garment. The brownish ejection/escape suit is used by the astronauts at launch and entry. Most of the remainder of their mission time, they are attired in a blue constant-wear garment. Astronaut Jack R. Lousma, crew commander, took this picture with a 35mm camera. The crew spent eight full days in the reusable spacecraft, a shuttle record. Photo credit: NASA

  4. Mariner Jupiter/Saturn 1977 - The mission frame.

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.

    1972-01-01

    Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.

  5. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. From left are Mission Specialists Paul Richards, Andrew Thomas and Susan Helms, and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Helms is part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. At left is Pilot James Kelly; in the center and right are Mission Specialists Yury Usachev and James Voss. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Usachev and Voss are part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  7. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Yury Usachev (left), Susan Helms (center) and James Voss (right) take time to pose for the camera after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B. They are the Expedition Two crew who will be flying to the International Space Station on mission STS-102 to replace Expedition One. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  8. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  9. STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training

    NASA Image and Video Library

    1993-11-22

    STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  10. STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  11. STS-46 MS PLC Hoffman floats in life raft during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander Jeffrey A. Hoffman floats in a one-person life raft during launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Hoffman, who has just tumbled out a side hatch mockup, waits for his life raft to fully inflate as a SCUBA-equipped diver looks on. The long cylindrical object in the foreground serves as a prop for the crew escape system (CES) pole. In the background MS Franklin R. Chang-Diaz floats in a fully inflated life raft.

  12. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  13. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  14. KSC-01pp0774

    NASA Image and Video Library

    2001-04-08

    Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Yuri V. Lonchakov, who is with the Russian Space and Aviation Agency. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  15. Expedition 19 Soyuz Assembly

    NASA Image and Video Library

    2009-03-22

    The Soyuz escape tower is being moved into position so that it may be attached to the Soyuz TMA-14 spacecraft and boosters Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  16. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  17. JSC Astronaut corps, STS-3 vehicle integration test team and others

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Members of the JSC astronaut corps, STS-3 vehicle integration test (VIT) team and other personnel pose for photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center. Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W.S. Abbey, Director of Flight Operations at JSC; Astronaut John H. Young, Chief of the Astronaut Office at JSC; Jack Fleming of Rockwell International; Mission Specialist-Astronaut John M. Lounge; Astronaut Daniel C. Brandenstein; Mission Specialist-Astronaut James D. Van Hoften; Astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; Mission Specialist-Astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and Astronaut Donald E. Williams. The Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire emergency escape system is visible in the picture.

  18. SIMULATED COUNTDOWN TRAINING ACTIVITIES - STS-3 - KSC

    NASA Image and Video Library

    1982-03-17

    S82-28457 (19 Feb. 1982) --- Member of the JSC astronaut corps., STS-3 vehicle integration test (VIT) team and other personnel pose for a photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center (KSC). Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W. S. Abbey, director of flight operations at JSC; astronaut John W. Young, chief of the astronaut office at JSC; Jack Fleming of Rockwell International; mission specialist-astronaut John M. Lounge; astronaut Daniel C. Brandenstein; mission specialist-astronaut James D. Van Hoften; astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; mission specialist-astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and astronaut Donald E. Williams. The space shuttle Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire type emergency escape system is visible in the picture. Photo credit: NASA

  19. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

    2000-01-01

    Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and/or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.

  20. STS-102 MS Helms, Usachev and Voss pose on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, STS-102 Mission Specialists Susan Helms, Yury Usachev and James Voss pose for the camera. The three are also the Expedition Two crew who will be replacing Expedition One on the International Space Station. Behind them, at left, can be seen the tops of the solid rocket booster and external tank on Space Shuttle Discovery. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the Space Station, with Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  1. Basic coaxial mass driver reference design. [electromagnetic lunar launch

    NASA Technical Reports Server (NTRS)

    Kolm, H. H.

    1977-01-01

    The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.

  2. Survival in Emergency Escape from Passenger Aircraft,

    DTIC Science & Technology

    ESCAPE SYSTEMS, *TRANSPORT AIRCRAFT, ESCAPE SYSTEMS, CIVIL AVIATION, STATISTICAL DATA, AIRCRAFT DOORS, EVACUATION, MORTALITY RATE, ADULTS , CHILDREN, SEX, AIRCRAFT FIRES, AIRCRAFT CABINS, FEMALES, BEHAVIOR.

  3. Advanced ion thruster and electrochemical launcher research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1983-01-01

    The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.

  4. STS-62 Preflight training in Crew Compartment Trainer (CCT) in bldg 9A

    NASA Image and Video Library

    1993-11-01

    S93-48462 (5 Nov. 1993) --- Astronaut Charles D. (Sam) Gemar, wearing a partial pressure launch and entry suit (LES), takes a break during a training exercise at the Johnson Space Center (JSC). The mission specialist and four crew mates rehearsed emergency egress procedures using the escape pole device in the trainer's hatchway (near right center frame).

  5. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.

    PubMed

    Hammond, Sarah; O'Shea, Michael

    2007-11-01

    There are two modes of flight initiation in Drosophila melanogaster-escape and voluntary. Although the circuitry underlying escape is accounted for by the Giant fibre (GF) system, the system underlying voluntary flight initiation is unknown. The GF system is functionally complete before the adult fly ecloses, but immature adults initially fail to react to a stimulus known to reliably evoke escape in mature adults. This suggests that escape in early adulthood, approximately 2-h post-eclosion, is not automatically triggered by the hard-wired GF system. Indeed, we reveal that escape behaviour displays a staged emergence during the first hour post-eclosion, suggesting that the GF system is subject to declining levels of suppression. Voluntary flight initiations are not observed at all during the period when the GF system is released from its suppression, nor indeed for some time after. We addressed the question whether voluntary flight initiation requires the GF system by observing take-off in Shak-B ( 2 ) mutant flies, in which the GF system is defunct. While the escape response is severely impaired in these mutants, they displayed normal voluntary flight initiation. Thus, the escape mechanism is subject to developmental modulation following eclosion and the GF system does not underlie voluntary flight.

  6. STS-66 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  7. STS-66 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    1995-04-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  8. Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.

    2017-12-01

    Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.

  9. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  10. Mercury: impact studies

    NASA Image and Video Library

    1958-08-05

    Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  11. Mercury: impact studies

    NASA Image and Video Library

    1958-09-07

    Photographed on: 08 05 1958. -- Impact test conducted by Langley's Hydrodynamics Division. The Division conducted a series of impact studies with full scale and model capsules of the original capsule shape A. Joseph Shortal wrote (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  12. STS-116 payload egress training

    NASA Image and Video Library

    2005-08-01

    JSC2005-E-32763 (1 Aug. 2005) --- Astronaut Robert L. Curbeam, STS-116 mission specialist, uses a special pulley device to escape from a simulated trouble-plagued shuttle during a session of egress training in the Space Vehicle Mockup Facility at Johnson Space Center. The full fuselage trainer (FFT) is a full-scale mockup of a shuttle. Curbeam is wearing a training version of the shuttle launch and entry suit.

  13. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  14. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided a delta V of over 10.8 km/s to the spacecraft. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through arrival at the second science orbit at Ceres.

  15. STS-65 PLC Hieb at mockup side hatch prepares to egress via an inflated slide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist and Payload Commander (PLC) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), sits at the top of the inflated slide at the crew compartment trainer (CCT) side hatch and listens to a crew training staffer's instructions. Hieb practiced post landing emergency escape procedures along with his six STS-65 crewmates. The CCT is located in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. Hieb will join five NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  16. KSC-04pd1046

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Commander Eileen Collins tries out one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. KSC-04pd1047

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  18. KSC-04PD-1047

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. Study of extraterrestrial disposal of radioactive wastes. Part 2: Preliminary feasibility screening study of extraterrestrial disposal of radioactive wastes in concentrations, matrix materials, and containers designed for storage on earth

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.

    1972-01-01

    The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.

  20. Trial by Fire

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2005-01-01

    Boeing is preparing a range of Delta IV Heavy launcher options for NASA Crew Exploration Vehicle (CEV) and unmanned cargo transportation architectures to the Moon and Mars, now that the massive new rocket has been flight tested. The December 21 launch of the 232-ft. vehicle on 2 million lb. thrust marked the largest all-liquid expendable booster flown since the last Saturn V in 1973. A second Delta IV Heavy mission is scheduled for this summer carrying a U.S. Air Force missile warning satellite. The first launch carried a dummy payload. Boeing wants NASA to consider the Delta IV Heavy for manned CEV missions, but is also pushing the Heavy for unmanned exploration launch roles. One Delta IV Medium version could also be a CEV player. Boeing says even modest upgrades could double the Delta Heavy's Earth orbit capability to more than 50 metric tons, including being able to fire up to 20 metric tons on escape trajectories to Mars.

  1. KSC-04pd1044

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  2. KSC-04PD-1044

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  3. Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Earhart, R. W.

    1982-01-01

    An Earth to space electromagnetic (railgun) launcher (ESRL) for launching material into space was studied. Potential ESRL applications were identified and initially assessed to formulate preliminary system requirements. The potential applications included nuclear waste disposal in space, Earth orbital applications, deep space probe launchers, atmospheric research, and boost of chemical rockets. The ESRL system concept consisted of two separate railgun launcher tubes (one at 20 deg from the horizontal for Earth orbital missions, the other vertical for solar system escape disposal missions) powered by a common power plant. Each 2040 m launcher tube is surrounded by 10,200 homopolar generator/inductor units to transmit the power to the walls. Projectile masses are 6500 kg for Earth orbital missions and 2055 kg for nuclear waste disposal missions. For the Earth orbital missions, the projectile requires a propulsion system, leaving an estimated payload mass of 650 kg. For the nuclear waste disposal in space mission, the high level waste mass was estimated at 250 kg. This preliminary assessment included technical, environmental, and economic analyses.

  4. Fates of satellite ejecta in the Saturn system, II

    NASA Astrophysics Data System (ADS)

    Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart

    2017-03-01

    We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.

  5. Shuttle crew escape systems test conducted in JSC Bldg 9A CCT

    NASA Image and Video Library

    1987-03-20

    Shuttle crew escape systems test is conducted by astronauts Steven R. Nagel (left) and Manley L. (Sonny) Carter in JSC One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Nagel and Carter are evaluating methods for crew escape during Space Shuttle controlled gliding flight. JSC test was done in advance of tests scheduled for facilities in California and Utah. Here, Carter serves as test subject evaluating egress positioning for the tractor rocket escape method - one of the two systems currently being closely studied by NASA.

  6. STS-65 crewmembers don LES equipment for MAIL Bldg 9NE egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Attired in partial pressure launch and entry suits (LESs), two mission specialists and a payload specialist for the STS-65 International Microgravity Laboratory 2 (IML-2) mission, prepare to rehearse emergency escape procedures and other flight tasks. Technicians help crewmembers (left to right) Mission Specialist (MS) Leroy Chiao, MS Donald A. Thomas, and Japanese Payload Specialist Chiaki Mukai don LES equipment. Mukai represents Japan's National Space Development Agency (NASDA). In addition to the emergency egress training, the seven crewmembers also simulated their duties for launch and entry phases of the scheduled 13-day flight aboard Columbia, Orbiter Vehicle (OV) 102. The training session was held in Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  7. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is, the abort triggers must have low false negative rates to be sure that real crew-threatening failures are detected, and also low false positive rates to ensure that the crew does not abort from non-crew-threatening launch vehicle behaviors. The analysis process described in this paper is a compilation of over six years of lessons learned and refinements from experiences developing abort triggers for NASA's Constellation Program (Ares I Project) and the SLS Program, as well as the simultaneous development of SHM/FM theory. The paper will describe the abort analysis concepts and process, developed in conjunction with SLS Safety and Mission Assurance (S&MA) to define a common set of mission phase, failure scenario, and Loss of Mission Environment (LOME) combinations upon which the SLS Loss of Mission (LOM) Probabilistic Risk Assessment (PRA) models are built. This abort analysis also requires strong coordination with the Multi-Purpose Crew Vehicle (MPCV) and SLS Structures and Environments (STE) to formulate a series of abortability tables that encapsulate explosion dynamics over the ascent mission phase. The design and assessment of abort conditions and triggers to estimate their Loss of Crew (LOC) Benefits also requires in-depth integration with other groups, including Avionics, Guidance, Navigation and Control(GN&C), the Crew Office, Mission Operations, and Ground Systems. The outputs of this analysis are a critical input to SLS S&MA's LOC PRA models. The process described here may well be the first full quantitative application of SHM/FM theory to the selection of a sensor suite for any aerospace system.

  8. The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    NASA Technical Reports Server (NTRS)

    Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.; hide

    2014-01-01

    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (<0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.

  9. Barratt on middeck

    NASA Image and Video Library

    2011-02-24

    S133-E-005034 (24 Feb. 2011) --- Astronaut Michael Barratt, STS-133 mission specialist, is seen on the middeck of the space shuttle Discovery soon after reaching Earth orbit on flight day one. Barratt is preparing to stow his launch and entry escape suit, which will be called upon again in a week and a half from now when Discovery comes back to Earth for the final time. Photo credit: NASA or National Aeronautics and Space Administration

  10. BEDA FOMM: An Operational Analysis

    DTIC Science & Technology

    1994-06-03

    Germany’s. The Italians launched their attack into Greece from Albania on 28 October. Through a combination of bad weather and unexpected Greek resistance...attacked Italian airfields at Benina and Berka . 7 1 The infantry attacked at 0540 and were able to pass the tanks through before 0700. There was...escaped to the north into the Jebel Akhdar. Bad weather and bad road conditions contributed to 7th Armoured’s failure to pursue along with the

  11. Technical evaluation of the Aerospace Medical Panel Specialists Meeting on Escape Problems and Manoeuvres in Combat Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1974-01-01

    A technical evaluation of the papers presented at a conference on escape systems for helicopters and V/STOL aircraft was made. The subjects discussed include the following: (1) bioengineering aspects of spinal injury during ejection, (2) aerodynamic forces acting on crewman during escape, (3) operational practicality of fly away ejection seats, (4) helicopter survivability requirements, (5) ejection experience from V/STOL aircraft, and (6) research projects involving escape and retrieval systems.

  12. Measurement of Carbon Dioxide Accumulation and Physiological Function in the Launch and Entry and Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip; Greenisen, M. C.

    1997-01-01

    The Launch and Entry Suit (LES) and Advanced Crew Escape Suit (ACES) are worn by astronauts for launch and entry. Previous work by Waligora, et al., 1992, Waligora and Gilbert, 1992, and Dalrymple 1996, have found that carbon dioxide (CO2) accumulation in the LES/ACES helmet may be problematic. CO2 accumulation is important because high inspired levels of CO2 reduce physical function and pose a safety hazard (e.g. levels of CO2 accumulation of 3.6% in the Extravehicular Mobility Unit are sufficient to terminate Extra Vehicular Activities). My task was to design a suitable test protocol for determining the important physiological aspects of LES/ACES use. Three basic issues arose. First was the determination of the astronaut's CO2 inspiration during visor-down use at rest and during walking at 3.5 mph. A sub-issue was the impact of a pneumotach on CO2 since it has been previously observed that when the Aerosport pneumotach was used, performance seemed improved, which might be attributable to a lowered respiration rate when using the pneumotach. The second issue was the energy costs of waLking in the LES/ACES with various G-suit inflation levels, since G-suit inflation increases metabolic costs and metabolic costs influence the C02 production in the LES/ACES helmet. Since G-suit inflation improves orthostatic tolerance after space flight, but likely increases the energy costs of walking, the balance between G-suit inflation and C02 accumulation is an important safety consideration. The third issue which arose from pilot work was the substantial reduction in physical function after a 10 min visor-down period prior to walk.

  13. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  14. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  15. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  16. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  17. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  18. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  19. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  20. The role of nuclear reactors in space exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. Onemore » reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built and flew space reactors; it is time to do so again.« less

  1. Final safety analysis report for the Galileo Mission: Volume 2: Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less

  2. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  3. Project Mercury; Little Joe

    NASA Image and Video Library

    1959-07-30

    Assembling the Little Joe capsules. The capsules were manufactured in-house by Langley technicians. Three capsules are shown here in various stages of assembly. The escape tower and rocket motors shown on the completed capsule would be removed before shipping and finally assembly for launching at Wallops Island. Joseph Shortal wrote (vol. 3, p. 32): Design of the Little Joe capsules began at Langley before McDonnell started on the design of the Mercury capsule and was, therefore, a separate design. Although it was not designed to carry a man, it did have to carry a monkey. It had to meet the weight and center of gravity requirements of Mercury and withstand the same aerodynamic loads during the exit trajectory. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. Project Mercury: Little Joe: Boilerplate Mercury spacecraft undergo fabrication at the shops of the Langley Research Center. They will launched atop Little Joe rockets to test the spacecraft recovery systems. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition. L59-4947 Technicians prepare a Little Joe launch vehicle prototype for the Mercury space program, 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 76, by James Schultz

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  5. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  6. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) practice getting into the slidewire basket that is part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew has been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  7. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) hurry down the yellow-painted path to a slidewire basket. The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew members have been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  8. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System

    NASA Technical Reports Server (NTRS)

    McElrath, Timothy P.; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon

    2012-01-01

    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hyperbolic escape energy (C3, in km (exp 2) /sec (exp 2) ) for a modest increase in flight time. Within approx 2 months, lunar flybys can produce a C3 of approx 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to approx 4.5, or they can provide for additional periapsis burns to increase the C3 from approx 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional delta -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more distant target, all within not more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsion systems, and illustrates this with instances of past usage and future possibilities. Examples discussed include ISEE-3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their practical use within a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot easily deliver large delta-Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  9. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System

    NASA Technical Reports Server (NTRS)

    McElrath, Tim; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon

    2012-01-01

    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hype rbolic escape energy (C3, in km 2 /sec 2 ) for a modest increase in flight time. Within 2 months, lunar flybys can produce a C3 of 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to 4.5, or they can provide for additional periapsis burns to increase the C3 from 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional ? -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more di stant target, all within not much more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsi on systems, and illustrates this with instances of past usage and future possibilities. Examples discussed i nclude ISEE - 3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their p ractical use with in a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot ea sily deliver large ? - Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  10. Interplanetary mission design techniques for flagship-class missions

    NASA Astrophysics Data System (ADS)

    Kloster, Kevin W.

    Trajectory design, given the current level of propulsive technology, requires knowledge of orbital mechanics, computational resources, extensive use of tools such as gravity-assist and V infinity leveraging, as well as insight and finesse. Designing missions that deliver a capable science package to a celestial body of interest that are robust and affordable is a difficult task. Techniques are presented here that assist the mission designer in constructing trajectories for flagship-class missions in the outer Solar System. These techniques are applied in this work to spacecraft that are currently in flight or in the planning stages. By escaping the Saturnian system, the Cassini spacecraft can reach other destinations in the Solar System while satisfying planetary quarantine. The patched-conic method was used to search for trajectories that depart Saturn via gravity assist at Titan. Trajectories were found that fly by Jupiter to reach Uranus or Neptune, capture at Jupiter or Neptune, escape the Solar System, fly by Uranus during its 2049 equinox, or encounter Centaurs. A "grand tour," which visits Jupiter, Uranus, and Neptune, departs Saturn in 2014. New tools were built to search for encounters with Centaurs, small Solar System bodies between the orbits of Jupiter and Neptune, and to minimize the DeltaV to target these encounters. Cassini could reach Chiron, the first-discovered Centaur, in 10.5 years after a 2022 Saturn departure. For a Europa Orbiter mission, the strategy for designing Jovian System tours that include Io flybys differs significantly from schemes developed for previous versions of the mission. Assuming that the closest approach distance of the incoming hyperbola at Jupiter is below the orbit of Io, then an Io gravity assist gives the greatest energy pump-down for the least decrease in perijove radius. Using Io to help capture the spacecraft can increase the savings in Jupiter orbit insertion DeltaV over a Ganymede-aided capture. The tour design is guided by Tisserand graphs overlaid with a simple and accurate radiation model so that tours including Io flybys can maintain an acceptable radiation dosage. While Io flybys increase the duration of tours that are ultimately bound for Europa, they offer DeltaV savings and greater scientific return, including the possibility of flying through the plume of one of Io's volcanoes. Different combinations of interplanetary trajectories and are considered with a focus on options that could enable flagship-class missions to Uranus. A patched-conic method is used to identify trajectories to Uranus with launch dates between 2015 and 2050. Flight time is constrained to be less than 14 years. A graphical technique is introduced to identify the most efficient launch opportunities and gravity-assist paths to Uranus. Several trajectories emerge as attractive options including classical paths such as Venus-Earth-Earth-Jupiter, with launch V1 as low as 3.6 km/s. A baseline DeltaV cost is established for capture at Uranus via chemical propulsion. Ballistic reduction of orbital inclination using flybys of the satellites of Uranus is investigated; Oberon is shown to have greater inclination change capability than Titania despite Oberon being less massive.

  11. A Method to Develop Neck Injury Criteria to Aid Design and Test of Escape Systems Incorporating Helmet Mounted Displays

    DTIC Science & Technology

    2014-09-01

    The military aviation community began designing and building ejection seats for high speed aircraft after World War II. As pilot safety became...AFIT-ENV-DS-14-S-22 A METHOD TO DEVELOP NECK INJURY CRITERIA TO AID DESIGN AND TEST OF ESCAPE SYSTEMS...protection in the United States. AFIT-ENV-DS-14-S-22 A METHOD TO DEVELOP NECK INJURY CRITERIA TO AID DESIGN AND TEST OF ESCAPE SYSTEMS

  12. Drifting Recovery Base Concept for GEO Derelict Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.

  13. An anticipative escape system for vehicles in water crashes

    NASA Astrophysics Data System (ADS)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  14. Convair-240 aircraft modified with shuttle hatch for CES testing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Shuttle Crew Escape System (CES) hardware includes space shuttle side hatch incorporated into Convair-240 aircraft at Naval Weapons Center, China Lake, California. Closeup shows dummy positioned in the Convair-240 escape hatch. Beginning this month, tests will be conducted here to evaluate a tractor rocket system - one of two escape methods being studied by NASA to provide crew egress capability during Space Shuttle controlled gliding flight.

  15. The Dawn of Vesta Science

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.; Mikes, Steven C.

    2011-01-01

    The Dawn mission is part of NASA's Discovery Program and has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total ?V of 11.3 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Fullpower thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional ?V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. An additional 210 hours of IPS thrusting was used to enter the first Vesta science orbit, called Survey orbit, on August 3, 2011 at an altitude of approximately 2,735 km. To date the IPS has been operated for 23,621 hours, consumed approximately 252 kg of xenon, and provided a delta-V of approximately 6.7 km/s. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. The only significant issue in over the almost four years of IPS operations in flight was the temporary failure of a valve driver board in the Digital Control and Interface Unit-1 (DCIU-1), resulting in a loss of thrust of approximately 29 hours. Thrusting operations resumed after switching to DCIU-2, and power cycling conducted after orbit capture restored DCIU-1 to full functionality. After about three weeks of Survey orbit operations the IPS will be used to transfer the spacecraft to the other planned science orbit altitudes. After approximately one year of science operations the IPS will be used for escape from Vesta and then for thrusting to Ceres with a planned arrival date at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of science operations at Vesta.

  16. Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results

    NASA Astrophysics Data System (ADS)

    Novick, Jaison Allen

    We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.

  17. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an automatic fire suppression system in conjunction with an alternate escape route. The alternative... core, are acceptable provided that an automatic sprinkler or deluge system is installed that provides... conditions and procedures. (d) Automatic fire suppression system and escape route. If used as an alternative...

  18. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an automatic fire suppression system in conjunction with an alternate escape route. The alternative... core, are acceptable provided that an automatic sprinkler or deluge system is installed that provides... conditions and procedures. (d) Automatic fire suppression system and escape route. If used as an alternative...

  19. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an automatic fire suppression system in conjunction with an alternate escape route. The alternative... core, are acceptable provided that an automatic sprinkler or deluge system is installed that provides... conditions and procedures. (d) Automatic fire suppression system and escape route. If used as an alternative...

  20. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an automatic fire suppression system in conjunction with an alternate escape route. The alternative... core, are acceptable provided that an automatic sprinkler or deluge system is installed that provides... conditions and procedures. (d) Automatic fire suppression system and escape route. If used as an alternative...

  1. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.

  2. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  3. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    NASA Technical Reports Server (NTRS)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  4. Shuttle crew escape systems (CES) rocket test at Hurricane Mesa, Utah

    NASA Image and Video Library

    1987-11-12

    Shuttle crew escape systems (CES) tractor rocket tests conducted at Hurricane Mesa, Utah. This preliminary ground test of the tractor rocket will lead up to in-air evaluations. View shows tractor rocket as it is fired from side hatch mockup. The tractor rocket concept is one of two escape methods being studied to provide crew egress capability during Space Shuttle controlled gliding flight. In-air tests of the system, utilizing a Convair-240 aircraft, will begin 11-19-87 at the Naval Weapons Center in China Lake, California.

  5. Decompression illness in goats following simulated submarine escape: 1993-2006.

    PubMed

    Seddon, F M; Thacker, J C; Fisher, A S; Jurd, K M; White, M G; Loveman, G A M

    2014-01-01

    The United Kingdom Ministry of Defence commissioned work to define the relationship between the internal pressure of a distressed submarine (DISSUB), the depth from which escape is made and the risk of decompression illness (DCI). The program of work used an animal model (goat) to define these risks and this paper reports the incidence and type of DCI observed. A total of 748 pressure exposures comprising saturation only, escape only or saturation followed by escape were conducted in the submarine escape simulator between 1993 and 2006. The DCI following saturation exposures was predominantly limb pain, whereas following escape exposures the DCI predominantly involved the central nervous system and was fast in onset. There was no strong relationship between the risk of DCI and the range of escape depths investigated. The risk of DCI incurred from escape following saturation was greater than that obtained by combining the risks for the independent saturation only, and escape only, exposures. The output from this program of work has led to improved advice on the safety of submarine escape.

  6. Floor Proximity Emergency Escape Path Marking Systems Incorporating Photoluminescent Elements

    DOT National Transportation Integrated Search

    1997-07-24

    This advisory circular (AC) provides guidance material for use in demonstrating : compliance with the provisions of part 25 of the Federal Aviation Regulations : (FAR) regarding floor proximity emergency escape path marking systems (FPEEPMS) : which ...

  7. Numerical simulations of particle orbits around 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Jackson, A. A.; Boice, D. C.

    1994-01-01

    Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.

  8. [Update on counterfeit drugs: a growing risk for public health].

    PubMed

    Juillet, Yves

    2008-10-01

    Drug counterfeiting is a growing danger, and not only in developing countries where it can account for up to 40% of the market. Counterfeit drugs can be both ineffective and toxic. They are becoming more and more common in the USA and even in Europe. France seems to have escaped this problem for the time being. The drug distribution chain (producer-wholesaler-retail pharmacist) is both the gatekeeper and the weak point of the system. Counterfeiting is more frequent in countries where drug distribution is badly organized or excessively deregulated The increasing use of the Internet for self-diagnosis and self-medication is adding to the problem, particularly in countries where social security coverage is limited The IMPACT initiative, launched in 2006 by WHO and other stakeholders worldwide (health authorities, healthcare professionals, patients, customs, police, industry), is aimed at developing precise legislative, regulatory and technical measures, and at increasing global awareness of this threat to public health.

  9. Crew Exploration Vehicle Ascent Abort Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike

    2007-01-01

    One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.

  10. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  11. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  12. A Nuclear Powered ISRU Mission to Mars

    NASA Astrophysics Data System (ADS)

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-01

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  13. The K-1 Active Dispenser for Orbit Transfer

    NASA Astrophysics Data System (ADS)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  14. Mercury: testing of the Little Joe booster

    NASA Image and Video Library

    1959-08-02

    Testing of the Little Joe booster on its launcher. The launcher is positioned at its normal launch angle of 80 degrees. Joseph Shortal wrote (vol. 3, p. 33): The Little Joe booster was assembled at Wallops on its special launcher in a vertical attitude. It is shown in the on the left with the work platform in place. The launcher was located on a special concrete slab in Launching Area 1. The capsule was lowered onto the booster by crane.... After the assembly was completed, the scaffolding was disassembled and the launcher pitched over to its normal launch angle of 80 degrees.... Little Joe had a diameter of 80 inches and an overall length, including the capsule and escape tower of 48 feet. The total weight at launch was about 43,000 pounds. The overall span of the stabilizing fins was 21.3 feet. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  15. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On Launch Pad 39B, (right) STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) gives a thumbs up to Mission Specialist Michel Tognini of France (left) to pull the lever that will release the slidewire basket they are in. Also in the basket is Mission Specialist Steven A. Hawley (Ph.D.). The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. During the exercise, which is part of Terminal Countdown Demonstration Test (TCDT) activities, the basket is wired in place. The TCDT also includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Commander Eileen M. Collins and Pilot Jeffrey S. Ashby. Tognini represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  16. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown.

  17. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  18. Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident: Executive Summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.

  19. 30 CFR 48.28 - Annual refresher training of miners; minimum courses of instruction; hours of instruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are related to the miner's tasks. (2) Transportation controls and communication systems. The course... effect for the transportation of miners and materials; and the use of the mine communication systems... firefighting. The course shall include a review of the mine escape system; escape and emergency evacuation...

  20. 30 CFR 48.28 - Annual refresher training of miners; minimum courses of instruction; hours of instruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are related to the miner's tasks. (2) Transportation controls and communication systems. The course... effect for the transportation of miners and materials; and the use of the mine communication systems... firefighting. The course shall include a review of the mine escape system; escape and emergency evacuation...

  1. 30 CFR 48.28 - Annual refresher training of miners; minimum courses of instruction; hours of instruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are related to the miner's tasks. (2) Transportation controls and communication systems. The course... effect for the transportation of miners and materials; and the use of the mine communication systems... firefighting. The course shall include a review of the mine escape system; escape and emergency evacuation...

  2. 30 CFR 48.28 - Annual refresher training of miners; minimum courses of instruction; hours of instruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are related to the miner's tasks. (2) Transportation controls and communication systems. The course... effect for the transportation of miners and materials; and the use of the mine communication systems... firefighting. The course shall include a review of the mine escape system; escape and emergency evacuation...

  3. Treatment failure in patients with HPV 16-induced vulvar intraepithelial neoplasia: understanding different clinical responses to immunotherapy.

    PubMed

    van Esch, Edith M G; Welters, Marij J P; Jordanova, Ekaterina S; Trimbos, J Baptist M Z; van der Burg, Sjoerd H; van Poelgeest, Mariëtte I E

    2012-07-01

    Failure of the immune system to launch a strong and effective immune response to high-risk HPV is related to viral persistence and the development of anogenital (pre)malignant lesions such as vulvar intraepithelial neoplasia (VIN). Different forms of immunotherapy, aimed at overcoming the inertia of the immune system, have been developed and met with clinical success. Unfortunately these, in principal successful, therapeutic approaches also fail to induce clinical responses in a substantial number of cases. In this review, the authors summarize the traits of the immune response to HPV in healthy individuals and in patients with HPV-induced neoplasia. The potential mechanisms involved in the escape of HPV-induced lesions from the immune system indicate gaps in our knowledge. Finally, the interaction between the immune system and VIN is discussed with a special focus on the different forms of immunotherapy applied to treat VIN and the potential causes of therapy failure. The authors conclude that there are a number of pre-existing conditions that determine the patients' responsiveness to immunotherapy. An immunotherapeutic strategy in which different aspects of immune failure are attacked by complementary approaches, will improve the clinical response rate.

  4. KSC-08pd3446

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members gather near the slidewire baskets on the 195-foot level of the fixed service structure. From left are Mission Specialists Donald Pettit, Sandra Magnus, Heidemarie Stefanyshyn-Piper and Steve Bowen. They have taken part in a simulated countdown in space shuttle Endeavour followed by emergency escape procedures. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  5. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity, injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in Huntington, California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle. The fully-assembled S-IVB (third) stage for the AS-503 (Apollo 8 mission) launch vehicle is pictured in the Douglas' vertical checkout building.

  6. Future Large-Aperture Ultraviolet/Optical/Infrared Space Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Mandell, Avi; Polidan, Ron; Tumlinson, Jason

    2016-01-01

    Since the beginning of modern astronomical science in the early 1900s, astronomers have yearned to escape the turbulence and absorption of Earth's atmosphere by placing observatories in space. One of the first papers to lay out the advantages of space astronomy was by Lyman Spitzer in 1946, "Astronomical Advantages of an Extra-Terrestrial Observatory," though later in life he minimized the influence of this work. Since that time, and especially gaining momentum in the 1960s after the launch of Sputnik, astronomers, technologists, and engineers continued to advance, organizing scientific conferences, advocating for necessary technologies, and assessing sophisticated designs for increasingly ambitious space observations at ultraviolet, visual, and infrared (UVOIR) wavelengths. These community-wide endeavors, combined with the explosion in technological capability enabled by the Apollo era, led to rapid advancement in space observatory performance that culminated in the spectacularly successful Hubble Space Telescope (HST), launched in 1990 and still returning surpassing scientific results.

  7. Noise-induced escape in an excitable system

    NASA Astrophysics Data System (ADS)

    Khovanov, I. A.; Polovinkin, A. V.; Luchinsky, D. G.; McClintock, P. V. E.

    2013-03-01

    We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

  8. A Review of the MLAS Parachute Systems

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Magner, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel E.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) is developing the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is dedicated to Max Faget, the renowned NASA spacecraft designer. The MLAS flight test vehicle consists of boost skirt, coast skirt and the MLAS fairing which houses a full scale boilerplate Orion Crew Module (CM). The objective of the flight test is to prove that the CM can be released from the MLAS fairing during pad abort conditions without detrimental recontact between the CM and fairing, achieving performance similar to the Orion launch abort system. The boost and coast skirts provide the necessary thrust and stability to achieve the flight test conditions and are released prior to the test -- much like the Little Joe booster was used in the Apollo Launch Escape System tests. To achieve the test objective, two parachutes are deployed from the fairing to reorient the CM/fairing to a heatshield first orientation. The parachutes then provide the force necessary to reduce the total angle of attack and body angular rates required for safe release of the CM from the fairing. A secondary test objective after CM release from the fairing is to investigate the removal of the CM forward bay cover (FBC) with CM drogue parachutes for the purpose of attempting to synchronously deploying a set of CM main parachutes. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft D(sub 0) ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft D(sub 0) ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; and a brief description of how the evolution of the program affected parachute usage and analysis. An overview of the Objective system, rationale for the MLAS approach and the future of the program will also be presented. We hope to have flight test results to report at the time of the Conference Presentation.

  9. Recovery Systems Design Guide

    DTIC Science & Technology

    1978-12-01

    analysis. retrieval parachute concepts are being investigated. The development of recovery systems for fast flying, possible out-of-control missiles proved...system. 21 •, . , r, _ . .. , . " , , . : . .. . " . , ,- Reference 32 suggests certain applications (speed/ Fast Opening. An emergency escape...operation, physiological aspect of flying and escape. fast parachute opening., Low Rate of Descent. A sea level rate of descent low parachute opening

  10. Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    Barabash, Stas

    For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.

  11. Nano Icy Moons Propellant Harvester

    NASA Technical Reports Server (NTRS)

    VanWoerkom, Michael (Principal Investigator)

    2017-01-01

    As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon. We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.

  12. The kinetics and location of intra-host HIV evolution to evade cellular immunity are predictable

    NASA Astrophysics Data System (ADS)

    Barton, John; Goonetilleke, Nilu; Butler, Thomas; Walker, Bruce; McMichael, Andrew; Chakraborty, Arup

    Human immunodeficiency virus (HIV) evolves within infected persons to escape targeting and clearance by the host immune system, thereby preventing effective immune control of infection. Knowledge of the timing and pathways of escape that result in loss of control of the virus could aid in the design of effective strategies to overcome the challenge of viral diversification and immune escape. We combined methods from statistical physics and evolutionary dynamics to predict the course of in vivo viral sequence evolution in response to T cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Our predictions agree well with both the location of documented escape mutations and the clinically observed time to escape. We also find that that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways, and the duration over which control is maintained by specific immune responses prior to escape, could be exploited for the rational design of immunotherapeutic strategies that may enable long-term control of HIV infection.

  13. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.445...

  14. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.445...

  15. The Deployment of a Commercial RGA to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Hawk, Doug; Rossetti, Dino; Woronowicz, Michael

    2015-01-01

    The International Space Station (ISS) uses ammonia as a medium for heat transport in its Active Thermal Control System. Over time, there have been intermittent component failures and leaks in the ammonia cooling loop. One specific challenge in dealing with an ammonia leak on the exterior of the ISS is determining the exact location from which ammonia is escaping before addressing the problem. Together, researchers and engineers from Stanford Research Systems (SRS) and NASA's Johnson Space Center and Goddard Space Flight Center have adapted a commercial off-the-shelf (COTS) residual gas analyzer (RGA) for repackaging and operation outside the ISS as a core component in the ISS Robotic External Leak Locator, a technology demonstration payload currently scheduled for launch during 2015. The packaging and adaptation of the COTS RGA to the Leak Locator will be discussed. The collaborative process of adapting a commercial instrument for spaceflight will also be reviewed, including the build-­-up of the flight units. Measurements from a full-­-scale thermal vacuum test will also be presented demonstrating the absolute and directional sensitivity of the RGA.

  16. Integrating geographical information and augmented reality techniques for mobile escape guidelines on nuclear accident sites.

    PubMed

    Tsai, Ming-Kuan; Lee, Yung-Ching; Lu, Chung-Hsin; Chen, Mei-Hsin; Chou, Tien-Yin; Yau, Nie-Jia

    2012-07-01

    During nuclear accidents, when radioactive materials spread into the environment, the people in the affected areas should evacuate immediately. However, few information systems are available regarding escape guidelines for nuclear accidents. Therefore, this study constructs escape guidelines on mobile phones. This application is called Mobile Escape Guidelines (MEG) and adopts two techniques. One technique is the geographical information that offers multiple representations; the other is the augmented reality that provides semi-realistic information services. When this study tested the mobile escape guidelines, the results showed that this application was capable of identifying the correct locations of users, showing the escape routes, filtering geographical layers, and rapidly generating the relief reports. Users could evacuate from nuclear accident sites easily, even without relief personnel, since using slim devices to access the mobile escape guidelines is convenient. Overall, this study is a useful reference for a nuclear accident emergency response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E.; Curry, S. M.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.

    2015-11-01

    We present observations by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission of a substantial plume-like distribution of escaping ions from the Martian atmosphere, organized by the upstream solar wind convection electric field. From a case study of MAVEN particle-and-field data during one spacecraft orbit, we identified three escaping planetary ion populations: plume fluxes mainly along the upstream electric field over the north pole region of the Mars-Sun-Electric field (MSE) coordinate system, antisunward ion fluxes in the tail region, and much weaker upstream pickup ion fluxes. A statistical study of O+ fluxes using 3 month MAVEN data shows that the plume is a constant structure with strong fluxes widely distributed in the MSE northern hemisphere, which constitutes an important planetary ion escape channel. The escape rate through the plume is estimated to be ~30% of the tailward escape and ~23% of the total escape for > 25 eV O+ ions.

  18. 23. "GAFFTC 20 APR 60, H65A F106A; ESCAPE SYSTEM RUN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. "G-AFFTC 20 APR 60, H-6-5A F-106A; ESCAPE SYSTEM RUN 5A." Testing the ejection system on a Convair sled. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  19. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2016-01-01

    Led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system's heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025-2035 launch window. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature (MaSMi) Hall thruster, a solar sail and an electric sail. Two aerial densities, and thus characteristic accelerations, 0.426 mm/sq s and 0.664 mm/sq s were analyzed for the solar sail option in order understand the impact of near and long term development of this technology. Similarly, two characteristic accelerations, 1 mm/s2 and 2 mm/sq s, were also analyzed for the electric sail option in addition to tether quantities of 10 and 20, respectively, and individual tether length of 20 km. A second analysis was conducted to determine what existing solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming an earth departure characteristic energy capability provided by a Space Launch System (SLS) Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist (E-Ju), and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist (E-Ju-Su-Sa). The Oberth maneuver would need to be performed very close to the sun, wherein this study assumed a perihelion distance of approximately 11 solar radii, or 0.05 AU, away from the surface. The heat shield technology required to perform this type of ambitious maneuver was assumed to be similar to that of NASA's Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 km2/sq s for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  20. Propulsion Technology Assessment: Science & Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2015-01-01

    As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system's heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature (MaSMi) Hall thruster, a solar sail and an electric sail. Two aerial densities, and thus characteristic accelerations, 0.426 mm/s2 and 0.664 mm/s2, were analyzed for the solar sail option in order understand the impact of near and long term development of this technology. Similarly, two characteristic accelerations, 1 mm/s2 and 2 mm/s2, were also analyzed for the electric sail option in addition to tether quantities of 10 and 20, respectively, and individual tether length of 20 km. A second analysis was conducted to determine what existing solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming an earth departure characteristic energy capability provided by a Space Launch System (SLS) Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist (E-Ju), and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist (E-Ju-Su-Sa). The Oberth maneuver would need to be performed very close to the sun, wherein this study assumed a perihelion distance of approximately 11 solar radii, or 0.05 AU, away from the surface. The heat shield technology required to perform this type of ambitious maneuver was assumed to be similar to that of NASA's Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 sq km/s2 for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  1. A Comparative Study of Family Planning Service Statistics Systems in the ESCAP Region. Asian Population Studies Series No. 15.

    ERIC Educational Resources Information Center

    United Nations Economic and Social Commission for Asia and the Pacific, Bangkok (Thailand).

    This monograph contains a study conducted by the Population Division of the United Nations Economic and Social Committee for Asia and the Pacific (ESCAP). The document is designed to aid policy-makers, administrators and evaluation personnel in family planning programs in the ESCAP region, primarily; and researchers working in the field of family…

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-06

    The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. These sketches illustrate the steps taken by the astronauts to return to Earth. The service propulsion system engine was fired to increase space craft speed enough to escape Lunar orbit on a trajectory for Earth. Any necessary midcourse corrections were made enroute. Near the point of reentry into Earth’s atmosphere, the CM separated from the service module and turned 180 degrees so the heat shield faced forward on the line of flight. Friction of the atmosphere heated the shield to a white hot temperature, as a meteor, which slowed the craft as it reached lower altitudes. At about three miles altitude, drogue parachutes opened to stabilize the craft. Moments later the main parachutes opened to lower the CM to the waters of the Pacific Ocean. Helicopters and recovery crews from the U.S. S. Hornet aircraft carrier were standing by to pick up the astronauts.

  3. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  4. Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.

    In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to

  5. Exploration at the Edge of the Solar System: The Pluto-Kuiper Express Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Terrile, R. J.

    1999-09-01

    The Pluto-Kuiper Express mission is one component of the Outer Planets/Solar Probe Project which is part of the exploration strategy laid out in the Solar System Exploration Roadmap. The first three missions of this project are the Europa Orbiter, Pluto-Kuiper Express and the Solar Probe. All require challenging new technologies and the ability to operate in deep space and at Jupiter. Use of common management and design approaches, avionics, and mission software is planned to reduce the costs of the three missions. The Pluto-Kuiper Express mission is planned to launch in 2004 and is designed to provide the first reconnaissance of the Solar System's most distant planet, Pluto, and it, moon Charon. A gravity assist from Jupiter will allow an 8-year flight time to Pluto and the possibility of encountering one or more Edgeworth-Kuiper Belt objects after the Pluto encounter. The primary science objectives for the mission include characterizing the global geology and geomorphology of Pluto and Charon, mapping their surface composition and characterizing Pluto's neutral atmosphere and its escape rate. This mission is currently soliciting scientific investigations through a NASA Announcement of Opportunity.

  6. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    PubMed

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Upper limits to the fractionation of isotopes due to atmospheric escape: Implications for potential 14N/15N in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2014-12-01

    Formation and evolution of the solar system is studied in part using stable isotope ratios that are presumed to be primordial, or representative of conditions in the protosolar Nebula. Comets, meteorites and giant planet atmospheres provide measurements that can reasonably be presumed to represent primordial conditions while the terrestrial planets, Pluto and Saturn's moon Titan have atmospheres that have evolved over the history of the solar system. The stable isotope ratios measured in these atmospheres are, therefore, first a valuable tool for evaluating the history of atmospheric escape and once escape is constrained can provide indications of conditions of formation. D/H ratios in the atmosphere of Venus provide indications of the amount of water lost from Venus over the history of the solar system, while several isotope ratios in the atmosphere of Mars provide evidence for long-term erosion of the atmosphere. We have recently demonstrated that the nitrogen ratios, 14N/15N, in Titan's atmosphere cannot evolve significantly over the history of the solar system and that the primordial ratio for Titan must have been similar to the value recently measured for NH3 in comets. This implies that the building blocks for Titan formed in the protosolar nebula rather than in the warmer subnebula surrounding Saturn at the end of its formation. Our result strongly contrasts with works showing that 14N/15N in the atmosphere of Mars can easily fractionate from the terrestrial value to its current value due to escape processes within the lifetime of the solar system. The difference between how nitrogen fractionates in Mars and Titan's atmospheres presents a puzzle for the fractionation of isotopes in an atmosphere due to atmospheric escape. Here, we present a method aiming at determining an upper limit to the amount of fractionation allowed to occur due to escape, which is a function of the escape flux and the column density of the atmospheric constituent. Through this approach, we demonstrate that fractionation on Titan is more limited than on Mars. When applied to Pluto, we find that any potential measurement of 14N/15N in Pluto's atmosphere can constrain the type of escape occurring from Pluto's atmosphere and possibly the source of nitrogen for Pluto.

  8. ESCAPE: Eco-Behavioral System for Complex Assessments of Preschool Environments. Research Draft.

    ERIC Educational Resources Information Center

    Carta, Judith J.; And Others

    The manual details an observational code designed to track a child during an entire day in a preschool setting. The Eco-Behavioral System for Complex Assessments of Preschool Environments (ESCAPE) encompasses assessment of the following three major categories of variables with their respective subcategories: (1) ecological variables (designated…

  9. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  10. Preliminary scientific rationale for a voyage to a thousand astronomical units

    NASA Technical Reports Server (NTRS)

    Etchegaray, M. I. (Compiler)

    1987-01-01

    A proposed mission to 1000 astronomical units (TAU) is under study by the Jet Propulsion Laboratory. Launch date for a TAU mission is likely to be well into the first decade of the 21st century. Study of TAU has focused on the technologies required to carry out this ambitious mission and the identification of preliminary scientific rationale for such a deep space flight. A 1-MW nuclear-powered electric propulsion (NEP) system forms the baseline method for achieving the high velocities required. A solar system escape velocity of 106 km/s is needed to propel the TAU vehicle to 1000 AU in 50 years. The NEP system must accelerate the vehicle for about ten years before this velocity is attained because of the extremely low thrust nature of the xenon-fueled ion engines. At the end of the thrusting phase the NEP system is jettisoned to allow the TAU spacecraft and science experiments to coast out to 1000 AU. Another important technology for TAU is advanced optical communication systems, which are envisioned for transmitting science data to Earth. A 1-m optical telescope combined with a 10-W laser transponder can transmit 20 kbps to a 10-m Earth-orbit-based telescope from 1000 AU.

  11. DOD Ammunition and Explosives Safety Standards

    DTIC Science & Technology

    2004-10-05

    chemical canister, 3 x 10- 5 1 x 10- 4 1 x 10- 5 3 x 10-3 3 x 10-3 air purifying protective mask will be on hand for escape . ( The M9, M17 or M40...1,2, 3, 4 , 5 8 8 9 ENERGETIC LIQUIDS STATIC TEST STANDS RANGE LAUNCH LO 2 /LH 2 See Note 6 See Note 6 LO 2 /LH 2 + LO 2 /RP-1 Sum of (see...liquids provided they comply with the construction and siting requirements of chapters 5 and 9 , respectively for Hazard Division 1.1. ECM must be sited

  12. Actions to implement the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident. Report to the President

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.

  13. Hypervelocity Technology Escape System Concepts. Volume 1. Development and Evaluation

    DTIC Science & Technology

    1988-07-01

    airplane escape systems. These include separation at high dynamic pressure, stability, impact attenuation , crew member accelerations, adequate...changes (TTS; 0 Shock attenuator design PTS) 0 Restraint system design * Limb flail * Non-auditory changes (gag, dec. visual acuity) * Reduced psycho-motor...detected by ultrasonic technique. The DCS symptoms may not appear until at slightly lower total pressures (8 N psia - 9 pals). Since the pressurization

  14. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess Rose

    2012-06-01

    The purpose of this dissertation is to expand our understanding of oxygen ion escape to space from Venus and its dependence on extreme solar wind conditions found during interplanetary coronal mass ejections (ICMEs). The solar wind dynamic pressure outside of the Venus bow shock did not exceed ˜12 nPa, during 2006-2009, while the solar wind dynamic pressure was higher than this for ˜10% of the time during the PVO mission. Oxygen ions escape Venus through multiple regions near the planet. One of these regions is the magnetosheath, where high energy pick-up ions are accelerated by the solar wind convection electric field. High energy (>1 keV) O+ pick-up ions within the Venus magnetosheath reached higher energy at lower altitude when the solar wind was disturbed by ICMEs compared to pick-up ions when the external solar wind was not disturbed, between 2006-2007. However, the count rate of O+ was not obviously affected by the ICMEs during this time period. In addition to high energy pick-up ions, VEX also detects low energy (˜10-100 eV) O+ within the ionosphere and wake of Venus. These low energy oxygen ions are difficult to interpret, because the spacecraft's relative velocity and potential can significantly affect the measured energy. If VEX ion data is not corrected for the spacecraft's relative velocity and potential, gravitationally bound O+ could be misinterpreted as escaping. These gravitationally bound oxygen ions can extend on the nightside to ˜-2 Venus radii and may even return to the planet after reaching high altitudes in the wake. Gravitationally bound ions will lower the total O+ escape estimated from Venus if total escape is calculated including these ions. However, if the return flux is low compared to the total escaping outflow, this effect is not significant. An ICME with a dynamic pressure of 17.6 nPa impacted Venus on November 11, 2011. During this ICME, the high energy pick-up O+ and the low energy O+ ions were affected. Oxygen ions in the magnetosheath, ionosphere, and tail had higher energies during the ICME, compared to O + energies when the external solar wind conditions were undisturbed. High energy ions were escaping within the dayside magnetosheath region when the ICME was passing as well as when the solar wind was undisturbed. However, during the ICME passage, these O+ ions had three orders of magnitude higher counts. The low energy O+ during the undisturbed days was gravitationally bound, while during the ICME a portion of the low energy ions were likely escaping. The most significant difference in O + during the ICME was high energy pickup ions measured in the wake on the outbound portion of the orbit. These ions had an escape flux of 2.5 X 108 O+cm-2sec-1, which is higher than the average escape flux in all regions of the wake. In addition, the interplanetary magnetic field (IMF) was in a configuration that may have rotated an even higher escape flux O+ away from the VEX orbit. This needs to be confirmed with sampling of other regions in the wake during large ICMEs. A lower bound on the total O+ escape during this event could be ˜2.8 X1026 to 6.5 X 1027 O +/sec, which is 2-3 orders of magnitude higher than the average escape flux measured by VEX. Hence, ICMEs could have played a major role in the total escape of O+ from Venus. The results presented in this dissertation can be used as a guide for future studies of O+ escape at Venus. As we move into solar maximum, Venus will likely be impacted by more large ICMEs. The ICME from the last study of this dissertation was the largest yet measured by VEX, but its 17.6 nPa dynamic pressure is lower than the largest ICMEs during the PVO time period (˜ 80 nPa). The work in this dissertation is also relevant to Mars, since Mars interacts with the solar wind in a similar manner and has analogous ion escape mechanisms. The upcoming MAVEN (Mars Atmosphere and Volatile Evolution) mission will launch at the end of 2013 to study the Martian atmosphere, escape processes, and history of volatiles. This mission will have an in-situ ion instrument and magnetometer similar to those used for the studies in this dissertation, so one could conduct similar studies of the oxygen ion escape from Mars during extreme solar wind conditions. (Abstract shortened by UMI.)

  15. Photochemical escape of oxygen from Mars: constraints from MAVEN in situ measurements

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Lee, Y.; Cravens, T.; Rahmati, A.; Mahaffy, P. R.; Andersson, L.; Combi, M. R.; Benna, M.; Jakosky, B. M.; Gröller, H.

    2016-12-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. Photochemical escape of oxygen is expected to be a significant channel for atmospheric loss, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. We use near-periapsis (<400 km altitude) data from three instruments. The Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make a series of calculations, each as a function of altitude. The first uses electron and ion temperatures to calculate the probability distribution for initial energies of hot O atoms. The second calculates the probability that a hot atom born at that altitude will escape. The third takes calculates the production rate of the hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We will present escape fluxes and derived escape rates from the first Mars year of data collected. Total photochemical loss over time is not very useful to calculate from such escape fluxes derived from current conditions because a thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  16. Hydrodynamic escape from planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.

  17. Predator-prey pursuit-evasion games in structurally complex environments.

    PubMed

    Morice, Sylvie; Pincebourde, Sylvain; Darboux, Frédéric; Kaiser, Wilfried; Casas, Jérôme

    2013-11-01

    Pursuit and evasion behaviors in many predator-prey encounters occur in a geometrically structured environment. The physical structures in the environment impose strong constraints on the perception and behavioral responses of both antagonists. Nevertheless, no experimental or theoretical study has tackled the issue of quantifying the role of the habitat's architecture on the joint trajectories during a predator-prey encounter. In this study, we report the influence of microtopography of forest leaf litter on the pursuit-evasion trajectories of wolf spiders Pardosa sp. attacking the wood cricket Nemobius sylvestris. Fourteen intact leaf litter samples of 1 m × 0.5 m were extracted from an oak-beech forest floor in summer and winter, with later samples having the most recently fallen leaves. Elevation was mapped at a spatial resolution of 0.5 mm using a laser scanner. Litter structuring patterns were identified by height transects and experimental semi-variograms. Detailed analysis of all visible leaf-fragments of one sample enabled us to relate the observed statistical patterns to the underlying geometry of individual elements. Video recording of pursuit-evasion sequences in arenas with flat paper or leaf litter enabled us to estimate attack and fleeing distances as a function of substrate. The compaction index, the length of contiguous flat surfaces, and the experimental variograms showed that the leaf litter was smoother in summer than in winter. Thus, weathering as well as biotic activities compacted and flattened the litter over time. We found good agreement between the size of the structuring unit of leaf litter and the distance over which attack and escape behaviors both were initiated (both ∼3 cm). There was a four-fold topographical effect on pursuit-escape sequences; compared with a flat surface, leaf litter (1) greatly reduced the likelihood of launching a pursuit, (2) reduced pursuit and escape distances by half, (3) put prey and predator on par in terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.

  18. Effects of Serotonergic and Opioidergic Drugs on Escape Behaviors and Social Status of Male Crickets

    NASA Astrophysics Data System (ADS)

    Dyakonova, V. E.; Schürmann, F.-W.; Sakharov, D. A.

    We examined the effects of selective serotonin depletion and opioid ligands on social rank and related escape behavior of the cricket Gryllus bimaculatus. Establishment of social rank in a pair of males affected their escape reactions. Losers showed a lower and dominants a higher percentage of jumps in response to tactile cercal stimulation than before a fight. The serotonin-depleting drug α-methyltryptophan (AMTP) caused an activation of the escape reactivity in socially naive crickets. AMTP-treated animals also showed a lower ability to become dominants. With an initial 51.6+/-3.6% of wins in the AMTP group, the percentage decreased to 26+/-1.6% on day 5 after injection. The opiate receptor antagonist naloxone affected fight and escape similarly as AMTP. In contrast to naloxone, the opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin decreased escape responsiveness to cercal stimulation in naive and subordinate crickets. We suggest that serotonergic and opioid systems are involved in the dominance induced depression of escape behavior.

  19. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  20. Mars Aeronomy Explorer (MAX): Study Employing Distributed Micro-Spacecraft

    NASA Technical Reports Server (NTRS)

    Shotwell, Robert F.; Gray, Andrew A.; Illsley, Peter M.; Johnson, M.; Sherwood, Robert L.; Vozoff, M.; Ziemer, John K.

    2005-01-01

    An overview of a Mars Aeronomy Explorer (MAX) mission design study performed at NASA's Jet Propulsion Laboratory is presented herein. The mission design consists of ten micro-spacecraft orbiters launched on a Delta IV to Mars polar orbit to determine the spatial, diurnal and seasonal variation of the constituents of the Martian upper atmosphere and ionosphere over the course of one Martian year. The spacecraft are designed to allow penetration of the upper atmosphere to at least 90 km. This property coupled with orbit precession will yield knowledge of the nature of the solar wind interaction with Mars, the influence of the Mars crustal magnetic field on ionospheric processes, and the measurement of present thermal and nonthermal escape rates of atmospheric constituents. The mission design incorporates alternative design paradigms that are more appropriate for-and in some cases motivate-distributed micro-spacecraft. These design paradigms are not defined by a simple set of rules, but rather a way of thinking about the function of instruments, mission reliability/risk, and cost in a systemic framework.

  1. Impact Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2004-01-01

    Our laboratory has previously conducted impact fracture and dynamic failure tests. Polanskey and Ahrens [1990] mapped the fractures from a series of laboratory craters (Fig. 1) and Ahrens and Rubin [ 1993] inferred that the usually further extending radial cracks resulted from tensional failure during the compression of the shock propagation. The radial spreading induced by the particle velocity field caused the stresses perpendicular to the shock front to become sufficiently large and tensile. This induces "radial fractures." The concentric fractures are attributed to the tensional failure occurring after the initial compressive phase. Upon radial propagation of the stress wave the negative tension behind the stress-wave front caused failure along the quasi-spherical concentric fractures. The near-surface and spall fractures are attributed to the fractures described by Melosh [1984]. These are activated by impact and can launch relatively unshocked samples of planetary surfaces to speeds exceeding escape velocity. In the case of Mars, some of these surface samples presumably become the SNC (Mars) meteorites.

  2. Kinematics and Optical Depth in the Green Peas: Suppressed Superwinds in Candidate LyC Emitters

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne E.; Oey, M. S.; Scarlata, Claudia; Dowd, Tara

    2017-12-01

    By clearing neutral gas away from a young starburst, superwinds may regulate the escape of Lyman continuum (LyC) photons from star-forming galaxies. However, models predict that superwinds may not launch in the most extreme, compact starbursts. We explore the role of outflows in generating low optical depths in the Green Peas (GPs), the only known star-forming population with several confirmed and candidate LyC-leaking galaxies. With Hubble Space Telescope UV spectra of 25 low-redshift GPs, including new observations of 13 of the most highly ionized GPs, we compare the kinematics of UV absorption lines with indirect H I optical depth diagnostics: Lyα escape fraction, Lyα peak separation, or low-ionization absorption line equivalent width. The data suggest that high-ionization kinematics tracing superwind activity may correlate with low optical depth in some objects. However, the most extreme GPs, including many of the best candidate LyC emitters with weak low-ionization absorption and strong, narrow Lyα profiles, show the lowest velocities. These results are consistent with models for suppressed superwinds, which suggests that outflows may not be the only cause of LyC escape from galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555. These observations are associated with programs GO-14080, GO-13293, and GO-12928.

  3. Orbital and escape dynamics in barred galaxies - III. The 3D system: correlations between the basins of escape and the NHIMs

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Jung, Christof

    2018-01-01

    The escape dynamics of the stars in a barred galaxy composed of a spherically symmetric central nucleus, a bar, a flat thin disc and a dark matter halo component is investigated by using a realistic three degrees of freedom (3-d.o.f.) dynamical model. Modern colour-coded diagrams are used for distinguishing between bounded and escaping motion. In addition, the smaller alignment index method is deployed for determining the regular, sticky or chaotic nature of bounded orbits. We reveal the basins of escape corresponding to the escape through the two symmetrical escape channels around the Lagrange points L2 and L3 and also we relate them with the corresponding distribution of the escape times of the orbits. Furthermore, we demonstrate how the stable manifolds, around the index-1 saddle points, accurately define the fractal basin boundaries observed in the colour-coded diagrams. The development scenario of the fundamental vertical Lyapunov periodic orbit is thoroughly explored for obtaining a more complete view of the unfolding of the singular behaviour of the dynamics at the cusp values of the parameters. Finally, we examine how the combination of the most important parameters of the bar (such as the semimajor axis and the angular velocity) influences the observed stellar structures (rings and spirals), which are formed by escaping stars guided by the invariant manifolds near the saddle points.

  4. A Substantial Plume of Escaping Planetary Ions in the MSE Northern Hemisphere Observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Curry, S.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.

    2015-12-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from Mars through a number of processes, including pick-up by the electromagnetic fields. The Mars Atmospheric and Volatile EvolutioN (MAVEN) spacecraft has frequently detected strong escaping planetary ion fluxes in both tailward and upstream solar wind motional electric field directions since the beginning of its science phase in November 2014. Our statistical study using three-month MAVEN data from November 2014 through February 2015 illustrates a substantial plume-like escaping planetary ion population organized by the upstream electric field with strong fluxes widely distributed in the northern hemisphere of the Mars-Sun-Electric-field (MSE) coordinate system, which is generally consistent with model predictions. The plume constitutes an important planetary ion escape channel from the Martian atmosphere in addition to the tailward escape. The >25eV O+ escape rate through the plume is estimated to be ~35% of the tailward escape and ~25% of the total escape. We will compare the dynamics of the plume and tailward escaping ions based on their velocity-space distributions with respect to the electromagnetic fields. We will also discuss the variations of the plume characteristics between different ion species (O+, O2+, and CO2+) and from the effect of different solar wind and interplanetary magnetic field (IMF) conditions.

  5. Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Baysinger, Michael F.; Beers, Benjamin R.

    2016-01-01

    As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature (MaSMi) Hall thruster, a solar sail and an electric sail. Two aerial densities, and thus characteristic accelerations, 0.426 mm/s(exp 2) and 0.664 mm/s(exp 2), were analyzed for the solar sail option in order understand the impact of near and long term development of this technology. Similarly, two characteristic accelerations, 1 mm/s(exp 2) and 2 mm/s(exp 2), were also analyzed for the electric sail option in addition to tether quantities of 10 and 20, respectively, and individual tether length of 20 km. A second analysis was conducted to determine what existing solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming an earth departure characteristic energy capability provided by a Space Launch System (SLS) Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist (E-Ju), and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist (E-Ju-Su-Sa). The Oberth maneuver would need to be performed very close to the sun, wherein this study assumed a perihelion distance of approximately 11 solar radii, or 0.05 AU, away from the surface. The heat shield technology required to perform this type of ambitious maneuver was assumed to be similar to that of NASA’s Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 km(exp 2)/s(exp 2) for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.

  6. Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.

    PubMed

    York, Carly A; Bartol, Ian K; Krueger, Paul S

    2016-09-15

    Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.

  7. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  8. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  9. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  10. Commercial Lunar ISRU for the Space Launch Industry: Cruder is Better

    NASA Astrophysics Data System (ADS)

    Turner, M.

    2017-09-01

    Lunar ISRU scenarios typically focus on making relatively high-added-value products (such as solar PVs) for off-Earth use only. Discussion of space mining in general focuses on high-value trace substances (e.g. platinum group metals) as exports to Earth, and hydroxyls and other volatiles for use only in space. This paper considers two potential bulk commodities with high availability on the lunar surface: space-weathered basalt fines and the oxygen in metal oxides. Basalt fiber can be produced by a simple process, and is strong enough that a tapered rotating sling could propel payloads at lunar escape velocity. Basalt aerobrakes could be flung to LEO depots to aid in aerocapture, reentry, and thermal protection of upper stages. Lunar oxygen (O2 being most of the mass of most liquid-fueled rockets) could aid in powered descent. In short, abundant substances on the Moon could make cost-saving exports possible sooner than later, for the satellite launch industry.

  11. Automated Escape Guidance Algorithms for An Escape Vehicle

    NASA Technical Reports Server (NTRS)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly requires knowledge of the orbital state, which is obtained during the navigation state reconstruction event. Since the direction of the delta-v of the SEPI maneuver is a random variable with respect to the Local Vertical Local Horizontal (LVLH) coordinate system, calculating the required SEP2 burn is a challenge. This problem was solved using a neural network as a model-free function approximation technique.

  12. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability. Copyright © 2017 the authors 0270-6474/17/372137-12$15.00/0.

  13. Danger detection and escape behaviour in wood crickets.

    PubMed

    Dupuy, Fabienne; Casas, Jérôme; Body, Mélanie; Lazzari, Claudio R

    2011-07-01

    The wind-sensitive cercal system of Orthopteroid insects that mediates the detection of the approach of a predator is a very sensitive sensory system. It has been intensively analysed from a behavioural and neurobiological point of view, and constitutes a classical model system in neuroethology. The escape behaviour is triggered in orthopteroids by the detection of air-currents produced by approaching objects, allowing these insects to keep away from potential dangers. Nevertheless, escape behaviour has not been studied in terms of success. Moreover, an attacking predator is more than "air movement", it is also a visible moving entity. The sensory basis of predator detection is thus probably more complex than the perception of air movement by the cerci. We have used a piston mimicking an attacking running predator for a quantitative evaluation of the escape behaviour of wood crickets Nemobius sylvestris. The movement of the piston not only generates air movement, but it can be seen by the insect and can touch it as a natural predator. This procedure allowed us to study the escape behaviour in terms of detection and also in terms of success. Our results showed that 5-52% of crickets that detected the piston thrust were indeed touched. Crickets escaped to stimulation from behind better than to a stimulation from the front, even though they detected the approaching object similarly in both cases. After cerci ablation, 48% crickets were still able to detect a piston approaching from behind (compared with 79% of detection in intact insects) and 24% crickets escaped successfully (compared with 62% in the case of intact insects). So, cerci play a major role in the detection of an approaching object but other mechanoreceptors or sensory modalities are implicated in this detection. It is not possible to assure that other sensory modalities participate (in the case of intact animals) in the behaviour; rather, than in the absence of cerci other sensory modalities can partially mediate the behaviour. Nevertheless, neither antennae nor eyes seem to be used for detecting approaching objects, as their inactivation did not reduce their detection and escape abilities in the presence of cerci. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Near-horizon Structure of Escape Zones of Electrically Charged Particles around Weakly Magnetized Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kopáček, Ondřej; Karas, Vladimír

    2018-01-01

    An interplay of magnetic fields and gravitation drives accretion and outflows near black holes. However, a specific mechanism is still a matter of debate; it is very likely that different processes dominate under various conditions. In particular, for the acceleration of particles and their collimation in jets, an ordered component of the magnetic field seems to be essential. Here we discuss the role of large-scale magnetic fields in transporting the charged particles and dust grains from the bound orbits in the equatorial plane of a rotating (Kerr) black hole and the resulting acceleration along trajectories escaping the system in a direction parallel to the symmetry axis (perpendicular to the accretion disk). We consider a specific scenario of destabilization of circular geodesics of initially neutral matter by charging (e.g., due to photoionization). Some particles may be set on escaping trajectories and attain relativistic velocity. The case of charged particles differs from charged dust grains by their charge-to-mass ratio, but the acceleration mechanism operates in a similar manner. It appears that the chaotic dynamics controls the outflow and supports the formation of near-horizon escape zones. We employ the technique of recurrence plots to characterize the onset of chaos in the outflowing medium. We investigate the system numerically and construct the basin-boundary plots, which show the location and the extent of the escape zones. The effects of black hole spin and magnetic field strength on the formation and location of escape zones are discussed, and the maximal escape velocity is computed.

  15. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior

    PubMed Central

    Harte, Steven E.; Meyers, Jessica B.; Donahue, Renee R.; Taylor, Bradley K.; Morrow, Thomas J.

    2016-01-01

    A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030

  16. Possibility of exchange of a rectilinear three-body system with zero energy

    NASA Astrophysics Data System (ADS)

    Koda, Eiji

    The possibility of exchange for a rectilinear three-body system with zero energy is examined by introducing regularized coordinates which are closely related to McGehee's (1974) coordinates. It is shown that all of the HE(-)-HE(+) orbits are of exchange type in a critical system whose orbits of parabolic-parabolic escape type experience odd times of binary collision. No exchange occurs in critical systems whose orbits of parabolic-parabolic escape type experience even times of binary collision.

  17. Stabilizing effect of driving and dissipation on quantum metastable states

    NASA Astrophysics Data System (ADS)

    Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo

    2018-04-01

    We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.

  18. SNAP 19 Pioneer F and G. Final Report

    DOE R&D Accomplishments Database

    1973-06-01

    The generator developed for the Pioneer mission evolved from the SNAP 19 RTG`s launched aboard the NIMBUS III spacecraft. In order to satisfy the power requirements and environment of earth escape trajectory, significant modifications were made to the thermoelectric converter, heat source, and structural configuration. Specifically, a TAGS 2N thermoelectric couple was designed to provide higher efficiency and improved long term power performance, and the electrical circuitry was modified to yield very low magnetic field from current flow in the RTG. A new heat source was employed to satisfy operational requirements and its integration with the generator required alteration to the method of providing support to the fuel capsule.

  19. Space Toxicology

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  20. Managing Pacific salmon escapements: The gaps between theory and reality

    USGS Publications Warehouse

    Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    There are myriad challenges to estimating intrinsic production capacity for Pacific salmon populations that are heavily exploited and/or suffering from habitat alteration. Likewise, it is difficult to determine whether perceived decreases in production are due to harvest, habitat, or hatchery influences, natural variation, or some combination of all four. There are dramatic gaps between the true nature of the salmon spawner/recruit relationship and the theoretical basis for describing and understanding the relationship. Importantly, there are also extensive practical difficulties associated with gathering and interpreting accurate escapement and run-size information and applying it to population management. Paradoxically, certain aspects of salmon management may well be contributing to losses in abundance and biodiversity, including harvesting salmon in mixed population fisheries, grouping populations into management units subject to a common harvest rate, and fully exploiting all available hatchery fish at the expense of wild fish escapements. Information on U.S. Pacific salmon escapement goal-setting methods, escapement data collection methods and estimation types, and the degree to which stocks are subjected to mixed stock fisheries was summarized and categorized for 1,025 known management units consisting of 9,430 known populations. Using criteria developed in this study, only 1% of U.S. escapement goals are by methods rated as excellent. Escapement goals for 16% of management units were rated as good. Over 60% of escapement goals have been set by methods rated as either fair or poor and 22% of management units have no escapement goals at all. Of the 9,430 populations for which any information was available, 6,614 (70%) had sufficient information to categorize the method by which escapement data are collected. Of those, data collection methods were rated as excellent for 1%, good for 1%, fair for 2%, and poor for 52%. Escapement estimates are not made for 44% of populations. Escapement estimation type (quality of the data resulting from survey methods) was rated as excellent for <1%, good for 30%, fair for 3%, poor for 22%, and nonexistent for 45%. Numerous recommendations for improvements in escapement mangement are made in this chapter. In general, improvements are needed on theoretical escapement management techniques, escapement goal setting methods, and escapement and run size data quality. There is also a need to change managers' and harvesters' expectations to coincide with the natural variation and uncertainty in the abundance of salmon populations. All the recommendations are aimed at optimizing the number of spawners-healthy escapements ensure salmon sustainability by providing eggs for future production, nutrients to the system, and genetic diversity.

  1. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  2. Emirates Mars Mission (EMM) 2020 Overview

    NASA Astrophysics Data System (ADS)

    Amiri, S.; Sharaf, O.; AlMheiri, S.; AlRais, A.; Wali, M.; Al Shamsi, Z.; Al Qasim, I.; Al Harmoodi, K.; Al Teneiji, N.; Almatroushi, H. R.; Al Shamsi, M. R.; Altunaiji, E. S.; Lootah, F. H.; Badri, K. M.; McGrath, M.; Withnell, P.; Ferrington, N.; Reed, H.; Landin, B.; Ryan, S.; Pramann, B.; Brain, D.; Deighan, J.; Chaffin, M.; Holsclaw, G.; Drake, G.; Wolff, M. J.; Edwards, C. S.; Lillis, R. J.; Smith, M. D.; Forget, F.; Fillingim, M. O.; England, S.; Christensen, P. R.; Osterloo, M. M.; Jones, A. R.

    2017-12-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Emirati mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. The mission should be unique, and should aim for novel and significant discoveries that contributed to the ongoing work of the global space science community. EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR) phases. The mission is led by the Mohammed Bin Rashid Space Centre (MBRSC), in partnership with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Laboratory (SSL), and Arizona State University (ASU) School of Earth and Space Exploration. The mission is designed to answer the following three science questions: (1) How does the Martian lower atmosphere respond globally, diurnally, and seasonally to solar forcing? (2) How do conditions throughout the Martian atmosphere affect rates of atmospheric escape? (3) How does the Martian exosphere behave temporally and spatially?. Each question is aligned with three mission objectives and four investigations that study the Martian atmospheric circulation and connections through measurements done using three instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths. Data will be collected around Mars for a period of an entire Martian year to provide scientists with valuable understanding of the changes to the Martian atmosphere today. The presentation will focus on the overviews of the mission and science objectives, instruments and spacecraft, as well as the ground and launch segments.

  3. The Venus flybys opportunity with BEPICOLOMBO

    NASA Astrophysics Data System (ADS)

    Mangano, Valeria; de la Fuente, Sara; Montagnon, Elsa; Benkhoff, Johannes; Zender, Joe; Orsini, Stefano

    2017-04-01

    BepiColombo is a dual spacecraft mission to Mercury to be launched in October 2018 and carried out jointly between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mercury Planetary Orbiter (MPO) payload comprises eleven experiments and instrument suites. It will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will test Einstein's theory of general relativity. The second spacecraft, the Mercury Magnetosphere Orbiter (MMO), will carry five experiments or instrument suites to study the environment around the planet including the planet's exosphere and magnetosphere, and their interaction processes with the solar wind. The composite spacecraft made of MPO, MMO, a transfer module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the two flybys to Venus will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group has recently formed from the BepiColombo community to identify potentially interesting scientific cases and to analyse operation timelines. Preliminary outputs will be presented and discussed.

  4. Mercury Project

    NASA Image and Video Library

    1958-06-24

    Testing of Mercury Capsule Shape A by the Hydrodynamics Division of Langley. Joseph Shortal wrote (vol. 3, p. 19): The Hydrodynamics Division provided assistance in determining landing loads. In this connection, after PARD engineers had unofficially approached that division to make some water impact tests with the boilerplate capsule, J.B. Parkinson, Hydrodynamics Chief visited Shortal to find out if the request had his support. Finding out that it did, Parkinson said, Its your capsule. If you want us to drop it in the water, we will do it. From Shortal (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  5. NOVA Spring 1999 Teacher's Guide.

    ERIC Educational Resources Information Center

    Colombo, Luann; Ransick, Kristina; Recio, Belinda

    This teacher's guide complements six programs that aired on the Public Broadcasting System (PBS) in the spring of 1999. Programs include: (1) "Surviving AIDS"; (2) "Secrets of Making Money"; (3) "Escape!: Fire"; (4) "Escape!: Car Crash"; (5) "Volcanoes of the Deep"; and (6) "Odyssey of Life:…

  6. Verge and Foliot Clock Escapement: A Simple Dynamical System

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2010-09-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would accelerate. To prevent this acceleration, an escapement mechanism was required. The best such escapement mechanism was called the verge and foliot escapement, and it was so successful that it lasted until about 1800 CE. These simple weight-driven clocks with verge and foliot escapements were accurate enough to mark the hours but not minutes or seconds. From 1670, significant improvements were made (principally by introducing pendulums and the newly invented anchor escapement) that justified the introduction of hands to mark minutes, and then seconds. By the end of the era of mechanical clocks, in the first half of the 20th century, these much-studied and much-refined machines were accurate to a millisecond a day.

  7. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to calculate from such escape fluxes derived over a limited area and under limited conditions. A thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  8. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  9. Venting of fission products and shielding in thermionic nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Salmi, E. W.

    1972-01-01

    Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.

  10. Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Richardson, Georgia A.

    2010-01-01

    The two-burn maneuver to escape the gravitational pull of a central body is described. The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably for a wide range of missions of interest in space exploration and scientific investigation. A clear delineation of when the maneuver is more effective is given, as are methods to extract the most advantage when using the maneuver. Some examples are given of how this maneuver can enable exploration of the outer solar system, near interstellar space, and crewed missions to Mars and beyond. The maneuver has the potential to halve the required infrastructure associated with a crewed mission to Mars and achieve increased solar escape velocities with existing spacecraft technologies.

  11. HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment

    PubMed Central

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W.; Gisslén, Magnus

    2010-01-01

    Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Methods. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Results. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54–213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Conclusions. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice. PMID:21050119

  12. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.

    PubMed

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus

    2010-12-15

    Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.

  13. In-Flight Operation of the Dawn Ion Propulsion System Through Start of the Vesta Cruise Phase

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.

    2009-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. IPS will be operated for over two years at throttled power levels leading to arrival at Vesta in September of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of deterministic thrusting to Vesta.

  14. MAVEN Observations of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other stellar systems.

  15. Discrete Serotonin Systems Mediate Memory Enhancement and Escape Latencies after Unpredicted Aversive Experience in Drosophila Place Memory

    PubMed Central

    Sitaraman, Divya; Kramer, Elizabeth F.; Kahsai, Lily; Ostrowski, Daniela; Zars, Troy

    2017-01-01

    Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits. PMID:29321732

  16. 75 FR 10546 - Shipping Coordinating Committee; Notice of Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... centre --Explanatory notes for the application of the safe return to port requirements --Recommendation... --Amendments to chapter II-2 related to the releasing controls and means of escape for spaces protected by fixed carbon dioxide systems --Means of escape from machinery spaces --Review of fire protection for on...

  17. Dependence of Photochemical Escape of Oxygen at Mars on Solar Radiation and Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Cravens, T.; Rahmati, A.; Lillis, R. J.; Fox, J. L.; Bougher, S. W.; Jakosky, B. M.

    2016-12-01

    The evolution of the atmosphere of Mars and the loss of volatiles over the life of the solar system is a key topic in planetary science. An important loss process in the ionosphere is photochemical escape. In particular, dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Several theoretical models have been constructed over the years to study hot oxygen and its escape from Mars. These model have a number of uncertainties, particularly for the elastic cross sections of O collisions with target neutral species. Recently, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., the solar wind). The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to: (1) study the role that solar flux and solar wind variations have on escape and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. Not surprisingly, we find, in agreement with more elaborate numerical models, that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The role for atmospheric loss that ion transport plays in the topside ionosphere and how the solar wind interaction drives this will also be discussed.

  18. Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Metzger, Brian D.

    2018-05-01

    Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.

  19. Integrated Systems Health Management for Space Exploration

    NASA Technical Reports Server (NTRS)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  20. Thermal Insulation Strips Conserve Energy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be hydrophobic, and can withstand extremely hot temperatures (from 1,100 F to 3,000 F depending on the type of aerogel) down to cryogenic levels, making this "frozen smoke" ideal for use in space. Because of its low weight and ability to withstand temperature extremes, an aerogel was even used as the space-based catcher s mitt to trap comet particles and space dust for NASA s Stardust mission, launched in 1999. All of this remarkable technology s characteristics were ideal for NASA s purposes except one: The aerogels were extremely brittle. Through a long-term partnership between Kennedy Space Center and Aspen Aerogels Inc., of Northborough, Massachusetts, researchers developed a flexible, durable form of aerogel that NASA has since used as cryogenic insulation for space shuttle launch systems. Through Aspen Aerogels, the technology has made oil pipeline insulation, extreme weather clothing, and infrared shielding for combat helicopters.

  1. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry J.

    2001-01-01

    The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit and escape the bonds of Earth's gravity. In the future there may be other means available; however, currently few of these alternatives can compare to the speed or the ease of use provided by cryogenic chemical propulsion agents. Cryogenics, the science and art of producing cold operating conditions, has become increasingly important to our ability to travel within our solar system. The production and transport of cryogenic fuels as well as the long-term storage of these fluids are necessary for mankind to travel within our solar system. It is with great care and at a significant cost that gaseous compounds such as hydrogen and oxygen are liquified and become dense enough to use for rocket fuel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a complete round-trip. The cost and the size of any expedition to another celestial body are extreme. If we are constrained by the need to take everything necessary (fuel, life support, etc.) for our survival and return, we greatly increase the risk of being able to go. As with the early explorers on Earth, we will need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy sources is paramount to success. Due to the current propulsion system designs, the in-situ processes will require liquefaction and the application of cryogenics. The challenge we face for the near future is to increase our understanding of cryogenic long-term storage and off-world production of cryogenic fluids. We must do this all within the boundaries of very restricted size, weight, and robustness parameters so that we may launch these apparatus from Earth and utilize them elsewhere. Miniaturization, efficiency, and physically robust systems will all play a part in making space exploration possible; however, it is cryogenics that will enable all of this to occur.

  2. Avoidance Behavior to Essential Oils by Anopheles minimus, a Malaria Vector in Thailand.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Chauhan, Kamal; Tantakom, Siripun; Eiden, Amanda L; Chareonviriyaphap, Theeraphap

    2016-03-01

    Essential oils extracted from 4 different plant species--citronella (Cymbopogon nardus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), and vetiver (Vetiveria zizanioides)-were investigated for their irritant and repellent activities against Anopheles minimus, using an excito-repellency test system. Pure essential oils were used in absolute ethanol at the concentrations of 0.5%, 1%, 2.5%, and 5% (v/v) compared with deet. At the lowest concentration of 0.5%, hairy basil displayed the best irritant and repellent effects against An. minimus. Citronella and vetiver at 1-5% showed strong irritant effects with>80% escape, while repellent effects of both oils were observed at 1% and 2.5% citronella (73-89% escape) and at 5% vetiver (83.9% escape). Sweet basil had only moderate irritant action at 5% concentration (69.6% escape) and slightly repellent on test mosquitoes (<50% escape). The results found that hairy basil, citronella, and vetiver are promising potential mosquito repellent products for protection against An. minimus.

  3. The influence of Mars' magnetic topology on atmospheric escape

    NASA Astrophysics Data System (ADS)

    Curry, S.; Luhmann, J. G.; DiBraccio, G. A.; Dong, C.; Xu, S.; Mitchell, D.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; McFadden, J. P.; Ma, Y. J.; Brain, D.

    2017-12-01

    At weakly magnetized planets such as Mars and Venus, the solar wind directly interacts with the upper atmosphere where ions can be picked up and swept away by the background convection electric field. These pick-up ions have a gyroradius on the planetary scale that is largely dominated by the interplanetary magnetic field (IMF). But at Mars, their trajectory is also influenced by the existence of remanent crustal magnetic fields, which are thought to create a shielding effect for escaping planetary ions when they are on the dayside. Consequently, the magnetic topology changes at Mars as magnetic reconnection occurs between the draped (IMF) and the crustal magnetic fields (closed). The resulting topology includes open field lines in the solar wind with one footprint attached to the planet. Using magnetohydrodynamic (MHD) and test particle simulations, we will explore the influence of the magnetic topology on ion escape. We will present escape rates for planetary ions for different crustal field positions during different IMF configurations, with +/-BY and +/-BZ components in the Mars Sun Orbit (MSO) coordinate system. We will also compare global maps of ion outflow and escape with open / closed magnetic field line maps and compare our results with ion fluxes and magnetic field data from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. Our results relating the dynamic magnetic field topology at Mars and planetary ion escape are an important aspect of magnetospheric physics and planetary evolution, both of which have applications to our own solar system and the increasing number of exoplanets discovered every year.

  4. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  5. Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu; Deem, Michael W.

    2006-11-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.

  6. Injury rate in a helicopter underwater escape trainer (HUET) from 2005-2012.

    PubMed

    Brooks, Christopher J; MacDonald, Conor V; Gibbs, Peter N A

    2014-08-01

    Helicopter underwater escape training (HUET) carries a potential for injury and this paper identifies the injury rate. A marine survival training school registry of all students trained between 2005-2012 in HUET and the coinciding accident records were examined. There were 8902 students trained in a helicopter underwater escape simulator for a total of 59,245 underwater escapes. There were 40 cases where only first-aid was required and 3 serious injuries (a laceration requiring 5 sutures, 1 dislocated shoulder, and 1 water aspiration requiring hospitalization). There were no deaths and no problems reported with using the Emergency Breathing System (EBS) or Air Pocket. Of the injuries, 11 were due to the student using a poor escape technique. The overall probability of injury was 0.74 per 1000 ascents. In HUET training, there is a very low injury rate with almost no significant severity. Although not scientifically proven, this would suggest that the low incident rate is due to good medical screening and the attention given by instructors to anxious students. Compared to other training such as diving, parachute jumping, and submarine escape training, the rate of injury was considerably lower.

  7. Escape rate for nonequilibrium processes dominated by strong non-detailed balance force

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Xu, Song; Ao, Ping

    2018-02-01

    Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.

  8. Evolving Project E-Scape for National Assessment

    ERIC Educational Resources Information Center

    Kimbell, Richard

    2012-01-01

    In the opening paper in this Special Edition I outlined the major issues that led to the establishment of "project e-scape". The project was intended to develop systems and approaches that enabled learners to build real-time web-based portfolios of their performance (initially) in design & technology and additionally to build systems…

  9. Assessing Scientific and Technological Enquiry Skills at Age 11 Using the E-Scape System

    ERIC Educational Resources Information Center

    Davies, Dan; Collier, Chris; Howe, Alan

    2012-01-01

    This article reports on the outcomes from the "e-scape Primary Scientific and Technological Understanding Assessment Project" (2009-2010), which aimed to support primary teachers in developing valid portfolio-based tasks to assess pupils' scientific and technological enquiry skills at age 11. This was part of the wider…

  10. STS-135 Escape System Refresher training and Stowage Review Training

    NASA Image and Video Library

    2011-06-29

    JSC2011-E-060759 (29 June 2011) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Here, she is being briefed on the escape pole. Photo credit: NASA

  11. Crew escape system test at Naval Weapons Center, China Lake, California

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As part of a crew escape system (CES) test program, a lifelike dummy is pulled by a tractor rocket from an airborne Convair-240 (C-240) aircraft at Naval Weapons Center, China Lake, California. A P-3 chase plane accompanies the C-240. The C-240 was modified with a space shuttle side hatch mockup for the tests which will evaluate candidate concepts developed to provide crew egress capability during Space Shuttle controlled gliding flight.

  12. Analyzing Systems Integration Best Practices and Assessment in DoD Space Systems Acquisition

    DTIC Science & Technology

    2009-12-01

    satellite  Insufficient stress relief and insulation caused abrasion of wiring harness. C Product–Product: stress relief and insulation – wiring...delaminated during firing . This problem escaped qualification since slow heating rates (0.1–deg F/sec) used in the lab test provided time for the gas...to escape. Faster rates would have revealed the issue. E Product–Process: material – replace, firing ; rate – test B Process–Process: replace

  13. Dusty Plasma Dynamics Near Surfaces in Space

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.; Robertson, S.; Horanyi, M.; Nahra, Henry (Technical Monitor)

    1998-01-01

    The investigation 'Dusty Plasma Dynamics Near Surfaces in Space' is an experimental and theoretical study of the dynamics of dust particles on airless bodies in the solar system in the presence of a photoelectron sheath generated by solar ultraviolet light impinging on the surface. Solar UV illumination of natural and manmade surfaces in space produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface acquire a charge and may be transported by electric fields in the photoelectron sheath generated by inhomogeneities in the surface or the illumination (such as shadows). The sheath itself has a finite vertical extent leading to (at least) an electric field normal to the illuminated surface. If dust particles are launched from the surface by some other process, such as meteoroid impact, or spacecraft activity on the surface, these grains become charged and move under the influence of gravity and the electric field. This can give rise to suspension of the particles above the surface, loss from the parent body entirely (if accelerated beyond escape velocity), and a different distribution of dust ejecta from what would be expected with purely gravitational dynamics.

  14. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  15. R.J. Reynolds' targeting of African Americans: 1988-2000.

    PubMed

    Balbach, Edith D; Gasior, Rebecca J; Barbeau, Elizabeth M

    2003-05-01

    The purpose of this study was to describe RJ Reynolds (RJR) Tobacco Company's strategy for targeting African Americans, as revealed in tobacco industry documents and magazine advertisements. The authors searched industry documents to determine RJR's strategies and analyzed magazine advertising during 2 periods: the time of the launch of the company's Uptown cigarette (1989-1990) and a decade later (1999-2000). RJR's efforts to target the African American market segment existed before and after Uptown, and the company's strategy was largely implemented via other RJR brands. Advertisements featured mentholated cigarettes, fantasy/escape, expensive objects, and nightlife. To help all populations become tobacco-free, tobacco control practitioners must understand and counter tobacco industry strategies.

  16. Post-molting development of wind-elicited escape behavior in the cricket.

    PubMed

    Sato, Nodoka; Shidara, Hisashi; Ogawa, Hiroto

    2017-11-01

    Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neural responses from the wind-sensitive interneuron population in four cockroach species

    PubMed Central

    McGorry, Clare A.; Newman, Caroline N.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal sensory system is involved in important behaviors including predator detection and initiating terrestrial escape responses as well as flight maintenance. However, not all insects possessing a cercal system exhibit these behaviors. In cockroaches, wind evokes strong terrestrial escape responses in Periplaneta americana and Blattella germanica, but only weak escape responses in Blaberus craniifer and no escape responses in Gromphadorhina portentosa. Both P. americana and Blab. craniifer possesses pink flight muscles correlated with flight ability while Blat. germanica possesses white flight muscles that cannot support flight and G. portentosa lacks wings. These different behavioral combinations could correlate with differences in sensory processing of wind information by the cercal system. In this study, we focused on the wind-sensitive interneurons (WSIs) since they provide input to the premotor/motor neurons that influence terrestrial escape and flight behavior. Using extracellular recordings, we characterized the responses from the WSI population by generating stimulus-response (S-R) curves and examining spike firing rates. Using cluster analysis, we also examined the activity of individual units (four per species, though not necessarily homologous) comprising the population response in each species. Our main results were: 1) all four species possessed ascending WSIs in the abdominal connectives; 2) wind elicited the weakest WSI responses (lowest spike counts and spike rates) in G. portentosa; 3) wind elicited WSI responses in Blab. craniifer that were greater than P. americana or Blat. germanica; 4) the activity of four individual units comprising the WSI population response in each species was similar across species. PMID:24879967

  18. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    NASA Astrophysics Data System (ADS)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  19. Effects of alprazolam and cannabinoid-related compounds in an animal model of panic attack.

    PubMed

    Batista, Luara A; Haibara, Andrea S; Schenberg, Luiz C; Moreira, Fabricio A

    2017-01-15

    Selective stimulation of carotid chemoreceptors by intravenous infusion of low doses of potassium cyanide (KCN) produces short-lasting escape responses that have been proposed as a model of panic attack. In turn, preclinical studies suggest that facilitation of the endocannabinoid system attenuate panic-like responses. Here, we compared the effects of cannabinoid-related compounds to those of alprazolam, a clinically effective panicolytic, on the duration of the escape reaction induced by intravenous infusion of KCN (80μg) in rats. Alprazolam (1, 2, 4mg/kg) decreased escape duration at doses that did not alter basal locomotor activity. URB597 (0.1, 0.3, 1mg/kg; inhibitor of anandamide hydrolysis), WIN55,212-2 (0.1, 0.3, 1mg/kg; synthetic cannabinoid), arachidonoyl-serotonin (1, 2.5, 5mg/kg; dual TRPV1 and anandamide hydrolysis inhibitor), and cannabidiol (5, 10, 20, 40mg/kg; a phytocannabinoid) did not decrease escape duration. Alprazolam also prevented the increase in arterial pressure evoked by KCN, while bradycardia was unchanged. This study reinforces the validity of the KCN-evoked escape as a model of panic attack. However, it does not support a role for the endocannabinoid system in this behavioral response. These results might have implications for the screening of novel treatments for panic disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics

    PubMed Central

    Kiørboe, Thomas; Andersen, Anders; Langlois, Vincent J.; Jakobsen, Hans H.

    2010-01-01

    We describe the kinematics of escape jumps in three species of 0.3–3.0 mm-sized planktonic copepods. We find similar kinematics between species with periodically alternating power strokes and passive coasting and a resulting highly fluctuating escape velocity. By direct numerical simulations, we estimate the force and power output needed to accelerate and overcome drag. Both are very high compared with those of other organisms, as are the escape velocities in comparison to startle velocities of other aquatic animals. Thus, the maximum weight-specific force, which for muscle motors of other animals has been found to be near constant at 57 N (kg muscle)−1, is more than an order of magnitude higher for the escaping copepods. We argue that this is feasible because most copepods have different systems for steady propulsion (feeding appendages) and intensive escapes (swimming legs), with the muscular arrangement of the latter probably adapted for high force production during short-lasting bursts. The resulting escape velocities scale with body length to power 0.65, different from the size-scaling of both similar sized and larger animals moving at constant velocity, but similar to that found for startle velocities in other aquatic organisms. The relative duration of the pauses between power strokes was observed to increase with organism size. We demonstrate that this is an inherent property of swimming by alternating power strokes and pauses. We finally show that the Strouhal number is in the range of peak propulsion efficiency, again suggesting that copepods are optimally designed for rapid escape jumps. PMID:20462876

  1. Solid Rocket Launch Vehicle Explosion Environments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  2. STS-99 crew check out emergency egress equipment at launch pad during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  3. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    NASA Technical Reports Server (NTRS)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  4. Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters

    NASA Astrophysics Data System (ADS)

    Tanikawa, A.

    2013-10-01

    We have performed N-body simulations of globular clusters (GCs) in order to estimate a detection rate of mergers of binary stellar mass black holes (BBHs) by means of gravitational wave (GW) observatories. For our estimate, we have only considered mergers of BBHs which escape from GCs (BBH escapers). BBH escapers merge more quickly than BBHs inside GCs because of their small semimajor axes. N-body simulation cannot deal with a GC with the number of stars N ˜ 106 due to its high calculation cost. We have simulated dynamical evolution of small N clusters (104 ≲ N ≲ 105), and have extrapolated our simulation results to large N clusters. From our simulation results, we have found the following dependence of BBH properties on N. BBHs escape from a cluster at each two-body relaxation time at a rate proportional to N. Semimajor axes of BBH escapers are inversely proportional to N, if initial mass densities of clusters are fixed. Eccentricities, primary masses and mass ratios of BBH escapers are independent of N. Using this dependence of BBH properties, we have artificially generated a population of BBH escapers from a GC with N ˜ 106, and have estimated a detection rate of mergers of BBH escapers by next-generation GW observatories. We have assumed that all the GCs are formed 10 or 12 Gyr ago with their initial numbers of stars Ni = 5 × 105-2 × 106 and their initial stellar mass densities inside their half-mass radii ρh,i = 6 × 103-106 M⊙ pc-3. Then, the detection rate of BBH escapers is 0.5-20 yr-1 for a BH retention fraction RBH = 0.5. A few BBH escapers are components of hierarchical triple systems, although we do not consider secular perturbation on such BBH escapers for our estimate. Our simulations have shown that BHs are still inside some of GCs at the present day. These BHs may marginally contribute to BBH detection.

  5. Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection

    PubMed Central

    Garcia, Victor; Feldman, Marcus W.; Regoes, Roland R.

    2016-01-01

    During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies. PMID:26829720

  6. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  7. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR engines provide ``engine out'' redundancy. (5) The design efficiently implements galactic cosmic ray shielding using main propellant liquid hydrogen. (6) The design provides artificial gravity to mitigate crew physiological problems on long-duration missions. (7) The design is modular and can be launched using the proposed upgrades to the Evolved Expendable Launch Vehicles or Shuttle-derived heavy lift launch vehicles. (8) High value modules are reusable for Mars and Lunar missions. (9) The design has inherent growth capability, and can be tailored to satisfy expanding mission requirements to enable an in-family progression ``to the Moon, Mars, and beyond.''

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggerone, G.T.; Rogers, D.E.

    Adult sockeye salmon scales, which provide an index of annual salmon growth in fresh and marine waters during 1965--1997, were measured to examine the effects on growth and adult returns of large spawning escapements influenced by the Exxon Valdez oil spill. Scale growth in freshwater was significantly reduced by the large 1989 spawning escapements in the Kenai River system, Red Lake, and Akalura Lake, but not in Chignik Lake. These data suggest that sockeye growth in freshwater may be less stable following the large escapement. Furthermore, the observations of large escapement adversely affecting growth of adjacent brood years of salmonmore » has important implications for stock-recruitment modeling. In Prince William Sound, Coghill Lake sockeye salmon that migrated through oil-contaminated waters did not exhibit noticeably reduced marine growth, but a model was developed that might explain low adult returns in recent years.« less

  9. Automated guidance algorithms for a space station-based crew escape vehicle.

    PubMed

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires knowledge of the orbital state, which is obtained during the navigation state reconstruction event. Since the direction of the delta-v of the SEP1 maneuver is a random variable with respect to the Local Vertical Local Horizontal (LVLH) coordinate system, calculating the required SEP2 burn is a challenge. This problem was solved using elements of neural network theory for model-free function approximation and decision making. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  11. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  12. Deep Space Transportation System Using the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Matsumoto, Michihiro

    2007-01-01

    Recently, various kinds of planetary explorations have become more feasible, taking the advantage of low thrust propulsion means such as ion engines that have come into practical use. The field of space activity has now been expanded even to the rim of the outer solar system. In this context, the Japan Aerospace Exploration Agency (JAXA) has started investigating a Deep Space Port built at the L2 Lagrange point in the Sun-Earth system. For the purpose of making the deep space port practically useful, there is a need to establish a method to making spaceship depart and return from/to the port. This paper first discusses the escape maneuvers originating from the L2 point under the restricted three-body problem. Impulsive maneuvers from the L2 point are extensively studied here, and using the results, optimal low-thrust escape strategies are synthesized. Furthermore, this paper proposes the optimal escape and acceleration maneuvers schemes using Electric Delta-V Earth Gravity Assist (EDVEGA) technique.

  13. Photochemical escape of oxygen from Mars: First results from MAVEN in situ data

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Deighan, Justin; Fox, Jane L.; Bougher, Stephen W.; Lee, Yuni; Combi, Michael R.; Cravens, Thomas E.; Rahmati, Ali; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; McFadden, James P.; Ergun, Robert. E.; Andersson, Laila; Fowler, Christopher M.; Jakosky, Bruce M.; Thiemann, Ed; Eparvier, Frank; Halekas, Jasper S.; Leblanc, François; Chaufray, Jean-Yves

    2017-03-01

    Photochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 × 1025 s-1, depending on season and EUV flux, consistent with several pre-MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern-era average escape rate of 4.3 × 1025 s-1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483 mbar of oxygen over 1-3 and 3.5 Gyr, respectively, with uncertainties significantly increasing with time in the past.

  14. The basis for the development of a fuselage evacuation time for a ditched helicopter.

    PubMed

    Brooks, C J; Muir, H C; Gibbs, P N

    2001-06-01

    When a helicopter ditches or crashes in water, unless the buoyancy bags are inflated, it commonly sinks inverted. Thus, crew and passengers must make an underwater escape. It is postulated that later passengers in the escape sequence do not have the breath-holding ability to conduct a successful escape, particularly if the water is cold. This contributes to the 20-50% mortality rate in survivable accidents. There were 132 immersed subject evaluations which were conducted in daylight and darkness to measure escape times from a helicopter underwater escape trainer, configured to the Super Puma, seated for 15 and 18 passengers. The subjects were highly experienced instructors or Navy clearance divers. The time from when each subject's head disappeared underwater until each subject surfaced and total fuselage evacuation time were measured and any problems hampering escape were noted. Breath-holding for the last subject out ranged from 28 to 92 s. An emergency breathing system was used by a minimum of four subjects each time and a maximum of 11 subjects in one condition. The buoyancy of the survival suit was the principal component that hampered escape. Breath-holding times were too long for the later subjects to escape without resorting to an EBS, in spite of the fact that they were highly trained. For regular crew and passengers flying over water, this would explain the high mortality, etc. Therefore, a new helicopter standard should be developed requiring fuselage design to accommodate total evacuation within 20 s from underwater. For current helicopters, where this cannot be achieved, passengers should be provided with some form of air supply, or, after ditching, the helicopter should be modified so that it will stay afloat on its side and retain an air space in the cabin.

  15. Replication-Competent Simian Immunodeficiency Virus (SIV) Gag Escape Mutations Archived in Latent Reservoirs during Antiretroviral Treatment of SIV-Infected Macaques▿

    PubMed Central

    Queen, Suzanne E.; Mears, Brian M.; Kelly, Kathleen M.; Dorsey, Jamie L.; Liao, Zhaohao; Dinoso, Jason B.; Gama, Lucio; Adams, Robert J.; Zink, M. Christine; Clements, Janice E.; Kent, Stephen J.; Mankowski, Joseph L.

    2011-01-01

    In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8+ T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8+ T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4+ T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8+ T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted. PMID:21715484

  16. Revisit the faster-is-slower effect for an exit at a corner

    NASA Astrophysics Data System (ADS)

    Chen, Jun Min; Lin, Peng; Wu, Fan Yu; Li Gao, Dong; Wang, Guo Yuan

    2018-02-01

    The faster-is-slower effect (FIS), which means that crowd at a high enough velocity could significantly increase the evacuation time to escape through an exit, is an interesting phenomenon in pedestrian dynamics. Such phenomenon had been studied widely and has been experimentally verified in different systems of discrete particles flowing through a centre exit. To experimentally validate this phenomenon by using people under high pressure is difficult due to ethical issues. A mouse, similar to a human, is a kind of self-driven and soft body creature with competitive behaviour under stressed conditions. Therefore, mice are used to escape through an exit at a corner. A number of repeated tests are conducted and the average escape time per mouse at different levels of stimulus are analysed. The escape times do not increase obviously with the level of stimulus for the corner exit, which is contrary to the experiment with the center exit. The experimental results show that the FIS effect is not necessary a universal law for any discrete system. The observation could help the design of buildings by relocating their exits to the corner in rooms to avoid the formation of FIS effect.

  17. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    PubMed Central

    Schein, Catherine H; Zhou, Bin; Braun, Werner

    2005-01-01

    Background Flaviviruses, which include Dengue (DV) and West Nile (WN), mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs), 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs) near escape mutant positions. The analysis showed 1) that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2) two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines. PMID:15845145

  18. Neural circuits underlying visually evoked escapes in larval zebrafish

    PubMed Central

    Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo

    2015-01-01

    SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  19. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  20. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  1. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  2. System and Method for Air Launch from a Towed Aircraft

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D (Inventor)

    2018-01-01

    The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.

  3. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. Involvement of HLA class I molecules in the immune escape of urologic tumors.

    PubMed

    Carretero, R; Gil-Julio, H; Vázquez-Alonso, F; Garrido, F; Castiñeiras, J; Cózar, J M

    2014-04-01

    To analyze the influence of different alterations in human leukocyte antigen class I molecules (HLA I) in renal cell carcinoma, as well as in bladder and prostate cancer. We also study the correlation between HLA I expression and the progression of the disease and the response after immunotherapy protocols. It has been shown, experimentally, that the immune system can recognize and kill neoplastic cells. By analyzing the expression of HLA I molecules on the surface of cancer cells, we were able to study the tumor escape mechanisms against the immune system. Alteration or irreversible damage in HLA I molecules is used by the neoplastic cells to escape the immune system. The function of these molecules is to recognize endogenous peptides and present them to T cells of the immune system. There is a clear relationship between HLA I reversible alterations and success of therapy. Irreversible lesions also imply a lack of response to treatment. The immune system activation can reverse HLA I molecules expression in tumors with reversible lesions, whereas tumors with irreversible ones do not respond to such activation. Determine the type of altered HLA I molecules in tumors is of paramount importance when choosing the type of treatment to keep looking for therapeutic success. Those tumors with reversible lesions can be treated with traditional immunotherapy; however, tumour with irreversible alterations should follow alternative protocols, such as the use of viral vectors carrying the HLA genes to achieve damaged re-expression of the protein. From studies in urologic tumors, we can conclude that the HLA I molecules play a key role in these tumors escape to the immune system. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  5. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  6. Approaches to Improve the Performances of the Sea Launch System Performances

    NASA Astrophysics Data System (ADS)

    Tatarevs'kyy, K.

    2002-01-01

    The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.

  7. Design of an auto change mechanism and intelligent gripper for the space station

    NASA Technical Reports Server (NTRS)

    Dehoff, Paul H.; Naik, Dipak P.

    1989-01-01

    Robot gripping of objects in space is inherently demanding and dangerous and nowhere is this more clearly reflected than in the design of the robot gripper. An object which escapes the gripper in a micro g environment is launched not dropped. To prevent this, the gripper must have sensors and signal processing to determine that the object is properly grasped, e.g., grip points and gripping forces and, if not, to provide information to the robot to enable closed loop corrections to be made. The sensors and sensor strategies employed in the NASA/GSFC Split-Rail Parallel Gripper are described. Objectives and requirements are given followed by the design of the sensor suite, sensor fusion techniques and supporting algorithms.

  8. Pursuit/evasion in orbit

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-01-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  9. Senator John Glenn during water survival training at the NBL

    NASA Image and Video Library

    1998-04-06

    S98-04610 (6 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), attired in a training version of the Space Shuttle partial pressure launch and entry suit, surveys the scene of a bailout training exercise. The giant pool in the Neutral Buoyancy Laboratory (NBL)at the Sonny Carter Training Facility allows the STS-95 crewmembers the opportunity to simulate ejection from an aircraft over water. A number of SCUBA-equipped divers assist in the training exercises. The nearby structure contains a simulated version of the escape pole which is located in the middeck on each of four NASA Space Shuttle vehicles. Parachute drops, raft deployment, water bailing, flare signaling and other survival techniques are also covered in the session.

  10. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  11. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape from Earth and then the heliocentric transfer to the science target.

  12. A Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2007-03-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.

  13. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  14. The Launch Processing System for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  15. The dynamics of head-on collisions of spherical stellar systems

    NASA Astrophysics Data System (ADS)

    Narasimhan, K. S. V. S.; Alladin, Saleh Mohammed

    1986-12-01

    Energy changes in a head-on collision between two unequal Plummer model stellar systems (galaxies) are studied analytically under the impulsive approximation. The variation of the disruptive effects within and the mass escape from systems widely differing in mass and scalelength ratios are determined, and some physical implications regarding the dynamical stability of the systems undergoing head-on collisions are indicated. It is found that if two systems differ considerably in size, both systems generally survive the collision if (1) the mass of the bigger is greater than about six times the mass of the smaller and (2) the density of the smaller is more than about twenty-five times the entity of the bigger system, when the velocity at minimum separation is equal to the parabolic velocity of escape.

  16. Advanced Concept

    NASA Image and Video Library

    1999-10-21

    This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. Animal escapology I: theoretical issues and emerging trends in escape trajectories

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50–90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator–prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90–180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live – for example whether the immediate surroundings of the prey provide potential refuges. PMID:21753039

  18. Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Rahmati, A.; Fox, Jane L.; Lillis, R.; Bougher, S.; Luhmann, J.; Sakai, S.; Deighan, J.; Lee, Yuni; Combi, M.; Jakosky, B.

    2017-01-01

    The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5-10% of the total.

  19. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  20. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  2. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  3. Space X-3 Social Media Tour of KSC Facilities

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A group of news media and social media tweeters toured the Launch Abort System Facility and viewed the launch abort system for the Orion spacecraft at NASA's Kennedy Space Center in Florida. Speaking to the group is Scott Wilson, manager of Production Operations for the Orion Program. The group also toured the Launch Control Center and Vehicle Assembly Building, legacy facilities that are being upgraded by the Ground Systems Development and Operations Program at Kennedy to prepare for processing and launch of NASA's Space Launch System and Orion spacecraft. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  4. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GN&C), Thrust Vector Control (TVC), liquid engines, and the astronaut crew office. Since the algorithms are realized using model-based engineering (MBE) methods from a hybrid of the Unified Modeling Language (UML) and Systems Modeling Language (SysML), SFE methods are a natural fit to provide an in depth analysis of the interactive behavior of these algorithms with the SLS LV subsystem models. For this, the M&FM algorithms and the SLS LV subsystem models are modeled using constructs provided by Matlab which also enables modeling of the accompanying interfaces providing greater flexibility for integrated testing and analysis, which helps forecast expected behavior in forward VMET integrated testing activities. In VMET, the M&FM algorithms are prototyped and implemented using the same C++ programming language and similar state machine architectural concepts used by the FSW group. Due to the interactive complexity of the algorithms, VMET testing thus far has verified all the individual M&FM subsystem algorithms with select subsystem vendor models but is steadily progressing to assessing the interactive behavior of these algorithms with LV subsystems, as represented by subsystem models. The novel SFE applications has proven to be useful for quick look analysis into early integrated system behavior and assessment of the M&FM algorithms with the modeled LV subsystems. This early MBE analysis generates vital insight into the integrated system behaviors, algorithm sensitivities, design issues, and has aided in the debugging of the M&FM algorithms well before full testing can begin in more expensive, higher fidelity but more arduous environments such as VMET, FSW testing, and the Systems Integration Lab7 (SIL). SFE has exhibited both expected and unexpected behaviors in nominal and off nominal test cases prior to full VMET testing. In many findings, these behavioral characteristics were used to correct the M&FM algorithms, enable better test coverage, and develop more effective test cases for each of the LV subsystems. This has improved the fidelity of testing and planning for the next generation of M&FM algorithms as the SLS program evolves from non-crewed to crewed flight, impacting subsystem configurations and the M&FM algorithms that control them. SFE analysis has improved robustness and reliability of the M&FM algorithms by revealing implementation errors and documentation inconsistencies. It is also improving planning efficiency for future VMET testing of the M&FM algorithms hosted in the LV flight computers, further reducing risk for the SLS launch infrastructure, the SLS LV, and most importantly the crew.

  5. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  6. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  7. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  8. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  9. Retrieval of a leaflet escaped in a Tri-technologies bileaflet mechanical prosthetic valve.

    PubMed

    Cianciulli, Tomás F; Lax, Jorge A; Saccheri, María C; Guidoin, Robert; Salvado, César M; Fernández, Adrián J; Prezioso, Horacio A

    2008-01-01

    The escape of the prosthetic heart valve disc is one of the causes of prosthetic dysfunction that requires emergency surgery. The removal of the embolized disc should be carried out because of the risk of a progressive extrusion on the aortic wall. Several imaging techniques can be used for the detection of the missing disc localization. In this report we describe a 32-year-old man who underwent mitral valve replacement with a Tri-technologies bileaflet valve three years ago, and was admitted in cardiogenic shock. Transesophageal echocardiography showed acute-onset massive mitral regurgitation. The patient underwent emergency replacement of the prosthetic valve. Only one of the two leaflets remained in the removed prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet. The abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the terminal portion of the aortic bifurcation. To retrieve the embolized disc laparotomy and aortotomy were performed three months later. The escaped leaflet shows a fracture of one of the pivot systems caused by structural failure. This kind of failure mode is usually the result of high stress concentration.

  10. Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station

    NASA Astrophysics Data System (ADS)

    Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin

    2018-06-01

    Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.

  11. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  12. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  13. Combining near-term technologies to achieve a two-launch manned Mars mission

    NASA Technical Reports Server (NTRS)

    Baker, David A.; Zubrin, Robert M.

    1990-01-01

    This paper introduces a mission architecture called 'Mars Direct' which brings together several technologies and existing hardware into a novel mission strategy to achieve a highly capable and affordable approach to the Mars and Lunar exploratory objective of the Space Exploration Initiative (SEI). Three innovations working in concept cut the initial mass by a factor of three, greatly expand out ability to explore Mars, and eliminate the need to assemble vehicles in Earth orbit. The first innovation, a hybrid Earth/Mars propellant production process works as follows. An Earth Return Vehicle (ERV), tanks loaded with liquid hydrogen, is sent to Mars. After landing, a 100 kWe nuclear reactor is deployed which powers a propellant processor that combines onboard hydrogen with Mars' atmospheric CO2 to produce methane and water. The water is then electrolized to create oxygen and, in the process, liberates the hydrogen for further processing. Additional oxygen is gained directly by decomposition of Mars' CO2 atmosphere. This second innovation, a hybrid crew transport/habitation method, uses the same habitat for transfer to Mars as well as for the 18 month stay on the surface. The crew return via the previously launched ERV in a modest, lightweight return capsule. This reduces mission mass for two reasons. One, it eliminates the unnecessary mass of two large habitats, one in orbit and one on the surface. And two, it eliminates the need for a trans-Earth injection stage. The third innovation is a launch vehicle optimized for Earth escape. The launch vehicle is a Shuttle Derived Vehicle (SDV) consisting of two solid rocket boosters, a modified external tank, four space shuttle main engines and a large cryogenic upper stage mounted atop the external tank. This vehicle can throw 40 tonnes (40,000 kg) onto a trans-Mars trajectory, which is about the same capability as Saturn-5. Using two such launches, a four person mission can be carried out every twenty-six months with minimal impact on shared Shuttle launch facilities at Kennedy Space Center (KSC). The same launch vehicle, habitat, and upper stage of the ERV can also be used to perform Lunar missions. It is concluded that the Mars Direct architecture offers a cost effective approach to accomplishing the Lunar and Mars goals of the Space Exploration Initiative.

  14. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  15. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  16. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  17. Use of DES Modeling for Determining Launch Availability for SLS

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Staton, Eric; Cates, Grant; Finn, Ronald; Altino, Karen M.; Burns, K. Lee

    2014-01-01

    (1) NASA is developing a new heavy lift launch system for human and scientific exploration beyond Earth orbit comprising of the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO); (2) The desire of the system is to ensure a high confidence of successfully launching the exploration missions, especially those that require multiple launches, have a narrow Earth departure window, and high investment costs; and (3) This presentation discusses the process used by a Cross-Program team to develop the Exploration Systems Development (ESD) Launch Availability (LA) Technical Performance Measure (TPM) and allocate it to each of the Programs through the use of Discrete Event Simulations (DES).

  18. Accounting for escape mortality in fisheries: implications for stock productivity and optimal management.

    PubMed

    Baker, Matthew R; Schindler, Daniel E; Essington, Timothy E; Hilborn, Ray

    2014-01-01

    Few studies have considered the management implications of mortality to target fish stocks caused by non-retention in commercial harvest gear (escape mortality). We demonstrate the magnitude of this previously unquantified source of mortality and its implications for the population dynamics of exploited stocks, biological metrics, stock productivity, and optimal management. Non-retention in commercial gillnet fisheries for Pacific salmon (Oncorhynchus spp.) is common and often leads to delayed mortality in spawning populations. This represents losses, not only to fishery harvest, but also in future recruitment to exploited stocks. We estimated incidence of non-retention in Alaskan gillnet fisheries for sockeye salmon (O. nerka) and found disentanglement injuries to be extensive and highly variable between years. Injuries related to non-retention were noted in all spawning populations, and incidence of injury ranged from 6% to 44% of escaped salmon across nine river systems over five years. We also demonstrate that non-retention rates strongly correlate with fishing effort. We applied maximum likelihood and Bayesian approaches to stock-recruitment analyses, discounting estimates of spawning salmon to account for fishery-related mortality in escaped fish. Discounting spawning stock estimates as a function of annual fishing effort improved model fits to historical stock-recruitment data in most modeled systems. This suggests the productivity of exploited stocks has been systematically underestimated. It also suggests that indices of fishing effort may be used to predict escape mortality and correct for losses. Our results illustrate how explicitly accounting for collateral effects of fishery extraction may improve estimates of productivity and better inform management metrics derived from estimates of stock-recruitment analyses.

  19. Reliability, Maintainability, and Availability: Consideration During the Design Phase in Ground Systems to Ensure Successful Launch Support

    NASA Technical Reports Server (NTRS)

    Gillespie, Amanda M.

    2012-01-01

    The future of Space Exploration includes missions to the moon, asteroids, Mars, and beyond. To get there, the mission concept is to launch multiple launch vehicles months, even years apart. In order to achieve this, launch vehicles, payloads (satellites and crew capsules), and ground systems must be highly reliable and/or available, to include maintenance concepts and procedures in the event of a launch scrub. In order to achieve this high probability of mission success, Ground Systems Development and Operations (GSDO) has allocated Reliability, Maintainability, and Availability (RMA) requirements to all hardware and software required for both launch operations and, in the event of a launch scrub, required to support a repair of the ground systems, launch vehicle, or payload. This is done concurrently with the design process (30/60/90 reviews).

  20. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. ORPHANED PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reipurth, Bo; Connelley, Michael; Mikkola, Seppo

    2010-12-10

    We explore the origin of a population of distant companions ({approx}1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes asmore » the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as {approx}0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.« less

  2. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  3. Digital Human Modeling

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.

    2017-01-01

    The development of models to represent human characteristics and behaviors in human factors is broad and general. The term "model" can refer to any metaphor to represent any aspect of the human; it is generally used in research to mean a mathematical tool for the simulation (often in software, which makes the simulation digital) of some aspect of human performance and for the prediction of future outcomes. This section is restricted to the application of human models in physical design, e.g., in human factors engineering. This design effort is typically human interface design, and the digital models used are anthropometric. That is, they are visual models that are the physical shape of humans and that have the capabilities and constraints of humans of a selected population. They are distinct from the avatars used in the entertainment industry (movies, video games, and the like) in precisely that regard: as models, they are created through the application of data on humans, and they are used to predict human response; body stresses workspaces. DHM enable iterative evaluation of a large number of concepts and support rapid analysis, as compared with use of physical mockups. They can be used to evaluate feasibility of escape of a suited astronaut from a damaged vehicle, before launch or after an abort (England, et al., 2012). Throughout most of human spaceflight, little attention has been paid to worksite design for ground workers. As a result of repeated damage to the Space Shuttle which adversely affected flight safety, DHM analyses of ground assembly and maintenance have been developed over the last five years for the design of new flight systems (Stambolian, 2012, Dischinger and Dunn Jackson, 2014). The intent of these analyses is to assure the design supports the work of the ground crew personnel and thereby protect the launch vehicle. They help the analyst address basic human factors engineering questions: can a worker reach the task site from the work platform provided; can she or he see the task site; can she or he control tools, which, if dropped, might damage the system? Figure 7.3.1 provides an example of such analysis for a future NASA launch vehicle. [figure 7.3.1 here] In-space systems for operation by astronauts have long been targets for DHM analysis, given the focus on mission success and concerns for astronaut safety. Figure 7.3.2 illustrates the analysis of the design to support astronaut tasks for an International Space Station glovebox. [Figure 7.3.2 here] Use by

  4. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  6. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  7. MOLECULAR-KINETIC SIMULATIONS OF ESCAPE FROM THE EX-PLANET AND EXOPLANETS: CRITERION FOR TRANSONIC FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert E.; Volkov, Alexey N.; Erwin, Justin T.

    The equations of gas dynamics are extensively used to describe atmospheric loss from solar system bodies and exoplanets even though the boundary conditions at infinity are not uniquely defined. Using molecular-kinetic simulations that correctly treat the transition from the continuum to the rarefied region, we confirm that the energy-limited escape approximation is valid when adiabatic expansion is the dominant cooling process. However, this does not imply that the outflow goes sonic. Rather large escape rates and concomitant adiabatic cooling can produce atmospheres with subsonic flow that are highly extended. Since this affects the heating rate of the upper atmosphere andmore » the interaction with external fields and plasmas, we give a criterion for estimating when the outflow goes transonic in the continuum region. This is applied to early terrestrial atmospheres, exoplanet atmospheres, and the atmosphere of the ex-planet, Pluto, all of which have large escape rates.« less

  8. A new exact method for line radiative transfer

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Asensio Ramos, Andrés

    2006-01-01

    We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations, and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the `effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins. The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the CII 158-μm line but not by the 3P lines of OI.

  9. Examining the possibility of magnetic protection of Proxima b's atmosphere

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Glocer, A.; Drake, J. J.; Gronoff, G.; Cohen, O.

    2017-12-01

    It is commonly believed that magnetic field provides protection of the planet's atmosphere from space weather effects. However, escape of the ionosphere along open magnetic field lines at the poles may under certain conditions be quite large and involve the escape of heavy ions like O+. The EUV spectrum of the star, in particular, produces ionization and heating that enhances escape. We calculate the field-aligned ionospheric escape for a reconstructed spectrum from Proxima Centauri. The EUV flux at the orbit of Proxima b is two orders of magnitude higher than at Earth. We model the resulting mass loss rates, assuming an Earth-like atmosphere and magnetic field. we also show uncertainties due to neutral atmospheric temperatures and polar cap size. We show that for high levels of stellar activity, the mass loss timescales for an Earth-like atmosphere are less than the age of the Proxima Centauri system, casting doubt on the idea that a magnetic field can protect a planet from space weather-driven atmospheric loss.

  10. Design Tool for Artillery Safety and Arming Mechanisms Containing Clock Gears and a Straight-Sided Verge Runaway Escapement and Operating in an Aeroballistic Environment

    DTIC Science & Technology

    1994-08-01

    Momentum and Its Derivatives in Various Coordinate Systems 47 CONTENTS (cont) Page C Absolute Acceleration of Geometric Center C of the S & A Plane 55 D...Dynamics of Rotor-Driven S & A Mechanism with a Two-Pass Clock 59 Gear Train and A Verge Runaway Escapement Operating in an Aeroballistic Environment E...System Fixed to 295 Underside of Mechanism Plane (Applicable to M577 S & A ) H Program Aercloc 301 Distribution List 365 Accesion For NTIS CRA&M DTIC TAB 0

  11. "New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis.

    PubMed

    Phillips, Christopher; Gelabert-Besada, Miguel; Fernandez-Formoso, Luis; García-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Ballard, David; Syndercombe Court, Denise; Carracedo, Angel; Lareu, Maria Victoria

    2014-11-01

    The field of research and development of forensic STR genotyping remains active, innovative, and focused on continuous improvements. A series of recent developments including the introduction of a sixth dye have brought expanded STR multiplex sizes while maintaining sensitivity to typical forensic DNA. New supplementary kits complimenting the core STRs have also helped improve analysis of challenging identification cases such as distant pairwise relationships in deficient pedigrees. This article gives an overview of several recent key developments in forensic STR analysis: availability of expanded core STR kits and supplementary STRs, short-amplicon mini-STRs offering practical options for highly degraded DNA, Y-STR enhancements made from the identification of rapidly mutating loci, and enhanced analysis of genetic ancestry by analyzing 32-STR profiles with a Bayesian forensic classifier originally developed for SNP population data. As well as providing scope for genotyping larger numbers of STRs optimized for forensic applications, the launch of compact next-generation sequencing systems provides considerable potential for genotyping the sizeable proportion of nucleotide variation existing in forensic STRs, which currently escapes detection with CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Energy transfer in O collisions with He isotopes and helium escape from Mars

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.

    2010-12-01

    Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L. (1995), On the escape of oxygen and hydrogen from Mars, Geophy. Rev. Lett., 20, 1847. [5] Krestyanikova, M. A. and V. I. Shematovich (2006), Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars, Solar System Research, 40, 384.

  13. NASA’s MAVEN Mission Observes Ups and Downs of Water Escape from Mars

    NASA Image and Video Library

    2017-12-08

    After investigating the upper atmosphere of the Red Planet for a full Martian year, NASA’s MAVEN mission has determined that the escaping water does not always go gently into space. Sophisticated measurements made by a suite of instruments on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft revealed the ups and downs of hydrogen escape – and therefore water loss. The escape rate peaked when Mars was at its closest point to the sun and dropped off when the planet was farthest from the sun. The rate of loss varied dramatically overall, with 10 times more hydrogen escaping at the maximum. “MAVEN is giving us unprecedented detail about hydrogen escape from the upper atmosphere of Mars, and this is crucial for helping us figure out the total amount of water lost over billions of years,” said Ali Rahmati, a MAVEN team member at the University of California at Berkeley who analyzed data from two of the spacecraft’s instruments. Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. An atmospheric water molecule can be broken apart by sunlight, releasing the two hydrogen atoms from the oxygen atom that they had been bound to. Several processes at work in Mars’ upper atmosphere may then act on the hydrogen, leading to its escape. Read more: go.nasa.gov/2dAgAV4 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. HLA-B27 Selects for Rare Escape Mutations that Significantly Impair Hepatitis C Virus Replication and Require Compensatory Mutations

    PubMed Central

    Neumann-Haefelin, Christoph; Oniangue-Ndza, Cesar; Kuntzen, Thomas; Schmidt, Julia; Nitschke, Katja; Sidney, John; Caillet-Saguy, Célia; Binder, Marco; Kersting, Nadine; Kemper, Michael W.; Power, Karen A.; Ingber, Susan; Reyor, Laura L.; Hills-Evans, Kelsey; Kim, Arthur Y.; Lauer, Georg M.; Lohmann, Volker; Sette, Alessandro; Henn, Matthew R.; Bressanelli, Stéphane; Thimme, Robert; Allen, Todd M.

    2011-01-01

    HLA-B27 is associated with spontaneous viral clearance in hepatitis C virus (HCV) infection. Viral escape within the immunodominant HLA-B27 restricted HCV-specific CD8+ T cell epitope NS5B2841-2849 (ARMILMTHF) has been shown to be limited by viral fitness costs as well as broad T cell cross-recognition, suggesting a potential mechanism of protection by HLA-B27. Here, we studied the subdominant HLA-B27 restricted epitope NS5B2936-2944 (GRAAICGKY) in order to further define the mechanisms of protection by HLA-B27. We identified a unique pattern of escape mutations within this epitope in a large cohort of HCV genotype 1a infected patients. The predominant escape mutations represented conservative substitutions at the main HLA-B27 anchor residue or a T cell receptor contact site, neither of which impaired viral replication capacity as assessed in a subgenomic HCV replicon system. In contrast, however, in a subset of HLA-B27+ subjects rare escape mutations arose at the HLA-B27 anchor residue R2937, which nearly abolished viral replication. Notably, these rare mutations only occurred in conjunction with the selection of two equally rare, and structurally proximal, upstream mutations. Co-expression of these upstream mutations with the rare escape mutations dramatically restored viral replication capacity from <5% to ≥70% of wild-type levels. Conclusion The selection of rare CTL escape mutations in this HLA-B27 restricted epitope dramatically impairs viral replicative fitness unless properly compensated. These data support a role for the targeting of highly-constrained regions by HLA-B27 in its ability to assert immune control of HCV and other highly variable pathogens. PMID:22006856

  15. Using periodic orbits to compute chaotic transport rates between resonance zones.

    PubMed

    Sattari, Sulimon; Mitchell, Kevin A

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  16. Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems

    DTIC Science & Technology

    2015-06-01

    stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to rapidly launch a...requirements for the stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to... Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Conclusion 125 7.1 Summary of Findings

  17. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  18. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  19. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  20. State may be liable for HIV exposure from inmate's escape.

    PubMed

    1999-09-03

    The Louisiana Court of Appeal is reviewing a case on whether the Louisiana prison system is liable to a private citizen who was exposed to HIV as a consequence of an inmate escape. The case questions whether the Department of Public Safety and Corrections had a duty to inform the local prison, where the inmate was transferred to, about his HIV infection and propensity to escape. The department requested a summary judgment stating that no such duty existed. This motion was rejected by the trial court. Affidavits were presented that questioned the facts and circumstances of the case. The department's duty to the prisoner and jail are in dispute and the trial court's denial has been deemed proper.

  1. A simulation study of emergency lunar escape to orbit using several simplified manual guidance and control techniques

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.

    1971-01-01

    A fixed-base piloted simulator investigation has been made of the feasibility of using any of several manual guidance and control techniques for emergency lunar escape to orbit with very simplified, lightweight vehicle systems. The escape-to-orbit vehicles accommodate two men, but one man performs all of the guidance and control functions. Three basic attitude-control modes and four manually executed trajectory-guidance schemes were used successfully during approximately 125 simulated flights under a variety of conditions. These conditions included thrust misalinement, uneven propellant drain, and a vehicle moment-of-inertia range of 250 to 12,000 slugs per square foot. Two types of results are presented - orbit characteristics and pilot ratings of vehicle handling qualities.

  2. Mining Security Pipe(TSM)with Underground GPS Global(RSPG)Escape Security Device in Underground Mining

    NASA Astrophysics Data System (ADS)

    Giménez, Rafael Barrionuevo

    2016-06-01

    TSM is escape pipe in case of collapse of terrain. The TSM is a passive security tool placed underground to connect the work area with secure area (mining gallery mainly). TSM is light and hand able pipe made with aramid (Kevlar), carbon fibre, or other kind of new material. The TSM will be placed as a pipe line network with many in/out entrances/exits to rich and connect problem work areas with another parts in a safe mode. Different levels of instrumentation could be added inside such as micro-led escape way suggested, temperature, humidity, level of oxygen, etc.). The open hardware and software like Arduino will be the heart of control and automation system.

  3. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  4. A NASA technician paints NASA's first Orion full-scale abort flight test crew module.

    NASA Image and Video Library

    2008-03-31

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  5. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  6. Bright Solar Flare

    NASA Image and Video Library

    2017-12-08

    A bright solar flare is captured by the EIT 195Å instrument on 1998 May 2. A solar flare (a sudden, rapid, and intense variation in brightness) occurs when magnetic energy that has built up in the solar atmosphere is suddenly released, launching material outward at millions of km per hour. The Sun’s magnetic fields tend to restrain each other and force the buildup of tremendous energy, like twisting rubber bands, so much that they eventually break. At some point, the magnetic lines of force merge and cancel in a process known as magnetic reconnection, causing plasma to forcefully escape from the Sun. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  7. R.J. Reynolds’ Targeting of African Americans: 1988–2000

    PubMed Central

    Balbach, Edith D.; Gasior, Rebecca J.; Barbeau, Elizabeth M.

    2003-01-01

    Objectives. The purpose of this study was to describe RJ Reynolds (RJR) Tobacco Company’s strategy for targeting African Americans, as revealed in tobacco industry documents and magazine advertisements. Methods. The authors searched industry documents to determine RJR’s strategies and analyzed magazine advertising during 2 periods: the time of the launch of the company’s Uptown cigarette (1989–1990) and a decade later (1999–2000). Results. RJR’s efforts to target the African American market segment existed before and after Uptown, and the company’s strategy was largely implemented via other RJR brands. Advertisements featured mentholated cigarettes, fantasy/escape, expensive objects, and nightlife. Conclusions. To help all populations become tobacco-free, tobacco control practitioners must understand and counter tobacco industry strategies. PMID:12721151

  8. Implications of Gun Launch to Space for Nanosatellite Architectures

    NASA Technical Reports Server (NTRS)

    Palmer, Miles R.

    1995-01-01

    Engineering and economic scaling factors for gun launch to space (GLTS) systems are compared to conventional rocket launch systems. It is argued that GLTS might reduce the cost of small satellite development and launch in the mid to far term, thereby inducing a shift away from large centralized geosynchronous communications satellites to small proliferated low earth orbit systems.

  9. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  10. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  11. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  12. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  13. Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety.

    PubMed

    Robertson, James M; Prince, Melissa A; Achua, Justin K; Carpenter, Russ E; Arendt, David H; Smith, Justin P; Summers, Torrie L; Summers, Tangi R; Summers, Cliff H

    2015-07-01

    By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.

  14. Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety

    PubMed Central

    Robertson, James M.; Prince, Melissa A.; Achua, Justin K.; Carpenter, Russ E.; Arendt, David H.; Smith, Justin P.; Summers, Torrie L.; Summers, Tangi R.; Summers, Cliff H.

    2015-01-01

    By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk-assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes. Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model. PMID:26066728

  15. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  16. A strategy for developing a launch vehicle system for orbit insertion: Methodological aspects

    NASA Astrophysics Data System (ADS)

    Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2014-12-01

    The article addresses methodological aspects of a development strategy to design a launch vehicle system for orbit insertion. The development and implementation of the strategy are broadly outlined. An analysis is provided of the criterial base and input data needed to define the main requirements for the launch vehicle system. Approaches are suggested for solving individual problems in working out the launch vehicle system development strategy.

  17. Evidence of behavioral co-option from context-dependent variation in mandible use in trap-jaw ants ( Odontomachus spp.)

    NASA Astrophysics Data System (ADS)

    Spagna, Joseph C.; Schelkopf, Adam; Carrillo, Tiana; Suarez, Andrew V.

    2009-02-01

    Evolutionary co-option of existing structures for new functions is a powerful yet understudied mechanism for generating novelty. Trap-jaw ants of the predatory genus Odontomachus are capable of some of the fastest self-propelled appendage movements ever recorded; their devastating strikes are not only used to disable and capture prey, but produce enough force to launch the ants into the air. We tested four Odontomachus species in a variety of behavioral contexts to examine if their mandibles have been co-opted for an escape mechanism through ballistic propulsion. We found that nest proximity makes no difference in interactions with prey, but that prey size has a strong influence on the suite of behaviors employed by the ants. In trials involving a potential threat (another trap-jaw ant species), vertical jumps were significantly more common in ants acting as intruders than in residents (i.e. a dangerous context), while horizontal jumps occurred at the same rate in both contexts. Additionally, horizontal jump trajectories were heavily influenced by the angle at which the substrate was struck and appear to be under little control by the ant. We conclude that while horizontal jumps may be accidental side-effects of strikes against hard surfaces, vertical escape jumps are likely intentional defensive behaviors that have been co-opted from the original prey-gathering and food-processing functions of Odontomachus jaws.

  18. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

    PubMed

    Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela

    2014-03-01

    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  19. Intrathecal Huperzine A Increases Thermal Escape Latency and Decreases Flinching Behavior in the Formalin Test in Rats

    PubMed Central

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-01-01

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 μg. Atropine reversed the increase in thermal escape latency produced by 10 μg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 μg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. PMID:20026382

  20. Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats.

    PubMed

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-02-05

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 microg. Atropine reversed the increase in thermal escape latency produced by 10 microg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 microg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  2. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  3. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  4. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  5. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  6. On the status report of the H-II launch vehicle

    NASA Astrophysics Data System (ADS)

    Eto, Takao; Shibato, Yoji; Takatsuka, H.; Fukushima, Y.

    1988-10-01

    This paper describes the present status of the design and the development of the H-II launch vehicle which is being presently developed by NASDA to meet the demand for larger satellite launches at a lower cost. The H-II systems, including its solid rocket boosters and the guidance and control system, are discussed together with the launch facilities and launch operation. The paper includes diagrams of the H-II systems and a table listing H-II characteristics.

  7. Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)

    NASA Technical Reports Server (NTRS)

    Marz, Bryan E.; Ash, Robert L.

    1996-01-01

    This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.

  8. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  9. In-Flight Operation of the Dawn Ion Propulsion System: Status at One Year from the Vesta Rendezvous

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2010-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The Dawn ion thruster [I thought we only called it a thruster. Both terms are used in the paper, but I think a replacement of every occurrence of "engine" with "thruster" would be clearer.] design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. Since resumption of cruise to Vesta IPS has been operated at throttled power levels, most of the time at full power, and with a duty cycle of approximately 93%, leading to an arrival at Vesta in July of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through one year from the spacecraft's rendezvous with Vesta.

  10. National launch strategy vehicle data management system

    NASA Technical Reports Server (NTRS)

    Cordes, David

    1990-01-01

    The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.

  11. Launch Processing System. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  12. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  13. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  14. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    PubMed

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  15. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

    PubMed

    Knispel, Alexis L; McLachlan, Stéphane M

    2010-01-01

    Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an adjacent field planted to OSR. Within roadside habitats, escaped OSR was also strongly associated with large-scale variables, including road surface (indicative of traffic intensity) and distance to the nearest grain elevator. Conversely, within field edges, OSR density was affected by localised crop management practices such as mowing, soil disturbance and herbicide application. Despite the proximity of roadsides and field edges, there was little evidence of spatial aggregation among escaped OSR populations in these two habitats, especially at very fine spatial scales (i.e. <100 m), suggesting that natural propagule exchange is infrequent. Escaped OSR populations were persistent at large spatial and temporal scales, and low density in a given landscape or year was not indicative of overall extinction. As a result of ongoing cultivation and transport of OSR crops, escaped GMHT traits will likely remain predominant in agricultural landscapes. While escaped OSR in field edge habitats generally results from local seeding and management activities occurring at the field-scale, distribution patterns within roadside habitats are determined in large part by seed transport occurring at the landscape scale and at even larger regional scales. Our findings suggest that these large-scale anthropogenic dispersal processes are sufficient to enable persistence despite limited natural seed dispersal. This widespread dispersal is likely to undermine field-scale management practices aimed at eliminating escaped and in-field GMHT OSR populations. Agricultural transport and landscape-scale cropping patterns are important determinants of the distribution of escaped GM crops. At the regional level, these factors ensure ongoing establishment and spread of escaped GMHT OSR despite limited local seed dispersal. Escaped populations thus play an important role in the spread of transgenes and have substantial implications for the coexistence of GM and non-GM production systems. Given the large-scale factors driving the spread of escaped transgenes, localised co-existence measures may be impracticable where they are not commensurate with regional dispersal mechanisms. To be effective, strategies aimed at reducing contamination from GM crops should be multi-scale in approach and be developed and implemented at both farm and landscape levels of organisation. Multiple stakeholders should thus be consulted, including both GM and non-GM farmers, as well as seed developers, processors, transporters and suppliers. Decisions to adopt GM crops require thoughtful and inclusive consideration of the risks and responsibilities inherent in this new technology.

  16. Launch Control Systems: Moving Towards a Scalable, Universal Platform for Future Space Endeavors

    NASA Technical Reports Server (NTRS)

    Sun, Jonathan

    2011-01-01

    The redirection of NASA away from the Constellation program calls for heavy reliance on commercial launch vehicles for the near future in order to reduce costs and shift focus to research and long term space exploration. To support them, NASA will renovate Kennedy Space Center's launch facilities and make them available for commercial use. However, NASA's current launch software is deeply connected with the now-retired Space Shuttle and is otherwise not massively compatible. Therefore, a new Launch Control System must be designed that is adaptable to a variety of different launch protocols and vehicles. This paper exposits some of the features and advantages of the new system both from the perspective of the software developers and the launch engineers.

  17. The Aquila launch service for small satellites

    NASA Astrophysics Data System (ADS)

    Whittinghill, George R.; McKinney, Bevin C.

    1992-07-01

    The Aquila launch vehicle is described emphasizing its use in the deployment of small satellites for the commercial sector. The Aquila is designed to use a guidance, navigation, and control system, and the rocket is based on hybrid propulsion incorporating a liquid oxidizer with a solid polybutadiene fuel. The launch vehicle for the system is a ground-launched four-stage vehicle that can deliver 3,200 lbs of payload into a 185-km circular orbit at 90-deg inclination. Aquila avionics include inertial navigation, radar transponder, and an S-band telemetry transmitter. The payload environment minimizes in-flight acoustic levels, and the launch-ascent profile is characterized by low acceleration. The launch vehicle uses low-cost rocket motors, a high-performance LO(x) feed system, and erector launch capability which contribute to efficient launches for commercial payloads for low polar earth orbits.

  18. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  19. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses.

    PubMed

    Roncon, Camila Marroni; Yamashita, Paula Shimene de Melo; Frias, Alana Tercino; Audi, Elisabeth Aparecida; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne; Zangrossi, Helio

    2017-06-01

    The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.

  20. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 108.545... DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each...

  1. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    NASA Technical Reports Server (NTRS)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  2. Serial Escape System For Aircraft Crews

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  3. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  4. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates

    PubMed Central

    2018-01-01

    The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses. PMID:29495443

  5. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates.

    PubMed

    Ganusov, Vitaly V

    2018-02-27

    The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses.

  6. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  7. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  8. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less

  9. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  10. Neural circuit activity in freely behaving zebrafish (Danio rerio).

    PubMed

    Issa, Fadi A; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L; Papazian, Diane M

    2011-03-15

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.

  11. Neural circuit activity in freely behaving zebrafish (Danio rerio)

    PubMed Central

    Issa, Fadi A.; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L.; Papazian, Diane M.

    2011-01-01

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions. PMID:21346131

  12. Cerebrospinal fluid HIV RNA in persons living with HIV.

    PubMed

    Di Carlofelice, M; Everitt, A; Muir, D; Winston, A

    2018-05-01

    Despite adequate suppression of plasma HIV RNA, viral escape in cerebrospinal fluid (CSF) is widely reported. Rates of CSF HIV RNA escape vary in the literature. In persons living with HIV (PLWH) undergoing lumbar puncture examination for clinical reasons, we assessed rates of CSF HIV RNA escape. Persons living with HIV attending a designated HIV neurology service undergoing CSF assessment for clinical reasons between January 2015 and April 2017 were included in the study. CSF HIV RNA escape was defined as HIV RNA ≥ 0.5 log 10 HIV-1 RNA copies/mL higher than plasma HIV RNA or detectable CSF HIV RNA when plasma HIV RNA was < 20 copies/mL. Clinical factors associated with CSF HIV RNA were assessed using logistic regression modelling. Of 38 individuals, 35 were receiving antiretroviral therapy, 30 were male and their mean age was 51 years. Clinical reasons for CSF assessment included investigation for cognitive decline (n = 25), early syphilis (n = 4) and other central nervous system (CNS) conditions (n = 9). HIV RNA was detectable in plasma and CSF in seven and six individuals, respectively, with two individuals (5.3%) meeting the definition of CSF escape. Detectable CSF HIV RNA was associated with a detectable plasma HIV RNA (P < 0.001) and a history of known antiretroviral drug resistance mutations (P = 0.021). The prevalence of CSF viral escape in PLWH undergoing lumbar puncture examination for clinical reasons is lower than previously reported. © 2018 British HIV Association.

  13. Flight mechanics and control of escape manoeuvres in hummingbirds. II. Aerodynamic force production, flight control and performance limitations.

    PubMed

    Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan

    2016-11-15

    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.

  14. Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, M.; Berdyugina, S.; Kuhn, J.

    Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Virmore » b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.« less

  15. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  16. NASA's Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle. center dot Payload fairings of up to 10-meter diameter are planned. Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t. center dot Evolved version of SLS will offer greatest-ever capability of greater than 130 t to LEO. SLS offers reduced transit times to the outer solar system by half or greater. center dot Higher characteristic energy (C3) also enables larger payloads to destination.

  17. Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.

    PubMed

    Chacón, R; Martínez, J A

    2002-03-01

    Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.

  18. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  19. Role of HIV-specific CD8+ T cells in pediatric HIV cure strategies after widespread early viral escape.

    PubMed

    Leitman, Ellen M; Thobakgale, Christina F; Adland, Emily; Ansari, M Azim; Raghwani, Jayna; Prendergast, Andrew J; Tudor-Williams, Gareth; Kiepiela, Photini; Hemelaar, Joris; Brener, Jacqui; Tsai, Ming-Han; Mori, Masahiko; Riddell, Lynn; Luzzi, Graz; Jooste, Pieter; Ndung'u, Thumbi; Walker, Bruce D; Pybus, Oliver G; Kellam, Paul; Naranbhai, Vivek; Matthews, Philippa C; Gall, Astrid; Goulder, Philip J R

    2017-11-06

    Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection. © 2017 Leitman et al.

  20. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel manifold connection must have means to prevent the escape of hazardous quantities of fuel from the system if the fuel...

Top