Sample records for launch fleet capabilities

  1. From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas

    2008-01-01

    In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.

  2. Maximizing Launch Vehicle and Payload Design Via Early Communications

    NASA Technical Reports Server (NTRS)

    Morris, Bruce

    2010-01-01

    The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle standpoint, while the human exploration mission could not be compromised to accommodate other payloads, the design might otherwise be tailored to not exclude other payload requirements. This paper summarizes the findings of the workshops and discusses the benefits of bringing together the vehicle design and science communities early in their concept phases

  3. Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  4. Antares: A low cost modular launch vehicle for the future

    NASA Astrophysics Data System (ADS)

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  5. Project Antares: A low cost modular launch vehicle for the future

    NASA Astrophysics Data System (ADS)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-06-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  6. Project Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-01-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  7. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  8. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.

  9. Ares I First Stage Propulsion System Status

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.

    2010-01-01

    With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares First Stage team to move forward, fine-tune the design, and advance to production of the second development motor (DM-2), which is now in fabrication. This paper will provide an overview of the design, development, challenges, and progress on the production of the new Ares First Stage propulsion system

  10. Assessment of constraints on space shuttle launch rates

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The range of number of annual STS flights with 4- and 5-orbiter fleets was estimated and an overview of capabilities needed to support annual rates of 24 and up with a survey of known constraints and emphasis on External Tank (ET) production requirements was provided. Facility capability estimates are provided for ground turnaround, cargo handling, flight training and flight operations. Emphasizing the complexity of the STS systems and the R&D nature of present flight experience, it is concluded that the most prominent constraints in the early growth of the STS as an operational system may manifest themselves not as shortages of investment items such as the ET or SRB, but as inability to provide timely repairs or replacement of flight system components needed to sustain launch rates.

  11. Academic Research Vessels 1985-1990.

    DTIC Science & Technology

    1982-01-01

    converted to a single-point lifting system for launch and recovery (UNOLS submersible report). The experience of the Navy in operatin -’ the SEA CLIFF...on improvements in our technical capabilities. The Ocean Sciences Board has recenitW carried out studies on computer needs and on satellite systems ...tions, not on system -wide savings incurred by redistribution of the fleet). Though there is a reduction of approximately 13 percent in operating costs

  12. 2010 JPC Abstract: Ares I First Stage Propulsion System Status

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.

    2010-01-01

    In November 2005, NASA created the Constellation Program to develop an entirely new fleet of spacecraft to include the Ares I Crew Launch Vehicle and Ares V Cargo Launch vehicles. This mission architecture included the Orion capsule (which would be used to transport astronauts to low-Earth orbit and beyond), the Altair lunar lander, and an Earth departure stage. The Ares First Stage Team has made significant progress on the design of a propulsion system to meet the objectives of the Constellation Program. Work on a first stage element propulsion system capable of lofting a new fleet of spacecraft is well underway. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle served as a starting point in the design of a new motor that would meet the requirements of those new vehicles. This new propulsive element will provide greater total impulse utilizing a fifth segment to loft a safer, more powerful fleet of space flight vehicles. Performance requirements, basic architecture, and obsolescence issues were all factors in determining the new first stage element design and configuration. Early efforts focused on creating designs that would be capable of supporting the requisite loads and environments. While the motor casings are Shuttle legacy, because of Ares I s unique in-line configuration, the first stage will require entirely new forward structures (forward skirt, forward skirt extension, aeroshell, and frustum) and a modified systems tunnel. The use of composites facilitated a change in the geometry, which in turn afforded the ability to focus strength where it was needed without additional mass. The Ares First Stage rocket motor casting tooling was designed and built to achieve a propellant grain geometry that produces the specific required ballistic profile. The new propellant formulation is a polybutadiene acrylonitrile (PBAN) copolymer, which has been modified to attain the desired burn rate and retain adequate tailoring capability.

  13. Can China Defend A Core Interest In The South China Sea?

    DTIC Science & Technology

    2011-01-01

    must amass the wherewithal to defeat outsiders’ efforts to make today’s status quo a permanent political reality . Beijing ultimately needs sufficient...to launch a cross-strait invasion. To date, the PLA Navy has exhibited curious myopia toward such capabilities and systems. Constant strain on the...standard of fielding enough naval power to meet the largest fleet likely to be arrayed against it. ASBMs might provide full-time virtual presence, but they

  14. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  15. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  16. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Emily Colvin; Paul G. Cummings

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture havemore » not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.« less

  17. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  18. Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.

  19. Telematics Options and Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell

    This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.

  20. The October 1973 NASA mission model analysis and economic assessment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of the 1973 NASA Mission Model Analysis. The purpose was to obtain an economic assessment of using the Shuttle to accommodate the payloads and requirements as identified by the NASA Program Offices and the DoD. The 1973 Payload Model represents a baseline candidate set of future payloads which can be used as a reference base for planning purposes. The cost of implementing these payload programs utilizing the capabilities of the shuttle system is analyzed and compared with the cost of conducting the same payload effort using expendable launch vehicles. There is a net benefit of 14.1 billion dollars as a result of using the shuttle during the 12-year period as compared to using an expendable launch vehicle fleet.

  1. DoD Capability Benefits from Preserving the Civil Reserve Air Fleet (CRAF)

    DTIC Science & Technology

    2011-04-23

    Master of Military Studies Research Paper September 2010- April 2011 4. TITLE AND SUBTITLE DoP capability benefits from preserving the Civil Reserve Air...capability benefits from preserving the Civil Reserve Air Fleet (CRAF) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER...1 Executive Summary Title: DOD capability benefits from preserving the Civil Reserve Air Fleet (CRAF) Author: Major Constantine E. Tsoukatos

  2. Ares V: Progress Towards a Heavy Lift Capability for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's new exploration initiative will again take humans beyond low Earth orbit, to the moon, and into deep space. The space agency is developing a new fleet of launch vehicles that will fulfill the national goals of replacing the Space Shuttle fleet, completing the International Space Station, establishing a permanent outpost on the moon, and eventually traveling to Mars. Separate crew and cargo vehicles emerged from mission architecture studies - the Ares I to carry the Orion crew exploration vehicle and its crew of4 to 6 astronauts, and the Ares V to carry the Altair lunar lander or other supplies to support future exploration missions. (Figure 1) These vehicles will be designed to be safe, affordable, sustainable, reliable, operable with the safety, reliability, flexibility, and operability to serve this nation's manned and unmanned exploration programs for the coming decades. This paper discusses recent and current progress on the Ares V and planned future activities.

  3. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  4. Reusable space systems (Eugen Saenger Lecture, 1987)

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1988-01-01

    The history and current status of reusable launch vehicle (RLV) development are surveyed, with emphases on the contributions of Eugen Saenger and ongoing NASA projects. Topics addressed include the capabilities and achievements of the Space Shuttle, the need to maintain a fleet with both ELVs and RLVs to meet different mission requirements, the X-30 testbed aircraft for the National Aerospace Plane program, current design concepts for Shuttle II (a 1000-ton fully reusable two-stage rocket-powered spacecraft capable of carrying 11,000 kg to Space Station orbit), proposals for dual-fuel-propulsion SSTO RLVs, and the Space Station Orbital Maneuvering Vehicle and Orbital Transfer Vehicle. The importance of RLVs and of international cooperation in establishing the LEO infrastructure needed for planetary exploration missions is stressed.

  5. A hierarchical distributed control model for coordinating intelligent systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.

  6. FleetDASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark R

    2017-09-06

    FleetDASH helps federal fleet managers maximize their use of alternative fuel. This presentation explains how the dashboard works and demonstrates the newest capabilities added to the tool. It also reviews complementary online tools available to fleet managers on the Alternative Fuel Data Center.

  7. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  8. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  9. A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Overbey, Glenn; Roberts, Barry C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  10. Sustaining Human Space Flight: From the Present to the Future

    NASA Technical Reports Server (NTRS)

    Russell, Rick

    2010-01-01

    This slide presentation reviews some of the efforts to ensure that human space flight continues in NASA. With the aging shuttle orbiter fleet, some actions have been taken to assure safe operations. Some of these are: (1) the formation of a Corrosion Control Review Board (CCRB) that will assess the extent and cause of corrosion to the shuttle, and provide short term and long term corrective actions, among other objectives, (2) a formalization of an aging vehicle assessment (AVA) as part of a certification for the Return-to-Flight, (3) an assessment of the age life of the materials in the space shuttle, and (4) the formation of the Aging Orbiter Working Group (AOWG). There are also slides with information about the International Space Station. There is also information about the need to update the Kennedy Space Center, to sustain a 21st century launch complex and the requirement to further the aim of commercial launch capability.

  11. TOPEX satellite option study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic design of the fleet satellite communication spacecraft (FLTSATCOM) can easily accommodate any of the three payload options for the ocean dynamic topography experiment (TOPEX). The principal mission requirements as well as the payload accommodations and communications systems needed for launching this payload are reviewed. The existing FLTSATCOM satellite design is identified and the approaches for the proposed propulsion system are described in addition to subsystems for mechanical; power; attitude and velocity control; and telemetry, tracking and control are described. The compatability of FLTSATCOM with the launch vehicle is examined and its capabilities vs TOPEX requirements are summarized. Undetermined changes needed to meet data storage, thermal control, and area to mass ratio requirements are discussed. Cost estimates are included for budgetary and planning purposes. The availability of the described design is assessed based on the continuing production of FLTSATCOM spacecraft during the schedule span planned for TOPEX.

  12. Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).

  13. Access to Space : The Future of U.S. Space Transportation Systems

    DOT National Transportation Integrated Search

    1990-04-01

    The United States now has an operating, mixed fleet comprised of reusable Space Shuttle orbiters and expendable launch vehicles (ELVs). The government and the private sector have invested in new launch technologies and established a fledgling private...

  14. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  15. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  16. Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107

    NASA Technical Reports Server (NTRS)

    Overbey, B. G.; Roberts, B. C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  17. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less

  18. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  19. The Advanced Surface Force Fleet: A Proposal for an Alternate Surface Force Structure and Its Impact in the Asian Pacific Theater

    DTIC Science & Technology

    2015-12-01

    B. THE PROSPECTIVE 2040 7TH FLEET FORCES Based on the current and planned naval forces allocated to 7th Fleet, it is assumed that the Navy’s 2040...approximately 15 percent of The Advanced Surface Force Fleet, or 20 ships, are allocated to 7th Fleet. Furthermore, 12 of The Advanced Surface...production, personnel support for cleanup and recovery efforts, berthing capability, and medical support.90 After determining the critical missions

  20. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  2. The effect of technology advancements on the comparative advantages of electric versus chemical propulsion for a large cargo orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Rehder, J. J.; Wurster, K. E.

    1978-01-01

    Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.

  3. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  4. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  5. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  6. Telematics Framework for Federal Agencies: Lessons from the Marine Corps Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell; Singer, Mark R.

    Executive Order 13693 requires federal agencies to acquire telematics for their light- and medium-duty vehicles as appropriate. This report is intended to help agencies that are deploying telematics systems and seeking to integrate them into their fleet management process. It provides an overview of telematics capabilities, lessons learned from the deployment of telematics in the Marine Corps fleet, and recommendations for federal fleet managers to maximize value from telematics.

  7. Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.

    PubMed

    Hrezo, Richard J

    2003-06-01

    In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.

  8. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system utilizes a 50 channel digital receiver capable of navigating in high dynamic environments and high altitudes fed by antennas mounted diametrically opposed on the second stage airframe skin. To enhance cost effectiveness, the GPS MT System design implemented existing commercial parts and common environmental and interface requirements for both EELVs. The EELV GPS MT System design is complete, successfully qualified and has demonstrated that the system performs as simulated. This paper summarizes the current development status, system cost comparison, and performance capabilities of the EELV GPS MT System.

  9. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  10. Current Status of NASA's Heavy Lift Plans

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2010-01-01

    Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of - and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA's most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA's Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA's priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA s most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA s Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA s priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch successfully demonstrated in suborbital flighhe ability to assemble, prepare, launch, control and recover the Ares I configuration and compare performance to computer models. Component tests continue on the J-2X engine, which will put both the Ares I and Ares V upper stages into orbit. In addition, more than 100,000 parts have been manufactured or on the assembly line for the first J-2X powerpack and the first two development engines, with hot fire tests to begin in 2011. This paper will further detail the progress to date on the Ares V and planned activities for the remainder of 2010. In addition, the Ares V team has continued its outreach to potential user communities in science and national security. Through the Constellation Program, NASA has amassed an enormous knowledge base in the design, technologies, and operations of heavy lift launch vehicles that will be a national asset for any future launch vehicle decision. This early phase of the design presents the best opportunity to incorporate where possible the insights and needs of other users.

  11. Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou

    NASA Image and Video Library

    2016-10-22

    NASA’s Ground Systems Development and Operations Program (GSDO) participated in the “Genius in the House” event at the Reuben H. Fleet Science Center in San Diego, California. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  12. Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou

    NASA Image and Video Library

    2016-10-22

    Visitors talk to representatives from NASA’s Ground Systems Development and Operations Program (GSDO) at the Reuben H. Fleet Science Center in San Diego, California. GSDO participated in the “Genius in the House” event at the science center before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  13. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  14. System of systems design: Evaluating aircraft in a fleet context using reliability and non-deterministic approaches

    NASA Astrophysics Data System (ADS)

    Frommer, Joshua B.

    This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design, the analysis of the vehicle for high-speed attack combined with a long loiter period is considerably different from that for quick cruise to an area combined with a low speed search. However, the framework developed to solve this class of system-of-systems problem handles both scenarios and leads to a solution type for this kind of problem. On the vehicle-level of the problem, different technology can have an impact on the fleet-level. One such technology is Morphing, the ability to change shape, which is an ideal candidate technology for missions with dissimilar segments, such as the aforementioned two. A framework, using surrogate models based on optimally-sized aircraft, and using probabilistic parameters to define a concept of operations, is investigated; this has provided insight into the setup of the optimization problem, the use of the reliability metric, and the measurement of fleet level impacts of morphing aircraft. The research consisted of four phases. The two initial phases built and defined the framework to solve system-of-systems problem; these investigations used the search-and-find scenario as the example application. The first phase included the design of fixed-geometry and morphing aircraft for a range of missions and evaluated the aircraft capability using non-deterministic mission parameters. The second phase introduced the idea of multiple aircraft in a fleet, but only considered a fleet consisting of one aircraft type. The third phase incorporated the simultaneous design of a new vehicle and allocation into a fleet for the search-and-find scenario; in this phase, multiple types of aircraft are considered. The fourth phase repeated the simultaneous new aircraft design and fleet allocation for the SEAD scenario to show that the approach is not specific to the search-and-find scenario. The framework presented in this work appears to be a viable approach for concurrently designing and allocating constituents in a system, specifically aircraft in a fleet. The research also shows that new technology impact can be assessed at the fleet level using conceptual design principles.

  15. A Concept of Operations for an Unclassified Common Operational Picture in Support of Maritime Domain Awareness

    DTIC Science & Technology

    2017-03-01

    Responsibility AWS Amazon Web Services C2 Command and Control C4ISR Command, Control, Communications, Computers and Intelligence, Surveillance...and Reconnaissance C5F Commander Fifth Fleet C6F Commander Sixth Fleet C7F Commander Seventh Fleet CAMTES Computer -Assisted Maritime...capabilities. C. SCOPE AND LIMITATIONS The scope of this study is considerable and encompasses numerous agencies and classification levels. Some

  16. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  17. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences, including how and why it is being developed, the requirements it must meet, and the testing involved in its implementation.

  18. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  19. Marie

    NASA Image and Video Library

    2003-02-03

    Marie Curie sits on the lander petal prior to deployment during the pre-launch Operations Readiness Test ORT 6. NASA Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars.

  20. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  1. KSC-2011-5119

    NASA Image and Video Library

    2011-07-07

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana, left, Mark Sirangelo, head of Sierra Nevada Space Systems (SNSS) of Sparks, Nev., and NASA Administrator Charlie Bolden pose for a photo after signing a Space Act Agreement that will offer the company technical capabilities from Kennedy's uniquely skilled work force. Kennedy will help Sierra Nevada with the ground operations support of its lifting body reusable spacecraft called "Dream Chaser," which resembles a smaller version of the space shuttle orbiter. The spacecraft would carry as many as seven astronauts to the space station. Through the new agreement, Kennedy's work force will use its experience of processing the shuttle fleet for 30 years to help Sierra Nevada define and execute Dream Chaser's launch preparations and post-landing activities. In 2010 and 2011, Sierra Nevada was awarded grants as part of the initiative to stimulate the private sector in developing and demonstrating human spaceflight capabilities for NASA's Commercial Crew Program. The goal of the program, which is based in Florida at Kennedy, is to facilitate the development of a U.S. commercial crew space transportation capability by achieving safe, reliable and cost-effective access to and from the space station and future low Earth orbit destinations. Photo credit: NASA/Jim Grossmann

  2. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  3. Integrated operations payloads/fleet analysis study extension report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An analysis of the factors affecting the cost effectiveness of space shuttle operations is presented. The subjects discussed are: (1)payload data bank, (2) program risk analysis, (3)navigation satellite program, and (4) reusable launch systems.

  4. Potential climate impact of black carbon emitted by rockets

    NASA Astrophysics Data System (ADS)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  5. Fleet DNA (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkokwicz, K.; Duran, A.

    2014-06-01

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return onmore » technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.« less

  6. On the economics of staging for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  7. Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of

    Science.gov Websites

    propane would reduce maintenance costs and save us money on fuel compared to diesel and gasoline," Bakery knew that wasting time, money, and fuel was not in the company's best interest. That's why their

  8. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    NASA Astrophysics Data System (ADS)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post-processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response of multiple aircraft families. The results of experimentation led to a down selection to the best approach to use to rapidly characterize the performance of the commercial fleet for accurately in the context of acceptability of current fleet evaluation methods. The parametric correction factor and average replacement approaches were shown to be successful in capturing reference fleet results as well as fleet performance with variations in operations. The best-in-class replacement approach was shown to be unacceptable as a model for the larger fleet in each of the scenarios tested. Finally, the average replacement approach was the only one that was successful in capturing the impact of technologies on a larger fleet. These results are meaningful because they show that it is possible to calculate the fuel burn and emissions of a larger fleet with a reduced number of physics-based models within acceptable bounds of accuracy. At the same time, the physics-based modeling also provides the ability to evaluate the impact of technologies on fleet-level fuel burn and emissions metrics. The value of such a capability is that multiple future fleet scenarios involving changes in both aircraft operations and technology levels may now be rapidly evaluated to inform and equip policy makers of the implications of impacts of changes on fleet-level metrics.

  9. Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Welzyn, Ken

    2011-01-01

    The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.

  10. Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou

    NASA Image and Video Library

    2016-10-22

    Melissa Jones, left, Landing and Recovery director with NASA’s Ground Systems Development and Operations Program speaks to visitors to the Reuben H. Fleet Science Center in San Diego, California, during a “Genius in the House” event. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  11. Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou

    NASA Image and Video Library

    2016-10-22

    Melissa Jones, right, Landing and Recovery director with NASA’s Ground Systems Development and Operations Program speaks to visitors to the Reuben H. Fleet Science Center in San Diego, California, during a “Genius in the House” event. GSDO participated in several outreach events to students and the general public before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  12. Orion Underway Recovery Test 5 (URT-5) Trip - "Genius in the Hou

    NASA Image and Video Library

    2016-10-22

    Visitors talk to representatives from NASA’s Ground Systems Development and Operations Program (GSDO) at the Reuben H. Fleet Science Center in San Diego, California. Melissa Jones, seated in blue, GSDO Landing and Recovery director, speaks to visitors during the “Genius in the House” event. GSDO participated in outreach events before the start of the Orion Underway Recovery Test 5 (URT-5) using a test version of the Orion crew module in the Pacific Ocean off the coast of California. URT-5 will allow NASA, Orion manufacturer Lockheed Martin and the U.S. Navy to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of the Orion crew module on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.

  13. Financing commercial RLVs: Considering government incentives

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1997-01-01

    There appears to be a national goal to achieve a commercial space transportation industry that provides launch services utilizing a fleet of reusable launch vehicles (RLVs). Because of the combination of large required investment, inadequate rate of return, and perceived high risk, industry has indicated that this goal may not be achievable without government support. What form of government support will likely be necessary? Government programs and policies can effect private sector investment decisions by reducing risk perceptions, reducing capital requirements, and increasing expected rates of return. Different programs and policies will have different impacts. For example, tax policies will affect expected return on investment but are likely to have little or no effect on risk perceptions and magnitude of required investment, whereas anchor tenancy is likely to alter risk perceptions and may increase expected rates of return. This paper is concerned with the development of an approach that may be used to identify packages of government incentives that may be required to influence private sector investment decisions so as to achieve the desired goal of a commercial space transportation industry that provides launch services utilizing a fleet of RLVs. The paper discusses the relationship of government incentive programs and policies to the RLV investment decision.

  14. Launch of STS-63 Discovery

    NASA Image and Video Library

    1995-02-03

    STS063-S-007 (3 Feb 1995) --- The race to catch up with the Russia's Mir gets underway as the Space Shuttle Discovery launches from Pad 39B, Kennedy Space Center (KSC) at 12:22:04 (EST), February 3, 1995. Discovery is the first in the current fleet of four Space Shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) Shuttle flight are astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov.

  15. KSC-2012-1859

    NASA Image and Video Library

    2012-02-17

    Space Shuttle Orbiters: From its establishment in 1958, NASA studied aspects of reusable launch vehicles and spacecraft that could return to earth. On January 5, 1972, President Richard Nixon announced that the United States would develop the space shuttle, a delta-winged orbiter about the size of a DC-9 aircraft. Between the first launch on April 12, 1981, and the final landing on July 21, 2011, NASA's space shuttle fleet -- Columbia, Challenger, Discovery, Atlantis and Endeavour – launched on 135 missions, helped construct the International Space Station and inspired generations. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  16. Cargo transportation by airships: a systems study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.J.; Dalton, C.

    1976-05-01

    A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic andmore » technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.« less

  17. Cargo transportation by airships: A systems study

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1976-01-01

    A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic and technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.

  18. Antisubmarine Warfare (ASW) Lexicon

    DTIC Science & Technology

    1990-01-01

    Communications Satellite CRT Cathode Ray Tube COMNAVSURFLANT Commander, CS Combat System; Computer Subsystem Naval Surface Force, U.S. Atlantic Fleet CSA Close...Sideband Low-Frequency Acoustic Vernier Analyzer LSD Large Screen Display LC Launch Control LSI Low Ship Impact 24 LSNSR Line-of-Bearing Sensor NCA

  19. Ares V: Enabling Unprecedented Payloads for Space in the 21st Century

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2010-01-01

    Numerous technical and programmatic studies since the U.S. space program began in the 1960s has emphasized the need for a heavy lift capability for exploration beyond low Earth orbit (LEO). The Saturn V once embodied that capability until it was retired. Now the Ares V cargo launch vehicle (CaLV) promises to restore and improve on that capability, providing unprecedented opportunities for human and robotic exploration, science, national security and commercial uses. This paper provides an overview of the capabilities of Ares V, both as an opportunity for payloads of increased mass and/or volume, and as a means of reducing risk in the payload design process. The Ares V is part of NASA s Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and Altair lunar lander. This architecture is designed to carry out the national space policy goals of completing the International Space Station (ISS), retiring the Space Shuttle fleet, and expanding human exploration beyond LEO. The Ares V is designed to loft upper stages and/or cargo, such as the Altair lander, into LEO. The Ares I is designed to put Orion into LEO with a crew of up to four for rendezvous with the ISS or with the Ares V Earth departure stage for journeys to the Moon. While retaining the goals of heritage hardware and commonality, the Ares V configuration continues to be refined through a series of internal trades. The current reference configuration was recommended by the Ares Projects and approved by the Constellation Program during the Lunar Capabilities Concept Review (LCCR) June 2008. The reference configuration defines the Ares V as 381 feet (116m) tall with a gross lift-off mass (GLOM) of 8.1 million pounds (3,704.5 mT). Its first stage will generate 11 million pounds of sea-level liftoff thrust. It will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. It could also launch 123,100 pounds (55.8 mT) to Sun-Earth L2. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V s capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and with the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design. 1

  20. Air Force Research Laboratory (AFRL) research highlights, September--October 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    New AFOSR-sponsored research shows that exhausts from solid-fueled rocket motors have very limited impact on stratospheric ozone. The research provides the Air Force with hard data to support continued access to space using the existing fleet of rockets and rocket technology. This basic research data allows the Air Force to maintain a strongly proactive environmental stance, and to meet federal guidelines regarding environmental impacts. Long-standing conjecture within the international rocket community suggests that chlorine compounds and alumina particulates produced in solid rocket motor (SRM) exhausts could create localized, temporary ozone toss in rocket plumes following launches. The extent of amore » local depletion of ozone and its environmental impact depends on details of the composition and chemistry in these plumes. Yet direct measurements of plume composition and plume chemistry in the stratosphere had never been made. Uncertainty about these details left the Air Force and commercial space launch capability potentially vulnerable to questions about the environmental impact of rocket launches. In 1995, APOSR and the Space and Missiles Systems Center Launch Programs Office (SMC/CL) jointly began the Rocket Impacts on Stratospheric Ozone (RISO) program to make the first-ever detailed measurements of rocket exhaust plumes. These measurements were aimed at understanding how the exhaust from large rocket motors effect the Earth`s stratospheric ozone layer. The studies determined: the size distribution of alumina particles in these exhausts, the amount of reactive chlorine in SRM exhaust, and the size and duration of localized ozone toss in the rocket plumes.« less

  1. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  2. Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in

    Science.gov Websites

    Gas from Cow Manure July 9, 2016 Photo of a truck Krug Energy Opens Natural Gas Fueling Station in City Schools Sept. 17, 2011 San Diego Leads in Promoting EVs Sept. 3, 2011 Natural Gas Powers Milk

  3. Endeavour, Orbiter Vehicle (OV) 105, roll out to KSC Launch Complex Pad 39B

    NASA Image and Video Library

    1992-03-13

    S92-34862 (13 March 1992) --- An otter, surprised by the unexpected presence of the photographer, seems unaware of the Space Shuttle Endeavour rolling behind it to Launch Pad 39B. Endeavour is the newest orbiter in the Shuttle fleet. Still ahead for Endeavour (OV-105) is a Flight Readiness Firing of its three main engines, and the Terminal Countdown Demonstration Test with the flight crew. Endeavour's maiden voyage on NASA's mission STS-49 will occur in late spring.

  4. High-Mileage Light-Duty Fleet Vehicle Emissions: Their Potentially Overlooked Importance.

    PubMed

    Bishop, Gary A; Stedman, Donald H; Burgard, Daniel A; Atkinson, Oscar

    2016-05-17

    State and local agencies in the United States use activity-based computer models to estimate mobile source emissions for inventories. These models generally assume that vehicle activity levels are uniform across all of the vehicle emission level classifications using the same age-adjusted travel fractions. Recent fuel-specific emission measurements from the SeaTac Airport, Los Angeles, and multi-year measurements in the Chicago area suggest that some high-mileage fleets are responsible for a disproportionate share of the fleet's emissions. Hybrid taxis at the airport show large increases in carbon monoxide, hydrocarbon, and oxide of nitrogen emissions in their fourth year when compared to similar vehicles from the general population. Ammonia emissions from the airport shuttle vans indicate that catalyst reduction capability begins to wane after 5-6 years, 3 times faster than is observed in the general population, indicating accelerated aging. In Chicago, the observed, on-road taxi fleet also had significantly higher emissions and an emissions share that was more than double their fleet representation. When compounded by their expected higher than average mileage accumulation, we estimate that these small fleets (<1% of total) may be overlooked as a significant emission source (>2-5% of fleet emissions).

  5. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    DOT National Transportation Integrated Search

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  6. KSC-04PD-2284

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-A, Cape Canaveral Air Force Station, Boeing technicians help guide the Swift spacecraft as it is lowered toward the Boeing Delta II launch vehicle for mating. Swift is scheduled to launch Nov. 17. The liftoff aboard a Boeing Delta II rocket is targeted at the opening of a one-hour launch window beginning at 12:09 p.m. EST. A first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science, Swifts three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Gamma-ray bursts are distant, yet fleeting explosions that appear to signal the births of black holes.

  7. Next Generation Tanker: Optimizing Air Refueling Capabilities in 2030 with a Divested KC-10 Fleet

    DTIC Science & Technology

    2015-06-19

    and Acquisition of Our Next Generation Tanker (No. AFIT/ GMO /ENS/02E-15). 33 Appendix A: Advanced Air Refueling Capability Concepts Standard... advantage of advanced technologies for the purpose of increasing aircraft range. This capability could allow basing of forces and operations outside

  8. UxV Data to the Cloud via Widgets

    DTIC Science & Technology

    2013-06-01

    data when communications and bandwidth are available. 18th ICCRTS - 051 Introduction “ Information dominance enables end-to-end defense and...C2 capabilities.” Of particular concern is an adversary’s potential for contest our information dominance by “employing the full range of emerging...For Information Dominance . Vice Admiral Michael S. Rogers is the Commander of Fleet Cyber Command/ Commander Tenth Fleet. Together they authored

  9. 2014 Hydropower Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  10. National Launch System comparative economic analysis

    NASA Technical Reports Server (NTRS)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  11. KSC-2011-7545

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Tim Dunn, NASA launch director, Kennedy Space Center, Fla., participates in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  12. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.

  13. Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)

    2003-01-01

    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).

  14. The CPAT 2.0.2 Domain Model - How CPAT 2.0.2 "Thinks" From an Analyst Perspective.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Melander, Darryl J.

    To help effectively plan the management and modernization of their large and diverse fleets of vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) and the Program Executive Office Combat Support and Combat Service Support (PEO CS &CSS) commissioned the development of a large - scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This reportmore » contains a description of the organizational fleet structure and a thorough explanation of the business rules that the CPAT formulation follows involving performance, scheduling, production, and budgets. This report, which is an update to the original CPAT domain model published in 2015 (SAND2015 - 4009), covers important new CPAT features. This page intentionally left blank« less

  15. Capability-Based Modeling Methodology: A Fleet-First Approach to Architecture

    DTIC Science & Technology

    2014-02-01

    reconnaissance (ISR) aircraft , or unmanned systems . Accordingly, a mission architecture used to model SAG operations for a given Fleet unit should include all...would use an ISR aircraft to increase fidelity of a targeting solution; another mission thread to show how unmanned systems can augment targeting... unmanned systems . Therefore, an architect can generate, from a comprehensive SAG mission architecture, individual mission threads that model how a SAG

  16. Future orbital transfer vehicle technology study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  17. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation's space exploration resources.

  18. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, left, and Gabriel Rodriguez-Mena, a United Launch Alliance systems test engineer, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  19. Lessons learned for improving spacecraft ground operations

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Stambolian, Damon; Henderson, Gena

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  20. Lessons Learned for Improving Spacecraft Ground Operations

    NASA Technical Reports Server (NTRS)

    Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.

    2012-01-01

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  1. Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana

    2015-08-01

    We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.

  2. Launch of STS-63 Discovery

    NASA Image and Video Library

    1995-02-03

    STS063-S-003 (3 Feb. 1995) --- A 35mm camera was used to expose this image of the space shuttle Discovery as it began its race to catch up with the Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST), Feb. 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) shuttle flight are astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov. Photo credit: NASA

  3. KSC-2011-7504

    NASA Image and Video Library

    2011-10-04

    The Dynamic Ionosphere Cubesat Experiment DICE is prepared for launch aboard the Delta II rocket that will carry NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project NPP spacecraft. DICE is a National Science Foundation Project conducted by Utah State University in conjunction with the Atmospheric and Space Technology Research Associates ASTRA. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System JPSS, to be launched in 2016. NPP is the bridge between NASA's Earth Observing System EOS satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  4. KSC-2011-7549

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Vernon Thorp, program manager, NASA missions, United Launch Alliance, Cape Canaveral, Fla., participates in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  5. KSC-2011-7543

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- A model of the NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft and the United Launch Alliance Delta II rocket are displayed during the prelaunch news conference at Vandenberg Air Force Base, Calif. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  6. In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Kelly, Kenneth; Eudy

    2016-06-27

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated chargingmore » infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.« less

  7. Launch Services, a Proven Model

    NASA Astrophysics Data System (ADS)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch - Ukranian, Russian, American and Norwegian; Delta - U.S., Swedish and Japanese; Arianespace - European; RSC H2A - Japanese and U.S. This approach will continue because of the cost of new engine development, to name one, versus acquiring other new technology will continue to be evaluated from a business perspective. The commercial market will remain flat for the near and mid term unless broadband or some other "killer application" emerges. A fragmented multiple player launch services market will service customers for the near term. Some degree of consolidation or elimination of existing launch services alternatives is expected. We are already seeing some consolidation - Boeing Launch Services (BLS) marketing Sea Launch and Delta; International Launch Services (ILS) marketing Atlas and Proton; Arianespace/Starsem marketing Ariane and Soyuz. So what will be the key for Space Transportation Success in the future? Focusing on the "Whole Product Offering," providing a product that provides not only the generic and expected services, but also augmented services that provide differentiation and raises the value. At the Boeing Company, we are continually evaluating the augmented product, focusing on high problem solving value to provide a substantial, not incremental value of improvement. Our focus is on not just our customer, but also our customer's customer. And our focus is on how we can effect a positive change in their current business plan. We evaluate the areas of space segment risk, price and finance, and performance. Through these three areas, we are continuing to improve our product and become more integrated with the Customer and participants in ensuring the successful implementation of their business plans. Our augmented offerings include - Risk Management - Financial Performance - Performance Assurance We continue to build upon and extend these features to move beyond an augmented product and to prepare ourselves to offer "Potential Products" to recognize changes in the Customer's cost structure, customers, and environment. Linking ourselves around the world with subsystems suppliers and team members is a major part of our ability to maintain competitiveness and a prepared state to continue to differentiate us from our competitors through enhanced and unique services.

  8. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.

  9. KSC-2011-6567

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, a solid rocket motor for the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite is hoisted up at NASA's Space Launch Complex-2. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  10. KSC-2011-6570

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians check the position of a solid rocket motor for the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite at NASA's Space Launch Complex-2. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  11. KSC-2011-6574

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians use a crane to lift a solid rocket motor for the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite at NASA's Space Launch Complex-2. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  12. KSC-2011-6576

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians use a crane to lift a solid rocket motor for the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite at NASA's Space Launch Complex-2. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  13. KSC-2011-6575

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians use a crane to lift a solid rocket motor for the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite at NASA's Space Launch Complex-2. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  14. KSC-2011-7546

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Andrew Carson, NPP program executive, NASA Headquarters, Washington, DC, participates in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  15. KSC-2011-7547

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Ken Schwer, NPP project manager, Goddard Space Flight Center, Greenbelt, Md., participates in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  16. KSC-2011-7542

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- A model of the NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft is displayed during the prelaunch news conference at Vandenberg Air Force Base, Calif. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  17. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  18. Integrated Field-Screening for Rapid Sediment Characterization

    DTIC Science & Technology

    2000-09-30

    Station Naval Submarine Naval Shipyard Hickam Air Force Base Pearl Harbor Naval Base Ford Island (US Navy) Waipio Peninsula (US Navy) McGrew Point...December 1941, the Japanese Imperial Navy launched a surprise air attack on the U.S. Fleet in Pearl Harbor from a task force of 32 vessels, including 6...18 3.2.1 Naval Air Station Alameda

  19. Payload Flight Assignments: NASA Mixed Fleet

    NASA Technical Reports Server (NTRS)

    Parker, Robert A. R.

    1997-01-01

    This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

  20. KSC-05PD-1086

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians in Space Shuttle Discovery's payload bay perform a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  1. SRTM is removed from Endeavour's payload bay to ease wiring inspections

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, workers observe as an overhead crane lowers the Shuttle Radar Topography Mission (SRTM) into a payload canister. The payload on mission STS-99, SRTM was removed from orbiter Endeavour's payload bay to allow technicians access to the orbiter's midbody for planned wiring inspections. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.

  2. ATFP

    Science.gov Websites

    warfighting capabilities and requirements are integrated into the Fleet. Anti-Terrorism Force Protection Logo Anti-Terrorism Force Protection AT links for Sailors: Additional links for AT professionals: See

  3. KSC-2011-6564

    NASA Image and Video Library

    2011-07-21

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the interstage of the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite into space is lifted up the side of NASA's Space Launch Complex-2. The interstage provides an interface between the launch vehicle's first and second stages. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Rudy Bledsoe

  4. KSC-2011-6571

    NASA Image and Video Library

    2011-07-28

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, technicians monitor the progress as a solid rocket motor is attached to a United Launch Alliance Delta II rocket at NASA’s Space Launch Complex-2. The Delta II will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Dan Liberotti

  5. KSC-2011-6563

    NASA Image and Video Library

    2011-07-21

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the interstage of the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite into space is lifted up the side of NASA's Space Launch Complex-2. The interstage provides an interface between the launch vehicle's first and second stages. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Rudy Bledsoe

  6. KSC-2011-6560

    NASA Image and Video Library

    2011-07-21

    VANDENBERG AIR FORCE BASE, Calif. -- At NASA's Space Launch Complex-2 on Vandenberg Air Force Base in California, spacecraft technicians prepare to attach the interstage of the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite into space to a lifting device. The interstage provides an interface between the launch vehicle's first and second stages. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Rudy Bledsoe

  7. KSC-2011-6558

    NASA Image and Video Library

    2011-07-21

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, preparations are under way to lift the interstage of the United Launch Alliance Delta II that will carry NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite into space at NASA's Space Launch Complex-2. The interstage provides an interface between the launch vehicle's first and second stages. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS) to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB, Rudy Bledsoe

  8. KSC-2011-7015

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians remove the lifting crane and harnesses from the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  9. KSC-2011-7025

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, Ball Aerospace technicians rotate NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) into the vertical position during a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  10. KSC-2011-7014

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians monitor the progress as a crane begins to lift the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors dev eloped for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  11. KSC-2011-7017

    NASA Image and Video Library

    2011-09-01

    VANDENBERG AIR FORCE BASE, Calif. – NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) is positioned on a test platform in a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  12. KSC-2011-7011

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians attach a crane to the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  13. KSC-2011-7027

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, Ball Aerospace technicians rotate NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) into the vertical position during a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  14. KSC-2011-7022

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, Ball Aerospace technicians position NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) for a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  15. KSC-2011-7023

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) is positioned on a test platform in a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, awaiting a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  16. KSC-2011-7026

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, Ball Aerospace technicians rotate NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) into the vertical position during a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  17. KSC-2011-7018

    NASA Image and Video Library

    2011-09-01

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians position NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) for test and checkout. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  18. KSC-2011-7016

    NASA Image and Video Library

    2011-09-01

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians position NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) for test and checkout. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  19. KSC-2011-6630

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. -- The environmentally controlled transportation container holding NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite arrives outside the Astrotech payload processing facility on Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: USAF 30th Space Communications Squadron/Doug Gruben, VAFB

  20. KSC-2011-7010

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians prepare to attach a crane to the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  1. KSC-2011-7013

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians monitor the progress as a crane begins to lift the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  2. KSC-2011-7024

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, Ball Aerospace technicians position NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) for a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  3. KSC-2011-6633

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. -- The environmentally controlled transportation container holding NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite comes to rest on the floor of the Astrotech payload processing facility on Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/Jerry Nagy, VAFB

  4. KSC-2011-7008

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – Transported by truck, the environmentally controlled transportation container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  5. KSC-2011-7007

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – Transported by truck, the environmentally controlled transportation container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  6. KSC-2011-6631

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. -- The environmentally controlled transportation container holding NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite is delivered into the Astrotech payload processing facility on Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: USAF 30th Space Communications Squadron/Doug Gruben, VAFB

  7. KSC-2011-6632

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. -- The environmentally controlled transportation container holding NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite is lifted from its delivery truck at the Astrotech payload processing facility on Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/Jerry Nagy, VAFB

  8. KSC-2011-7005

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – The Astrotech Payload Processing Facility at Vandenberg Air Force Base in California awaits delivery of the environmentally controlled transportation container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  9. KSC-2011-7006

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – Transported by truck, the environmentally controlled transportation container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  10. KSC-2011-7550

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Participants in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft prepare to address members of the news media gathered at Vandenberg Air Force Base, Calif. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  11. KSC-2011-7009

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – Transported by truck, the environmentally controlled transportation container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  12. KSC-2011-7012

    NASA Image and Video Library

    2011-08-30

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians monitor the progress as a crane begins to lift the container holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  13. Development of an Autonomous Lidar Instrument for Use on a UAV Platform in Support of Homeland Security

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Famiglietti, Joe

    2005-01-01

    Researchers at NASA's Goddard Space Flight Center have developed an autonomous aerosol backscatter lidar instrument for use on the high-altitude ER-2 aircraft (for more information please visit http://cpl.gsfc.nasa.gov). Work is currently underway to transfer this instrument to a UAV platform such as Global Hawk. While the NASA applications are Earth science and satellite validation, there is clearly a Homeland Security application for such an instrument. One novel concept is to have a fleet of UAVs stationed around the country, each UAV having a payload including a lidar instrument. In the event of attack, the appropriate UAV(s) could be launched for purposes of, e.g., plume detection and tracking that are critical for decision support. While the existing lidar instrument is not directly capable of biological species discrimination, it is capable of plume tracking and thus can demonstrate to DHS the capabilities and utility of such instruments. Using NASA funding we will have an instrument ready to fly on Global Hawk by end of 2005. We would like to find partners, either within private industry or within DHS who would be willing to contribute aircraft access and flight hours for a demonstration flight. Longer-term partnerships to develop more advanced and more capable types of lidar instruments are also desirable. In this presentation we will detail the existing ER-2 lidar instrument and show measurement results, show the progress made on adapting to the Global Hawk platform, present concepts for DHS uses of such instruments, and openly pursue partnership opportunities.

  14. Ares V: Progress Toward Unprecedented Heavy Lift

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2010-01-01

    Every major examination of America s spaceflight capability since the Apollo program has highlighted and reinforced the need for a heavy lift vehicle for human exploration, science, national security, and commercial development. The Ares V is NASA s most recent effort to address this gap and provide the needed heavy lift capability for NASA and the nation. An Ares V-class heavy lift capability is important to supporting beyond earth orbit (BEO) human exploration. Initially, that consists of exploration of the Moon vastly expanded from the narrow equatorial Apollo missions to a global capability that includes the interesting polar regions. It also enables a permanent human outpost. Under the current program of record, both the Ares V and the lunar exploration it enables serve as a significant part of the technology and experience base for exploration beyond the Moon, including Mars, asteroids, and other destinations. The Ares V is part of NASA s Constellation Program architecture. The Ares V remains in an early stage of concept development, while NASA focused on development of the Ares I crew launch vehicle to replace the Space Shuttle fleet. However, Ares V development has benefitted from its commonality with Ares I, the Shuttle, and contemporary programs on which its design is based. The Constellation program is currently slated for cancellation under the proposed 2011 federal budget, pending review by the legislative branch. However, White House guidance on its 2011 budget retains funding for heavy lift research. This paper will discuss progress to date on the Ares V and its potential utility to payload users.

  15. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  16. Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992

    NASA Technical Reports Server (NTRS)

    Perry, A. T.; Cagle, J. A.; Newman, S. C.

    1993-01-01

    Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.

  17. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  18. Transportation systems analyses. Volume 2: Technical/programmatics

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.

  19. KSC-2011-7020

    NASA Image and Video Library

    2011-09-06

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, a technician performs a torque bolt stress test on NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). Technicians will perform many tests and checkouts on the satellite system to prepare it for launch. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  20. KSC-2011-7019

    NASA Image and Video Library

    2011-09-01

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, a large sign is placed on the test stand holding NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). The satellite system is awaiting test and checkout procedures to prepare it for launch. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  1. KSC-2011-7021

    NASA Image and Video Library

    2011-09-06

    VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians perform a torque bolt stress test on NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). Technicians will perform many tests and checkouts on the satellite system to prepare it for launch. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  2. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  3. Assessment of mixed fleet potential for space station launch and assembly

    NASA Technical Reports Server (NTRS)

    Deryder, L. J. (Editor)

    1987-01-01

    Reductions in expected STS flight rates of the Space Shuttle since the 51-L accident raise concerns about the ability of available launch capacity to meet both payload-to-orbit and crew rotation requirements for the Space Station. In addition, it is believed that some phases of Station build-up could be expedited using unmanned launch systems with significantly greater lift capacity than the STS. Examined is the potential use of expendable launch vehicles (ELVs), yet-to-be-developed unmanned shuttle-derived vehicles (SDVs), and international launch vehicles for meeting overall launch requirements to meet Space Station program objectives as defined by the 1986 Critical Evaluation Task Force (CETF). The study concludes that use of non-STS transportation can help meet several important program objectives as well as reduce the total number of STS flights. It also finds, however, that reduction of Space Station-dedicated STS flights below 8 per year forces a reduction in Station crew size assuming the CETF 90 day crew stay time baseline and seriously impairs scientific utilization of the Station.

  4. Integrated operations/payloads/fleet analysis. Volume 2: Payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.

  5. KSC-05PD-1082

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, a technician in Space Shuttle Discovery's payload bay studies a photo of the retract link assembly on the orbiter's main landing gear door prior to conducting a borescope inspection. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  6. SRTM is removed from Endeavour's payload bay to ease wiring inspections

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside orbiter Endeavour's payload bay, a crane lifts the Shuttle Radar Topography Mission (SRTM) for its transfer out of the orbiter to a payload canister. The payload on mission STS-99, SRTM is being removed to allow technicians access to the orbiter's midbody for planned wiring inspections. Endeavour is in the Orbiter Processing Facility. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.

  7. KSC-05PD-1077

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  8. KSC-05PD-1080

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  9. KSC-05PD-1079

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  10. IRIS Mission Operations Director's Colloquium

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  11. KSC-05PD-1085

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians in Space Shuttle Discovery's payload bay monitor the images received during a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  12. KSC-05PD-1084

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, a technician in Space Shuttle Discovery's payload bay performs a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  13. Demonstration of Heavy Diesel Hybrid Fleet Vehicles

    DTIC Science & Technology

    2016-03-29

    Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator 147 Truck, High Reach, Various 327 Crane, Wheeled, Truck Mounted 250 Truck...Types Medium Tactical Vehicle Rep. (MTVR) 9,069 Line Haul Tractor 5,013 In-Progress; Hybrid Electric System Dump Truck 776 Naval Construction...data. Card readers capture this data at the point of fueling using a specified card reader. Information improved data consistency as compared with

  14. Department of the Air Force Supporting Data for Fiscal Year 1983, Budget Estimates Submitted to Congress February 1982. Descriptive Summaries. Research, Development, Test and Evaluation.

    DTIC Science & Technology

    1982-02-01

    effects in plasmas has led to near millimeter wave production from the world’s shortest wavelength Cerenkov source. This source offers the...repaired runways led to interim guidance for operation of the fleet and potential modifications to improve fleet capabilities, (4) an advanced...technology developed under this project has led to the qualification of Department of Defense fuels and lubricants such as JP-4, JP-5, JP-/, JP-8, JP-9, JP

  15. Designing a Methodology for Future Air Travel Scenarios

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all-subsonic future fleet. The methodology, procedures, and recommendations for the development of future HSCT and the subsonic fleet scenarios used for this evaluation are discussed.

  16. SSTO vs TSTO design considerations—an assessment of the overall performance, design considerations, technologies, costs, and sensitivities of SSTO and TSTO designs using modern technologies

    NASA Astrophysics Data System (ADS)

    Penn, Jay P.

    1996-03-01

    It is generally believed by those skilled in launch system design that Single-Stage-To-Orbit (SSTO) designs are more technically challenging, more performance sensitive, and yield larger lift-off weights than do Two-Stage-To-Orbit designs (TSTO's) offering similar payload delivery capability. Without additional insight into the other considerations which drive the development, recurring costs, operability, and reliability of a launch fleet, an analyst may easily conclude that the higher performing, less sensitive TSTO designs, thus yield a better solution to achieving low cost payload delivery. This limited insight could justify an argument to eliminate the X-33 SSTO technology/demonstration development effort, and thus proceed directly to less risky TSTO designs. Insight into real world design considerations of launch vehicles makes the choice of SSTO vs TSTO much less clear. The presentation addresses a more comprehensive evaluation of the general class of SSTO and TSTO concepts. These include pure SSTO's, augmented SSTO's, Siamese Twin, and Pure TSTO designs. The assessment considers vehicle performance and scaling relationships which characterize real vehicle designs. The assessment also addresses technology requirements, operations and supportability, cost implications, and sensitivities. Results of the assessment indicate that the trade space between various SSTO and TSTO design approaches is complex and not yet fully understood. The results of the X-33 technology demonstrators, as well as additional parametric analysis is required to better define the relative performance and costs of the various design approaches. The results also indicate that with modern technologies and today's better understanding of vehicle design considerations, the perception that SSTO's are dramatically heavier and more sensitive than TSTO designs is more of a myth, than reality.

  17. General Aviation Avionics Statistics : 1975

    DOT National Transportation Integrated Search

    1978-06-01

    This report presents avionics statistics for the 1975 general aviation (GA) aircraft fleet and updates a previous publication, General Aviation Avionics Statistics: 1974. The statistics are presented in a capability group framework which enables one ...

  18. Options for the Navy’s Future Fleet

    DTIC Science & Technology

    2006-05-01

    capability than most of those options by other than for inflation, how big and how capable can the most measures of capability. But even under the Navy’s...The most prominent of those vessels are fast combat support ships, which operate with carrier strike groups to resupply them with fuel, dry Supply...categories of ships-submarines and large surface Similarly, the ship construction schedule for large surface combatants-are responsible for most of the

  19. Investigation of the Potential for Increased use of Civilian Manning in Fleet Support Ships. Volume 2. Narrative

    DTIC Science & Technology

    1978-02-10

    Contract Number N00014-77-C-0016 Enclosure (1) to CNO LTR Ser 96/S590196 DEPARTMENT OF THE NAVY OFFICE OF THE CHIEF OF ...The changes in numbers of military and commercial contract personnel were obtained by subtracting (3) from (1) and (4) from...Commercial Contract maiming F = Full Capability P = Partial Capability L = Lost Capability . -- ’■ -. • NOTE: Subscripts denote the number of

  20. KSC-02pp1641

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. -- Workers supervise the move of the suspended TDRS-J spacecraft towards a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  1. KSC-02pp1643

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. -- Workers supervise the placement of the TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  2. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.

  3. General aviation activity and avionics survey. Annual report for CY81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.; Carter, P.W.

    1982-12-01

    This report presents the results and a description of the 1981 General Aviation Activity and Avionics Survey. The survey was conducted during 1982 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 8.9 percent of the general aviation fleet and obtained a response rate of 61 percent. Survey results are based upon response but are expanded upward to represent the total population. Survey results revealed that during 1981 anmore » estimated 40.7 million hours of flying time were logged by the 213,226 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 188.1 hours. The active aircraft represented about 83 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates. In addition, tables are included for detailed analysis of the avionics capabilities of GA fleet.« less

  4. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    PubMed Central

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  5. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  6. Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.

  7. Making the Buses Run.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1998-01-01

    Examines issues concerning outsourcing student transportation services: cost; management needs and capabilities; goals; and politics. Critical areas of transportation management are highlighted such as personnel management, student management and discipline, risk management, fleet analysis, and routing and scheduling. (GR)

  8. General aviation activity and avionics survey. Annual summary report, CY 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less

  9. SeaFrame: Sustaining Today’s Fleet Efficiently and Effectively. Volume 5, Issue 1, 2009

    DTIC Science & Technology

    2009-01-01

    Maneuvering 11 Shipboard Launch and Recovery Systems 13 Integrated Logistics System 15 Special Hull Treatment Tile Manufacturing 17 Navy Shipboard Oil ...Developing advanced blade section design technology for propulsors that reduces cavitation damage and required repair cost and time. - Conducting...complex we have ever written.” Ammeen adds that steering and diving algorithms are also very complex, because hydrodynamic effects of a submarine

  10. Demonstration of Heavy Hybrid Diesel Fleet Vehicles

    DTIC Science & Technology

    2016-03-01

    Truck, Earth Auger/Digger Derrick 154 Hybrid Electric System Truck, Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator 147 Truck, High...Hybrid Electric System Dump Truck 776 Naval Construction Force Truck 1,500 Engineer Tractor 2,942 Heavy Equipment Transporter (HET) 1,961...both trucks using Defense Logistics Agency (DLA) fuel management data. Card readers capture this data at the point of fueling using a specified card

  11. Afghanistan: Post Taliban Governance, Security, and U.S. Policy

    DTIC Science & Technology

    2016-09-26

    billion in assistance to the ANDSF has come from these sources. There is also a NATO-Russia Council Helicopter Maintenance Trust Fund. Launched in...March 2011, this fund provides maintenance and repair capacity to the Afghan Air Force helicopter fleet, much of which is Russian-made. The Afghan...United States obligated $2.5 billion for the AAF, including nearly $1 billion for equipment and aircraft. Still, equipment, maintenance , logistical

  12. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  13. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket Sounding Launch Program (RSLP). The new mission tenets include shortened operational response periods criteria for the warfighter, while reducing the life-cycle development, production and launch costs of space launch systems. This presentation will focus on the technical challenges in transforming and integrating space launch vehicles and space craft vehicles for small space launch missions.

  14. 2014 Summer Series - Robert Carvalho - Pursuing the Mysteries of the Sun: The IRIS Mission

    NASA Image and Video Library

    2014-06-19

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRIS's mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  15. KSC-02pd1577

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - A worker ties down the container with the TDRS-J spacecraft onto a transport vehicle. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  16. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models.more » As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.« less

  17. General Aviation Avionics Statistics : 1974

    DOT National Transportation Integrated Search

    1977-08-01

    The primary objectives of this study were to (1) provide a framework for viewing the general aviation (GA) aircraft fleet, which would relate airborne avionics equipment to the capability for an aircraft to perform in the National Airspace System, an...

  18. General Aviation Avionics Statistics : 1976

    DOT National Transportation Integrated Search

    1979-11-01

    This report presents avionics statistics for the 1976 general aviation (GA) aircraft fleet and is the third in a series titled "General Aviation Avionics Statistics." The statistics are presented in a capability group framework which enables one to r...

  19. General Aviation Avionics Statistics : 1978 Data

    DOT National Transportation Integrated Search

    1980-12-01

    The report presents avionics statistics for the 1978 general aviation (GA) aircraft fleet and is the fifth in a series titled "General Aviation Statistics." The statistics are presented in a capability group framework which enables one to relate airb...

  20. General aviation avionics statistics : 1977.

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents avionics statistics for the 1977 general aviation (GA) aircraft fleet and is the fourth in a series. The statistics are presented in a capability group framework which enables one to relate airborne avionics equipment to the capa...

  1. General Aviation Avionics Statistics : 1979 Data

    DOT National Transportation Integrated Search

    1981-04-01

    This report presents avionics statistics for the 1979 general aviation (GA) aircraft fleet and is the sixth in a series titled General Aviation Avionics Statistics. The statistics preseneted in a capability group framework which enables one to relate...

  2. Coast Guard Aircraft: Transfer of Fixed-Wing C-27J Aircraft Is Complex and Further Fleet Purchases Should Coincide with Study Results

    DTIC Science & Technology

    2015-03-01

    C-27J to the Coast Guard. This report assesses (1) the status of the transfer and risks the Coast Guard faces in fielding the transferred aircraft...had transferred 2 of the 14 C-27J aircraft it is receiving from the Air Force to its aircraft maintenance facility, with plans to field 14 fully...Coast Guard continues to receive these aircraft in the near term, the capability and cost of the Coast Guard’s fixed-wing fleet runs the risk of being

  3. A land mobile satellite data system

    NASA Technical Reports Server (NTRS)

    Kent, John D. B.

    1990-01-01

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  4. Real-time science and outreach from the UNOLS fleet via HiSeasNet

    NASA Astrophysics Data System (ADS)

    Foley, S.; Berger, J.; Orcutt, J. A.; Brice, D.; Coleman, D. F.; Grabowski, E. M.

    2010-12-01

    The HiSeasNet satellite communications network has ben providing cost-effective, reliable, continuous Internet connectivity to the UNOLS oceanographic research fleet for nearly nine years. During that time, HiSeasNet has supported science and outreach programs with a variety of real-time interactions back to shore including videoconferencing, webcasting, shared whiteboards, and streaming high-definition video feeds. Solutions have varied in scale, cost, and capability. As real-time science and outreach becomes more common, experience with a variety of technologies continues to build, and more opportunities yet to explore.

  5. KSC-2011-5116

    NASA Image and Video Library

    2011-07-07

    CAPE CANAVERAL, Fla. -- NASA and Sierra Nevada Space Systems (SNSS) of Sparks, Nev., sign a Space Act Agreement that will offer the company technical capabilities from Kennedy Space Center's uniquely skilled work force. Sitting, from left, are Kennedy Public Affairs Director Lisa Malone; NASA Administrator Charlie Bolden; Kennedy Center Director Bob Cabana; and Mark Sirangelo, head of Sierra Nevada. Standing, from left, are Frank DiBello, president of Space Florida; Joyce Riquelme, manager of Kennedy's Center Planning and Development Office; John Curry, director of Sierra Nevada's Systems Integration, Test and Operations; Kennedy Deputy Director Janet Petro; Jim Voss, vice president of Sierra Nevada's Space Exploration Systems; and Merri Sanchez, senior director of Sierra Nevada's Space Exploration Systems. Kennedy will help Sierra Nevada with the ground operations support of its lifting body reusable spacecraft called "Dream Chaser," which resembles a smaller version of the space shuttle orbiter. The spacecraft would carry as many as seven astronauts to the space station. Through the new agreement, Kennedy's work force will use its experience of processing the shuttle fleet for 30 years to help Sierra Nevada define and execute Dream Chaser's launch preparations and post-landing activities. In 2010 and 2011, Sierra Nevada was awarded grants as part of the initiative to stimulate the private sector in developing and demonstrating human spaceflight capabilities for NASA's Commercial Crew Program. The goal of the program, which is based in Florida at Kennedy, is to facilitate the development of a U.S. commercial crew space transportation capability by achieving safe, reliable and cost-effective access to and from the space station and future low Earth orbit destinations. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-5115

    NASA Image and Video Library

    2011-07-07

    CAPE CANAVERAL, Fla. -- NASA and Sierra Nevada Space Systems (SNSS) of Sparks, Nev., prepare to sign a Space Act Agreement that will offer the company technical capabilities from Kennedy Space Center's uniquely skilled work force. Sitting, from left, are Kennedy Public Affairs Director Lisa Malone; NASA Administrator Charlie Bolden; Kennedy Center Director Bob Cabana; and Mark Sirangelo, head of Sierra Nevada. Standing, from left, are Joyce Riquelme, manager of Kennedy's Center Planning and Development Office; John Curry, director of Sierra Nevada's Systems Integration, Test and Operations; Kennedy Deputy Director Janet Petro; Jim Voss, vice president of Sierra Nevada's Space Exploration Systems; and Merri Sanchez, senior director of Sierra Nevada's Space Exploration Systems. Kennedy will help Sierra Nevada with the ground operations support of its lifting body reusable spacecraft called "Dream Chaser," which resembles a smaller version of the space shuttle orbiter. The spacecraft would carry as many as seven astronauts to the space station. Through the new agreement, Kennedy's work force will use its experience of processing the shuttle fleet for 30 years to help Sierra Nevada define and execute Dream Chaser's launch preparations and post-landing activities. In 2010 and 2011, Sierra Nevada was awarded grants as part of the initiative to stimulate the private sector in developing and demonstrating human spaceflight capabilities for NASA's Commercial Crew Program. The goal of the program, which is based in Florida at Kennedy, is to facilitate the development of a U.S. commercial crew space transportation capability by achieving safe, reliable and cost-effective access to and from the space station and future low Earth orbit destinations. Photo credit: NASA/Jim Grossmann

  7. Transition of R&D into Operations at Fleet Numerical Meteorology and Oceanography Center

    NASA Astrophysics Data System (ADS)

    Clancy, R. M.

    2006-12-01

    The U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC) plays a significant role in the National capability for operational weather and ocean prediction through its operation of sophisticated global and regional meteorological and oceanographic models, extending from the top of the atmosphere to the bottom of the ocean. FNMOC uniquely satisfies the military's requirement for a global operational weather prediction capability based on software certified to DoD Information Assurance standards and operated in a secure classified computer environment protected from outside intrusion by DoD certified firewalls. FNMOC operates around-the-clock, 365 days per year and distributes products to military and civilian users around the world, both ashore and afloat, through a variety of means. FNMOC's customers include all branches of the Department of Defense, other government organizations such as the National Weather Service, private companies, a number of colleges and universities, and the general public. FNMOC employs three primary models, the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and the WaveWatch III model (WW3), along with a number of specialized models and related applications. NOGAPS is a global weather model, driving nearly all other FNMOC models and applications in some fashion. COAMPS is a high- resolution regional model that has proved to be particularly valuable for forecasting weather and ocean conditions in highly complex coastal areas. WW3 is a state-of-the-art ocean wave model that is employed both globally and regionally in support of a wide variety of naval operations. Other models support and supplement the main models with predictions of ocean thermal structure, ocean currents, sea-ice characteristics, and other data. Fleet Numerical operates at the leading edge of science and technology, and benefits greatly from collocation with its supporting R&D activity, the Marine Meteorology Division of the Naval Research Laboratory (NRL Code 7500). NRL Code 7500 is a world-class research organization, with focus on weather-related support for the warfighter. Fleet Numerical and NRL Code 7500 share space, data, software and computer systems, and together represent one of the largest concentrations of weather-related intellectual capital in the nation. As documented, for example, by the Board on Atmospheric Sciences and Climate (BASC) of the National Research Council, investment in R&D is crucial for maintaining state-of-the-art operational Numerical Weather Prediction (NWP) capabilities (see BASC, 1998). And collocation and close cooperation between research and operations, such as exists between NRL Code 7500 and Fleet Numerical, is the optimum arrangement for transitioning R&D quickly and cost-effectively into new and improved operational weather prediction capabilities.

  8. Low-cost management aspects for developing, producing and operating future space transportation systems

    NASA Astrophysics Data System (ADS)

    Goehlich, Robert A.; Rücker, Udo

    2005-01-01

    It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.

  9. Demonstration of Heavy Hybrid Diesel Fleet Vehicles Final Report Version 2

    DTIC Science & Technology

    2016-03-29

    Rescue 215 Truck, Earth Auger/Digger Derrick 154 Hybrid Electric System Truck, Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator...5,013 In-Progress; Hybrid Electric System Dump Truck 776 Naval Construction Force Truck 1,500 Engineer Tractor 2,942 Heavy Equipment Transporter...fuel consumed by both trucks using Defense Logistics Agency (DLA) fuel management data. Card readers capture this data at the point of fueling using a

  10. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  11. The National Space Transportation Policy : Issues for Congress

    DOT National Transportation Integrated Search

    1995-05-01

    In responding to the political and military challenges of the Cold War, and the urge to explore and exploit outer space, the United States developed a capable fleet of space transportation systems for carrying cargo and people into space. Increasing ...

  12. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  13. SPHERES HALO

    NASA Image and Video Library

    2017-06-23

    iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.

  14. Satellite power system: Concept development and evaluation program, reference system report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.

  15. KSC-2013-2500

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  16. KSC-2013-2497

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  17. KSC-2013-2498

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  18. KSC-2013-2499

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  19. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  20. Effects of lightning on operations of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.

    1989-01-01

    Traditionally, aircraft lightning strikes were a major aviation safety issue. However, the increasing use of composite materials and the use of digital avionics for flight critical systems will require that more specific lightning protection measures be incorporated in the design of such aircraft in order to maintain the excellent lightning safety record presently enjoyed by transport aircraft. In addition, several recent lightning mishaps, most notably the loss of the Atlas/Centaur-67 vehicle at Cape Canaveral Air Force Station, Florida in March 1987, have shown the susceptibility of aircraft and launch vehicles to the phenomenon of vehicle-triggered lightning. The recent findings of the NASA Storm Hazards Program were reviewed as they pertain to the atmospheric conditions conducive to aircraft lightning strikes. These data are then compared to recent summaries of lightning strikes to operational aircraft fleets. Finally, the new launch commit criteria for triggered lightning being used by NASA and the U.S. Defense Department are summarized. The NASA Research data show that the greatest probability of a direct strike in a thunderstorm occurs at ambient temperatures of about -40 C. Relative precipitation and turbulence levels were characterized as negligible to light for these conditions. However, operational fleet data have shown that most aircraft lightning strikes in routine operations occur at temperatures near the freezing level in non-cumulonimbus clouds. The non-thunderstorm environment was not the subject of dedicated airborne lightning research.

  1. Coast Guard : actions needed to mitigate deepwater project risks

    DOT National Transportation Integrated Search

    2001-05-03

    The Deepwater Capability Replacement Project was initiated by the Coast Guard to replace and modernize its aging fleet of over 90 cutters and 200 aircraft used beyond 50 miles from shore. This project, the largest acquisition ever attempted by the Co...

  2. Japan's launch vehicle program update

    NASA Astrophysics Data System (ADS)

    Tadakawa, Tsuguo

    1987-06-01

    NASDA is actively engaged in the development of H-I and H-II launch vehicle performance capabilities in anticipation of future mission requirements. The H-I has both two-stage and three-stage versions for medium-altitude and geosynchronous orbits, respectively; the restart capability of the second stage affords considerable mission planning flexibility. The H-II vehicle is a two-stage liquid rocket primary propulsion design employing two solid rocket boosters for secondary power; it is capable of launching two-ton satellites into geosynchronous orbit, and reduces manufacture and launch costs by extensively employing off-the-shelf technology.

  3. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  4. Expanding the Telepresence Paradigm to the UNOLS Fleet

    NASA Astrophysics Data System (ADS)

    Coleman, D.; Scowcroft, G.

    2014-12-01

    The Inner Space Center (ISC) at the University of Rhode Island Graduate School of Oceanography (URI-GSO) has been at the forefront of developing the tools, techniques, and protocols for telepresence-enabled ocean science exploration and education programs. Working primarily with the Ocean Exploration Trust's E/V Nautilus and the NOAA Ship Okeanos Explorer, the ISC facility and staff have supported dozens of research cruises with significant shore-based support, while delivering related educational programming across the globe. Through a partnership with the University National Oceanographic Laboratory System (UNOLS), the ISC is broadening its reach and capabilities to serve vessels in the U.S. academic research fleet, managed by UNOLS. The ISC has developed and used a portable shipboard "mobile telepresence unit" (MTU) on several UNOLS ships to support projects led by ocean scientists that employed the telepresence paradigm as part of their research and outreach programs. Utilizing the ISC facilities provides opportunities for effective, successful broader impact activities and shore-based remote science connectivity. With new UNOLS ships coming online, including the R/V Sikuliaq, the R/V Neil Armstrong, and the R/V Sally Ride, in addition to future Regional Class Research Vessels (RCRVs), telepresence capability has become a technical requirement for a variety of reasons. Older vessels are being retrofit with this forward-looking technology, and URI's research vessel, the R/V Endeavor, has been recently configured with technology to support telepresence operations. This presentation will provide an overview of the future of telepresence technology, its use in ocean science research and education, and advantages for using this capability to support broader impact activities. In addition, ISC successes, challenges, and lessons learned in employing telepresence technologies and methodologies onboard the academic research fleet will be discussed.

  5. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.

  6. Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability (Briefing Charts)

    DTIC Science & Technology

    2015-09-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AGENDA 1. Non-Tactical Vehicle-to-Grid (V2G) Projects • Smart Power...Vehicle Technology Expo and the Battery Show Conference Novi, MI, 15-17 Sep 2015 2 For the Nation • Help stabilize smart grid and can generate revenue...demonstration of a smart , aggregated, ad-hoc capable, vehicle to grid (V2G) and Vehicle to Vehicle (V2V) capable fleet power system to support

  7. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  8. Navy Shipbuilding: Significant Investments in the Littoral Combat Ship Continue Amid Substantial Unknowns about Capabilities, Use, and Cost

    DTIC Science & Technology

    2013-07-01

    composed of vice admirals from the requirements, acquisition, and fleet communities, and has the mission of ensuring “the successful procurement...development, manning, training, sustainment, and operational employment” of the LCS, mission packages, and shore 4The LCS block buy contracts include fixed...capabilities, limitations, and safety issues to help reduce design and programmatic risks. Operational testing is intended to assess a weapon system’s

  9. Logistics and Maintenance Options to Support the P-8A Poseidon’s Expeditionary Mission

    DTIC Science & Technology

    2010-06-01

    Equipment HOA Horn Of Africa ICD Initial Capabilities Document IFR In Flight Refueling ISR Intelligence Surveillance and Reconnaissance JOA...will transition to the new MPRF platform 18 one base and one squadron at a time beginning with the Fleet Readiness Squadron ( FRS ) and VP squadrons...and is equipped with in a universal aerial refueling receptacle that will provide In-Flight Refueling ( IFR ) capability. This new in-flight

  10. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  11. JSC Case Study: Fleet Experience with E-85 Fuel

    NASA Technical Reports Server (NTRS)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  12. The French Balloon Program 2013 - 2017

    NASA Astrophysics Data System (ADS)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  13. Advancing electric-vehicle development with pure-lead-tin battery technology

    NASA Astrophysics Data System (ADS)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  14. Launch vehicle selection model

    NASA Technical Reports Server (NTRS)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction between the primary mission model (all payloads going from Earth to Low Earth Orbit (LEO)) and the secondary mission model (all payloads from LEO to Lunar and LEO to Mars and return).

  15. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  16. Long-Term Management Strategy for Dredged Material Disposal for Naval Facilities at Pearl Harbor, Hawaii

    DTIC Science & Technology

    2000-02-01

    approximately 3 to 30.5 m (10 to 100 ft) above MSL, and the surface slopes south toward Hickam Air Force Base and Honolulu International Airport. A.3.1.2...PHNC drains across the Honolulu International Airport, Hickam Air Force Base , and Fort Kamehameha Military Reservation before entering the Pacific...Navy launched a surprise air attack on the U.S. Fleet in Pearl Harbor from a task force of 32 vessels, including 6 aircraft carriers with 350

  17. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  18. 14 CFR 417.209 - Malfunction turn analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nozzle burn-through. For each cause of a malfunction turn, the analysis must establish the launch vehicle... the launch vehicle's turning capability in the event of a malfunction during flight. A malfunction... launch vehicle is capable. (4) The time, as a single value or a probability time distribution, when each...

  19. 14 CFR 417.209 - Malfunction turn analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nozzle burn-through. For each cause of a malfunction turn, the analysis must establish the launch vehicle... the launch vehicle's turning capability in the event of a malfunction during flight. A malfunction... launch vehicle is capable. (4) The time, as a single value or a probability time distribution, when each...

  20. AN INVESTIGATION OF REMOTE SENSING DEVICES FOR CHEMICAL CHARACTERIZATION OF MOTOR VEHICLE EXHAUST

    EPA Science Inventory

    The report summarizes results of tests to (1) evaluate the accuracy and precision of two different remote sensing devices (RSDs) for measuring carbon monoxide (CO), hydrocarbons (HCs), and nitric oxide (NO) and (2) evaluate the capabilities of three RSDs for characterizing fleet ...

  1. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  2. Vulnerabilities of the Global Positioning System and the Impact on the Iron Triad: The AWACS, JSTARS, and Rivet Joint Fleets

    DTIC Science & Technology

    2010-06-11

    capable of two-dimensional position information; they only provided latitude and longitude. This was not a significant problem for surface vessels...reliable three-dimensional navigation capable of providing continuous latitude , longitude and altitude information. Additionally, the Air Force’s system...upgrade initiatives for both AWACS and JSTARS airframes, consider the DRAGON program a model to modernize other Triad aircraft to comply with CNS/ATM

  3. The Transformation from Defence Procurement to Defence Acquisition - Opportunities for New Forms of Analytical Support

    DTIC Science & Technology

    2010-04-01

    Exchanges of Services ( ATARES ); Strategic Airlift Interim Solution (SALIS); Strategic Airlift Capability (SAC); the European Air Transport Fleet (EATF... ATARES is a TA, established in order to facilitate the exchange of military capabilities based on equivalent flying hours with Lockheed C-130 Hercules...initiatives such as NATO PfP, EU BG, MNE, NAMSA, MCCE, ATARES , SALIS, and SAC. The participation in the EU BG concept was as one of the contributors

  4. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  5. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  6. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS is making strong progress toward first launch, and represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  7. Providing drivers with road-edge information to reduce road departure crashes in a military vehicle fleet.

    DOT National Transportation Integrated Search

    2008-02-26

    A leading cause of military vehicle rollover crashes is that one or more wheels move into an area where : the terrain falls away steeply or disappears, leading to vehicle rollover. Vehicle-mounted sensors will : soon be capable of sensing such hazard...

  8. Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker

    NASA Technical Reports Server (NTRS)

    Yue, Shiu H.

    2011-01-01

    The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.

  9. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  10. Rain erosion considerations for launch vehicle insulation systems

    NASA Technical Reports Server (NTRS)

    Daniels, D. J.; Sieker, W. D.

    1977-01-01

    In recent years the Delta launch vehicle has incorporated the capability to be launched through rain. This capability was developed to eliminate a design constraint which could result in a costly launch delay. This paper presents the methodology developed to implement rain erosion protection for the insulated exterior vehicle surfaces. The effect of the interaction between insulation material rain erosion resistance, rainstorm models, surface geometry and trajectory variations is examined. It is concluded that rain erosion can significantly impact the performance of launch vehicle insulation systems and should be considered in their design.

  11. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  12. Operationally Responsive Space Launch for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The Command researched and identified a course of action that has maximized operationally responsive space for Low-Earth-Orbit Space Situational Awareness assets. On 1 Aug 06, Air Force Space Command activated the Space Development and Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) to develop the operationally responsive spacelift capability for Low-Earth-Orbit Space Situational Awareness assets. The LTS created and executed a space enterprise strategy to place small payloads (1500 pounds), at low cost (less than 28M to 30M per launch), repeatable and rapidly into 100 - 255 nautical miles orbits. In doing so, the squadron provides scalable launch support services including program management support, engineering support, payload integration, and post-test evaluation for space systems. The Air Force, through the SDTW/LTS, will continue to evolve as the spacelift execution arm for Space Situational Awareness by creating small, less-expensive, repeatable and operationally responsive space launch capability.

  13. How to Make Money out of RLVs

    NASA Astrophysics Data System (ADS)

    Parkinson, B.

    A successful reusable launch vehicle (RLV) will need to launch payloads at lower prices than competing expendable launch vehicles (ELVs). Existing ELVs have the advantage of written off development costs, and support a range of payload sizes through dual launch and launcher modularity - features not expected to be shared by an RLV. However, the majority of ELV launch costs are expendable hardware, while for RLVs many costs are fixed annual costs. Starting with a per-flight cost below that of competing ELVs, an RLV can support a range of payload sizes at a fixed cost/kg. Since the cost of adding an extra flight to the annual operations (“marginal cost”) is also very much less than the “full recovery” cost, it is possible to extend the range of economic payload sizes downwards. This can provide the customer with a flexible, constant specific cost launcher, while giving the operator a strategy allowing recovery of the development and initial fleet production costs. An estimate for the probability distribution of future payloads (to LEO, GTO and polar orbits) is presented. This can then be used to optimize the vehicle market capture to maximise the operator's profit, or to identify a minimum market size for which an RLV will be profitable.

  14. KSC-2012-3057

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – The drawbridge span of the NASA Railroad’s Jay Jay Railroad Bridge over the Indian River north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida is reopened following the passage of a NASA Railroad train. The permanent configuration of the bridge is open the span is lowered only for a train to cross. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. An Optimization-Based Approach to Determine Requirements and Aircraft Design under Multi-domain Uncertainties

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    Determining the optimal requirements for and design variable values of new systems, which operate along with existing systems to provide a set of overarching capabilities, as a single task is challenging due to the highly interconnected effects that setting requirements on a new system's design can have on how an operator uses this newly designed system. This task of determining the requirements and the design variable values becomes even more difficult because of the presence of uncertainties in the new system design and in the operational environment. This research proposed and investigated aspects of a framework that generates optimum design requirements of new, yet-to-be-designed systems that, when operating alongside other systems, will optimize fleet-level objectives while considering the effects of various uncertainties. Specifically, this research effort addresses the issues of uncertainty in the design of the new system through reliability-based design optimization methods, and uncertainty in the operations of the fleet through descriptive sampling methods and robust optimization formulations. In this context, fleet-level performance metrics result from using the new system alongside other systems to accomplish an overarching objective or mission. This approach treats the design requirements of a new system as decision variables in an optimization problem formulation that a user in the position of making an acquisition decision could solve. This solution would indicate the best new system requirements-and an associated description of the best possible design variable variables for that new system-to optimize the fleet level performance metric(s). Using a problem motivated by recorded operations of the United States Air Force Air Mobility Command for illustration, the approach is demonstrated first for a simplified problem that only considers demand uncertainties in the service network and the proposed methodology is used to identify the optimal design requirements and optimal aircraft sizing variables of new, yet-to-be-introduced aircraft. With this new aircraft serving alongside other existing aircraft, the fleet of aircraft satisfy the desired demand for cargo transportation, while maximizing fleet productivity and minimizing fuel consumption via a multi-objective problem formulation. The approach is then extended to handle uncertainties in both the design of the new system and in the operations of the fleet. The propagation of uncertainties associated with the conceptual design of the new aircraft to the uncertainties associated with the subsequent operations of the new and existing aircraft in the fleet presents some unique challenges. A computationally tractable hybrid robust counterpart formulation efficiently handles the confluence of the two types of domain-specific uncertainties. This hybrid formulation is tested on a larger route network problem to demonstrate the scalability of the approach. Following the presentation of the results obtained, a summary discussion indicates how decision-makers might use these results to set requirements for new aircraft that meet operational needs while balancing the environmental impact of the fleet with fleet-level performance. Comparing the solutions from the uncertainty-based and deterministic formulations via a posteriori analysis demonstrates the efficacy of the robust and reliability-based optimization formulations in addressing the different domain-specific uncertainties. Results suggest that the aircraft design requirements and design description determined through the hybrid robust counterpart formulation approach differ from solutions obtained from the simplistic deterministic approach, and leads to greater fleet-level fuel savings, when subjected to real-world uncertain scenarios (more robust to uncertainty). The research, though applied to a specific air cargo application, is technically agnostic in nature and can be applied to other facets of policy and acquisition management, to explore capability trade spaces for different vehicle systems, mitigate risks, define policy and potentially generate better returns on investment. Other domains relevant to policy and acquisition decisions could utilize the problem formulation and solution approach proposed in this dissertation provided that the problem can be split into a non-linear programming problem to describe the new system sizing and the fleet operations problem can be posed as a linear/integer programming problem.

  16. Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.

  17. Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.

    2012-01-01

    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.

  18. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  19. The National Scientific Balloon Facility. [balloon launching capabilities of ground facility

    NASA Technical Reports Server (NTRS)

    Kubara, R. S.

    1974-01-01

    The establishment and operation of the National Scientific Balloon Facility are discussed. The balloon launching capabilities are described. The ground support systems, communication facilities, and meteorological services are analyzed.

  20. TDRS-L Liftoff

    NASA Image and Video Library

    2014-01-23

    CAPE CANAVERAL, Fla. -- A United Launch Alliance Atlas V rocket streaks through the night sky over Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, carrying NASA's Tracking and Data Relay Satellite, or TDRS-L, to Earth orbit. Launch was at 9:33 p.m. EST Jan. 23 during a 40-minute launch window. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high-bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of three NASA Space Communication and Navigation SCaN networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit http://www.nasa.gov/tdrs. To learn more about SCaN, visit www.nasa.gov/scan. Photo credit: NASA/Kim Shiflett

  1. Current CFD Practices in Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2012-01-01

    The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.

  2. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.

    1995-01-01

    The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.

  3. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knee, H.E.

    2001-07-02

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks withinmore » the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs wi th regard to vehicle control, driver assistance, integration of vehicle intelligence and robotic technologies, managing effectively the information flow to drivers, enhanced logistics capabilities and sustainability of the Army's fleet during battlefield conditions. This paper will highlight the special needs of the Army, briefly describe two programs, which are embracing ITS technologies to a limited extent, will outline the AVIP, and will provide some insight into future Army vehicle intelligence efforts.« less

  4. NASA's Space Launch System: Building a New Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. The initial configuration will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for exploration.

  5. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  6. STS-81 launch view

    NASA Image and Video Library

    1998-06-15

    STS081-S-005 (12 Jan. 1997) --- Lighting up an early morning sky, the Space Shuttle Atlantis lifts off from Pad 39B to begin the new year of space missions for NASA's shuttle fleet. Launch occurred at 4:27:23 a.m. (EST), Jan. 12, 1997. Now on their way for a docking mission with Russia's Mir Space Station are a crew of six astronauts and a SPACEHAB Double Module (DM), along with a large supply of food, water, hardware and other materials for Mir. Astronaut Jerry M. Linenger, now onboard Atlantis, will trade places with John E. Blaha, cosmonaut guest researcher, onboard Mir since mid September 1996. Along with Linenger, other crewmembers now aboard Atlantis are astronauts Michael A. Baker, commander; Brent W. Jett, Jr., pilot; and mission specialists John M. Grunsfeld, Marsha S. Ivins and Peter J. K. (Jeff) Wisoff.

  7. KSC-02pd1576

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, an overhead crane lifts the container with the TDRS-J spacecraft onto a transport vehicle. In the background is the Air Force C-17 air cargo plane that delivered it. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  8. KSC-02pd1575

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - Workers attach the container with the TDRS-J spacecraft inside to an overhead crane. The container will be placed on a transporter and taken to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  9. Taking the Next Steps: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects Office (APO) to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon, Mars, and beyond. The APO continues to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for the Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities that the United States needs to continue its pioneering tradition as a spacefaring nation (Figure 1). This paper will discuss design, fabrication, and testing progress toward building these new launch vehicles.

  10. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Schey; Jim Francfort

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operationalmore » characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.« less

  11. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    DTIC Science & Technology

    2015-06-01

    System UFG Ulchi Freedom Guardian UFO UHF Follow-On System UHF Ultra-High Frequency URE User Range Error VTC Video Teleconference WGS Wideband...in the UHF band; two legacy systems, Fleet Satellite Communication System (FLTSATCOM) and UHF Follow-on ( UFO ), and the new constellation being

  12. Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers

    Science.gov Websites

    was the next step. In 2010, the district purchased four all-electric Smith Newton delivery trucks with -based Smith Electric Vehicles educated local fleet operators about the capabilities of its all-electric conventional trucks do, maintenance expenses were drastically reduced. With close proximity to Smith Electric

  13. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  14. Ares V Launch Capability Enables Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    NASA's Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. A major finding of the NASA Advanced Telescope and Observatory Capability Roadmap Study was that current launch vehicle mass and volume constraints severely limit future space science missions. And thus, that significant technology development is required to package increasingly larger collecting apertures into existing launch shrouds. The Ares V greatly relaxes these constraints. For example, while a Delta IV has the ability to launch approximate a 4.5 meter diameter payload with a mass of 13,000 kg to L2, the Ares V is projected to have the ability to launch an 8 to 12 meter diameter payload with a mass of 60,000 kg to L2 and 130,000 kg to Low Earth Orbit. This paper summarizes the Ares V payload launch capability and introduces how it might enable new classes of future space telescopes such as 6 to 8 meter class monolithic primary mirror observatories, 15 meter class segmented telescopes, 6 to 8 meter class x-ray telescopes or high-energy particle calorimeters.

  15. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  16. Cost and Business Analysis Module (CABAM). Revision A

    NASA Technical Reports Server (NTRS)

    Lee, Michael Hosung

    1997-01-01

    In the recent couple of decades, due to international competition, the US launchers lost a considerable amount of market share in the international space launch industry'. Increased international competition has continuously affected the US dominance to eventually place great pressure on future US space launch programs. To compete for future payload and passenger delivery markets, new launch vehicles must first be capable of reliably reaching a number of desired orbital destinations with customer-desired payload capacities. However, the ultimate success of a new launch vehicle program will depend on the launch price it is capable of offering it's customers. Extremely aggressive pricing strategies will be required for a new domestic launch service to compete with low-price international launchers. Low launch prices, then, naturally require a tight budget for the launch program economy. Therefore, budget constraints established by low-pricing requirements eventually place pressure on new launch vehicles to have unprecedentedly low Life Cycle Costs (LCC's).

  17. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accomodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  18. NASA's Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle. center dot Payload fairings of up to 10-meter diameter are planned. Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t. center dot Evolved version of SLS will offer greatest-ever capability of greater than 130 t to LEO. SLS offers reduced transit times to the outer solar system by half or greater. center dot Higher characteristic energy (C3) also enables larger payloads to destination.

  19. Heavy-Lift for a New Paradigm in Space Operations

    NASA Technical Reports Server (NTRS)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  20. Utilizing HDTV as Data for Space Flight

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt

    2006-01-01

    In the aftermath of the Space Shuttle Columbia accident February 1, 2003, the Columbia Accident Investigation Board recognized the need for better video data from launch, on-orbit, and landing to assess the status and safety of the shuttle orbiter fleet. The board called on NASA to improve its imagery assets and update the Agency s methods for analyzing video. This paper will feature details of several projects implemented prior to the return to flight of the Space Shuttle, including an airborne HDTV imaging system called the WB-57 Ascent Video Experiment, use of true 60 Hz progressive scan HDTV for ground and airborne HDTV camera systems, and the decision to utilize a wavelet compression system for recording. This paper will include results of compression testing, imagery from the launch of STS-114, and details of how commercial components were utilized to image the shuttle launch from an aircraft flying at 400 knots at 60,000 feet altitude. The paper will conclude with a review of future plans to expand on the upgrades made prior to return to flight.

  1. KSC-2012-6457

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  2. KSC-2012-6466

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  3. KSC-2012-6454

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  4. KSC-2012-6462

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  5. KSC-2012-6461

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  6. KSC-2012-6463

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  7. KSC-2012-6465

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  8. KSC-2012-6464

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  9. KSC-2012-6458

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  10. KSC-2012-6460

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  11. KSC-2012-6467

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  12. KSC-2012-6456

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  13. KSC-2012-6459

    NASA Image and Video Library

    2012-12-18

    CAPE CANAVERAL, Fla. -- The Tracking and Data Relay Satellite known as TDRS-K arrives at NASA's Kennedy Space Center in Florida aboard an Air Force C-17 transport aircraft at 8:29 a.m. Dec. 18 at the agency's Kennedy Space Center in Florida in preparation for a Jan. 29 launch to a location in geostationary orbit. TDRS-K flew aboard a U.S. Air Force C-17 from the Boeing Space and Intelligence Systems assembly facility in El Segundo, Calif., for final preparation to launch aboard a United Launch Alliance Atlas V rocket. TDRS-K is the first of three next-generation satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the fleet. Each of the new satellites has a higher performance solar panel design to provide more spacecraft power. This upgrade will return signal processing for the S-Band multiple access service to the ground -- the same as the first-generation TDRS spacecraft. Ground-based processing allows TDRS to service more customers with different and evolving communication requirements. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Kim Shiflett

  14. Horizontal Launch: A Versatile Concept for Assured Space Access

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul; Wilhite, Alan W.; Schaffer, Mark; Voland, Randall T.; Huebner, Larry

    2011-01-01

    The vision of horizontal launch is the capability to provide a mobile launch pad that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and achieve precise placement for orbital intercept, rendezvous, or reconnaissance. Another compelling benefit of horizontal launch is that today s ground-based vertical launch pads are a single earthquake, hurricane, or terrorist attack away from disruption of critical U.S. launch capabilities. The study did not attempt to design a new system concept for horizontal launch, but rather focused on the refinement of many previously-studied horizontal launch concepts. Because of the large number of past horizontal launch studies, a process was developed to narrow the number of concepts through prescreening, screening, and evaluation of point designs. The refinement process was not intended to select the "best" concept, but rather to establish the feasibility of horizontal launch from a balanced assessment of figures of merit and to identify potential concepts that warrant further exploration.

  15. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  16. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  17. KSC-2012-3053

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-3052

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  19. KSC-2012-2889

    NASA Image and Video Library

    2012-05-21

    CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, cranes are enlisted to lift helium tank cars from their trucks onto flat cars in preparation for a journey to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s tank cars will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The yard is located in Kennedy’s Launch Complex 39 near the 525-foot-tall Vehicle Assembly Building, in the background. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-3056

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train has crossed the Indian River on the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-3050

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-3051

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. Wildlife of southern forests habitat & management (Chapter 15): Rabbits

    Treesearch

    James G. Dickson

    2003-01-01

    Rabbits, or lagomorphs, resemble rodents. But unlike rodents they have relatively large hind legs, large ears, a short fluffy tail, and 2 sets of upper incisors. Like rodents their incisors grow continually. They can either walk or hop, and are fleet and elusive when evading predators. They normally are silent but are capable of several different vocalizations. Rabbits...

  4. NASA Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    SLS provides capability for human exploration missions. 70 t configuration enables EM-1 and EM-2 flight tests. Evolved configurations enable missions including humans to Mars. u? SLS offers unrivaled benefits for a variety of missions. 70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle ever. With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle. center dot Initial ICPS configuration and future evolution will offer high C3 for beyond- Earth missions. SLS is currently on schedule for first launch in December 2017. Preliminary design completed in July 2013; SLS is now in implementation. Manufacture and testing are currently underway. Hardware now exists representing all SLS elements.

  5. Ares V: Designing the Heavy Lift Capability to Explore the Moon

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, Craig

    2007-01-01

    NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable ofplacing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet fall. As currently envisioned, it will lift 136 metric tons (300,000 pounds) to a 30-by-160 nautical mile orbit at 28.5-degrees inclination, or 55 metric tons (120,000 pounds) to trans-lunar injection. This paper will cover the latest developments in the Ares V project in 2007 and discuss future activities.

  6. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  7. KSC-2012-2749

    NASA Image and Video Library

    2012-05-11

    CAPE CANAVERAL, Fla. – United Space Alliance test conductors monitor the Firing Room 4 Master Console in the Launch Control Center as operations to power down space shuttle Endeavour for the final time are under way in Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida. From left are Dave Martin, Gary Lewis, Ethan Waldron, and John Robb. The overall health and status of the shuttle’s Launch Processing System is overseen and controlled from the Master Console. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Tim Jacobs

  8. KSC-02pd1574

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - A crane is lifted from the SLF to attach to the container with the TDRS-J spacecraft inside (at left). The container will be placed on a transporter and taken to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  9. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.

  10. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Schey; Jim Francfort

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify dailymore » operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel« less

  12. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.

  13. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  14. An evaluation of the LPG vehicles program in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Díaz, L; López-Salinas, E; Rodríguez, R; Avalos, S; Guerrero, V

    2000-02-01

    The environmental agency in the metropolitan area of Mexico City has launched a program to introduce more energy-efficient modes of transport, one of which is the use of alternative and less polluting fuels. With the perspective in mind, a liquefied petroleum gas (LPG) fleet of vehicles is exempt of the mandatory "one day without a car" program if the emission of pollutants is below the standard authorized for that specific purpose. Today, about 28,000 light-duty vehicles and heavy-duty trucks circulate in the area, most of them as aftermarket converted vehicles. In this work, we evaluated regulated exhaust emission and other parameters on 134 representative vehicles of that fleet. From the data obtained, an estimate of emission factors and their contribution to the global emission in the metropolitan area is provided. It is concluded that more than 95% of the in-use vehicles using LPG presented regulated emissions which exceeded in one or more the environmental regulations values required for certification. The poor maintenance of the vehicles and the type of conversion kit installed could be the culprits of the results obtained.

  15. Transportation: Destination Mars

    NASA Technical Reports Server (NTRS)

    Eoff, Bill

    1998-01-01

    As the agency space transportation lead center, Marshall Space Flight Center has been conducting transportation assessments for future robotic and human Mars missions to identify critical technologies. Five human Mars options are currently under assessment with each option including all transportation requirements from Earth to Mars and return. The primary difference for each option is the propulsion source from Earth to Mars. In case any of the options require heavy launch capability that is not currently projected as available, an in-house study has been initiated to determine the most cost effective means of providing such launch capability. This assessment is only considering launch architectures that support the overall human Mars mission cost goal of $25B. The guidelines for the launch capability study included delivery of 80 metric ton (176 KLB) payloads, 25 feet diameter x 92 feet long, to 220 nmi orbits at 28.5 degrees. The launch vehicle concept of the study was designated "Magnum" to differentiate from prior heavy launch vehicle assessments. This assessment along with the assessment of options for all transportation phases of a Mars mission are on-going.

  16. Comparison of current Shuttle and pre-Challenger flight suit reach capability during launch accelerations

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Schafer, Lauren E.

    1992-01-01

    The Challenger accident prompted the creation of a crew escape system which replaced the former Launch Entry Helmet (LEH) ensemble with the current Launch Entry Suit (LES). However, questions were raised regarding the impact of this change on crew reach capability. This study addressed the question of reach capability and its effects on realistic ground-based training for Space Shuttle missions. Eleven subjects performed reach sweeps in both the LEH and LES suits during 1 and 3 Gx acceleration trials in the Brooks AFB centrifuge. These reach sweeps were recorded on videotape and subsequently analyzed using a 3D motion analysis system. The ANOVA procedure of the Statistical Analysis System program was used to evaluate differences in forward and overhead reach. The results showed that the LES provided less reach capability than its predecessor, the LEH. This study also demonstrated that, since there was no substantial difference between 1 and 3 Gx reach sweeps in the LES, realistic Shuttle launch training may be accomplished in ground based simulators.

  17. Ascent abort capability for the HL-20

    NASA Technical Reports Server (NTRS)

    Naftel, J. C.; Talay, T. A.

    1993-01-01

    The HL-20 has been designed with the capability for rescue of the crew during all phases of powered ascent from on the launch pad until orbital injection. A launch-escape system, consisting of solid rocket motors located on the adapter between the HL-20 and the launch vehicle, provides the thrust that propels the HL-20 to a safe distance from a malfunctioning launch vehicle. After these launch-escape motors have burned out, the adapter is jettisoned and the HL-20 executes one of four abort modes. In three abort modes - return-to-launch-site, transatlantic-abort-landing, and abort-to-orbit - not only is the crew rescued, but the HL-20 is recovered intact. In the ocean-landing-by-parachute abort mode, which occurs in between the return-to-launch-site and the transatlantic-abort-landing modes, the crew is rescued, but the HL-20 would likely sustain damage from the ocean landing. This paper describes the launch-escape system and the four abort modes for an ascent on a Titan III launch vehicle.

  18. Near-Earth Phase Risk Comparison of Human Mars Campaign Architectures

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Nejad, Hamed S.; Mattenberger, Chris

    2013-01-01

    A risk analysis of the launch, orbital assembly, and Earth-departure phases of human Mars exploration campaign architectures was completed as an extension of a probabilistic risk assessment (PRA) originally carried out under the NASA Constellation Program Ares V Project. The objective of the updated analysis was to study the sensitivity of loss-of-campaign risk to such architectural factors as composition of the propellant delivery portion of the launch vehicle fleet (Ares V heavy-lift launch vehicle vs. smaller/cheaper commercial launchers) and the degree of launcher or Mars-bound spacecraft element sparing. Both a static PRA analysis and a dynamic, event-based Monte Carlo simulation were developed and used to evaluate the probability of loss of campaign under different sparing options. Results showed that with no sparing, loss-of-campaign risk is strongly driven by launcher count and on-orbit loiter duration, favoring an all-Ares V launch approach. Further, the reliability of the all-Ares V architecture showed significant improvement with the addition of a single spare launcher/payload. Among architectures utilizing a mix of Ares V and commercial launchers, those that minimized the on-orbit loiter duration of Mars-bound elements were found to exceed the reliability of no spare all-Ares V campaign if unlimited commercial vehicle sparing was assumed

  19. KSC-2012-2888

    NASA Image and Video Library

    2012-05-21

    CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, helium tank cars are lifted from their trucks onto flat cars in preparation for a journey to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s tank cars will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2890

    NASA Image and Video Library

    2012-05-21

    CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, helium tank cars have been removed from their trucks and loaded onto flat cars in preparation for a journey to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s tank cars will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  1. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  2. SLS Overview and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle Payload fairings of up to 10-meter diameter are being studied Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t Evolved version of SLS will offer Mars-enabling capability of greater than 130 metric tons to LEO SLS offers reduced transit times to the outer solar system by half or greater Higher characteristic energy (C3) also enables larger payloads to destination

  3. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.

  4. C3 Performance of the Ares-I Launch Vehicle and its Capabilities for Lunar and Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Thomas, H. Dan

    2008-01-01

    NASA s Ares-I launch vehicle will be built to deliver the Orion spacecraft to Low-Earth orbit, servicing the International Space Station with crew-transfer and helping humans begin longer voyages in conjunction with the larger Ares-V. While there are no planned missions for Ares-I beyond these, the vehicle itself offers an additional capability for robotic exploration. Here we present an analysis of the capability of the Ares-I rocket for robotic missions to a variety of destinations, including lunar and planetary exploration, should such missions become viable in the future. Preliminary payload capabilities using both single and dual launch architectures are presented. Masses delivered to the lunar surface are computed along with throw capabilities to various Earth departure energies (i.e. C3s). The use of commercially available solid rocket motors as additional payload stages were analyzed and will also be discussed.

  5. Fast Charging Electric Vehicle Research & Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heny, Michael

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequatemore » charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.« less

  6. The NASA Space Launch System Program Systems Engineering Approach for Affordability

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    The National Aeronautics and Space Administration is currently developing the Space Launch System to provide the United States with a capability to launch large Payloads into Low Earth orbit and deep space. One of the development tenets of the SLS Program is affordability. One initiative to enhance affordability is the SLS approach to requirements definition, verification and system certification. The key aspects of this initiative include: 1) Minimizing the number of requirements, 2) Elimination of explicit verification requirements, 3) Use of certified models of subsystem capability in lieu of requirements when appropriate and 4) Certification of capability beyond minimum required capability. Implementation of each aspect is described and compared to a "typical" systems engineering implementation, including a discussion of relative risk. Examples of each implementation within the SLS Program are provided.

  7. Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Sabahi, D.; Graf, J. E.

    2000-01-01

    A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.

  8. Air Force is Developing Risk-Mitigation Strategies to Manage Potential Loss of the RD-180 Engine (REDACTED)

    DTIC Science & Technology

    2015-03-05

    launched on its rocket- estimated completion date of May 2015. Air Force will require verification that SpaceX can meet payload integration...design and accelerate integration capability at Space Exploration Technologies Corporation ( SpaceX )1 launch sites. o The Air Force does not intend to...accelerate integration capabilities at SpaceX launch sites because of the studies it directed, but will require verification that SpaceX can meet

  9. The Future of Additive Manufacturing in Air Force Acquisition

    DTIC Science & Technology

    2017-03-22

    manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the

  10. NREL Collaborates with Trucking Industry to Prioritize R&D Opportunities |

    Science.gov Websites

    Department drive decision-making and improve efficiency, informing long-term, high-risk research such as the Rosa Using Data to Drive Decision Making NREL's fleet test and evaluation team conducts real-world 21CTP an example of NREL's data evaluation and decision support capabilities. Using data collected in

  11. STDN network operations procedure for Apollo range instrumentation aircraft, revision 1

    NASA Technical Reports Server (NTRS)

    Vette, A. R.; Pfeiffer, W. A.

    1972-01-01

    The Apollo range instrumentation aircraft (ARIA) fleet which consists of four EC-135N aircraft used for Apollo communication support is discussed. The ARIA aircraft are used to provide coverage of lunar missions, earth orbit missions, command module/service module separation to spacecraft landing, and assist in recovery operations. Descriptions of ARIA aircraft, capabilities, and instrumentation are included.

  12. Satellite mobile data service for Canada

    NASA Technical Reports Server (NTRS)

    Egan, Glenn R.; Sward, David J.

    1990-01-01

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  13. CubeSat Deployment Photos

    NASA Image and Video Library

    2016-09-14

    View taken by the Expedition 49 crew of track of first of four pairs of Planet Lab DoveSats over the Earth. This deployment titled “Flock 2” is a fleet of nanosatellites designed, built and operated by Planet Labs Inc., and will enable imagery of the changing planet to be taken on a frequent basis, with humanitarian and environmental applications ranging from monitoring deforestation and the ice caps to disaster relief and improving agriculture yields in developing nations. Image used as part of Twitter message - We launched two satellites from @Space_Station today – like skydivers soaring towards the earth." #AstroKate.

  14. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).

  15. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing infrastructure requirements, cost, and schedule. A traditional baseline approach for a mission to investigate the Jovian system would require a complicated trajectory with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, offering significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, providing scientific results sooner and at lower operational cost. The SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure, and will revolutionize science mission planning and design for years to come. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  16. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart

    2012-01-01

    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US) EO, assuming a reference launch vehicle with 5 RP engines on the CS and 3 LOX/LH2 engines on the US. The benefit of adding both CS and US engine-out capability is significant. When adding EOC for either first or second stages, there is less than a 20% benefit. Performance analysis has shown that if the vehicle is not protected for EO during the first part of the flight and only protected in the later part of the flight, there is a diminishing performance penalty, as indicated by failures occurring in the first stage at different times. This work did not consider any options to abort. While adding an engine for EOC drives cost upward, the impact depends on the number of needed engines manufactured per year and the launch manifest. There is a significant cost savings if multiple flights occur within one year. Flying two flights per year would cost approximately $4,000 per pound less than the same configuration with one flight per year, assuming both CS and US EOC. The cost is within 15% of the cost of one flight per year with no engine-out capability for the same vehicle. This study can be extended to other launch vehicles. While the numbers given in this paper are specific to a certain vehicle configuration, the process requires only a high level of data to allow an analyst to draw conclusions. The weighting of each of the identified parameters will determine the optimization of each launch vehicle. The results of this engine-out assessment provide a means to understand this optimization while maintaining an unbiased perspective.

  17. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  18. Evolution of the Florida Launch Site Architecture: Embracing Multiple Customers, Enhancing Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Colloredo, Scott; Gray, James A.

    2011-01-01

    The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.

  19. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  20. Assessing Upper-Level Winds on Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  1. Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig; Lacey, Matt

    2007-01-01

    NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.

  2. The Ares I Crew Launch Vehicle: Human Space Access for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle (Figure 1), the United States first new human-rated launch vehicle in over 25 years. Ares I will provide the core space launch capabilities the United States needs to continue providing crew and cargo access to the International Space Station (ISS), maintaining the U.S. pioneering tradition as a spacefaring nation, and enabling cooperative international ventures to the Moon and beyond. This paper will discuss programmatic, design, fabrication, and testing progress toward building this new launch vehicle.

  3. Robust flight design for an advanced launch system vehicle

    NASA Astrophysics Data System (ADS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  4. SLS EM-1 Launch Animation

    NASA Image and Video Library

    2017-10-31

    Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.

  5. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  6. Creative Analytics of Mission Ops Event Messages

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2017-01-01

    Historically, tremendous effort has been put into processing and displaying mission health and safety telemetry data; and relatively little attention has been paid to extracting information from missions time-tagged event log messages. Todays missions may log tens of thousands of messages per day and the numbers are expected to dramatically increase as satellite fleets and constellations are launched, as security monitoring continues to evolve, and as the overall complexity of ground system operations increases. The logs may contain information about orbital events, scheduled and actual observations, device status and anomalies, when operators were logged on, when commands were resent, when there were data drop outs or system failures, and much much more. When dealing with distributed space missions or operational fleets, it becomes even more important to systematically analyze this data. Several advanced information systems technologies make it appropriate to now develop analytic capabilities which can increase mission situational awareness, reduce mission risk, enable better event-driven automation and cross-mission collaborations, and lead to improved operations strategies: Industry Standard for Log Messages. The Object Management Group (OMG) Space Domain Task Force (SDTF) standards organization is in the process of creating a formal standard for industry for event log messages. The format is based on work at NASA GSFC. Open System Architectures. The DoD, NASA, and others are moving towards common open system architectures for mission ground data systems based on work at NASA GSFC with the full support of the commercial product industry and major integration contractors. Text Analytics. A specific area of data analytics which applies statistical, linguistic, and structural techniques to extract and classify information from textual sources. This presentation describes work now underway at NASA to increase situational awareness through the collection of non-telemetry mission operations information into a common log format and then providing display and analytics tools to provide in-depth assessment of the log contents. The work includes: Common interface formats for acquiring time-tagged text messages Conversion of common files for schedules, orbital events, and stored commands to the common log format Innovative displays to depict thousands of messages on a single display Structured English text queries against the log message data store, extensible to a more mature natural language query capability Goal of speech-to-text and text-to-speech additions to create a personal mission operations assistant to aid on-console operations. A wide variety of planned uses identified by the mission operations teams will be discussed.

  7. Report on the KIMS-CNA Conference (2nd): The PLA Navy’s Build-Up and ROK-USN Cooperation, Held in Seoul, Korea on 20 November 2008

    DTIC Science & Technology

    2009-02-01

    Kegan Paul International and The AEI Press, 1996), p. 274. See also his "China’s Push Through the South China Sea: The Interaction of Bureaucratic and...to " green /blue water" navy enable to secure its vast maritime territorial claims with modern combat capability. For long time, the Chinese navy...operational capability placed somewhat between "coastal defense" and "full ocean-going green water fleet." It is conceivable that the Chinese navy’s

  8. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  9. KSC-2012-3046

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-3044

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3043

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3045

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Manatees relax in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatees were spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-3040a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Bubbles form around a dolphin splashing in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-3041a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin plays in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3042

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. Orbital spacecraft consumables resupply

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.; Eberhardt, Ralph N.; Tracey, Thomas R.

    1988-01-01

    The capability to replenish spacecraft, satellites, and laboratories on-orbit with consumable fluids provides significant increases in their cost and operational effectiveness. Tanker systems to perform on-orbit fluid resupply must be flexible enough to operate from the Space Transportation System (STS), Space Station, or the Orbital Maneuvering Vehicle (OMV), and to accommodate launch from both the Shuttle and Expendable Launch Vehicles (ELV's). Resupply systems for storable monopropellant hydrazine and bipropellants, and water have been developed. These studies have concluded that designing tankers capable of launch on both the Shuttle and ELV's was feasible and desirable. Design modifications and interfaces for an ELV launch of the tanker systems were identified. Additionally, it was determined that modularization of the tanker subsystems was necessary to provide the most versatile tanker and most efficient approach for use at the Space Station. The need to develop an automatic umbilical mating mechanism, capable of performing both docking and coupler mating functions was identified. Preliminary requirements for such a mechanism were defined. The study resulted in a modular tanker capable of resupplying monopropellants, bipropellants, and water with a single design.

  17. Concept design and hydrodynamic optimization of an innovative SWATH USV by CFD methods

    NASA Astrophysics Data System (ADS)

    Brizzolara, Stefano; Curtin, Tom; Bovio, Marco; Vernengo, Giuliano

    2012-02-01

    The paper presents the main characteristics of an innovative platform which has been conceived and designed to extend the operational capabilities of current unmanned surface vehicles in terms of platform stability in waves and of powering requirement at a relatively high speed. The main idea which rules the project is the realization of a small autonomous surface unit (about 6 m in length) capable of undertaking several tasks in the marine environment even with moderate rough sea conditions. The designed vessel has the ability to locate, recover, and launch other members of the autonomous fleet (like AUVs or other underwater devices) and at the same time could carry out a surveillance service of the surrounding areas. To manage these tasks, the vehicle is designed to provide a fairly good autonomy which is needed to face intermediate-range missions (100 nautical miles). The choice of a small waterplane area twin hull (SWATH) form has been motivated by its excellent properties of seakeeping qualities, combined with a non-conventional low resistance underwater hull shape, currently under patenting process, which is able to reduce to a minimum the resistance of the vessel especially at higher speeds. To obtain the most efficient profile of the underwater bodies, a systematic optimization with an automatic procedure based on a parametric definition of the geometry, a state-of-the-art computational fluid dynamics (CFD) flow solver, and a differential evolution global minimization algorithm have been created and used. As expected, all the final CFD computations on the best design have demonstrated the superior efficiency of the developed unconventional SWATH technology with respect to different alternatives of current hull typologies.

  18. Research Vessel R/V Sikuliaq: Joining the UNOLS Fleet in 2014

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.

    2013-12-01

    The global class research vessel R/V Sikuliaq is being constructed on behalf of the NSF to support future scientific studies in high latitude waters. The 261 foot vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 11 knots. The R/V Sikuliaq has a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms with one stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room are 2100 square feet. The 4360 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans and multiple science operations. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side 'hands free' gear handling, broad band communications and scientific walk-in freezer and environmental chamber. More details and photos of the construction progress are available on the website at www.sfos.uaf.edu/arrv. The vessel was launched in October 2012 and delivery to the University of Alaska Fairbanks is scheduled for November 2013. Scientific operations following testing and science sea trials are planned to start in summer of 2014. Questions about the science systems or vessel capabilities should be directed to Terry Whitledge (terry@ims.uaf.edu).

  19. Research Vessel R/V Sikuliaq: A New Asset For The UNOLS Fleet

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.

    2012-12-01

    The research vessel R/V Sikuliaq is currently being constructed on behalf of the NSF to support future scientific studies in high latitude waters. The 261 foot global class vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 11 knots. The R/V Sikuliaq will have a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms with one stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room will be 2100 square feet. The 4360 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans and multiple science operations. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side "hands free" gear handling, broad band communications and scientific walk-in freezer and environmental chamber. More details and photos of the construction progress are available on the website at www.sfos.uaf.edu/arrv. The shipyard schedule has a launch date of October 2012 and delivery to the University of Alaska Fairbanks in July 2013. Scientific operations following trials and testing is planned to start in January 2014. Questions about the science systems or vessel capabilities should be directed to Terry Whitledge (terry@ims.uaf.edu).;

  20. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  1. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David

    2009-01-01

    There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.

  2. Global Fleet Station: Station Ship Concept

    DTIC Science & Technology

    2008-02-01

    The basic ISO TEU containers can be designed for any number of configurations and provide many different capabilities. For example there are...Design Design Process The ship was designed using an iterative weight and volume balancing method . This method assigns a weight and volume to each...from existing merchant ships3. Different ship types are modeled in the algorithm though the selection of appropriate non-dimensional factors

  3. Japan’s Self Defense Forces After the Great East Japan Earthquake: Toward a New Status Quo

    DTIC Science & Technology

    2012-03-01

    capable HADR platforms in the MSDF fleet. Yoji Koda , “A New Carrier Race?” Naval War College Review 64, no. 3 (Summer, 2011), 31, 48–55. 72...May 15, 2011, http://www.asahi.com/english/TKY201105150229.html. Koda , Yoji. “A New Carrier Race?” Naval War College Review 64, no. 3 (Summer, 2011

  4. Desert Storm and the New American Way of War: Implications for Air Force 2030

    DTIC Science & Technology

    2012-06-01

    2016: Executive Summary (2010), 4. http://www.airforce-magazine.com/SiteCollectionDocuments/ TheDocumentFile/Mobility/ MCRS -16_execsummary.pdf... MCRS -16 determined Air Force...2030 will maintain a tactical airlift fleet of 318 C-130 aircraft, 134 of which are the more capable C-130J along with 184 older C-130H models.33 An

  5. Roles and Functions, Assessment of the Chairman of the Joint Chiefs Of Staff Report

    DTIC Science & Technology

    1993-07-01

    investments . In October 1992, the Director, Defense Test and Evaluation, informed the Chairman of ... in draft form for the past few years, addressed future test investments as opposed to consolidation of test capabilities and a reduced test and...construction program, the improvements in quieting achieved by the Russian submarine fleet, the level of Russian See comment 10. investment in

  6. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life-cycle milestones such as the vehicle's Preliminary Design Review (PDR). The paper will also discuss the remaining challenges both in delivering the 70-t vehicle and in evolving its capabilities to the 130-t vehicle, and how NASA plans to accomplish these goals. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  7. Commercial Titan ELV - Filling a need in the national Space Transportation System

    NASA Astrophysics Data System (ADS)

    Jenkins, T. M.; Davis, R. M., Jr.

    1983-06-01

    The design and performance capabilities of the Titan 34D launch vehicle are reviewed, noting that it is proven launch system that is capable of complementing the Shuttle in terms of having an available, large payload-capacity launch system for domestic satellites. The Titan's development began in the 1950s as an ICBM, and the Titan III configuration was first flown in 1966, followed by 121 operational launches with a 99 percent success rate. The current configuration features a fairing large enough to hold a 150 in. diam payload. Satellites up to 12,500 lb can be launched into GEO, 27,600 lb into polar orbits, and 34,100 lb into LEO. The Titan 34D is reconfigurable and can carry payloads that would otherwise be handled by the Shuttle.

  8. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2015-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  9. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2014-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  10. Study to identify future cryogen payload elements/users for space shuttle launch during period 1990 to 2000

    NASA Technical Reports Server (NTRS)

    Elim, Frank M.

    1989-01-01

    This study provides a summary of future cryogenic space payload users, their currently projected needs and reported planning for space operations over the next decade. At present, few users with payloads consisting of reactive cryogens, or any cryogen in significant quantities, are contemplating the use of the Space Shuttle. Some members of the cryogenic payload community indicated an interest in flying their future planned payloads on the orbiter, versus an expendable launch vehicle (ELV), but are awaiting the outcome of a Rockwell study to define what orbiter mods and payloads requirements are needed to safely fly chemically reactive cryogen payloads, and the resultant cost, schedule, and operational impacts. Should NASA management decide in early 1990 to so modify orbiter(s), based on the Rockwell study and/or changes in national defense payloads launch requirements, then at least some cryo payload customers will reportedly plan on using the Shuttle orbiter vehicle in preference to an ELV. This study concludes that the most potential for possible future cryogenic space payloads for the Space Transportation System Orbiter fleet lies within the scientific research and defense communities.

  11. New Zealand traffic and local air quality.

    PubMed

    Irving, Paul; Moncrieff, Ian

    2004-12-01

    Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand.

  12. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  13. NASA's Space Launch System: A New Capability for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Creech, Stephen D.; May, Todd A.

    2014-01-01

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

  14. NASA's Space Launch System: A New Capability for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher characteristic energy (C3), can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

  15. n/a

    NASA Image and Video Library

    1970-02-04

    The Thorad-Agena launch vehicle with the SERT-2 (Space Electric Rocket Test-2) spacecraft on launch pad at the Western Test Range in California. The SERT-2 was launched on February 4, 1970 and tested the capability of an electric ion thruster system.

  16. Transforming KSC to be the World's Premier 21st Century Launch Complex

    NASA Technical Reports Server (NTRS)

    Engler, Tom

    2011-01-01

    This slide presentation reviews the work being done to transform the Kennedy Space Center into what is hoped to be the world's premier launch complex, capable of launching commercial and government satellites and manned spacecraft.

  17. Use of Smoothed Measured Winds to Predict and Assess Launch Environments

    NASA Technical Reports Server (NTRS)

    Cordova, Henry S.; Leahy, Frank; Adelfang, Stanley; Roberts, Barry; Starr, Brett; Duffin, Paul; Pueri, Daniel

    2011-01-01

    Since many of the larger launch vehicles are operated near their design limits during the ascent phase of flight to optimize payload to orbit, it often becomes necessary to verify that the vehicle will remain within certification limits during the ascent phase as part of the go/no-go review made prior to launch. This paper describes the approach used to predict Ares I-X launch vehicle structural air loads and controllability prior to launch which represents a distinct departure from the methodology of the Space Shuttle and Evolved Expendable Launch Vehicle (EELV) programs. Protection for uncertainty of key environment and trajectory parameters is added to the nominal assessment of launch capability to ensure that critical launch trajectory variables would be within the integrated vehicle certification envelopes. This process was applied by the launch team as a key element of the launch day go/no-go recommendation. Pre-launch assessments of vehicle launch capability for NASA's Space Shuttle and the EELV heavy lift versions require the use of a high-resolution wind profile measurements, which have relatively small sample size compared with low-resolution profile databases (which include low-resolution balloons and radar wind profilers). The approach described in this paper has the potential to allow the pre-launch assessment team to use larger samples of wind measurements from low-resolution wind profile databases that will improve the accuracy of pre-launch assessments of launch availability with no degradation of mission assurance or launch safety.

  18. Built to Explore MSFC-SLS-077

    NASA Image and Video Library

    2018-04-20

    NASA's Space Launch System, the world's most powerful rocket, will enable a new era of exploration. With NASA's Orion spacecraft, SLS will launch astronauts on missions to the Moon, Mars and beyond. Exploration Mission-1, the first integrated flight of SLS and an uncrewed Orion, will be the first in a series of increasingly complex missions that will provide the foundation for human deep-space exploration and demonstrate NASA's commitment and capability to extend human existence beyond low-Earth orbit. Launching from NASA's Kennedy Space Center in Florida, the nation's premier multi-user spaceport, SLS will be the only rocket capable of sending crew and large cargo to the Moon in a single launch. (NASA/MSFC)

  19. Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems

    DTIC Science & Technology

    2015-06-01

    stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to rapidly launch a...requirements for the stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to... Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Conclusion 125 7.1 Summary of Findings

  20. 33 CFR 149.315 - What embarkation, launching, and recovery arrangements must rescue boats meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recovery arrangements must rescue boats meet? 149.315 Section 149.315 Navigation and Navigable Waters COAST..., launching, and recovery arrangements must rescue boats meet? (a) Each rescue boat must be capable of being... boat embarkation and launching arrangement must permit the rescue boat to be boarded and launched in...

  1. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  2. KSC-2012-3034a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Engineers board a NASA Railroad train in preparation for its departure from the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-3039a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. At the far right is the Orbiter Processing Facility. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-3036a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the twin bays of the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  5. KSC-2012-3035a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the twin bays of the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services

    NASA Technical Reports Server (NTRS)

    Sierra, Albert; Beddel, Darren

    1999-01-01

    The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.

  7. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  8. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  9. Refining the Ares V Design to Carry Out NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

  10. Sensitivity tests of two-dimensional model predictions of corridor effects. [concentration of spacecraft produced air pollutants into narrow latitude ranges

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Capone, L. A.; Riegel, C. A.

    1981-01-01

    Future aerospace-vehicle systems, such as supersonic transport fleets, the Space Shuttle (SS), and the Heavy-Lift Launch Vehicle (HLLV) system will inject substantial amounts of pollutants into the stratosphere. It is, therefore, pertinent to ask whether the operation of these systems will lead to deleterious effects in the atmosphere. The current investigation is concerned with the development of criteria to assess the likelihood of a detectable corridor effect being caused by the long-term deposition of pollutants at a single latitude. The sources are assumed to operate continuously and at a uniform rate for periods of many years. It is found that transport by meridional winds and by eddy processes acts to diminish the corridor effect by advecting the pollutants out of the region of injection and by mixing them with the ambient air. Attention is given to the altitude for which a detectable corridor effect can be expected for the hypothetical launching of 400 HLLV's per year for 10 years.

  11. Electric propulsion for lunar exploration and lunar base development

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1992-01-01

    Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.

  12. Cross-scale coupling studies with the Heliophysics/Geospace System Observatory: THEMIS/ARTEMIS contributions

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.; Hietala, H.; Liu, Z.; Mende, S. B.; Phan, T.; Nishimura, T.; Strangeway, R. J.; Burch, J. L.; Moore, T. E.; Giles, B. L.

    2015-12-01

    The recent launch of MMS, the impending launch of ERG, the continued availability of space (NASA, NOAA, International) and ground based assets (THEMIS GBOs, TREx, SuperDARN) enable a comprehensive study of global drivers of (and responses to) kinetic processes at the magnetopause, the magnetotail, the inner magnetosphere and the ionosphere. Previously unresolved questions related to the nature of the modes of magnetospheric convection (pseudobreakups, substorms, SMCs and storms) can now be addressed simultaneously at a kinetic level (with multi-spacecraft missions) and at a global level (with the emerging, powerful H/GSO). THEMIS has been tasked to perform orbital changes that will optimize the observatory, and simultaneously place its probes, along with MMS's, at the heart of where critical kinetic processes occur, near sites of magnetic reconnection and magnetic energy conversion, and in optimal view of ground based assets. I will discuss these unique alignments of the H/GSO fleet that can reveal how cross-scale coupling is manifest, allowing us to view old paradigms in a new light.

  13. Application of Risk within Net Present Value Calculations for Government Projects

    NASA Technical Reports Server (NTRS)

    Grandl, Paul R.; Youngblood, Alisha D.; Componation, Paul; Gholston, Sampson

    2007-01-01

    In January 2004, President Bush announced a new vision for space exploration. This included retirement of the current Space Shuttle fleet by 2010 and the development of new set of launch vehicles. The President's vision did not include significant increases in the NASA budget, so these development programs need to be cost conscious. Current trade study procedures address factors such as performance, reliability, safety, manufacturing, maintainability, operations, and costs. It would be desirable, however, to have increased insight into the cost factors behind each of the proposed system architectures. This paper reports on a set of component trade studies completed on the upper stage engine for the new launch vehicles. Increased insight into architecture costs was developed by including a Net Present Value (NPV) method and applying a set of associated risks to the base parametric cost data. The use of the NPV method along with the risks was found to add fidelity to the trade study and provide additional information to support the selection of a more robust design architecture.

  14. TDRS-L Tribute Decal to Arthur "Skip" Mackey, Jr.

    NASA Image and Video Library

    2014-01-22

    CAPE CANAVERAL, Fla. – This memorial message was added to the Atlas V rocket for NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft being prepared for launch from Cape Canaveral Air Force Station's Launch Complex 41. Arthur J. "Skip" Mackey Jr. was the “Voice of NASA” during the 1960s, 1970s and early 1980s for flight commentary after liftoff for expendable vehicles launched from Cape Canaveral. Mackey served as branch chief for Telemetry and Communications at Hangar AE in the agency’s Expendable Launch Vehicle Program and then the Launch Services Program for 39 years. He died in Fort Lauderdale, Fla., on Nov. 19, 2013. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan For more on "Skip" Mackey go to: http://www.nasa.gov/content/skip-mackey-remembered-by-colleagues-as-voice-of-nasa/ Image credit: United Launch Alliance

  15. Assessment of Surface Ship Maintenance Requirements

    DTIC Science & Technology

    2015-01-01

    specifically Operational Availability (Ao) and Expected Service Life ( ESL ). Second, it requested NDRI to develop a maintenance requirement concept for each...ship class that supports ESL but allows for some risk within the maintenance strategy. It also asked researchers to define the risks to Ao and ESL ...to minimize negative effects to Ao and ESL and maintain the largest, most capable fleet possible. Note that the tasking did not request a complete

  16. Developing Navy Capability to Recover Forces in Chemical, Biological, and Radiological Hazard Environments

    DTIC Science & Technology

    2013-01-01

    damage control; LHD flight deck and well deck operations; fleet surgical team; Afloat Training Group; Assault Craft Unit; Naval Surface Warfare Center ...Biological, Radiological and Nuclear School, and U.S. Army Edgewood Chemical Biological Center , Guidelines for Mass Casualty Decontamination During a HAZMAT...Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by OSD, the Joint Staff

  17. Recommendations to Commander, Naval Surface Forces, for Achieving a Strategic Approach to the Acquisition of Information Systems and Services

    DTIC Science & Technology

    2010-09-01

    policy or position of the Department of Defense or the U.S. government . IRB Protocol number _______N/A______. 12a. DISTRIBUTION / AVAILABILITY...72 3. GAO Case Study of Commercial Transformation in Decision Making on IS Acquisition Spending (Case Study Located in Appendix C...Program FRE Fleet Readiness Enterprise GAO government Accountability Office IOC Initial Operating Capability xvi IS Information

  18. Soldier Capability - Army Combat Effectiveness (SCACE). Volume 2. Selected Bibliography

    DTIC Science & Technology

    1981-02-01

    Human Resources Research Office, June 1963. 388. McLachlan, Joseph C., et al. Navy-Wide Standardized Proficiency Testing Program for Fleet JEZEBEL...Directorate of Evaluation, August 1979. 428. Olmstead, Joseph A., et al. Research on Training for Brigade Com- mand Groups: Factors Contributing to Unit...orormance Human Rsurces Research Organization, August 1972. 686. Vitola, B. M., Guinn, N., and Wilbourn , J. N. acm o Various Enlistment Standards on

  19. A Study on the Potential Cost Savings Associated with Implementing Airline Pilot Training Curricula into the Future P-8 MMA Fleet Replacement Squadron

    DTIC Science & Technology

    2006-06-01

    winglets : 35.81m Length: 38.56m Height: 12.83m Fuselage length: 38.02m Tailplane: 14.35m Maximum taxi weight: 83,778kg Maximum fuel...visual and aerodynamic handling deficiencies (by today’s standards) and are only capable of partially qualifying a VP-30 Cat I or Cat III pilot in

  20. Fleet Battle Experiment Juliet Final Reconstruction and Analysis Report

    DTIC Science & Technology

    2003-04-01

    8000 tons 145 Selected Vessel Statistics Joint Venture Sea SLICE Ship particulars Wave Piercing Catamaran ( CAT ) Small Waterplane Area Twin Hull (SWATH...and broadcasting capabilities. NSWC Corona used a built-in function within GCCS-M to broadcast all OTH Gold Contact (CTC) messages to a file. These...example would be the prohibition of e-mail from electronically accessing the e- 309 mail address book; thus denying many self-propagating viruses

  1. HOW THE MILITARY CAN INTEGRATE UNMANNED AERIAL SYSTEMS IN THE CIVIL RESERVE AIR FLEET

    DTIC Science & Technology

    2016-10-01

    brings new capabilities and continues to fundamentally impact military doctrine and strategy, particularly in how civilian operators or contractors ...missions has stretched military personnel and resources thin. General Atomics, a California-based defense contractor , produces the highly successful MQ-1...and a large number of support personnel required to operate UAS missions. An already established civilian contractor presence AU/ACSC/2016 5

  2. Achieving a Launch on Demand Capability

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    2002-01-01

    The ability to place payloads [satellites] into orbit as and when required, often referred to as launch on demand, continues to be an elusive and yet largely unfulfilled goal. But what is the value of achieving launch on demand [LOD], and what metrics are appropriate? Achievement of a desired level of LOD capability must consider transportation system thruput, alternative transportation systems that comprise the transportation architecture, transportation demand, reliability and failure recovery characteristics of the alternatives, schedule guarantees, launch delays, payload integration schedules, procurement policies, and other factors. Measures of LOD capability should relate to the objective of the transportation architecture: the placement of payloads into orbit as and when required. Launch on demand capability must be defined in probabilistic terms such as the probability of not incurring a delay in excess of T when it is determined that it is necessary to place a payload into orbit. Three specific aspects of launch on demand are considered: [1] the ability to recover from adversity [i.e., a launch failure] and to keep up with the steady-state demand for placing satellites into orbit [this has been referred to as operability and resiliency], [2] the ability to respond to the requirement to launch a satellite when the need arises unexpectedly either because of an unexpected [random] on-orbit satellite failure that requires replacement or because of the sudden recognition of an unanticipated requirement, and [3] the ability to recover from adversity [i.e., a launch failure] during the placement of a constellation into orbit. The objective of this paper is to outline a formal approach for analyzing alternative transportation architectures in terms of their ability to provide a LOD capability. The economic aspect of LOD is developed by establishing a relationship between scheduling and the elimination of on-orbit spares while achieving the desired level of on-orbit availability. Results of an analysis are presented. The implications of launch on demand are addressed for each of the above three situations and related architecture performance metrics and computer simulation models are described that may be used to evaluate the implications of architecture and policy changes in terms of LOD requirements. The models and metrics are aimed at providing answers to such questions as: How well does a specified space transportation architecture respond to satellite launch demand and changes thereto? How well does a normally functioning and apparently architecture respond to unanticipated needs? What is the effect of a modification to the architecture on its ability to respond to satellite launch demand, including responding to unanticipated needs? What is the cost of the architecture [including facilities, operations, inventory, and satellites]? What is the sensitivity of overall architecture effectiveness and cost to various transportation system delays? What is the effect of adding [or eliminating] a launch vehicle or family of vehicles to [from] the architecture on its effectiveness and cost? What is the value of improving launch vehicle and satellite compatibility and what are the effects on probability of delay statistics and cost of designing for multi-launch vehicle compatibility

  3. Prognostic and health management of active assets in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Lybeck, Nancy; Pham, Binh T.

    This study presents the development of diagnostic and prognostic capabilities for active assets in nuclear power plants (NPPs). The research was performed under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program. Idaho National Laboratory researched, developed, implemented, and demonstrated diagnostic and prognostic models for generator step-up transformers (GSUs). The Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software developed by the Electric Power Research Institute was used to perform diagnosis and prognosis. As part of the research activity, Idaho National Laboratory implemented 22 GSU diagnostic models in the Asset Fault Signature Database and twomore » wellestablished GSU prognostic models for the paper winding insulation in the Remaining Useful Life Database of the FW-PHM Suite. The implemented models along with a simulated fault data stream were used to evaluate the diagnostic and prognostic capabilities of the FW-PHM Suite. Knowledge of the operating condition of plant asset gained from diagnosis and prognosis is critical for the safe, productive, and economical long-term operation of the current fleet of NPPs. This research addresses some of the gaps in the current state of technology development and enables effective application of diagnostics and prognostics to nuclear plant assets.« less

  4. Prognostic and health management of active assets in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Lybeck, Nancy; Pham, Binh T.; ...

    2015-06-04

    This study presents the development of diagnostic and prognostic capabilities for active assets in nuclear power plants (NPPs). The research was performed under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program. Idaho National Laboratory researched, developed, implemented, and demonstrated diagnostic and prognostic models for generator step-up transformers (GSUs). The Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software developed by the Electric Power Research Institute was used to perform diagnosis and prognosis. As part of the research activity, Idaho National Laboratory implemented 22 GSU diagnostic models in the Asset Fault Signature Database and twomore » wellestablished GSU prognostic models for the paper winding insulation in the Remaining Useful Life Database of the FW-PHM Suite. The implemented models along with a simulated fault data stream were used to evaluate the diagnostic and prognostic capabilities of the FW-PHM Suite. Knowledge of the operating condition of plant asset gained from diagnosis and prognosis is critical for the safe, productive, and economical long-term operation of the current fleet of NPPs. This research addresses some of the gaps in the current state of technology development and enables effective application of diagnostics and prognostics to nuclear plant assets.« less

  5. Atlas IIAS ascent trajectory design for the SOHO mission

    NASA Technical Reports Server (NTRS)

    Willen, Robert E.; Rude, Bradley J.

    1993-01-01

    In 1995, an Atlas IIAS launch vehicle will loft the Solar and Heliospheric Observatory (SOHO) as part of the International Solar and Terrestrial Physics program. The operational phase of the SOHO mission will be conducted from a `halo orbit' about the Sun-Earth interior libration point. Depending on the time of the year of launch, the optimal transfer requires a parking orbit of variable duration to satisfy widely varying inertial targets. A simulation capability has been developed that optimizes the launch vehicle ascent and spacecraft transfer phases of flight together, subject to both launch vehicle and spacecraft constraints. It will be shown that this `ground-up' simulation removes the need for an intermediate target vector at Centaur upper stage/spacecraft separation. Although providing only a modest gain in deliverable satellite mass, this capability substantially improves the mission integration process by removing the strict reliance on near-Earth target vectors. Trajectory data from several cases are presented and future applications of this capability are also discussed.

  6. Observation of rocket pollution with overhead sensors

    NASA Astrophysics Data System (ADS)

    Fisher, Annette

    2011-12-01

    The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.

  7. Launch mission summary: INTELSAT 5(F1) ATLAS/CENTAUR-56

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technology and capability of the INTELSAT 5 series satellites and the Atlas-Centaur launch vehicle are described. Data relative to launch windows, flight plans, radar, and telemetry are included along with selected trajectory information and a sequence of flight events.

  8. Developing a dispersant spraying capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, S.D.

    1979-01-01

    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant applicationmore » program to include the CCG fleet of helicopters.« less

  9. Freight Wing Trailer Aerodynamics Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wingmore » utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.« less

  10. KSC-2012-3055

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The helium tank cars are positioned in the front and rear of the train. The long, thin tank car in the middle was used for liquid hydrogen, followed by a much larger tank car used for liquid oxygen. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3054

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The helium tank cars are positioned in the front and rear of the train. The long, thin tank car in the middle was used for liquid hydrogen, followed by a much larger tank car used for liquid oxygen. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3047

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Preparations are under way at the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida for the passage of the NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The permanent configuration of the drawbridge span is open, but the span will be lowered for a train to cross. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew; Robinson, Kimberly F.; Hitt, David

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  14. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and the record-breaking testing of the J-2X engine, to life-cycle milestones such as the vehicle's Preliminary Design Review. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration

  15. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  16. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  17. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timbario, Thomas A.; Timbario, Thomas J.; Laffen, Melissa J.

    2011-04-12

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all overmore » time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. Operating costs included in the calculation tool include fuel, maintenance, tires, and repairs; ownership costs include insurance, registration, taxes and fees, depreciation, financing, and tax credits. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). Additionally, multiple periods of operation, as well as three different annual VMT values for both the consumer case and fleets can be investigated to the year 2024. These capabilities were included since today's “cost to own” calculators typically include the ability to evaluate only one VMT value and are limited to current model year vehicles. The calculator allows the user to select between default values or user-defined values for certain inputs including fuel cost, vehicle fuel economy, manufacturer's suggested retail price (MSRP) or invoice price, depreciation and financing rates.« less

  18. Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.

  19. 41 CFR 102-34.330 - What is the Federal Fleet Report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fleet Report? 102-34.330 Section 102-34.330 Public Contracts and Property Management Federal Property... MANAGEMENT Federal Fleet Report § 102-34.330 What is the Federal Fleet Report? The Federal Fleet Report (FFR..., in evaluating the effectiveness of the operation and management of individual fleets to determine...

  20. Shuttle-Derived Launch Vehicles' Capablities: An Overview

    NASA Technical Reports Server (NTRS)

    Rothschild, William J.; Bailey, Debra A.; Henderson, Edward M.; Crumbly, Chris

    2005-01-01

    Shuttle-Derived Launch Vehicle (SDLV) concepts have been developed by a collaborative team comprising the Johnson Space Center, Marshall Space Flight Center, Kennedy Space Center, ATK-Thiokol, Lockheed Martin Space Systems Company, The Boeing Company, and United Space Alliance. The purpose of this study was to provide timely information on a full spectrum of low-risk, cost-effective options for STS-Derived Launch Vehicle concepts to support the definition of crew and cargo launch requirements for the Space Exploration Vision. Since the SDLV options use high-reliability hardware, existing facilities, and proven processes, they can provide relatively low-risk capabilities to launch extremely large payloads to low Earth orbit. This capability to reliably lift very large, high-dollar-value payloads could reduce mission operational risks by minimizing the number of complex on-orbit operations compared to architectures based on multiple smaller launchers. The SDLV options also offer several logical spiral development paths for larger exploration payloads. All of these development paths make practical and cost-effective use of existing Space Shuttle Program (SSP) hardware, infrastructure, and launch and flight operations systems. By utilizing these existing assets, the SDLV project could support the safe and orderly transition of the current SSP through the planned end of life in 2010. The SDLV concept definition work during 2004 focused on three main configuration alternatives: a side-mount heavy lifter (approximately 77 MT payload), an in-line medium lifter (approximately 22 MT Crew Exploration Vehicle payload), and an in-line heavy lifter (greater than 100 MT payload). This paper provides an overview of the configuration, performance capabilities, reliability estimates, concept of operations, and development plans for each of the various SDLV alternatives. While development, production, and operations costs have been estimated for each of the SDLV configuration alternatives, these proprietary data have not been included in this paper.

  1. Policy Decisions for Strategic Shipyard Survival

    DTIC Science & Technology

    1992-12-01

    a shipyard mobilization base should: 1. Ensure that ships of the Naval fleet can be maintained in a high degree of material readiness and...capability to build combatants and cargo ship to wartime requirements and to support the goal of a merchant marine that is suitable in time of war or...guarantees, cargo reservation, the tax treatment of a ship operator’s construction reserve fund, and the Shipbuilding Trade Act of 1992. It will be shown

  2. U.S. Army Field Demonstration of the Single Common Powertrain Lubricant (SCPL)

    DTIC Science & Technology

    2015-02-01

    for a full 2-years without changes in the basic climate location demonstrating the SCPL’s extended drain capabilities. All three field...This was done to highlight any oil changes completed, whether they were required or not. 4.1 BASIC CLIMATE – FT. BENNING GA For the basic...were controlled tightly to determine actual changes . Table 20. Ft. Wainwright Arctic Climate Vehicle Fleet 4.2.2 Mileage Accumulation Overall

  3. Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress

    DTIC Science & Technology

    2013-10-22

    two technologies previously identified as the most challenging — digital-beam-forming and transmit-receive modules—have been demonstrated in a...job of coming up with an affordable solution to a leap-ahead capability for the fleet.”31 In his presentation, Vandroff showed a slide comparing the...foreign ballistic missile data in support of international treaty verification. CJR represents an integrated mission solution : ship, radar suite, and

  4. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  5. Report of the Air-to-Air Missile System Capability Review. July-November 1968. Volume 2. Appendices

    DTIC Science & Technology

    1969-01-01

    Industry .. .. ..... ....................... ....................... 17N1 2.- Fleet Support organizations. .. .......................... 18 ~ .- ~- 3...I REPORT OF TASK TEAM ONE Chairman: Mr. B. W. Hays, Naval Weapons Center, China Lake ,,.’,. "Is Industry delivering to the Navy a high quality...IN’TRODUCTION A. The mission of Task Team One was to determine, "Is industry delivering to the Navy a high quality product, designed and built to

  6. Defense Additive Manufacturing: DOD Needs to Systematically Track Department-wide 3D Printing Efforts

    DTIC Science & Technology

    2015-10-01

    Clip Additively Manufactured • The Navy installed a 3D printer aboard the USS Essex to demonstrate the ability to additively develop and produce...desired result and vision to have the capability on the fleet. These officials stated that the Navy plans to install 3D printers on two additional...DEFENSE ADDITIVE MANUFACTURING DOD Needs to Systematically Track Department-wide 3D Printing Efforts Report to

  7. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  8. IV&V Project Assessment Process Validation

    NASA Technical Reports Server (NTRS)

    Driskell, Stephen

    2012-01-01

    The Space Launch System (SLS) will launch NASA's Multi-Purpose Crew Vehicle (MPCV). This launch vehicle will provide American launch capability for human exploration and travelling beyond Earth orbit. SLS is designed to be flexible for crew or cargo missions. The first test flight is scheduled for December 2017. The SLS SRR/SDR provided insight into the project development life cycle. NASA IV&V ran the standard Risk Based Assessment and Portfolio Based Risk Assessment to identify analysis tasking for the SLS program. This presentation examines the SLS System Requirements Review/System Definition Review (SRR/SDR), IV&V findings for IV&V process validation correlation to/from the selected IV&V tasking and capabilities. It also provides a reusable IEEE 1012 scorecard for programmatic completeness across the software development life cycle.

  9. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  10. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. Seated behind Flinn is Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  11. Ares V: A National Launch Asset for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil; Creech, Steve

    2009-01-01

    NASA is designing the Ares V as the cargo launch vehicle to carry NASA's exploration plans into the 21st century. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study, NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V also represents a national asset offering opportunities for new science, national security, and commercial missions of unmatched size and scope. Using the dual-launch Earth Orbit Rendezvous approach, the Ares I and Ares V together will be able to inject roughly 57percent more mass to the Moon than the Apollo-era Saturn V. Ares V alone will be able to send nearly 414,000 pounds into low Earth orbit (LEO) or more than 138,000 pounds directly to the Moon, compared with 262,000 pounds and 99,000 pounds, respectively for the Saturn V. Significant progress has been made on the Ares V to support a planned fiscal 2011 authority-to-proceed (ATP) milestone. This paper discusses recent progress on the Ares V and planned future activities.

  12. KSC-2012-3038a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-3037a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-3033a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars. The railroad’s track runs past Kennedy’s 525-foot-tall Vehicle Assembly Building in the background. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3032a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars. The train will pass by Kennedy’s 525-foot-tall Vehicle Assembly Building in the background. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  17. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  18. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  19. Autonomous system for launch vehicle range safety

    NASA Astrophysics Data System (ADS)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  20. Contributing Data to the Fleet DNA Project (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

  1. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States has already made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program technical accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  2. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  3. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  4. EXODUS: Integrating intelligent systems for launch operations support

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1991-01-01

    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described.

  5. KSC-2012-2744

    NASA Image and Video Library

    2012-05-11

    CAPE CANAVERAL, Fla. – Communication no longer required between Orbiter Processing Facility-2 and the Launch Control Center at NASA’s Kennedy Space Center in Florida, a headset is left on a console on space shuttle Endeavour’s flight deck after the shuttle is powered down for the final time. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Ben Smegelsky

  6. KSC-2015-1095

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians check the alignment of NASA's Soil Moisture Active Passive, or SMAP, spacecraft, onto a transporter for its move to the launch pad. The spacecraft is being prepared for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  7. Launch mission summary: FLTSATCOM-D Atlas/Centaur-57

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The largest and heaviest spacecraft yet to be launched into geosynchronous orbit by an Atlas Centaur launch vehicle, FLTSATCOM D is part of a versatile military satellite communication system which includes terminals at Navy land bases, and on naval aircraft, ships, and submarines. The design and capabilities of the launch vehicle are described as well as those of the satellite. Information relative to launch windows, flight plan, radar and telemetry coverage, selected trajectory information is presented. A brief sequence of flight events is included.

  8. A view toward future launch vehicles - A civil perspective

    NASA Technical Reports Server (NTRS)

    Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn

    1989-01-01

    Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.

  9. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  10. KSC-2015-1096

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, has been secured inside a transportation canister and secured onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  11. KSC-2015-1088

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  12. KSC-2015-1087

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  13. KSC-2015-1094

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, secured inside a transportation canister is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  14. KSC-2015-1089

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, a technician ensures the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft is ready for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  15. KSC-2015-1091

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  16. KSC-2015-1086

    NASA Image and Video Library

    2014-12-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  17. KSC-2015-1090

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  18. KSC-2015-1093

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft has had the appropriate logos affixed to its transportation canister before its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  19. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  20. KSC-2015-1092

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians monitor the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft as it is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  1. Parametric trade studies on a Shuttle 2 launch system architecture

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Talay, Theodore A.; Lepsch, Roger A.; Morris, W. Douglas; Naftel, J. Christopher; Cruz, Christopher I.

    1991-01-01

    A series of trade studies are presented on a complementary architecture of launch vehicles as a part of a study often referred to as Shuttle-2. The results of the trade studies performed on the vehicles of a reference Shuttle-2 mixed fleet architecture have provided an increased understanding of the relative importance of each of the major vehicle parameters. As a result of trades on the reference booster-orbiter configuration with a methane booster, the study showed that 60 percent of the total liftoff thrust should be on the booster and 40 percent on the orbiter. It was also found that the liftoff thrust to weight ratio (T/W) on the booster-orbiter should be 1.3. This leads to a low dry weight and still provides enough thrust to allow the design of a heavy lift architecture. As a result of another trade study, the dry weight of the reference booster-orbiter was chosen for a variety of operational considerations. Other trade studies on the booster-orbiter demonstrate that the cross feeding of propellant during boost phase is desirable and that engine-out capability from launch to orbit is worth the performance penalty. Technology assumptions made during the Shuttle-2 design were shown to be approx. equivalent to a 25 percent across the board weight reduction over the Space Shuttle technology. The vehicles of the Shuttle-2 architecture were also sized for a wide variety of payloads and missions to different orbits. Many of these same parametric trades were also performed on completely liquid hydrogen fueled fully reusable concepts. If a booster-orbiter is designed using liquid hydrogen engines on both the booster and orbiter, the total vehicle dry weight is only 3.0 percent higher than the reference dual-fuel booster-orbiter, and the gross weight is 3.8 percent less. For this booster-orbiter vehicle, a liftoff T/W of 1.3, a thrust of about 60 percent on the booster, and a Mach staging number of 3 all proved to be desirable. This modest dry weight increase for a liquid hydrogen fueled Shuttle-2 system should be more than offset by the elimination of the entire hydrocarbon engine development program and the savings in operation cost realized by the elimination of an entire fuel type.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  3. 41 CFR 101-39.104-1 - Consolidations into a fleet management system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fleet management system. 101-39.104-1 Section 101-39.104-1 Public Contracts and Property Management..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.104-1 Consolidations into a fleet management...

  4. An approach to the drone fleet survivability assessment based on a stochastic continues-time model

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos

    2017-09-01

    An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.

  5. A Systems Approach to Lower Cost Missions: Following the Rideshare Paradigm

    NASA Technical Reports Server (NTRS)

    Herrell, L.

    2009-01-01

    Small-satellite rideshare capabilities and opportunities for low-cost access to space have been evolving over the past 10 years. Small space launch vehicle technology is rapidly being developed and demonstrated, including the Minotaur series and the Space X Falcon, among others, along with the lower cost launch facilities at Alaska's Kodiak Launch Complex, NASA's Wallops Flight Facility, and the Reagan Test Site in the Pacific. Demonstrated capabilities for the launch of multiple payloads have increased (and continue to increase) significantly. This will allow more efficient and cost-effective use of the various launch opportunities, including utilizing the excess capacity of the emerging Evolved Expendable Launch Vehicle (EELV)-based missions. The definition of standardized interfaces and processes, along with various user guides and payload implementation plans, has been developed and continues to be refined. Top-level agency policies for the support of low-cost access to space for small experimental payloads, such as the DoD policy structure on auxiliary payloads, have been defined and provide the basis for the continued refinement and implementation of these evolving technologies. Most importantly, the coordination and cooperative interfaces between the various stakeholders continues to evolve. The degree of this coordination and technical interchange is demonstrated by the wide stakeholder participation at the recent 2008 Small Payload Rideshare Workshop, held at NASA's Wallops Flight Facility. This annual workshop has been the major platform for coordination and technical interchange within the rideshare community and with the various sponsoring agencies. These developments have provided the foundation for a robust low-cost small payload rideshare capability. However, the continued evolution, sustainment, and utilization of these capabilities will require continued stakeholder recognition, support, and nourishing. Ongoing, coordinated effort, partnering, and support between stakeholders is essential to acquire the improved organizational processes and efficiencies required to meet the needs of the growing small payload community for low-cost access to space. Further, a mix of capabilities developed within the space community for Operationally Responsive Space, an international committee investigating space systems cross-compatibility, and an industry-based organization seeking small satellite "standardization" all work toward a new paradigm: sharing or leveraging resources amongst multiple users. The challenge: where are those users, and what is the best way to leverage them? What is leveraged-mass, power, cost-sharing? And how does one sort through these options? What policies may prevent the use of some options? Who are the "other users" that might share or leverage capabilities? This paper presents a systematic look at both the users and the launch options, and suggests a way forward.

  6. China Naval Modernization: Implications for U.S. Navy Capabilities - Background and Issues for Congress

    DTIC Science & Technology

    2009-10-21

    reserve vessel squadron has been established,” foreign ministry spokesman Qin Gang told a regular briefing. ... No details were given on the size of...Sub Secretly Stalked U.S. Fleet,” Washington Times, November 13, 2006: 13; Philip Creed, “Navy Confirms Chinese Sub Spotted Near Carrier... Stalked Carrier,” NavyTimes.com, November 14, 2006; Bill Gertz, “Admiral Says Sub Risked A Shootout,” Washington Times, November 15, 2006; Jeff

  7. Indian, Japanese, And U.S. Responses To Chinese Submarine Modernization

    DTIC Science & Technology

    2016-03-01

    Commander in Chief, Self-Defense Fleet of the JMSDF, retired Admiral Yoji Koda argues, “China has a national objective to be a nuclear power comparable with...capability to create further instability in the region. Koda also argues that the JMSDF should in the future “bear greater responsibility in...197 Yoji Koda , “Japan’s Perceptions of and Interests in the South China Sea,” Asia Policy 21 (January 2016), http://nbr.org/publications

  8. Time Sensitive Termination: Prompt Global Strike in the War on Terror

    DTIC Science & Technology

    2009-10-25

    field both near and long term solutions to the problem of rapidly destroying fleeting targets halfway around the world when forces are not forward...endeavors to field the near term capability not later than 2015, with an initial fielding objective potentially as early as 2012. 5 The program will...patrolling ballistic missile submarines, the CSM took center stage in the effort to field a near -term solution to the problem. The CSM weapon system

  9. An Assessment of Operational Energy Capability Improvement Fund (OECIF) Programs 17-S-2544

    DTIC Science & Technology

    2017-09-19

    persistently attack key operational energy problems . OECIF themes are summarized in Table 1, and Appendix A includes more detail on the programs within... problems FY 2014 Analytical methods and tools FY 2015 Improving fuel economy for the current tactical ground fleet FY 2016 Increasing the operational...involve a variety of organizations to solve operational energy problems . In FY 2015, the OECIF program received a one-time $14.1M Congressional plus-up

  10. Naval War College Review. Volume 68, Number 1, Winter 2015

    DTIC Science & Technology

    2015-01-01

    Company vessel Zhanshan� Meanwhile, Electro- Mechanical Branch squad leader Sun Weimin helps fix the ship’s stalled engine, enabling it to rejoin the es...Naval Fleet Pays Four-Day Good- will Visit to Cameroon,” People’s Daily Online, 4 June 2014, english�peopledaily�com�cn/; Sun Zhao and Huang Jin , eds... mechanical or equipment failure un- derwater require particular attention to quality control and regular maintenance� By no means all countries are capable of

  11. New vision solar system mission study: Use of space reactor bimodal system with microspacecraft to determine origin and evolution of the outer plants in the solar system

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.; Zubrin, Robert M.

    1996-01-01

    The vision for the future of the planetary exploration program includes the capability to deliver 'constellations' or 'fleets' of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a 'virtual presence' in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  12. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  13. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  14. TDRS-L Pre-Launch Press Conference

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. –During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participating in the briefing, from the left, are George Diller of NASA Public Affairs, Badri Younes, deputy associate administrator, Space Communications and Navigation SCaN NASA Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington D.C., Tim Dunn, NASA launch director at Kennedy, Vernon Thorp, program manager for NASA Missions with United Launch Alliance in Denver, Colo., Jeffrey Gramling, NASA's TDRS-L project manager at the Goddard Space Flight Center in Greenbelt, Md., Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif., and Clay Flinn, launch weather officer for the 45th Weather Squadron at Cape Canaveral Air Force Station, Fla. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin

  15. The J-2X Upper Stage Engine: From Design to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas

    2010-01-01

    NASA is well on its way toward developing a new generation of launch vehicles to support of national space policy to retire the Space Shuttle fleet, complete the International Space Station, and return to the Moon as the first step in resuming this nation s exploration of deep space. The Constellation Program is developing the launch vehicles, spacecraft, surface systems, and ground systems to support those plans. Two launch vehicles will support those ambitious plans the Ares I and Ares V. (Figure 1) The J-2X Upper Stage Engine is a critical element of both of these new launchers. This paper will provide an overview of the J-2X design background, progress to date in design, testing, and manufacturing. The Ares I crew launch vehicle will lift the Orion crew exploration vehicle and up to four astronauts into low Earth orbit (LEO) to rendezvous with the space station or the first leg of mission to the Moon. The Ares V cargo launch vehicle is designed to lift a lunar lander into Earth orbit where it will be docked with the Orion spacecraft, and provide the thrust for the trans-lunar journey. While these vehicles bear some visual resemblance to the 1960s-era Saturn vehicles that carried astronauts to the Moon, the Ares vehicles are designed to carry more crew and more cargo to more places to carry out more ambitious tasks than the vehicles they succeed. The government/industry team designing the Ares rockets is mining a rich history of technology and expertise from the Shuttle, Saturn and other programs and seeking commonality where feasible between the Ares crew and cargo rockets as a way to minimize risk, shorten development times, and live within the budget constraints of its original guidance.

  16. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, R.; Ahdieh, N.; Bentley, J.

    2014-01-01

    A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

  17. Fleet Management | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Fleet Management Fleet Management Research campuses often own and operate vehicles to carry out Sample Project Related Links Fleet Management Options The goal of fleet management within climate action alternative fuel use. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) outlines

  18. 48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Contractor Use of Interagency Fleet Management System (IFMS) 51.204 Use of interagency fleet management system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of interagency fleet...

  19. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.

  20. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.

  1. National Clean Fleets Partnership (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less

  2. Daily monitoring of the land surface of the Earth

    NASA Astrophysics Data System (ADS)

    Mascaro, J.

    2016-12-01

    Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.

  3. NASA's Space Launch System: A Transformative Capability for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2017-01-01

    Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.

  4. An Orion/Ares I Launch and Ascent Simulation: One Segment of the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan

    2007-01-01

    This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.

  5. Alternative Fleet Architecture Design

    DTIC Science & Technology

    2005-08-01

    Alternative Fleet Architecture Design Stuart E. Johnson and Arthur K. Cebrowski Center...2005 4. TITLE AND SUBTITLE Alternative Fleet Architecture Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...these principles in mind. An alternative fleet architecture design and three examples of future fleet platform architectures are presented in this

  6. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  7. How 'HITEN's' aerobraking experiments were carried out

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Jun'ichiro; Abe, Takashi; Uesugi, Kuninori

    The ISAS (Institute of Space and Astronautical Science) 'HITEN' spacecraft was launched in January of 1990 from Kagoshima Space Center. The major mission was to demonstrate the so-called Double Lunar Swing-by Orbit as a precursor of GEOTAIL that is one spacecraft among the ISTP (International Solar Terrestrial Physics Program) fleet and scheduled to be launched in July, 1992. It carried various kinds of engineering missions on board, among them aerobraking experiments. Aerobraking as well as aerocapture techniques have been of great concern in interplanetary explorations since they may save tremendous among of fuel and add to scientific payload. However, practical application has not been made yet due to lack of aerothermodynamic features as well as guidance and navigation strategies. HITEN was specifically designed so that it could demonstrate and exemplify these aspects. It carried an anti-thermal blanket atop and two heat flux sensors to measure thermal environment during aerobraking. This paper presents how this world's first cis-lunar aerobraking experiment was carried out and what was found through it. Both heat flux and acceleration data obtained were well accounted for.

  8. High performance dash-on-warning air mobile missile system. [first strike avoidance for retaliatory aircraft-borne ICBM counterattack

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Levin, A. D.

    1978-01-01

    Because fixed missile bases have become increasingly vulnerable to strategic nuclear attack, an air-mobile missile system is proposed, whereby ICBMs can be launched from the hold of large subsonic aircraft following a missile-assisted supersonic dash of the aircraft to a safe distance from their base (about 50 n mi). Three major categories of vehicle design are presented: staged, which employs vertical take-off and a single solid rocket booster similar to that used on the Space Shuttle; unstaged, which employs vertical take-off and four internally-carried reusable liquid rocket engines; and alternative concepts, some using horizontal take-off with duct-burning afterburners. Attention is given to the economics of maintaining 200 ICBMs airborne during an alert (about $600 million for each fleet alert, exclusive of acquisition costs). The chief advantages of the system lie in its reduced vulnerability to suprise attack, because it can be launched on warning, and in the possibility for recall of the aircraft if the warning proves to be a false alarm.

  9. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  10. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  11. Crew Dragon Demonstration Mission 1

    NASA Image and Video Library

    2018-06-13

    SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.

  12. State and Alternative Fuel Provider Fleets - Fleet Compliance Annual Report: Model Year 2015, Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. Covered fleets may meet their EPAct requirements through one of two compliance methods: Standard Compliance or Alternative Compliance. For model year (MY) 2015, the compliance rate with this program for the more than 3011 reporting fleets was 100%. More than 294 fleets used Standard Compliance and exceeded their aggregate MY 2015 acquisition requirements by 8% through acquisitions alone. The seven covered fleets that used Alternative Compliance exceeded their aggregate MY 2015 petroleum use reductionmore » requirements by 46%.« less

  13. Orbit on demand - Will cost determine best design?

    NASA Technical Reports Server (NTRS)

    Macconochie, J. O.; Mackley, E. A.; Morris, S. J.; Phillips, W. P.; Breiner, C. A.; Scotti, S. J.

    1985-01-01

    Eleven design concepts for vertical (V) and horizontal (H) take-off launch-on-demand manned orbital vehicles are discussed. Attention is given to up to three stages, Mach numbers (sub-, 2, or 3), expendable boosters, drop tanks (DT), and storable (S) or cryogenic fuels. All the concepts feature lifting bodies with circular cross-section and most have a 7 ft diam, 15 ft long payload bay as well as a crew compartment. Expendable elements impose higher costs and in some cases reduce all-azimuth launch capabilities. Single-stage vehicles simplify the logistics whether in H or V configuration. A two-stage H vehicle offers launch offset for the desired orbital plane before firing the rocket engines after take-off and subsonic acceleration. A two-stage fully reusable V form has the second lowest weight of the vehicles studied and an all-azimuth launch capability. Better definition of the prospective mission requirements is needed before choosing among the alternatives.

  14. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  15. KSC-2015-1226

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  16. KSC-2015-1236

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  17. KSC-2015-1227

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  18. KSC-2015-1228

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  19. KSC-2015-1225

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  20. KSC-2015-1235

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

Top