2003-07-23
KENNEDY SPACE CENTER, FLA. – This aerial view shows Launch Complex 39 Area. At center is the 525-foot-tall Vehicle Assembly Building. On the horizon at the far left is Launch Pad 39B; to the right is Launch Pad 39A. The crawlerway can be seen stretching from the VAB toward Pad A. Waters of the Banana Creek and Banana River surround the pads. At center right is the Turn Basin.
2003-07-23
CAPE CANAVERAL, Fla. -- This aerial view shows the Launch Complex 39 Area. At center is the 525-foot-tall Vehicle Assembly Building. On the horizon at the far left is Launch Pad 39B to the right is Launch Pad 39A. The crawlerway can be seen stretching from the VAB toward Pad A. Waters of the Banana Creek and Banana River surround the pads. At center right is the Turn Basin. Photo credit: NASA
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
261. Photocopy of drawing (1976 electrical drawing by the Space ...
261. Photocopy of drawing (1976 electrical drawing by the Space and Missile Test Center, VAFB, USAF) FLOODLIGHT PLAN FOR LAUNCH PAD AREA, SHEET E9 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.
Artist's Concept- Ares I On Launchpad 39B
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A, straddling the flame trench. This is the second rollout for the shuttle. The flame trench transecting the pad's mound at ground level is 490 feet long, 58 feet wide and 40 feet high. It is made of concrete and refractory brick. Pad structures are insulated from the intense heat of launch by the flame deflector system, which protects the flame trench floor and the pad surface along the top of the flame trench. On the left of the shuttle are the fixed service structure and rotating service structure in open position. When closed, the rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. The white area in the center is the Payload Changeout Room, an enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and subsequent vertical installation in the orbiter payload bay. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
STS-45 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad
1992-03-24
STS-45 Atlantis, Orbiter Vehicle (OV) 104, lifts off from a Kennedy Space Center (KSC) Launch Complex (LC) Pad at 8:13:40:048 am (Eastern Standard Time (EST)). Exhaust billows out the solid rocket boosters (SRBs) as OV-104 atop its external tank (ET) soars above the mobile launcher platform and is nearly clear of the fixed service structure (FSS) tower. The diamond shock effect produced by the space shuttle main engines (SSMEs) is visible. The glow of the SRB/SSME firings is reflected in a nearby waterway. An exhaust cloud covers the launch pad area.
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM ...
140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM AGENA TRANSFER AREA SHELTER (117A). NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD ...
4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD A MOBILE SERVICE STRUCTURE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
139. VIEW OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. ...
139. VIEW OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. 770), FROM VEHICLE CHECKOUT AREA (117). STAINLESS STEEL FLOOR SQUARE BY LOCKER WAS LEVEL PEDESTAL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2006-06-27
KENNEDY SPACE CENTER, FLA. - This radar image shows the presence of large birds around Launch Pad 39B. The data is being relayed from the avian radars recently set up on the pad. The computer is one of two set up in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers inspect the brick walls of the flame trench area that is located below and between the left and right crawlerway tracks. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
STS-65 Columbia, OV-102, lifts off from KSC LC Pad 39A
NASA Technical Reports Server (NTRS)
1994-01-01
Columbia, Orbiter Vehicle (OV) 102, begins its roll maneuver after clearing the fixed service structure (FSS) tower as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. In the foreground of this horizontal scene is Florida brush and a waterway. Beyond the brush, the shuttle's exhaust cloud envelops the immediate launch pad area. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). The glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in the nearby waterway. Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).
STS-65 Columbia, OV-102, lifts off from KSC LC Pad 39A
1994-07-08
Columbia, Orbiter Vehicle (OV) 102, begins its roll maneuver after clearing the fixed service structure (FSS) tower as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. In the foreground of this horizontal scene is Florida brush and a waterway. Beyond the brush, the shuttle's exhaust cloud envelops the immediate launch pad area. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). The glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in the nearby waterway. Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).
NASA Technical Reports Server (NTRS)
Schlierf, Roland; Hight, Ron; Payne, Stephen J.; Shaffer, John P.; Missimer, Brad; Willis, Christopher
2007-01-01
While birds might seem harmless, there's a good reason for the concern. During the July 2005 launch of Discovery on mission STS-1 14, a vulture soaring around the launch pad impacted the shuttle's external tank just after liftoff. With a vulture's average weight ranging from 3 to 5 pounds. a strike at a critical point on the Shuttle -- like the nose or wing leading thermal protection panels -- could cause catastrophic damage to the vehicle. The foam chunk that fatefully struck Columbia's wing in 2003 weighed only 1.7 pounds. (Cheryl L. Mansfield "Bye Bye Birdies" 2006) To address this issue, NASA formed an "Avian Abatement Team". The team goal is to have safer Shuttle missions by reducing the vulture population at KSC near the pad area thereby reducing the probability of another vulture strike during a Shuttle launch.
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered at the top by the Atlantic and a cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left is the Orbiter Processing Facility's Bay 3. In the foreground are OPF Bays 1 and 2. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida
2008-12-01
a mobile launcher tied down on the concrete pad, with a concrete flame bucket descending off one side of the surface area (Figure...pedestal (Figure 9). The complex’s Launch Pad 10 was a hex- agonal reinforced concrete surface with tie down points and a concrete flame bucket at its...fuel propel- lant.126 This allowed for rapid deployment, and for a more effective and less expensive weapon system . Technological advancements
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
2006-06-22
KENNEDY SPACE CENTER, FLA. - Bird detection radar is set up near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
2006-06-22
KENNEDY SPACE CENTER, FLA. - Radar technicians set up bird detection radar near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
2006-06-22
KENNEDY SPACE CENTER, FLA. - Bird detection radar is delivered near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- A crimson and gold sunrise over the Central Florida coast begins illuminating Launch Pad 39A, where a water sound suppression test is to take place. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiters three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Water recedes from the Mobile Launcher Platform (MLP) on Launch Pad 39A after the water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- Water recedes from the Mobile Launcher Platform (MLP) on Launch Pad 39A after the water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- A crimson and gold sunrise over the Central Florida coast begins illuminating Launch Pad 39A, where a water sound suppression test is to take place. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter’s three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER ...
141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Pad Safety Personnel Launch Support For STS-200
NASA Technical Reports Server (NTRS)
Guarino, Jennifer
2007-01-01
The launch of a space shuttle is a complex and lengthy procedure. There are many places and components to look at and prepare. The components are the orbiter, solid rocket boosters, external tank, and ground equipment. Some of the places are the launch pad, fuel locations, and surrounding structures. Preparations for a launch include equipment checks, system checks, sniff checks for hazardous commodities, and countless walkdowns. Throughout these preparations, pad safety personnel must always be on call. This requires three shifts of multiple people to be ready when needed. Also, the pad safety personnel must be available for the non-launch tasks that are always present for both launch pads
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for and picking up Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.
2001-04-08
STS-100 Commander Kent V. Rominger is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2001-04-08
STS-100 Mission Specialist Chris A. Hadfield is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released for launch just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
STS-65 Columbia, OV-102, clears launch tower after liftoff from KSC LC 39A
NASA Technical Reports Server (NTRS)
1994-01-01
Columbia, Orbiter Vehicle (OV) 102, heads skyward after clearing the fixed service structure (FSS) tower at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. Florida plant life appears in the foreground. The exhaust cloud produced by OV-102's solid rocket boosters (SRBs) covers the launch pad area with the exception of the sound suppression water system tower. OV-102's starboard side and the right SRB are visible from this angle. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).
2006-06-23
KENNEDY SPACE CENTER, FLA. - Two bird detection radars have been set up near Launch Pad 39B to get ready for the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
STS-65 Columbia, OV-102, clears launch tower after liftoff from KSC LC 39A
1994-07-08
Columbia, Orbiter Vehicle (OV) 102, heads skyward after clearing the fixed service structure (FSS) tower at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. Florida plant life appears in the foreground. The exhaust cloud produced by OV-102's solid rocket boosters (SRBs) covers the launch pad area with the exception of the sound suppression water system tower. OV-102's starboard side and the right SRB are visible from this angle. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).
2004-05-07
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Commander Eileen Collins tries out one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
1999-05-18
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Don Pataky prepares to enter a tented area around the external tank of Space Shuttle Discovery in order to repair hail-inflicted damage in the foam insulation. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-18
KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building (VAB), United Space Alliance technician Robert Williams sands the repaired areas near the top of Space Shuttle Discovery's external tank. Repairs were required for damage caused by hail during recent storms. Because access to all of the damaged areas was not possible at the pad, the Shuttle was rolled back from Pad 39B to the VAB. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo shows the areas recently opened as part of KSC's Safe Haven project. The curved road in the center is the newly restored crawlerway leading around the Vehicle Assembly Building (VAB) and Orbiter Processing Facility 3 (OPF-3) into the VAB high bay 2 (open on the lower right), where a mobile launcher platform/crawler-transporter currently sits. The Safe Haven project will enable the storage of orbiters during severe weather. OPF1 and OPF-2 are at the lower right. The crawlerway also extends from the east side of the VAB out to the two launch pads. Launch Pad 39A is visible to the left of the crawlerway. In the distance is the Atlantic Ocean. To the right of the VAB is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
STS-98 Atlantis rolls to the VAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis (right) inches its way at 1 mph atop the crawler-transporter back to the Vehicle Assembly Building from Launch Pad 39A (upper left). A panorama view from the top of the VAB shows the proximity of the pad to the Atlantic Ocean (background) plus the 3.4-mile crawlerway leading from the pad to the VAB. The water areas on both sides of the crawlerway are part of the Banana River. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s external system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. The launch has been rescheduled no earlier than Feb. 6.
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2006-08-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis is hard down on the launch pad after rolling back to Launch Pad 39B. The Atlantic Ocean and lagoon water in the background reflect the glowing light of a setting sun. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
142. OVERHEAD CRANES ON SOUTH WALL AND CEILING OF AGENA ...
142. OVERHEAD CRANES ON SOUTH WALL AND CEILING OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. 770). FORMERLY USED FOR VEHICLE TRANSFER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (bottom right and left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) at the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Some water remains on the surface of the Mobile Launcher Platform (MLP) on Launch Pad 39A after a water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) waiting for the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- Some water remains on the surface of the Mobile Launcher Platform (MLP) on Launch Pad 39A after a water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) waiting for the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (bottom right and left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) at the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
1999-04-23
KENNEDY SPACE CENTER, Fla. -- Reflected in the turn basin at Launch Complex 39 Area, the Space Shuttle Discovery stands atop the crawler-transporter, which carries its cargo at 1 mph to Launch Pad 39B. The vehicle takes about five hours to cover the journey from the Vehicle Assembly Building to the launch pad. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Umberto Guidoni. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist John L. Phillips. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2009-05-13
CAPE CANAVERAL, Fla. – In Launch Pad 39A lame trench at NASA's Kennedy Space Center in Florida, workers document damage found after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
2008-08-12
CAPE CANAVERAL, Fla. – This view of the Launch Pad 39A flame trench at NASA's Kennedy Space Center shows the areas on the walls recently repaired. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Dozens of media are gathered at the slidewire basket landing area on Launch Pad 39B to interview and hear comments from the STS-114 crew: Mission Specialists Andrew Thomas, Wendy Lawrence and Stephen Robinson, Commander Eileen Collins, Mission Specialists Charles Camarda and Soichi Noguchi, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Dozens of media are gathered at the slidewire basket landing area on Launch Pad 39B to interview and hear comments from the STS-114 crew: Mission Specialists Andrew Thomas, Wendy Lawrence and Stephen Robinson, Commander Eileen Collins, Mission Specialists Charles Camarda and Soichi Noguchi, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.
2006-06-27
KENNEDY SPACE CENTER, FLA. - This associated computer image shows data being relayed from the avian radars recently set up on Launch Pad 39B. The computer is one of two in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
2006-06-27
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA Test Director Steve Payne points to laptop computers that will display data relayed from the avian radars recently set up on Launch Pad 39B. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
STS-65 Columbia, OV-102, rises above KSC LC Pad 39A during liftoff
NASA Technical Reports Server (NTRS)
1994-01-01
Columbia, Orbiter Vehicle (OV) 102, rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A after liftoff at 12:43 pm Eastern Daylight Time (EDT). An exhaust cloud covers the launch pad area and the glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in a nearby marsh as OV-102 atop its external tank (ET) heads toward Earth orbit. A small flock of birds is visible at the right. Once in Earth's orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2) mission.
STS-65 Columbia, OV-102, rises above KSC LC Pad 39A during liftoff
1994-07-08
Columbia, Orbiter Vehicle (OV) 102, rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A after liftoff at 12:43 pm Eastern Daylight Time (EDT). An exhaust cloud covers the launch pad area and the glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in a nearby marsh as OV-102 atop its external tank (ET) heads toward Earth orbit. A small flock of birds is visible at the right. Once in Earth's orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2) mission.
1999-05-16
As the sun begins to rise, a crawler transporter moves Space Shuttle Discovery from Pad 39B back to the Vehicle Assembly Building for repair of damage to the external tank foam insulation caused by hail. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
256. Photocopy of drawing (1975 piping drawing by the Ralph ...
256. Photocopy of drawing (1975 piping drawing by the Ralph M. Parsons Company) LIQUID OXYGEN FLOW DIAGRAM FOR THE LSB AREA, SHEET P-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Under a feather-painted sky, Space Shuttle Atlantis, mounted on a mobile launch platform atop a crawler transporter, creeps up the ramp to Launch Pad 39A. This is the second rollout for the shuttle. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Under a feather-painted sky, Space Shuttle Atlantis, mounted on a mobile launch platform atop a crawler transporter, nears Launch Pad 39A. This is the second rollout for the shuttle. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
STS-93 / Columbia Flight Crew Photo Op & QA at Pad for TCDT
NASA Technical Reports Server (NTRS)
1999-01-01
The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows a pre-flight press conference. Prior to the astronauts' arrival at the bunker area in front of the launch pad, the narrator discusses some of the training that the astronauts are scheduled to have prior to the launch, particularly the emergency egress procedures. Commander Collins introduces the crew and fields questions from the assembled press. Many questions are asked about the experiences of Commander Collins, and Mission Specialist Coleman as women in NASA. The press conference takes place outside in front of the Shuttle Columbia on the launch pad.
2006-08-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A after an early morning rollout. This is the second rollout for the shuttle. Seen on either side of the main engine exhaust hole on the launcher platform are the tail service masts. Their function is to provide umbilical connections for liquid oxygen and liquid hydrogen lines to fuel the external tank from storage tanks adjacent to the launch pad. Other umbilical lines carry helium and nitrogen, as well as ground electrical power and connections for vehicle data and communications. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: PAD AREA PLAN-REMOVAL WORK, CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
257. Photocopy of drawing (1975 piping drawing by the Ralph ...
257. Photocopy of drawing (1975 piping drawing by the Ralph M. Parsons Company) PARTIAL PIPING PLAN OF THE LIQUID OXYGEN STORAGE AREA FOR THE LSB, SHEET P-5 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2006-06-27
KENNEDY SPACE CENTER, FLA. - These laptop computers in Firing Room 4 of the Launch Control Center reveal data being relayed from the avian radars recently set up on Launch Pad 39B. On the left is an associated camera image. On the right is the radar image. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
NASA’s Wallops Flight Facility Completes Initial Assessment after Orbital Launch Mishap
2017-12-08
An aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Oct. 29 following the failed launch attempt of Orbital Science Corp.'s Antares rocket Oct. 28. Credit: NASA/Terry Zaperach --- The Wallops Incident Response Team completed today an initial assessment of Wallops Island, Virginia, following the catastrophic failure of Orbital Science Corp.’s Antares rocket shortly after liftoff at 6:22 p.m. EDT Tuesday, Oct. 28, from Pad 0A of the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia. “I want to praise the launch team, range safety, all of our emergency responders and those who provided mutual aid and support on a highly-professional response that ensured the safety of our most important resource -- our people,” said Bill Wrobel, Wallops director. “In the coming days and weeks ahead, we'll continue to assess the damage on the island and begin the process of moving forward to restore our space launch capabilities. There's no doubt in my mind that we will rebound stronger than ever.” The initial assessment is a cursory look; it will take many more weeks to further understand and analyze the full extent of the effects of the event. A number of support buildings in the immediate area have broken windows and imploded doors. A sounding rocket launcher adjacent to the pad, and buildings nearest the pad, suffered the most severe damage. At Pad 0A the initial assessment showed damage to the transporter erector launcher and lightning suppression rods, as well as debris around the pad. The Wallops team also met with a group of state and local officials, including the Virginia Department of Environmental Quality, the Virginia Department of Emergency Management, the Virginia Marine Police, and the U.S. Coast Guard. The Wallops environmental team also is conducting assessments at the site. Preliminary observations are that the environmental effects of the launch failure were largely contained within the southern third of Wallops Island, in the area immediately adjacent to the pad. Immediately after the incident, the Wallops’ industrial hygienist collected air samples at the Wallops mainland area, the Highway 175 causeway, and on Chincoteague Island. No hazardous substances were detected at the sampled locations. Additional air, soil and water samples will be collected from the incident area as well as at control sites for comparative analysis. The Coast Guard and Virginia Marine Resources Commission reported today they have not observed any obvious signs of water pollution, such as oil sheens. Furthermore, initial assessments have not revealed any obvious impacts to fish or wildlife resources. The Incident Response Team continues to monitor and assess. Following the initial assessment, the response team will open the area of Wallops Island, north of the island flagpole opposite of the launch pad location, to allow the U.S. Navy to return back to work. Anyone who finds debris or damage to their property in the vicinity of the launch mishap is cautioned to stay away from it and call the Incident Response Team at 757-824-1295. Further updates on the situation and the progress of the ongoing investigation will be available at: www.orbital.com and www.nasa.gov/orbital NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Yuri V. Lonchakov, who is with the Russian Space and Aviation Agency. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
Launch Pad Flame Trench Refractory Materials
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary
2010-01-01
The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of failure mechanisms, load response, ejected material impact evaluation, and repair design analysis (environmental and structural assessment, induced environment from solid rocket booster plume, loads summary, and repair integrity), assessment of risk posture for flame trench debris, and justification of flight readiness rationale. Although the configuration of the launch pad, water and exhaust direction, and location of the Mobile Launcher Platform between the flame trench and the flight hardware should protect the Space Vehicle from debris exposure, loss of material could cause damage to a major element of the ground facility (resulting in temporary usage loss); and damage to other facility elements is possible. These are all significant risks that will impact ground operations for Constellation and development of new refractory material systems is necessary to reduce the likelihood of the foreign object debris hazard during launch. KSC is developing an alternate refractory material for the launch pad flame trench protection system, including flame deflector and flame trench walls, that will withstand launch conditions without the need for repair after every launch, as is currently the case. This paper will present a summary of the results from industry surveys, trade studies, life cycle cost analysis, and preliminary testing that have been performed to support and validate the development, testing, and qualification of new refractory materials.
STS-92 crew talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A during a question and answer session with the media, STS-92 Commander Brian Duffy talks about the mission. Standing next to him, left to right, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao, William S. McArthur Jr., Peter J.K. 'Jeff' Wisoff, Michael E. Lopez-Alegria and Koichi Wakata of Japan. The crew is at KSC for Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and a simulated countdown. The slidewire basket area is a landing site for the crew if they have to use the slidewire baskets to exit the orbiter on the pad in an emergency. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
2008-09-17
CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2008-09-17
CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
2008-09-17
CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
On the hazard of hydrogen explosions at space shuttle launch pads
NASA Technical Reports Server (NTRS)
Russell, John M.
1988-01-01
This report was prepared in support of efforts to assess the hazard of accidental explosions of unburned hydrogen at space shuttle launch pads. It begins with presentation of fundamental detonation theory and a review of relevent experiments. A scenario for a catastrophic explosion at a KSC launch pad and a list of necessary conditions contributing to it is proposed with a view to identifying those conditions which, if blocked, would prevent a catastrophe. The balance of the report is devoted to juxtaposition of reassuring and disquieting facts, presentation of a set of recommendations that ignition of hydrogen-air mixtures by weak ignition sources in unconfined geometries may produce a detonation, provided the effective flame area in the initial fireball is rapidly increased by turbulent mixing. Another conclusion is that detonability limits can be different from and narrower than flammability limits only if one restricts the rate of work that can be done on a flammable gas by mechanical agencies acting on its boundaries.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
Two views of the 'Challenger' being rolled out to pad 39A in the fog STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Two views of the 'Challenger' being rolled out to pad 39A in the fog in preparation for STS-6. In one view the Challenger, atop a mobile launch platform, slowly moves down the road through Florida fog to launch pad 39A (41140); In this view, the Challenger and its mobile launch platform are in the left corner of the photo, moving up the road in dense fog. Towards the top of the view, launch pad 39A can be seen (41141).
Pad B Liquid Hydrogen Storage Tank
NASA Technical Reports Server (NTRS)
Hall, Felicia
2007-01-01
Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.
2009-04-17
CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. Surrounding the pad are the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Launch Pad 39B elevator has been upgraded and painted. Also, various fluid interface connections have been installed on the pad. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PLAN-RAIL BEAMS AND HURRICANE ANCHOR FOUNDATIONS, STRUCTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
235. Photocopy of drawing (1958 piping drawing by the Ralph ...
235. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) PLAN FOR THE FUEL, HELIUM, AND NITROGEN STORAGE AREA FOR THE LSB, SHEET P13 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
236. Photocopy of drawing (1958 piping drawing by the Ralph ...
236. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) SECTIONS AND DETAILS FOR THE FUEL, HELIUM, AND NITROGEN STORAGE AREA FOR THE LSB, SHEET P14 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
232. Photocopy of drawing (1958 piping drawing by the Ralph ...
232. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) PLAN FOR THE LIQUID AND GASEOUS OXYGEN STORAGE AREA IN THE LSB, SHEET P17 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2003-07-23
CAPE CANAVERAL, Fla. -- This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are counter clockwise from left the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center, next to the VAB. The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek. Photo credit: NASA
2003-07-23
KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are (counter clockwise from left) the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center (next to VAB). The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek.
2009-04-17
CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. On either side of the pad are two of the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- As the sun begins to rise, a crawler transporter moves Space Shuttle Discovery from Pad 39B back to the Vehicle Assembly Building for repair of damage to the external tank foam insulation caused by hail. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- In the early light of dawn, a crawler transporter moves Space Shuttle Discovery, with its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building for repair of damage to the external tank foam insulation caused by hail. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Discovery, dwarfed by its external tank and solid rocket boosters, is in position in High Bay 1 of the Vehicle Assembly Building for repair of damage to the external tank's foam insulation caused by hail. The Shuttle was rolled back from Pad 39B this morning because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Lighted by a Florida sunrise, a crawler transporter moves Space Shuttle Discovery from Pad 39B (in the background right) back to the Vehicle Assembly Building for repair of damage to the external tank foam insulation caused by hail. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2010-11-10
CAPE CANAVERAL, Fla. -- During the removal of external fuel tank foam insulation on Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians identified two cracks, each about 9 inches long, on a section of the tank’s metal exterior. The foam cracked during initial loading operations for space shuttle Discovery’s launch attempt on Nov. 5. The cracks are on one of the stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Engineers will review images of the cracks to determine the best possible repair method, which would be done at the pad. Discovery's next launch attempt is no earlier than Nov. 30 at 4:02 a.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered on the east by the Atlantic Ocean and cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left, or north, is the Orbiter Processing Facility’s Bay 3. On the western side are OPF Bays 1 and 2. In the lower right corner is the Operations Support Building. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. The turn basin, at right, allows delivery of external tanks that are offloaded close to and transported to the VAB. Photo credit: NASA
1999-05-18
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Don Pataky repairs hail-inflicted damage in the foam insulation on the external tank of Space Shuttle Discovery. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-18
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Don Pataky repairs one of the hail-created divots in the foam insulation on the external tank of Space Shuttle Discovery. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
2004-05-07
KENNEDY SPACE CENTER, FLA. -- From an upper level of the Fixed Service Structure on Launch Pad 39A, STS-114 Mission Specialists Charles Camarda (center) and Wendy Lawrence (right) look at the surrounding area. Beyond the pad is the aqua blue Atlantic Ocean. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., speaks to members of the news media announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2017-09-26
NASA Launch Director Charlie Blackwell-Thompson, at left, arrives at Launch Pad 39B at NASA's Kennedy Space Center in Florida, to observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
Method for Producing Launch/Landing Pads and Structures Project
NASA Technical Reports Server (NTRS)
Mueller, Robert P. (Compiler)
2015-01-01
Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2009-08-04
CAPE CANAVERAL, Fla. – Sitting on top of the mobile launcher platform, space shuttle Discovery straddles the flame trench, which channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery was secured, or "hard down" to Launch Pad 39A at 1:50 p.m. EDT. "Hard down" means that the mobile launcher platform, or MLP, is sitting on the pedestals on the pad, and the crawler has been jacked down, thus transferring the weight of the MLP from the crawler to the pad pedestals. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.
2009-01-01
A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the design analysis philosophies outlined in this paper.
1993-11-15
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Endeavour is being "rolled around" from Launch Pad 39A to Launch Pad 39B. The rare pad switch was deemed necessary after contamination was discovered in the Payload Changeout Room at pad A. Still to come are the payloads for the upcoming STS-61 mission, the first servicing of the Hubble Telescope
2004-05-07
KENNEDY SPACE CENTER, FLA. -- From an upper level of the Fixed Service Structure on Launch Pad 39A, STS-114 Mission Specialist Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, looks at the surrounding area. Beyond the pad is the aqua blue Atlantic Ocean. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Hail-inflicted divots in the foam insulation are identified by number on the top of Space Shuttle Discovery's external tank. About 150 divots were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Standing inside a protective tent around the external tank of Space Shuttle Discovery in the Vehicle Assembly Building (VAB), United Space Alliance technician Don Pataky repairs divots caused by hail storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
The STS-93 external tank and booster stack sits at the Mobile Launcher Platform park site
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-93 stack of solid rocket boosters and external tank sits at the Mobile Launcher Platform park site waiting for lightning shield wires to be installed on the Vehicle Assembly Building (VAB) in the background. The stack is being temporarily stored outside the VAB while Space Shuttle Discovery undergoes repair to hail damage in High Bay 1. Discovery was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The STS-93 stack will be moved under the wires at the VAB for protection until Discovery returns to the pad, later this week. The scheduled date for launch of mission STS-96 is no earlier than May 27. STS-93 is targeted for launch on July 22, carrying the Chandra X-ray Observatory.
2017-09-26
NASA Launch Director Charlie Blackwell-Thompson, center, talks to engineers at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
NASA Launch Director Charlie Blackwell-Thompson, at right, greets engineers and technicians at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2014-08-16
CAPE CANAVERAL, Fla. – Singer-songwriter Brad Paisley announces the release of a new song titled "American Flag on the Moon" from Launch Pad 39B at NASA’s Kennedy Space Center in Florida. In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. Upon seeing Paisley's Twitter post that he was at NASA's Apollo launch pad leaking his new song, astronaut Reid Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." Wiseman is a member of the Expedition 40 crew currently in Earth orbit on the International Space Station. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper
2014-08-16
CAPE CANAVERAL, Fla. – Singer-songwriter Brad Paisley announces the release of a new song titled "American Flag on the Moon" from Launch Pad 39B at NASA’s Kennedy Space Center in Florida. In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. Upon seeing Paisley's Twitter post that he was at NASA's Apollo launch pad leaking his new song, astronaut Reid Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." Wiseman is a member of the Expedition 40 crew currently in Earth orbit on the International Space Station. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
2013-02-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin
STS-95 Space Shuttle Discovery rollout to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1998-01-01
Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2008-09-19
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center, the massive crawler-transporter carrying space shuttle Endeavour approaches the launch pad. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis
Astronaut Jean-Francois Clervoy in white room on launch pad 39B
NASA Technical Reports Server (NTRS)
1994-01-01
In the white room at Launch Pad 39B, STS-66 mission specialist Jean-Francois Clervoy is assisted with his partial pressure launch/entry suit by close-out crew members Travis Thompson and Danny Wyatt (background) before entering the Space Shuttle Atlantis for its November 3 launch.
2017-09-26
Several Praxair trucks begin to depart Launch Pad 39B at NASA's Kennedy Space Center in Florida, after offloading their loads of liquid oxygen, or LO2, one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere was gradually chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2009-05-06
CAPE CANAVERAL, Fla. – New windows are installed in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller
2009-05-06
CAPE CANAVERAL, Fla. – New windows are installed in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Launch Umbilical Tower No. 1 (LUT- 1) stored in the Industrial Area of KSC is being demolished with a Caterpillar excavator and 48-inch shear attachment. Seen is the base of tower; the upright tower extended more than 398 feet above the launch pad. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Launch Umbilical Tower No. 1 (LUT- 1) stored in the Industrial Area of KSC is being demolished with the Caterpillar excavator and 48-inch shear attachment. Seen is the base of tower; the upright tower extended more than 398 feet above the launch pad. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Launch Umbilical Tower No. 1 (LUT- 1), stored in the Industrial Area of KSC, is being demolished using a Caterpillar excavator and 48-inch shear attachment. Seen is the base of tower; the upright tower extended more than 398 feet above the launch pad. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear being used for demolition is one used in the deconstruction of the Twin Towers in New York City after 9/11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Launch Umbilical Tower No. 1 (LUT- 1) stored in the Industrial Area of KSC is being demolished with a Caterpillar excavator and 48-inch shear attachment. Seen is the base of tower; the upright tower extended more than 398 feet above the launch pad. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Launch Umbilical Tower No. 1 (LUT- 1) stored in the Industrial Area of KSC is being demolished with a Caterpillar excavator and 48-inch shear attachment. Seen is the base of tower; the upright tower extended more than 398 feet above the launch pad. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team helps astronaut-suited workers climb into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team carries injured astronaut-suited workers into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
The Role of CFD Simulation in Rocket Propulsion Support Activities
NASA Technical Reports Server (NTRS)
West, Jeff
2011-01-01
Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications
View of the Apollo 10 space vehicle at Pad B, ready for launch
NASA Technical Reports Server (NTRS)
1969-01-01
Ground-level view at sunset of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle at Pad B, Launch Complex 39, Kennedy Space Center. The Apollo 10 stack had just been positioned after being rolled out from the Vehicle Assemble Building (VAB) (34318); View of the Apollo 10 space vehicle (through palm trees and across water) on the way from the VAB to Pad B, Launch Complex 39. The Saturn V and its mobile launch tower are atop a crawler-transporter (34319).
2009-05-06
CAPE CANAVERAL, Fla. – A technician works at installing a new window in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller
ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT
NASA Technical Reports Server (NTRS)
1996-01-01
A view from the flame trench looking up shows the Space Shuttle Atlantis, mounted on the Mobile Launcher Platform and Crawler- Transporter, as it arrives atop the hardstand at Launch Pad 39A. After the Shuttle and launch stand are in position, the crawler will be pulled back. This is the third time Atlantis has completed the journey to Launch Pad 39A in the STS-79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.
Pad 39B Flame Trench Upgrades and modifications
2016-03-03
Upgrades and modifications continue to the flame trench at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Pad B is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission-1, deep-space missions, and the journey to Mars.
2003-05-02
KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2017-09-26
Praxair trucks carrying their loads of liquid oxygen, or LO2, are on their way to Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
One of several Praxair trucks carrying its load of liquid oxygen, or LO2, is in route to Launch Pad 39B at NASA's Kennedy Space Center in Florida. The truck will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2003-07-23
KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area stretching beyond the Turn Basin in the foreground. At center is the 525-foot-tall Vehicle Assembly Building, with the starting and endpoint of the crawlerway that leads to both launch pads. The low building attached to the VAB is the Launch Control Center. At center left is the Operations and Support Building. At upper right can be seen the Runway at the Shuttle Landing Facility. Surrounding waters are part of Banana Creek.
2003-07-23
CAPE CANAVERAL, Fla. -- This view shows much of the Launch Complex 39 Area stretching beyond the Turn Basin in the foreground. At center is the 525-foot-tall Vehicle Assembly Building, with the starting and endpoint of the crawlerway that leads to both launch pads. The low building attached to the VAB is the Launch Control Center. At center left is the Operations and Support Building. At upper right can be seen the runway at the Shuttle Landing Facility. Surrounding waters are part of Banana Creek. Photo credit: NASA
Mine-Resistant Ambush-Protection vehicles
2014-02-13
CAPE CANAVERAL, Fla. – One of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles sits near space shuttle-era M-113 vehicles at the Maintenance and Operations Facility at NASA’s Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Mine-Resistant Ambush-Protection vehicles
2014-02-13
CAPE CANAVERAL, Fla. – One of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles is driven to the Maintenance and Operations Facility at Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Mine-Resistant Ambush-Protection vehicles
2014-02-13
CAPE CANAVERAL, Fla. – A URS Federal Services worker pulls down the steps to the entrance of one of the four new emergency egress vehicles, called Mine-Resistant Ambush-Protected, or MRAP, vehicles at the Maintenance and Operations Facility at NASA’s Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Mine-Resistant Ambush-Protection vehicles
2014-02-13
CAPE CANAVERAL, Fla. – A view of the interior of one of four new emergency egress vehicles, called Mine-Resistant Ambush-Protected, or MRAP, vehicles is shown. The MRAPs are at the Maintenance and Operations Facility at NASA’s Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Gittell, Ross; Venkatachalam, A. R.
2011-01-01
There is an exciting new opportunity for universities and colleges to advance the New England economy and at the same time help address environmental concerns. The current snapshot of New England's economy relative to other areas is favorable. The region suffered less decline during the recent recession than the national average, and the region's…
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered on the east by the Atlantic Ocean and cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left, or north, is the Orbiter Processing Facility’s Bay 3. On the western side are OPF Bays 1 and 2. South, near the roadway, is the Operations Support Building. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. The turn basin, at right, allows delivery of external tanks that are offloaded close to and transported to the VAB. At the western end of the Turn Basin sits the press mound, home of the NASA KSC News Center. Photo credit: NASA
2010-11-30
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the ground umbilical carrier plate (GUCP) and cracks on space shuttle Discovery's external fuel have been repaired. A hydrogen gas leak at the GUCP during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. Also during initial loading operations, the foam cracked on two of the tank's 108 stringers, which are the composite aluminum ribs located vertically on the intertank area. Discovery's next launch attempt is no earlier than Dec. 17 at 8:51 p.m. EST. Until then, engineers will continue to analyze data from the GUCP and stringer crack repairs. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
1998-09-21
KENNEDY SPACE CENTER, FLA. -- Looking eastward, the Vehicle Assembly Building (VAB) in the Launch Complex 39 area can be seen with its new coat of paint, along with newly painted American flag and NASA logo. The improved look was finished in time to honor NASA's 40th anniversary on Oct. 1. In order to do the job, workers were suspended on platforms from the top of the 525-foot-high VAB. One of the world's largest buildings by volume, the VAB is the last stop for the Shuttle before rollout to the launch pad. Integration and stacking of the complete Space Shuttle vehicle (orbiter, two solid rocket boosters and the external tank) takes place in High Bays 1 or 3. Stretching from the side of the VAB, on the right, is the crawlerway, used to transport the Space Shuttle to the launch pad. Beyond the VAB is Banana Creek
STS-41 Ulysses Breakfast, Suit-up, C-7 Exit, Launch and ISOS Cam Views
NASA Technical Reports Server (NTRS)
1990-01-01
Live footage shows the crewmembers of STS-41, Commander Richard N. Richards, Pilot Robert D. Cabana, Mission Specialists William M. Shepherd, Bruce E. Melnick, and Thomas D. Akers, participating in the traditional activities the day of their flight. The crew are seen eating breakfast, suiting-up, walking out to the Astronaut-Van, putting on life vests in the 'White Room' area, and entering the crew module of the Discovery Orbiter. Footage also includes preparation of the Ulysses Payload. Engineers are seen loading Ulysses to the upper stage, transferring Discovery to an upright position, bolting Discovery to the external tank, rolling Discovery out to the launch pad, and finally installing the Ulysses Payload inside Discovery. Also shown are both night and morning panoramic shots of the shuttle on the pad, main engine start, ignition, liftoff, booster separation, and various camera views of the launch.
2008-09-19
CAPE CANAVERAL, Fla. - During space shuttle Endeavour’s rollout to the launch pad at NASA's Kennedy Space Center, a worker checks equipment on the tracks of the massive crawler-transporter. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis
2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH ...
2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH PAD A GANTRY AT CENTER, LAUNCH PAD B GANTRY AT RIGHT; THIS VIEW MATCHES FL-8-5-1 TO FORM PANORAMIC SWEEP OF SITE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
NASA Technical Reports Server (NTRS)
1972-01-01
The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m., April 16, 1972. The launch is framed on the left by a large piece of dead wood in a body of water near the launch pad.
2008-09-20
CAPE CANAVERAL, Fla. - With a crystal blue Atlantic Ocean in the background, space shuttle Endeavour sits on Launch Pad B at NASA’s Kennedy Space Center in Florida. At left of the shuttle is the open rotating service structure with the payload changeout room revealed. The rotating service structures provide protection for weather and access to the shuttle. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis’ upcoming mission to repair NASA’s Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for its STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Troy Cryder
2014-05-20
CAPE CANAVERAL, Fla. -- The flame trench comes into view on Launch Pad 39A as a crawler-transporter hauls Mobile Launcher Platform-2, or MLP-2, off the pad at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb to the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, rolling away from Launch Pad 39A atop a crawler-transporter, was positioned over the pad's flame trench only moments before. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bjorklund, J. R.
1972-01-01
A quantitative assessment is described of the potential environmental hazard posed by the atmospheric release of HCl resulting from the burning of solid propellant during two hypothetical on-pad aborts of the Titan 3 C and space shuttle vehicles at Kennedy Space Center. In one pad-abort situation, it is assumed that the cases of the two solid-propellant engines are ruptured and the burning propellant falls to the ground in the immediate vicinity of the launch pad where it continues to burn for 5 minutes. In the other pad-abort situation considered, one of the two solid engines on each vehicle is assumed to ignite and burn at the normal rate while the vehicle remains on the launch pad. Calculations of maximum HCl ground-level concentration for the above on-pad abort situations were made using the computerized NASA/MSFC multilayer diffusion models in conjunction with appropriate meteorological and source inputs. Three meteorological regimes are considered-fall, spring, and afternoon sea-breeze. Source inputs for the hazard calculations were developed. The principal result of the calculations is that maximum ground-level HCl concentrations at distances greater than 1 kilometer from the launch pad are less than 3 parts per million in all cases considered.
2011-06-02
JSC2011-E-059493 (31 May 2011) --- The space shuttle Atlantis is seen in the background on Launch Pad 39A at NASA?s Kennedy Space Center in Florida on May 31, 2011. The crawler/transporter is seen slowly driving away from the launch pad after making its final scheduled delivery of a shuttle. The orbiter is scheduled to fly the final mission of the Space Shuttle Program, launching on July 8. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2003-08-18
KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Final Flame Trench Brick Installation at Launch Pad 39B
2017-05-09
A view looking up from the north side of the flame trench beneath the pad at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.
2000-09-12
KENNEDY SPACE CENTER, Fla. -- This aerial photo captures Launch Pads 39B (left) and 39A (right). Space Shuttle Discovery waits on pad 39A for launch on mission STS-92 Oct. 5, 2000. The ball-shaped structures at left of the pads are storage tanks of the cryogenic liquid propellants for the orbiter’s main engines
2000-09-12
KENNEDY SPACE CENTER, Fla. -- This aerial photo captures Launch Pads 39B (left) and 39A (right). Space Shuttle Discovery waits on pad 39A for launch on mission STS-92 Oct. 5, 2000. The ball-shaped structures at left of the pads are storage tanks of the cryogenic liquid propellants for the orbiter’s main engines
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. A mist is visible as LO2 is offloaded from one of the trucks into the giant storage sphere located at the northwest corner of the pad has begun. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will begin to offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
Engineers watch as several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
Transient response for interaction of two dynamic bodies
NASA Technical Reports Server (NTRS)
Prabhakar, A.; Palermo, L. G.
1987-01-01
During the launch sequence of any space vehicle complicated boundary interactions occur between the vehicle and the launch stand. At the start of the sequence large forces exist between the two; contact is then broken in a short but finite time which depends on the release mechanism. The resulting vehicle response produces loads which are very high and often form the design case. It is known that the treatment of the launch pad as a second dynamic body is significant for an accurate prediction of launch response. A technique was developed for obtaining loads generated by the launch transient with the effect of pad dynamics included. The method solves uncoupled vehicle and pad equations of motion. The use of uncoupled models allows the simulation of vehicle launch in a single computer run. Modal formulation allows a closed-form solution to be written, eliminating any need for a numerical integration algorithm. When the vehicle is on the pad the uncoupled pad and vehicle equations have to be modified to account for the constraints they impose on each other. This necessitates the use of an iterative procedure to converge to a solution, using Lagrange multipliers to apply the required constraints. As the vehicle lifts off the pad the coupling between the vehicle and the pad is eliminated point by point until the vehicle flies free. Results obtained by this method were shown to be in good agreement with observed loads and other analysis methods. The resulting computer program is general, and was used without modification to solve a variety of contact problems.
View of the shuttle Discovery on the launch pad just prior to STS 51-D launch
1985-04-12
Just below center of this scene is a distant representation of a large ignition as the Shuttle Discovery lifts off from a Kennedy Space Center (KSC) launch pad. The ignition can be seen through the fronds of the trees. Birds in flight frame the light spot representing the orbiter as it launches.
11. Photocopy of photograph (original photograph in possession of Val ...
11. Photocopy of photograph (original photograph in possession of Val Brose, General Dynamics Space Systems Division, Vandenberg Air Force Base, California). Photographer unknown, circa July 1961. CREW OF FIRST LAUNCH FROM POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2, (SLC-3E) ON LAUNCH PAD. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Environmental monitoring of Space Shuttle launches at Kennedy Space Center - The first ten years
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Hall, Carlton R.; Hinkle, C. R.; Duncan, Brean W.; Knott, William M., III; Summerfield, Burton R.
1993-01-01
Space Shuttle launches produce local environmental effects through the generation of a launcher exhaust plume that in turn produces acidic depositions and acute vegetation damage in the near-field environment; fish kills have also been noted in the lagoon or impoundment near each of the launch pads. Repeated launches lead to cumulative changes in plant community composition and structure, and temporary decreases in pH due to acidification increases metal availability in soil microcosms and surface waters. Direct effects on terrestrial fauna include the mortality of birds, mammals, amphibians, and reptiles in the near-field area.
STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B
NASA Technical Reports Server (NTRS)
1988-01-01
STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.
Expedition 32 Soyuz Rocket Rollout
2012-07-12
A dragonfly lights on a tree branch near the launch pad after the Soyuz TMA-05M is rolled to its launch pad at the Baikonur Cosmodrome, Thursday, July 12, 2012 in Kazakhstan. The launch of the Soyuz rocket is scheduled for the morning of July 15 local time. Photo Credit: (NASA/Carla Cioffi)
2009-03-23
The Soyuz launch pad is seen about an hour before the Soyuz rocket is rolled out to the launch pad Tuesday, March 24, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)
62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END ...
62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END OF LAUNCH PAD. FIRE SUPPRESSION EQUIPMENT RIGHT OF FLAME BUCKET. SOUTH FACE OF MST IS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2000-03-25
Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Casting a giant shadow across the crawlerway, a crawler transporter slowly maneuvers Space Shuttle Discovery, with its external tank and solid rocket boosters, toward High Bay 1 of the Vehicle Assembly Building to repair damage to the external tank's foam insulation caused by hail. The necessary repair work could not be performed at Pad 39B due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- A crawler transporter slowly maneuvers Space Shuttle Discovery, with its external tank and solid rocket boosters, into High Bay 1 of the Vehicle Assembly Building to repair damage to the external tank's foam insulation caused by hail. The necessary repair work could not be performed at Pad 39B due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB) Mike Sestile, with United Space Alliance, draws circles around divots in the foam insulation on the top of the external tank of Space Shuttle Discovery. About 150 divots were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB), John Blue, with United Space Alliance, points to one of the divots in the foam insulation on the external tank of Space Shuttle Discovery. About 150 divots were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- At a juncture in the crawlerway, a crawler transporter slowly moves Space Shuttle Discovery, with its external tank and solid rocket boosters, toward High Bay 1 of the Vehicle Assembly Building to repair damage to the external tank's foam insulation caused by hail. The necessary repair work could not be performed at Pad 39B due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- At a juncture in the crawlerway, a crawler transporter slowly moves Space Shuttle Discovery, with its external tank and solid rocket boosters, to High Bay 1 of the Vehicle Assembly Building to repair damage to the external tank's foam insulation caused by hail. The necessary repair work could not be performed at Pad 39B due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to the pad by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to be rolled back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB) John Blue, with United Space Alliance, and Jorge Rivera, with NASA, look at the dings in the foam insulation on the external tank of Space Shuttle Discovery. About 150 dings were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE position the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
1990-09-05
S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, M-113 armored personnel carriers transport workers away from the pad. In the background are the Fixed (tall) and Rotating Service Structures. To the left is the water tower that holds 300,000 gallons used during liftoffs.The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. At far left is the recently-constructed pad elevator. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
Launch of STS-67 Space Shuttle Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.
STS-113 workers search for oxygen leak
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the Payload Changeout Room, Launch Pad 39A, workers raise a platform toward the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
STS-113 workers search for oxygen leak
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room, Launch Pad 39A, ride a platform toward the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
STS-113 workers search for oxygen leak
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room, Launch Pad 39A, are on a platform in the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
2002-11-12
KENNEDY SPACE CENTER, FLA. -- In the Payload Changeout Room, Launch Pad 39A, workers raise a platform toward the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
2002-11-12
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room, Launch Pad 39A, are on a platform in the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
2002-11-12
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room, Launch Pad 39A, ride a platform toward the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
2002-11-12
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room, Launch Pad 39A, are on a platform in the forward cargo bay area of Space Shuttle Endeavour to search for an oxygen leak. The launch of Endeavour on mission STS-113 was postponed Nov. 10, following the completion of tanking operations, due to higher than allowable oxygen levels in the orbiter's midbody. Workers will investigate the exact location and possible cause of the leak, and effect repairs. Launch has been tentatively set for no earlier than Nov. 18, between 7 and 11 p.m. EST.
STS-32 Columbia, OV-102, is positioned on the hard stand at KSC LC Pad 39A
1989-11-28
S89-51983 (18 Nov 1989) --- Roll-out of the Space Shuttle Columbia is completed as the vehicle, atop the Mobile Launcher Platform, is positioned on the hard stand at Pad 39A. The approximately eight-hour journey from the Vehicle Assembly Building began at 2:32 a.m. EST. This marks the first time a Space Shuttle has been at Pad A at Launch Complex 39 since January 12, 1986, when Columbia was launched on mission 61C. Pad A will next be used for the launch of Columbia and a five person crew on the STS-32 mission, presently scheduled for no earlier than December 18, 1989.
2014-05-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, is glimpsed across the water as it departs Launch Pad 39A atop a crawler-transporter. A pad on Cape Canaveral Air Force Station is in view in the background. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
STS-93 MS Coleman takes in view from 195-foot level of launch pad
NASA Technical Reports Server (NTRS)
1999-01-01
At the 195-foot level of Launch Pad 39B, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) takes in the view. The STS-93 crew are at KSC to participate in a Terminal Countdown Demonstration Test, which familiarizes them with the mission, provides training in emergency exit from the orbiter and launch pad, and includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, with its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93, which was moved out of High Bay 1 to make room for Discovery, can be seen in the background between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- On a beautiful Florida morning, a crawler transporter moves Space Shuttle Discovery (right, nearly hidden behind its external tank and solid rocket boosters) from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93 was moved out of High Bay 1, which awaits Discovery's arrival with its door open. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, hidden by its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) for repair of damage to the external tank foam insulation caused by hail. The external tank/solid rocket booster stack for mission STS-93 was moved out of High Bay 1 to make room for Discovery and can be seen on the horizon between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane swing the detached orbiter access arm, which ends in the White Room, away from the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
Payload Bay Canister being transported to Pad 39A for a fit chec
2007-01-22
This payload canister is being transported to Launch Pad 39A for a "fit check." At a later date, the canister will be used to transport to the pad the S3/S4 solar arrays that are the payload for mission STS-117. The mission will launch on Space Shuttle Atlantis for the 21st flight to the International Space Station, and the crew of six will continue the construction of station with the installation of the arrays. The launch of Atlantis is targeted for March 16.
NASA Technical Reports Server (NTRS)
1995-01-01
This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.
2006-07-04
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak is happy to be making a third launch attempt on the mission. She is suiting up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Thomas Reiter, happy to be making a third launch attempt on mission STS-121, is suited up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE check the placement of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE begin the next phase of processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2011-10-14
CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann
2011-10-14
CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann
2011-10-14
CAPE CANAVERAL, Fla. – Louisiana State University mechanical engineering students Kevin Schenker, from left, and Jacob Koch join Luz Marina Calle, a scientist at NASA's Kennedy Space in Florida, as they examine a portion of the wall of the flame trench at Launch Pad 39B. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann
2011-10-14
CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University, the group on the left, joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE erect a ladder to reach the top of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove a portion of a transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to remove the canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - In the NASA Spacecraft Hangar AE, the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, is uncovered by workers following its arrival. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE lift the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Russian Soyuz Moves to Launch Pad
NASA Technical Reports Server (NTRS)
2000-01-01
The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.
STS-95 Space Shuttle Discovery rollout to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1998-01-01
As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Troy Cryder
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/George Shelton
The Expedition Three crew poses for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2017-09-26
Mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
ISS Expedition E53-54 Soyuz MS-06 Rollout to the Launch Pad
2017-09-10
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz MS-06 spacecraft and its Soyuz booster were transported from the Integration Facility to the launch pad on a railcar Sept. 10 for final preparations before launch Sept. 13 to the International Space Station. The Soyuz MS-06 will carry Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA to the orbital complex for a five-and-a-half month mission. Also included are interviews at the launch pad with Joe Montalbano, Deputy ISS Program Manager and Sean Fuller, Director of Human Spaceflight Programs in Russia following the rocket's rollout.
Pad 39B Flame Trench Brick Work
2016-10-26
Progress on the new brick walls of the north side of the flame trench at Launch Pad 39B is seen in a view from the top of the pad at NASA’s Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, continue to install new heat-resistant bricks on the concrete walls. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep-space missions, and the journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
2010-11-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Launch Pad 39B is seen from Launch Pad 39A. Pad B is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jack Pfaller
70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...
70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2013-04-21
The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter carries Mobile Launcher Platform-2, or MLP-2, away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2003-08-18
KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
Cape Canaveral and Kennedy Space Center, Florida
1989-05-08
STS030-76-042 (4-8 May 1989) --- For two decades, astronauts have been photographing their launching area from space, but in terms of sharpness and clarity, NASA photo experts feel, few rival this STS-30 vertical scene over the Cape Canaveral area. Sprinkled along the jutting cape feature are a number of launching pads of Kennedy Space Center, and nearby is seen the Shuttle landing facility. Titusville can be seen just above center on the north; Cocoa, Cocoa Beach and Merritt Island are south, near bottom of the frame. St. Johns, Banana and Indian Rivers are easily traced as well.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Apollo 6 Transported to Launch Pad at KSC
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 6, the second and last of the unmarned Saturn V test flights, is slowly transported past the Vehicle Assembly Building on the way to launch pad 39-A. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
NASA Technical Reports Server (NTRS)
1990-01-01
Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
NASA Technical Reports Server (NTRS)
1990-01-01
Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2015-01-01
The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
2010-11-12
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, two rainbows appear between Launch Pad 39B and Launch Pad 39A. Pad B, seen here, is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Troy Cryder
View of the launch of STS 51-A shuttle Discovery
NASA Technical Reports Server (NTRS)
1984-01-01
View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).
NASA Technical Reports Server (NTRS)
1995-01-01
A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.
NASA Technical Reports Server (NTRS)
1995-01-01
A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.
CCP Astronaut Eric Boe, GOES-S Prepared for Launch
2018-02-28
NASA astronaut Eric Boe, one of four astronauts working with the agency’s Commercial Crew Program, had the opportunity to check out the Crew Access Tower at Space Launch Complex 41 (SLC-41) Wednesday with a United Launch Alliance Atlas V on the pad. Boe, along with launch operations engineers from NASA, Boeing, and ULA, climbed the launch pad tower to evaluate lighting and spotlights after dark. The survey helped ensure crew members will have acceptable visibility as they prepare to launch aboard Boeing’s Starliner spacecraft on the Crew Flight Test to the International Space Station targeted for later this year.
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2017-09-26
A large plume of mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2014-08-16
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, singer-songwriter Brad Paisley receives a response from astronaut Reid Wiseman, an Expedition 40 crew member in Earth orbit on the International Space Station, after Paisley announced through social media the release of a new song titled "American Flag on the Moon." Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper
2008-05-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are in place against space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission begins at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
2008-03-04
KENNEDY SPACE CENTER, FLA. -- NASA's Gamma-Ray Large Area Space Telescope, or GLAST, arrives at Kennedy Space Center in a shipping container aboard a truck to begin final preparations for launch. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2003-08-18
KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-18
KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-18
KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- The first solid rocket motor arrives at Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket (background) to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage.The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- The first solid rocket motor arrives at Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the payload transportation canister is lowered over the GLAST spacecraft for installation. The spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians secure the GLAST spacecraft, inside its payload transportation canister, to the transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians secure the GLAST spacecraft, inside its payload transportation canister, to the transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers is happy to be making a third launch attempt on mission STS-121. Here, he fixes one of his gloves during suitup before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.
2012-01-01
This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.
8. Photocopy of photograph (original photograph in possession of the ...
8. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by United States Navy, July 8, 1959. VIEW OF FORMWORK FOR NORTH WALL OF POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2 (SLC-3 EAST) LAUNCH PAD AND SERVICE BUILDING (BLDG. 751). - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2003-10-13
October 13, 2003. Baikonur Cosmodrome, Kazakhstan. Expedition 8 Soyuz Commander Alexander Kaleri (left) and Expedition 8 Commander and NASA Science Officer Mike Foale visit the launch pad at the Baikonur Cosmodrome in Kazakhstan Oct. 13, 2003. Foale, Kaleri and European Space Agency Astronaut Pedro Duque of Spain will be launched from the Central Asian launch pad to the International Space Station on Oct. 18. Photo Credit"NASA/Bill Ingalls"
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
NASA Astrophysics Data System (ADS)
Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.
2010-07-01
A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN ...
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN THE LEFT DISTANCE, TRACKSIDE CAMERA STAND AT TOP CENTER. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to begin further processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Sections of the transportation canister used in the move are in the foreground. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
SpaceX Falcon Heavy Demo Flight Launch - Press Site
2018-02-06
The parking area at the NASA News Center is filled with media vehicles and guest buses in anticipation of the liftoff of the SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy Space Center in Florida. The demonstration flight will be a significant milestone for the world's premier multi-user spaceport. In 2014, NASA signed a property agreement with SpaceX for the use and operation of the center's pad 39A, where the company has launched Falcon 9 rockets and is preparing for the first Falcon Heavy. NASA also has Space Act Agreements in place with partners, such as SpaceX, to provide services needed to process and launch rockets and spacecraft.
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module is moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88 . The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
1998-10-22
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
Pad 39B Flame Trench Brick Work
2016-10-26
Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, prepare new heat-resistant bricks for installation on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the crawler track panels have been removed and construction workers continue to repair the concrete on the surface of the pad. The flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
Pad 39B Flame Trench Brick Work
2016-10-26
Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, attach new heat-resistant bricks on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
Pad 39B Flame Trench Brick Work
2016-10-26
A construction worker with J.P. Donovan of Rockledge, Florida, checks to make sure new heat-resistant bricks attached to the north side of the flame trench are level at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2014-01-01
Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
Analysis of the March 30, 2011 Hail Event at Shuttle Launch Pad 39A
NASA Technical Reports Server (NTRS)
Lane, John E.; Doesken, Nolan J.; Kasparis, Takis C.; Sharp, David W.
2012-01-01
The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA KSC Physics Lab and the KSC Engineering Services Contract (ESC) Applied Technology Lab, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University have been instrumental in validation testing using duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle, as shown in Figure 1, was first deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusually intense (for Florida standards) hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the Vertical Assembly Building (VAB) and Launch Control Center (LCC), about three miles west of Pad 39A, as well as at several other locations at KSC. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred on that day.
224. Photocopy of drawing (1963 structural drawing by General Dynamics/Astronautics) ...
224. Photocopy of drawing (1963 structural drawing by General Dynamics/Astronautics) UMBILICAL MAST WIND DEFLECTOR REQUIRED FOR 206 PROGRAM, PAD, SHEET S-101 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter nears the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter creeps toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter rolls under the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A, in the background, to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- The crawler-transporter transporting Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A creeps along the crawlerway toward the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
Feasibility study of launch vehicle ground cloud neutralization
NASA Technical Reports Server (NTRS)
Vanderarend, P. C.; Stoy, S. T.; Kranyecz, T. E.
1976-01-01
The distribution of hydrogen chloride in the cloud was analyzed as a function of launch pad geometry and rate of rise of the vehicle during the first 24 sec of burn in order to define neutralization requirements. Delivery systems of various types were developed in order to bring the proposed chemical agents in close contact with the hydrogen chloride. Approximately one-third of the total neutralizing agent required can be delivered from a ground installed system at the launch pad; concentrated sodium carbonate solution is the preferred choice of agent for this launch pad system. Two-thirds of the neutralization requirement appears to need delivery by aircraft. Only one chemical agent (ammonia) may be reasonably considered for delivery by aircraft, because weight and bulk of all other agents are too large.
2008-05-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are extended toward space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission gets under way at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder
2000-03-25
Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
2000-03-25
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda
View of the Endeavour moving towards it launch pad
1996-06-06
STS077-S-044 (16 April 1996) --- The Space Shuttle Endeavour atop the Mobile Launcher Platform and Crawler-Transporter (MLP/CT) slowly lumbers past a tree alongside the crawlerway, at the Kennedy Space Center (KSC). The journey from the Vehicle Assembly Building (VAB) to Launch Pad 39B will take about five to six hours to complete. Once hard down at the pad, preparations will continue to ready Endeavour for its upcoming spaceflight on STS-77.
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO ...
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO SHOWING A PROTECTIVE BERM AT TOP LEFT, AND FIRING CONTROL BLOCKHOUSE 0545 AT TOP RIGHT. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
2003-09-12
KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere
NASA Technical Reports Server (NTRS)
Krenn, Angela G.
2011-01-01
There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.
2008-12-19
CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, one of the new lightning towers is under construction. The towers will hold catenary wires as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Pad 39B will be the site of the first Ares vehicle launch, including Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs
STS-79 Commander Readdy and Pilot Wilcutt at slidewire
NASA Technical Reports Server (NTRS)
1996-01-01
Clad in their launch/entry suits, STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt test the fit of a slidewire basket on the emergency egress system at Launch Pad 39A. The six astronauts assigned to the fourth Shuttle-Mir docking flight are completing Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT includes emergency egress training at the launch pad and culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.
1959-09-08
Big Joe Capsule Launch Pad Activities: This film covers both the Big Joe and a Little Joe Project Mercury flight test with a research and development version of the Mercury capsule. Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959. The lower half of the capsule was created at NASA Lewis. The scenes include coverage of the assembly and erection of the boosters, delivery of the capsules, mating of the capsules to the boosters, prelaunch views of the capsule and boosters on launchers, mission control, the launches, and recovery.
2013-06-12
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-06-10
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, workers are removing the flame trench deflector that sits below and between the left and right crawler track panels. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is ready to be lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, technicians check the electronics on a solid rocket booster to be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket (background) that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster is raised from its transporter. The booster will join the first booster lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is raised to a vertical position for lifting into the mobile service tower. There it will be mated with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is raised from its transporter. The booster will be lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2000-08-16
STS-106 Mission Specialist Edward T. Lu grins over the chance for his turn to drive the M113 armored personnel carrier. The M113 is an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
2000-08-16
Rising from the M113 armored personnel carrier, STS-106 Commander Terrence W. Wilcutt takes his turn at the helm of a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the payload transportation canister is lifted so it can be installed over the GLAST spacecraft, behind it. After installation, the spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the payload transportation canister is lifted so it can be installed over the GLAST spacecraft, behind it. After installation, the spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians check the alignment of the payload transportation canister as it is lowered over the GLAST spacecraft for installation. The spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the GLAST spacecraft, inside its payload transportation canister, is lifted from its stand. It will be moved to a transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians ensure the payload transportation canister is properly placed to lower over the GLAST spacecraft. After installation, the spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., an overhead crane moves the GLAST spacecraft, inside its payload transportation canister, to the waiting transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the wrapped GLAST spacecraft, at right, is ready to be installed into the payload transportation canister, at left. After installation, the spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians unfurl the bottom portion of the white cover over the payload transportation canister installed around the GLAST spacecraft. All will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
STS-111/Endeavour/ISS UF2 Pre-Launch Activities: Launch with Playbacks
NASA Technical Reports Server (NTRS)
2002-01-01
This video of the preflight preparations for and launch of Space Shuttle Endeavour on STS-111 begins with a view of Endeavour on the launch pad. Additional launch pad views leading up to liftoff are interspersed with footage from the Firing Room at Kennedy Space Center, the crew's prelaunch activities, and inspection of the crew members in the White Room before boarding Endeavour. The crew is introduced by a narrator during the preflight banquet and suiting up, and a later clip shows them departing to the launch site. The crew consists of Commander Kenneth Cockrell, Pilot Paul Lockhart, Mission Specialists Philippe Perrin and Franklin Chang-Diaz, and the Expedition 5 crew of the International Space Station (ISS) (Commander Valery Korzun and Flight Engineers Peggy Whitsun and Sergei Treschev). The nozzles on Endeavour's Space Shuttle Main Engine (SSME) are swiveled before liftoff, and the launch is shown past the separation of the solid rocket boosters. After a brief clip from the Mission Control Center at Johnson Space Center, the following launch replays are shown: Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, and OTV-070.
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
1998-08-06
In this aerial view, The News Center sits beyond a large parking lot, on a hill at the northeastern end of the Launch Complex 39 Area , next to the turn basin (at left). From left, the grandstand faces the launch pads several miles away on the Atlantic seashore; behind it, the television studio is the site of media conferences; next, the large white-roofed building is the hub of information and activity for press representatives. Lined up on the right of the Press Site are various buildings and trailers, home to major news networks. The parking lot can accommodate the hundreds of media personnel who attend Space Shuttle launches
2007-05-15
KENNEDY SPACE CENTER, FLA. -- In high bay No. 1 of the Vehicle Assembly Building, Space Shuttle Atlantis is ready for its return to Launch Pad 39A. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2007-05-15
KENNEDY SPACE CENTER, FLA. -- In high bay No. 1 of the Vehicle Assembly Building, Space Shuttle Atlantis awaits its return to Launch Pad 39A. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
LH2 Liquid Separator Tank Delivery
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank will be lifted and rotated for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
Woodpecker Preventative measures at Launch Pad 39B
NASA Technical Reports Server (NTRS)
1995-01-01
Technicians at Launch Pad 39B take steps to prevent further damage from woodpeckers to the Space Shuttle Discovery, set to lift off July 13 on Mission STS-70. Installing balloons with scary eyes, such as these two near the external tank, are just one of the measures being taken to keep woodpeckers away since Discovery's second rollout to Pad B. Discovery had to be rolled back once to the Vehicle Assembly Building to repair woodpecker holes made in the insulation covering the external tank.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- At the slidewire basket area of Launch Pad 39A, the STS-92 crew poses for a group photograph after a question and answer session with the media. Standing left to right are Commander Brian Duffy, Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao, William S. McArthur Jr. (with microphone), Peter J.K. “Jeff” Wisoff, Michael E. Lopez-Alegria and Koichi Wakata of Japan. The crew is at KSC for Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and take part in a simulated countdown. The slidewire basket area is a landing site for the crew if they have to use the slidewire baskets to exit the orbiter on the pad in an emergency. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
2000-09-14
KENNEDY SPACE CENTER, FLA. -- At the slidewire basket area of Launch Pad 39A, the STS-92 crew poses for a group photograph after a question and answer session with the media. Standing left to right are Commander Brian Duffy, Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao, William S. McArthur Jr. (with microphone), Peter J.K. “Jeff” Wisoff, Michael E. Lopez-Alegria and Koichi Wakata of Japan. The crew is at KSC for Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and take part in a simulated countdown. The slidewire basket area is a landing site for the crew if they have to use the slidewire baskets to exit the orbiter on the pad in an emergency. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
2008-10-16
CAPE CANAVERAL, Fla. - Joe Buchanan (left), project lead with the ITT Corporation for the 45th Space Wing, supervises the lift of the radome to the top of a new Doppler weather radar tower being built in an area near S.R. 520 in Orange County, Fla. The dome houses the weather radar dish and pedestal and protects them from the elements. The new tower will replace one at nearby Patrick Air Force Base and will be used by NASA's Kennedy Space Center, the 45th Space Wing and their customers. The tower will be able to monitor weather conditions directly above the launch pads at Kennedy. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria. The new radar, replacing what was installed 25 years ago, includes Doppler capability to detect winds and identify the type, size and number of precipitation particles. The site is ideally distant from the launch pads and has unobstructed views of Cape Canaveral Air Force Station and Kennedy. Photo credit: NASA/Dimitri Gerondidakis
2010-01-19
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission pause from their M113 training for a group portrait. From left are Commander George Zamka; Pilot Terry Virts; and Mission Specialists Robert Behnken, Kathryn Hire, Stephen Robinson and Nicholas Patrick. An M113 is kept at the foot of the launch pad in case an emergency egress from the vicinity of the pad is needed. The crew members of space shuttle Endeavour's STS-130 mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett
Pad 39B Flame Trench Brick Work
2016-10-26
Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, are on an elevated work stand to install new heat-resistant bricks on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
2018-05-24
About 450,000 gallons of water flow at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test on May 24, 2018, at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was performed by Exploration Ground Systems to confirm the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.
Pad 39B Flame Trench Brick Work
2016-10-26
Construction workers with J.P. Donovan of Rockledge, Florida, cut new heat-resistant bricks to size for the concrete walls of the flame trench at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. New heat-resistant bricks are being attached with epoxy mortar to the flame trench walls. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.
STS-26 crew during emergency egress exercise at LC 39 launch pad B
1988-05-04
S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).
2009-02-12
CAPE CANAVERAL, Fla. – A lightning mast remains to be lifted atop the third and final lightning tower erected on Launch Pad 39B at NASA's Kennedy Space Center. Three towers surround the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
The FUSE satellite is ready to move to the launch pad.
NASA Technical Reports Server (NTRS)
1999-01-01
In Hangar AE, Cape Canaveral Air Station (CCAS), NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands ready to be moved to the launch pad. The black rectangle on top is the optical port; at the lower edge are the radiators. The total length of the instrument is approximately four meters. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. Launch is targeted for June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.
2002-09-10
KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. Visible near the tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.
The Use of an Atmospheric Model for Study the Gas Dispersion at the Brazilian Space Launching Center
NASA Astrophysics Data System (ADS)
Fisch, G.; Iriart, P. G.; Andrade Schuch, D.; Couto Milanez, V.
2015-09-01
The present work aims to use an atmospheric mesoscale model (Weather Research and Forecasting model - WRF) coupled with its chemical module (CHEM) in order to study the simulation of the dispersion of exhausted gas released from a typical rockets (in this case the Satellite Vehicle Launcher characteristics was used) from the Alcântara Launch Center (ALC). For the initialization of the coupled model, the preprocessor PREP-Chem was assigned to the Reanalysis of the TROpospheric chemical composition (RETRO). However, as this repository has no pollutants at the ALC area, a new method of insertion of chemical data assigned to the exact geographical position where the VLS is launched was used with all emissions null unless at the Launcher pad. Also, the model was initialized with meteorological data extracted from the Global Forecasting System (GFS). The simulations were made for different 4 cases representatives of the diurnal (daytime and nighttime) and seasonal (dry and wet seasons) scales. Observational data (radiosondes and wind tower data) was used to validate the wind field. There are 3 grids nested with 9, 3 and 1 km spatial resolution and the model has 45 levels in the vertical (15 levels up to 2000 m). All the simulations showed approximately the same patterns as the wind flow are very persistent (this is a characteristic of the trade winds). Typically, the simulations showed that the CO concentration (the variable used to represent the gases exhausted by the solid motors) at the launch pad is 2 order of magnitude higher than at the gate (1 km far) and 4 order of magnitude higher than Alcantara village (20 km far). It can reach 30000 ppm at the launching pad after Ho + 1 mm. Also, it was computed that the launch pad must stay isolated by 1 5 mm before any other action for the complete dispersion and, consequently, for safety reasons. As the turbulent intensity is higher at 12 UTC (daytime conditions), the total time for the complete dispersion of the plume is reduced (around 40-45 mm) related to the nighttime conditions (60-75 mm). This is an ongoing work that aims to improve this model configuration to include a vertical distribution of the exhausted gases due to the normal launching and to include small scale features at the scale of 100 m. In the near future, this model should be operational for the launchings at ALC.
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.
2016-01-01
NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit.
NASA Technical Reports Server (NTRS)
Mantovani, James; Tamasy, Gabor; Mueller, Rob; Townsend, Van; Sampson, Jeff; Lane, Mike
2016-01-01
NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit
2010-11-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media learn about the transformation of Launch Pad 39B from Jose Perez-Morales, NASA's Launch Pad 39B senior manager. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The transformation includes the removal of the rotating service structure (RSS) and fixed service structure (FSS), refurbishment of the liquid oxygen and liquid hydrogen tanks, and the upgrade of about 1.3 million feet of cable. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2008-07-23
CAPE CANAVERAL, Fla. – This elevated view of Launch Pad 39A at NASA's Kennedy Space Center shows workers filling steel grid structures, welded to the wall of the flame trench, with a heat-resistant concrete called Fondue Fyre, developed during NASA's Apollo lunar program. At left are the pad's "rainbirds." These nozzles are part of the pad sound suppression system which protects the orbiter and its payloads from being damaged by acoustical energy reflected from the mobile launcher platform during liftoff. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller
ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis completes the trip to Launch Pad 39A from the Vehicle Assembly Building for the third time in the STS- 79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.
2003-09-12
KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE (background) remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Additional workers (foreground) prepare the Delta payload attach fitting, from which SIRTF was demated, for further use. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
1983-04-12
S83-30222 (4 April 1983) --- The second reusable spacecraft in history successfully launches from Launch Pad 39A at 1:30:00:88 p.m. (EST) on April 4, 1983, and heads for its history making five-day mission in Earth orbit. The space shuttle Challenger, its two solid rocket boosters (SRB), and a new lightweight?external fuel tank were captured on film by an automatically-tripped camera in a protected station nearer to the launch pad than human beings are able to be at launch time. Onboard the spacecraft are astronauts Paul J. Wietz, Karol J. Bobko, Dr. Story Musgrave and Donald H. Peterson. Photo credit: NASA
2018-02-28
A United Launch Alliance Atlas V rocket exits the Vertical Integration Facility on its way to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
2010-03-30
The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)
2010-03-30
The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by the train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 321, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit: (NASA/Carla Cioffi)
2007-05-28
KENNEDY SPACE CENTER, FLA. -- The mobile service towers on Launch Pads 17-A (left) and 17-B (right) are silhouetted against the pre-dawn sky at Cape Canaveral Air Force Station. In the background are the launch gantries. Pad 17-B is the site for the launch of the Dawn spacecraft on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 39A, a rescue force climbs into slidewire baskets on the Fixed Service Structure during an emergency egress scenario. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
Software and Human-Machine Interface Development for Environmental Controls Subsystem Support
NASA Technical Reports Server (NTRS)
Dobson, Matthew
2018-01-01
The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.
NASA Technical Reports Server (NTRS)
Koller, A. M., Jr.; Knott, W. M.
1985-01-01
Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.
ISS Node-1 and PMA-1 rotated in KSC's SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, technicians point to an area of space shuttle Atlantis' external tank where the engine cut-off, or ECO, sensors are located. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
Looking like a painting, this wide-angle view shows the Unity connecting module being moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
Viewed from below, the Unity connecting module is moved into the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
1998-10-22
In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, the mechanism on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, solar arrays has been released. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays is positioned on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
STS-57 Endeavour, Orbiter Vehicle (OV) 105, lifts off from KSC LC Pad 39B
1993-06-21
STS057-S-053 (21 June 1993) --- The Space Shuttle Endeavour lifts off Launch Pad 39B as captured on film by an audio-activated camera positioned at the 270-feet level on the Rotating Service Structure (RSS) at Launch Pad 39B. STS-57 launch occurred at 9:07:22 a.m. (EDT), June 21, 1993. The mission represents the first flight of the commercially developed SpaceHab laboratory module and also will feature a retrieval of the European Retrievable Carrier (EURECA). Onboard for Endeavour's fourth flight are a crew of six NASA astronauts; Ronald J. Grabe, mission commander; Brian Duffy, pilot; G. David Low, payload commander; and Nancy J. Sherlock, Peter J. K. (Jeff) Wisoff and Janice E. Voss, all mission specialists. An earlier launch attempt was scrubbed due to unacceptable weather conditions both at the Kennedy Space Center (KSC) and the overseas contingency landing sites.
STS-100 crew take a group photo before walkou
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.
Delta-90 Interplanetary Monitoring Platform-H (IMP-H) flash flight report
NASA Technical Reports Server (NTRS)
1972-01-01
The Delta-90 launch vehicle and the IMP-H spacecraft were successfully launched from Pad B, Complex 17, Cape Kennedy Air Force Station, Florida, at 2120:00.559 EDT on September 22, 1972. The countdown proceeded smoothly to liftoff with no major difficulties or unscheduled holds. The Delta-90/IMP-H were launched on a pad azimuth of 115 degrees, the vehicle ten rolled to 95 degrees from the north placing the spacecraft in a highly elliptical transfer orbit. Firing the spacecraft kickmotor at 1136 EDT, September 25, 1972, injected the spacecraft into its final desirable near-circular orbit approximately half way between the planet earth and its moon. Vehicle performance of all stages appeared nominal with all sequenced events occurring at the expected times. Data acquisition from all range stations was very good. Damage to the launch pad caused by liftoff was nominal.
STS-101 crew members meet family and friends
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.
Orion Pad Abort 1 GN and C Design and Development
NASA Technical Reports Server (NTRS)
Medina, Edgar A.; Stachowiak, Susan J.
2010-01-01
The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
1997-09-10
Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-10
Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
2008-10-20
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida, a worker closely observes space shuttle Atlantis as it rolls in after leaving Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett
2008-10-20
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida, space shuttle Atlantis comes to rest after its six-hour journey from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett
Proposed space shuttle cargo handling criteria at the operational site (preliminary)
NASA Technical Reports Server (NTRS)
Beck, P. E.
1972-01-01
The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.
Apollo 14 crew arrive at White Room atop Pad A, Launch Complex 39
NASA Technical Reports Server (NTRS)
1971-01-01
The three Apollo 14 astronauts arrive at the White Room atop Pad A, Launch Complex 39, during the Apollo 14 prelaunch countdown. Note identifying red bands on the sleeve and leg of Shepard. Standing in the center background is Astronaut Thomas P. Stafford, Chief of the Manned Spacecraft Center Astronaut Office.
2003-09-12
KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
2008-05-31
CAPE CANAVERAL, Fla. – A new NASA helicopter circles space shuttle Discovery on Launch Pad 39A prior to launch on the STS-124 mission. To the left of the shuttle is the fixed service structure with the 80-foot lightning mast on top. The rotating service structure, normally closed around the shuttle, is open for liftoff. At right of the pad is the 300,000-gallon water tower that provides the water used for sound suppression on the pad during liftoff. In the background is the Atlantic Ocean. Discovery is making its 35th flight. The STS-124 mission is the 26th in the assembly of the space station. It is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory.
A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods
NASA Technical Reports Server (NTRS)
Overbey, Glenn; Roberts, Barry C.
2005-01-01
During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Other towers are being constructed at left and behind the service structures on the pad. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Hulten, W. C.; Wornom, D. E.
1974-01-01
An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample.
STS-84 Atlantis on Pad 39-A after RSS roll back
NASA Technical Reports Server (NTRS)
1997-01-01
News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.
2010-12-17
CAPE CANAVERAL, Fla. -- Launch Complex 39 is seen across brackish water as the sun rises at NASA's Kennedy Space Center in Florida. On the left is Launch Pad 39B, which is being restructured for future use. On the right is Launch Pad 39A, where space shuttle Discovery is being prepared for a tanking test. Kennedy coexists with the Merritt Island National Wildlife Refuge, habitat to more than 310 species of birds, 25 mammals, 117 fish and 65 amphibians and reptiles. Photo credit: NASA/Frank Michaux
2010-03-31
The flags of the United States, Russia and Kazakhstan are seen at the launch pad after the Soyuz TMA-18 spacecraft was rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)
STS-107 Columbia rollout to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
2004-04-16
Security Officers with their dog watch as the Soyuz TMA-4 capsule and its booster rocket begin to roll to the launch pad at the Baikonur Cosmodrome on Saturday, April 17, 2004, in Baikonur, Kazakhstan in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station on April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)
Orion Pad Abort 1 Flight Test - Ground and Flight Operations
NASA Technical Reports Server (NTRS)
Hackenbergy, Davis L.; Hicks, Wayne
2011-01-01
This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.
2008-07-08
CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller
2008-07-08
CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman