Sample records for launch pads

  1. 4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD A MOBILE SERVICE STRUCTURE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. Pad Safety Personnel Launch Support For STS-200

    NASA Technical Reports Server (NTRS)

    Guarino, Jennifer

    2007-01-01

    The launch of a space shuttle is a complex and lengthy procedure. There are many places and components to look at and prepare. The components are the orbiter, solid rocket boosters, external tank, and ground equipment. Some of the places are the launch pad, fuel locations, and surrounding structures. Preparations for a launch include equipment checks, system checks, sniff checks for hazardous commodities, and countless walkdowns. Throughout these preparations, pad safety personnel must always be on call. This requires three shifts of multiple people to be ready when needed. Also, the pad safety personnel must be available for the non-launch tasks that are always present for both launch pads

  3. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  4. 41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. KSC-06pd2006

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis is hard down on the launch pad after rolling back to Launch Pad 39B. The Atlantic Ocean and lagoon water in the background reflect the glowing light of a setting sun. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  7. Artist's Concept- Ares I On Launchpad 39B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  8. KSC-06pd2004

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  9. KSC-06pd2003

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  10. KSC-06pd2002

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  11. 14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. KSC-2014-2101

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  13. KSC-2014-2100

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  14. KSC-2014-2099

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  15. 03pd2202

    NASA Image and Video Library

    2003-07-23

    KENNEDY SPACE CENTER, FLA. – This aerial view shows Launch Complex 39 Area. At center is the 525-foot-tall Vehicle Assembly Building. On the horizon at the far left is Launch Pad 39B; to the right is Launch Pad 39A. The crawlerway can be seen stretching from the VAB toward Pad A. Waters of the Banana Creek and Banana River surround the pads. At center right is the Turn Basin.

  16. KSC-03pd2202

    NASA Image and Video Library

    2003-07-23

    CAPE CANAVERAL, Fla. -- This aerial view shows the Launch Complex 39 Area. At center is the 525-foot-tall Vehicle Assembly Building. On the horizon at the far left is Launch Pad 39B to the right is Launch Pad 39A. The crawlerway can be seen stretching from the VAB toward Pad A. Waters of the Banana Creek and Banana River surround the pads. At center right is the Turn Basin. Photo credit: NASA

  17. Two views of the 'Challenger' being rolled out to pad 39A in the fog STS-6

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two views of the 'Challenger' being rolled out to pad 39A in the fog in preparation for STS-6. In one view the Challenger, atop a mobile launch platform, slowly moves down the road through Florida fog to launch pad 39A (41140); In this view, the Challenger and its mobile launch platform are in the left corner of the photo, moving up the road in dense fog. Towards the top of the view, launch pad 39A can be seen (41141).

  18. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  19. KSC-2009-2724

    NASA Image and Video Library

    2009-04-17

    CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. Surrounding the pad are the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2013-1513

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Launch Pad 39B elevator has been upgraded and painted. Also, various fluid interface connections have been installed on the pad. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  1. 44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. KSC-2009-2725

    NASA Image and Video Library

    2009-04-17

    CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. On either side of the pad are two of the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-04PD-2451

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  4. KSC-04PD-2450

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  5. KSC-2014-2103

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., speaks to members of the news media announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  6. KSC-2014-2098

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  7. KSC-2014-2102

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  8. 32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    NASA Launch Director Charlie Blackwell-Thompson, at left, arrives at Launch Pad 39B at NASA's Kennedy Space Center in Florida, to observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  10. Method for Producing Launch/Landing Pads and Structures Project

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P. (Compiler)

    2015-01-01

    Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.

  11. KSC-2014-2104

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  12. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the design analysis philosophies outlined in this paper.

  13. ksc-93pc1449

    NASA Image and Video Library

    1993-11-15

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Endeavour is being "rolled around" from Launch Pad 39A to Launch Pad 39B. The rare pad switch was deemed necessary after contamination was discovered in the Payload Changeout Room at pad A. Still to come are the payloads for the upcoming STS-61 mission, the first servicing of the Hubble Telescope

  14. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    NASA Launch Director Charlie Blackwell-Thompson, center, talks to engineers at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  15. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    NASA Launch Director Charlie Blackwell-Thompson, at right, greets engineers and technicians at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  16. KSC-2014-3544

    NASA Image and Video Library

    2014-08-16

    CAPE CANAVERAL, Fla. – Singer-songwriter Brad Paisley announces the release of a new song titled "American Flag on the Moon" from Launch Pad 39B at NASA’s Kennedy Space Center in Florida. In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. Upon seeing Paisley's Twitter post that he was at NASA's Apollo launch pad leaking his new song, astronaut Reid Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." Wiseman is a member of the Expedition 40 crew currently in Earth orbit on the International Space Station. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper

  17. KSC-2014-3545

    NASA Image and Video Library

    2014-08-16

    CAPE CANAVERAL, Fla. – Singer-songwriter Brad Paisley announces the release of a new song titled "American Flag on the Moon" from Launch Pad 39B at NASA’s Kennedy Space Center in Florida. In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. Upon seeing Paisley's Twitter post that he was at NASA's Apollo launch pad leaking his new song, astronaut Reid Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." Wiseman is a member of the Expedition 40 crew currently in Earth orbit on the International Space Station. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper

  18. KSC-2013-1515

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  19. KSC-2013-1514

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  20. KSC-2013-1512

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  1. KSC-2013-1517

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  2. KSC-2013-1516

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  3. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. KSC-2014-2615

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd2668

    NASA Image and Video Library

    2008-09-19

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center, the massive crawler-transporter carrying space shuttle Endeavour approaches the launch pad. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis

  6. Astronaut Jean-Francois Clervoy in white room on launch pad 39B

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the white room at Launch Pad 39B, STS-66 mission specialist Jean-Francois Clervoy is assisted with his partial pressure launch/entry suit by close-out crew members Travis Thompson and Danny Wyatt (background) before entering the Space Shuttle Atlantis for its November 3 launch.

  7. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Several Praxair trucks begin to depart Launch Pad 39B at NASA's Kennedy Space Center in Florida, after offloading their loads of liquid oxygen, or LO2, one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere was gradually chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  8. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  9. KSC-2009-2975

    NASA Image and Video Library

    2009-05-06

    CAPE CANAVERAL, Fla. – New windows are installed in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-2976

    NASA Image and Video Library

    2009-05-06

    CAPE CANAVERAL, Fla. – New windows are installed in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller

  11. KSC-04PD-2447

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team helps astronaut-suited workers climb into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  12. KSC-04PD-2445

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team carries injured astronaut-suited workers into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  13. The Role of CFD Simulation in Rocket Propulsion Support Activities

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  14. View of the Apollo 10 space vehicle at Pad B, ready for launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Ground-level view at sunset of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle at Pad B, Launch Complex 39, Kennedy Space Center. The Apollo 10 stack had just been positioned after being rolled out from the Vehicle Assemble Building (VAB) (34318); View of the Apollo 10 space vehicle (through palm trees and across water) on the way from the VAB to Pad B, Launch Complex 39. The Saturn V and its mobile launch tower are atop a crawler-transporter (34319).

  15. KSC-2009-2977

    NASA Image and Video Library

    2009-05-06

    CAPE CANAVERAL, Fla. – A technician works at installing a new window in the Launch Control Center's Firing Room 1 at NASA's Kennedy Space Center in Florida. The firing room will support the future Ares rocket launches as part of NASA's Constellation Program. Future astronauts will ride to orbit on Ares I, launched from Kennedy's Launch Pad 39B. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Jack Pfaller

  16. ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A view from the flame trench looking up shows the Space Shuttle Atlantis, mounted on the Mobile Launcher Platform and Crawler- Transporter, as it arrives atop the hardstand at Launch Pad 39A. After the Shuttle and launch stand are in position, the crawler will be pulled back. This is the third time Atlantis has completed the journey to Launch Pad 39A in the STS-79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.

  17. Pad 39B Flame Trench Upgrades and modifications

    NASA Image and Video Library

    2016-03-03

    Upgrades and modifications continue to the flame trench at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Pad B is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission-1, deep-space missions, and the journey to Mars.

  18. KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) has been returned to NASA Spacecraft Hangar AE from the launch pad. It will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  19. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Praxair trucks carrying their loads of liquid oxygen, or LO2, are on their way to Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  20. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    One of several Praxair trucks carrying its load of liquid oxygen, or LO2, is in route to Launch Pad 39B at NASA's Kennedy Space Center in Florida. The truck will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  1. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload LO2 slowly into a giant storage sphere located at the northwest corner of the pad to gradually chill it down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  2. KSC-08pd2667

    NASA Image and Video Library

    2008-09-19

    CAPE CANAVERAL, Fla. - During space shuttle Endeavour’s rollout to the launch pad at NASA's Kennedy Space Center, a worker checks equipment on the tracks of the massive crawler-transporter. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis

  3. 2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL CONTEXT VIEW SHOWING 36004 AT FAR LEFT, LAUNCH PAD A GANTRY AT CENTER, LAUNCH PAD B GANTRY AT RIGHT; THIS VIEW MATCHES FL-8-5-1 TO FORM PANORAMIC SWEEP OF SITE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. Apollo 16 liftoff

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m., April 16, 1972. The launch is framed on the left by a large piece of dead wood in a body of water near the launch pad.

  5. KSC-08pd2732

    NASA Image and Video Library

    2008-09-20

    CAPE CANAVERAL, Fla. - With a crystal blue Atlantic Ocean in the background, space shuttle Endeavour sits on Launch Pad B at NASA’s Kennedy Space Center in Florida. At left of the shuttle is the open rotating service structure with the payload changeout room revealed. The rotating service structures provide protection for weather and access to the shuttle. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis’ upcoming mission to repair NASA’s Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for its STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Troy Cryder

  6. KSC-2014-2623

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- The flame trench comes into view on Launch Pad 39A as a crawler-transporter hauls Mobile Launcher Platform-2, or MLP-2, off the pad at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-2616

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb to the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  8. KSC-2014-2624

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, rolling away from Launch Pad 39A atop a crawler-transporter, was positioned over the pad's flame trench only moments before. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  9. Calculated maximum Hl ground-level concentrations downwind from launch pad aborts of the space shuttle and Titan 3 C vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.

    1972-01-01

    A quantitative assessment is described of the potential environmental hazard posed by the atmospheric release of HCl resulting from the burning of solid propellant during two hypothetical on-pad aborts of the Titan 3 C and space shuttle vehicles at Kennedy Space Center. In one pad-abort situation, it is assumed that the cases of the two solid-propellant engines are ruptured and the burning propellant falls to the ground in the immediate vicinity of the launch pad where it continues to burn for 5 minutes. In the other pad-abort situation considered, one of the two solid engines on each vehicle is assumed to ignite and burn at the normal rate while the vehicle remains on the launch pad. Calculations of maximum HCl ground-level concentration for the above on-pad abort situations were made using the computerized NASA/MSFC multilayer diffusion models in conjunction with appropriate meteorological and source inputs. Three meteorological regimes are considered-fall, spring, and afternoon sea-breeze. Source inputs for the hazard calculations were developed. The principal result of the calculations is that maximum ground-level HCl concentrations at distances greater than 1 kilometer from the launch pad are less than 3 parts per million in all cases considered.

  10. STS_135_Pad

    NASA Image and Video Library

    2011-06-02

    JSC2011-E-059493 (31 May 2011) --- The space shuttle Atlantis is seen in the background on Launch Pad 39A at NASA?s Kennedy Space Center in Florida on May 31, 2011. The crawler/transporter is seen slowly driving away from the launch pad after making its final scheduled delivery of a shuttle. The orbiter is scheduled to fly the final mission of the Space Shuttle Program, launching on July 8. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  11. KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

  12. Space Shuttle and Launch Pad Computational Fluid Dynamics Model for Lift-off Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew

    2006-01-01

    This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.

  13. KSC-07pd1199

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A, straddling the flame trench. This is the second rollout for the shuttle. The flame trench transecting the pad's mound at ground level is 490 feet long, 58 feet wide and 40 feet high. It is made of concrete and refractory brick. Pad structures are insulated from the intense heat of launch by the flame deflector system, which protects the flame trench floor and the pad surface along the top of the flame trench. On the left of the shuttle are the fixed service structure and rotating service structure in open position. When closed, the rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. The white area in the center is the Payload Changeout Room, an enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and subsequent vertical installation in the orbiter payload bay. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder

  14. 261. Photocopy of drawing (1976 electrical drawing by the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    261. Photocopy of drawing (1976 electrical drawing by the Space and Missile Test Center, VAFB, USAF) FLOODLIGHT PLAN FOR LAUNCH PAD AREA, SHEET E9 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    A view looking up from the north side of the flame trench beneath the pad at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  17. KSC00pp1301

    NASA Image and Video Library

    2000-09-12

    KENNEDY SPACE CENTER, Fla. -- This aerial photo captures Launch Pads 39B (left) and 39A (right). Space Shuttle Discovery waits on pad 39A for launch on mission STS-92 Oct. 5, 2000. The ball-shaped structures at left of the pads are storage tanks of the cryogenic liquid propellants for the orbiter’s main engines

  18. KSC-00pp1301

    NASA Image and Video Library

    2000-09-12

    KENNEDY SPACE CENTER, Fla. -- This aerial photo captures Launch Pads 39B (left) and 39A (right). Space Shuttle Discovery waits on pad 39A for launch on mission STS-92 Oct. 5, 2000. The ball-shaped structures at left of the pads are storage tanks of the cryogenic liquid propellants for the orbiter’s main engines

  19. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. A mist is visible as LO2 is offloaded from one of the trucks into the giant storage sphere located at the northwest corner of the pad has begun. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  20. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Several Praxair trucks carrying their loads of liquid oxygen, or LO2, have arrived at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will begin to offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  1. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Engineers watch as several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  2. Transient response for interaction of two dynamic bodies

    NASA Technical Reports Server (NTRS)

    Prabhakar, A.; Palermo, L. G.

    1987-01-01

    During the launch sequence of any space vehicle complicated boundary interactions occur between the vehicle and the launch stand. At the start of the sequence large forces exist between the two; contact is then broken in a short but finite time which depends on the release mechanism. The resulting vehicle response produces loads which are very high and often form the design case. It is known that the treatment of the launch pad as a second dynamic body is significant for an accurate prediction of launch response. A technique was developed for obtaining loads generated by the launch transient with the effect of pad dynamics included. The method solves uncoupled vehicle and pad equations of motion. The use of uncoupled models allows the simulation of vehicle launch in a single computer run. Modal formulation allows a closed-form solution to be written, eliminating any need for a numerical integration algorithm. When the vehicle is on the pad the uncoupled pad and vehicle equations have to be modified to account for the constraints they impose on each other. This necessitates the use of an iterative procedure to converge to a solution, using Lagrange multipliers to apply the required constraints. As the vehicle lifts off the pad the coupling between the vehicle and the pad is eliminated point by point until the vehicle flies free. Results obtained by this method were shown to be in good agreement with observed loads and other analysis methods. The resulting computer program is general, and was used without modification to solve a variety of contact problems.

  3. View of the shuttle Discovery on the launch pad just prior to STS 51-D launch

    NASA Image and Video Library

    1985-04-12

    Just below center of this scene is a distant representation of a large ignition as the Shuttle Discovery lifts off from a Kennedy Space Center (KSC) launch pad. The ignition can be seen through the fronds of the trees. Birds in flight frame the light spot representing the orbiter as it launches.

  4. 11. Photocopy of photograph (original photograph in possession of Val ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original photograph in possession of Val Brose, General Dynamics Space Systems Division, Vandenberg Air Force Base, California). Photographer unknown, circa July 1961. CREW OF FIRST LAUNCH FROM POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2, (SLC-3E) ON LAUNCH PAD. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. KSC-04pd1044

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  6. KSC-04PD-1044

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-114 crew members tour the Rubber Room at Launch Pad 39A. From left to right are Mission Specialist Andrew Thomas; Steve Leonhard, chief, Pad A Operations, with United Space Alliance (USA); Mission Commander Eileen Collins; Mission Specialists Soichi Noguchi, who represents the Japanese Aerospace and Exploration Agency, and Charles Camarda; Pilot James Kelly; and David Sutherland, manager, Pad A Operations, USA. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down a long vertical tube (left) to the Rubber Room and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  7. STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.

  8. Expedition 32 Soyuz Rocket Rollout

    NASA Image and Video Library

    2012-07-12

    A dragonfly lights on a tree branch near the launch pad after the Soyuz TMA-05M is rolled to its launch pad at the Baikonur Cosmodrome, Thursday, July 12, 2012 in Kazakhstan. The launch of the Soyuz rocket is scheduled for the morning of July 15 local time. Photo Credit: (NASA/Carla Cioffi)

  9. Expedition 19 Soyuz Rollout

    NASA Image and Video Library

    2009-03-23

    The Soyuz launch pad is seen about an hour before the Soyuz rocket is rolled out to the launch pad Tuesday, March 24, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)

  10. 62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END OF LAUNCH PAD. FIRE SUPPRESSION EQUIPMENT RIGHT OF FLAME BUCKET. SOUTH FACE OF MST IS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. KSC-00pp0407

    NASA Image and Video Library

    2000-03-25

    Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  12. KSC00pp0407

    NASA Image and Video Library

    2000-03-25

    Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler-transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  13. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE position the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE position the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  14. Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter

    2007-01-01

    This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.

  15. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Image and Video Library

    1990-09-05

    S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.

  16. KSC-04PD-2448

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, M-113 armored personnel carriers transport workers away from the pad. In the background are the Fixed (tall) and Rotating Service Structures. To the left is the water tower that holds 300,000 gallons used during liftoffs.The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  17. KSC-2013-4175

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. At far left is the recently-constructed pad elevator. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  18. Launch of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.

  19. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  20. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. STS-32 Columbia, OV-102, is positioned on the hard stand at KSC LC Pad 39A

    NASA Image and Video Library

    1989-11-28

    S89-51983 (18 Nov 1989) --- Roll-out of the Space Shuttle Columbia is completed as the vehicle, atop the Mobile Launcher Platform, is positioned on the hard stand at Pad 39A. The approximately eight-hour journey from the Vehicle Assembly Building began at 2:32 a.m. EST. This marks the first time a Space Shuttle has been at Pad A at Launch Complex 39 since January 12, 1986, when Columbia was launched on mission 61C. Pad A will next be used for the launch of Columbia and a five person crew on the STS-32 mission, presently scheduled for no earlier than December 18, 1989.

  2. KSC-2014-2625

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mobile Launcher Platform-2, or MLP-2, is glimpsed across the water as it departs Launch Pad 39A atop a crawler-transporter. A pad on Cape Canaveral Air Force Station is in view in the background. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  3. STS-93 MS Coleman takes in view from 195-foot level of launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the 195-foot level of Launch Pad 39B, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) takes in the view. The STS-93 crew are at KSC to participate in a Terminal Countdown Demonstration Test, which familiarizes them with the mission, provides training in emergency exit from the orbiter and launch pad, and includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  4. KSC-2009-3797

    NASA Image and Video Library

    2009-06-20

    CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-3800

    NASA Image and Video Library

    2009-06-20

    CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  6. KSC-2009-3799

    NASA Image and Video Library

    2009-06-20

    CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-3801

    NASA Image and Video Library

    2009-06-20

    CAPE CANAVERAL, Fla. – The slings from a large crane swing the detached orbiter access arm, which ends in the White Room, away from the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-3798

    NASA Image and Video Library

    2009-06-20

    CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  9. Payload Bay Canister being transported to Pad 39A for a fit chec

    NASA Image and Video Library

    2007-01-22

    This payload canister is being transported to Launch Pad 39A for a "fit check." At a later date, the canister will be used to transport to the pad the S3/S4 solar arrays that are the payload for mission STS-117. The mission will launch on Space Shuttle Atlantis for the 21st flight to the International Space Station, and the crew of six will continue the construction of station with the installation of the arrays. The launch of Atlantis is targeted for March 16.

  10. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  11. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE check the placement of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE check the placement of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad for further processing. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  12. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE begin the next phase of processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE begin the next phase of processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  13. KSC-2011-7393

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  14. KSC-2011-7394

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-7397

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Louisiana State University mechanical engineering students Kevin Schenker, from left, and Jacob Koch join Luz Marina Calle, a scientist at NASA's Kennedy Space in Florida, as they examine a portion of the wall of the flame trench at Launch Pad 39B. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  16. KSC-2011-7395

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University, the group on the left, joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  17. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE erect a ladder to reach the top of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE erect a ladder to reach the top of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  18. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove a portion of a transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove a portion of a transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  19. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  20. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to remove the canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to remove the canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  1. KENNEDY SPACE CENTER, FLA. - In the NASA Spacecraft Hangar AE, the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, is uncovered by workers following its arrival. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - In the NASA Spacecraft Hangar AE, the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad, is uncovered by workers following its arrival. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  2. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE lift the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE lift the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  3. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE remove the protective cover from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  4. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  5. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  6. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  7. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  8. KSC-06pd0840

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Kim Shiflett

  9. KSC-06pd0845

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Troy Cryder

  10. KSC-06pd0841

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/George Shelton

  11. The Expedition Three crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  12. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    Mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  13. ISS Expedition E53-54 Soyuz MS-06 Rollout to the Launch Pad

    NASA Image and Video Library

    2017-09-10

    At the Baikonur Cosmodrome in Kazakhstan, the Soyuz MS-06 spacecraft and its Soyuz booster were transported from the Integration Facility to the launch pad on a railcar Sept. 10 for final preparations before launch Sept. 13 to the International Space Station. The Soyuz MS-06 will carry Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA to the orbital complex for a five-and-a-half month mission. Also included are interviews at the launch pad with Joe Montalbano, Deputy ISS Program Manager and Sean Fuller, Director of Human Spaceflight Programs in Russia following the rocket's rollout.

  14. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    Progress on the new brick walls of the north side of the flame trench at Launch Pad 39B is seen in a view from the top of the pad at NASA’s Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, continue to install new heat-resistant bricks on the concrete walls. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep-space missions, and the journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  15. KSC-2010-5649

    NASA Image and Video Library

    2010-11-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Launch Pad 39B is seen from Launch Pad 39A. Pad B is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jack Pfaller

  16. 70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  18. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  19. KSC-2012-6185

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  20. KSC-2014-2622

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter carries Mobile Launcher Platform-2, or MLP-2, away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  1. KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  2. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  3. Apollo 6 Transported to Launch Pad at KSC

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Apollo 6, the second and last of the unmarned Saturn V test flights, is slowly transported past the Vehicle Assembly Building on the way to launch pad 39-A. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  4. STS-45 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad

    NASA Image and Video Library

    1992-03-24

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, lifts off from a Kennedy Space Center (KSC) Launch Complex (LC) Pad at 8:13:40:048 am (Eastern Standard Time (EST)). Exhaust billows out the solid rocket boosters (SRBs) as OV-104 atop its external tank (ET) soars above the mobile launcher platform and is nearly clear of the fixed service structure (FSS) tower. The diamond shock effect produced by the space shuttle main engines (SSMEs) is visible. The glow of the SRB/SSME firings is reflected in a nearby waterway. An exhaust cloud covers the launch pad area.

  5. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.

  6. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.

  7. KSC-2010-5660

    NASA Image and Video Library

    2010-11-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, two rainbows appear between Launch Pad 39B and Launch Pad 39A. Pad B, seen here, is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Troy Cryder

  8. View of the launch of STS 51-A shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).

  9. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  10. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  11. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  12. CCP Astronaut Eric Boe, GOES-S Prepared for Launch

    NASA Image and Video Library

    2018-02-28

    NASA astronaut Eric Boe, one of four astronauts working with the agency’s Commercial Crew Program, had the opportunity to check out the Crew Access Tower at Space Launch Complex 41 (SLC-41) Wednesday with a United Launch Alliance Atlas V on the pad. Boe, along with launch operations engineers from NASA, Boeing, and ULA, climbed the launch pad tower to evaluate lighting and spotlights after dark. The survey helped ensure crew members will have acceptable visibility as they prepare to launch aboard Boeing’s Starliner spacecraft on the Crew Flight Test to the International Space Station targeted for later this year.

  13. KSC-08pd1093

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd1096

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd1090

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd1094

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  17. KSC-08pd1091

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  18. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    A large plume of mist or vapor is visible as a Praxair truck slowly transfers its load of liquid oxygen, or LO2, into a giant storage sphere at the northwest corner of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  19. KSC-2014-3546

    NASA Image and Video Library

    2014-08-16

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, singer-songwriter Brad Paisley receives a response from astronaut Reid Wiseman, an Expedition 40 crew member in Earth orbit on the International Space Station, after Paisley announced through social media the release of a new song titled "American Flag on the Moon." Wiseman responded, "Hold on @BradPaisley, we don't usually like leaks at the launch pad." In the background is Launch Pad 39A from which the Apollo moon landing missions were launched. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. To read more of Wiseman's Twitter posts from the station, go to https://twitter.com/astro_reid. Photo credit: NASA/Daniel Casper

  20. KSC-08pd1111

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are in place against space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission begins at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  1. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  2. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  3. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  4. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  5. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  6. Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.

    2012-01-01

    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.

  7. 8. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by United States Navy, July 8, 1959. VIEW OF FORMWORK FOR NORTH WALL OF POINT ARGUELLO LAUNCH COMPLEX 1, PAD 2 (SLC-3 EAST) LAUNCH PAD AND SERVICE BUILDING (BLDG. 751). - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 03pd2805

    NASA Image and Video Library

    2003-10-13

    October 13, 2003. Baikonur Cosmodrome, Kazakhstan. Expedition 8 Soyuz Commander Alexander Kaleri (left) and Expedition 8 Commander and NASA Science Officer Mike Foale visit the launch pad at the Baikonur Cosmodrome in Kazakhstan Oct. 13, 2003. Foale, Kaleri and European Space Agency Astronaut Pedro Duque of Spain will be launched from the Central Asian launch pad to the International Space Station on Oct. 18. Photo Credit"NASA/Bill Ingalls"

  9. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  10. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  11. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  12. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    NASA Astrophysics Data System (ADS)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.

    2010-07-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  13. 12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN THE LEFT DISTANCE, TRACKSIDE CAMERA STAND AT TOP CENTER. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  14. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to begin further processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Sections of the transportation canister used in the move are in the foreground. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE prepare to begin further processing of the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Sections of the transportation canister used in the move are in the foreground. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  15. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  16. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  17. KSC-2012-6214

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  18. KSC-2012-6199

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  19. KSC-2012-6213

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  20. KSC-2012-6207

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  1. KSC-2012-6208

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  2. KSC-2012-6203

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  3. KSC-2012-6205

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  4. KSC-2012-6201

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  5. KSC-2012-6202

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  6. KSC-2012-6198

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  7. KSC-2012-6209

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  8. KSC-2012-6211

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  9. KSC-2012-6204

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  10. KSC-2012-6206

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  11. KSC01pp0565

    NASA Image and Video Library

    2001-03-22

    KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station

  12. KSC01padig173

    NASA Image and Video Library

    2001-03-22

    KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station

  13. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, prepare new heat-resistant bricks for installation on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  14. KSC-2013-3622

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the crawler track panels have been removed and construction workers continue to repair the concrete on the surface of the pad. The flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  15. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, attach new heat-resistant bricks on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  16. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    A construction worker with J.P. Donovan of Rockledge, Florida, checks to make sure new heat-resistant bricks attached to the north side of the flame trench are level at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  17. Analysis of the March 30, 2011 Hail Event at Shuttle Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Doesken, Nolan J.; Kasparis, Takis C.; Sharp, David W.

    2012-01-01

    The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA KSC Physics Lab and the KSC Engineering Services Contract (ESC) Applied Technology Lab, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University have been instrumental in validation testing using duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle, as shown in Figure 1, was first deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusually intense (for Florida standards) hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the Vertical Assembly Building (VAB) and Launch Control Center (LCC), about three miles west of Pad 39A, as well as at several other locations at KSC. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred on that day.

  18. 224. Photocopy of drawing (1963 structural drawing by General Dynamics/Astronautics) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    224. Photocopy of drawing (1963 structural drawing by General Dynamics/Astronautics) UMBILICAL MAST WIND DEFLECTOR REQUIRED FOR 206 PROGRAM, PAD, SHEET S-101 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. KSC-2014-2617

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter begins its climb toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-2619

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter nears the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  1. KSC-2014-2618

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter creeps toward Mobile Launcher Platform-2, or MLP-2, on the hardstand at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  2. KSC-2014-2620

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter rolls under the Mobile Launcher Platform-2, or MLP-2, positioned over the flame trench at Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move the MLP to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  3. KSC-2014-2621

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  4. KSC-2014-2626

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A, in the background, to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  5. KSC-2014-2627

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- The crawler-transporter transporting Mobile Launcher Platform-2, or MLP-2, from Launch Pad 39A creeps along the crawlerway toward the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd1095

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd1088

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd1092

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd1089

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  10. Feasibility study of launch vehicle ground cloud neutralization

    NASA Technical Reports Server (NTRS)

    Vanderarend, P. C.; Stoy, S. T.; Kranyecz, T. E.

    1976-01-01

    The distribution of hydrogen chloride in the cloud was analyzed as a function of launch pad geometry and rate of rise of the vehicle during the first 24 sec of burn in order to define neutralization requirements. Delivery systems of various types were developed in order to bring the proposed chemical agents in close contact with the hydrogen chloride. Approximately one-third of the total neutralizing agent required can be delivered from a ground installed system at the launch pad; concentrated sodium carbonate solution is the preferred choice of agent for this launch pad system. Two-thirds of the neutralization requirement appears to need delivery by aircraft. Only one chemical agent (ammonia) may be reasonably considered for delivery by aircraft, because weight and bulk of all other agents are too large.

  11. KSC-08pd1107

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are extended toward space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission gets under way at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  12. KSC-00pp0406

    NASA Image and Video Library

    2000-03-25

    Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  13. KSC-00pp0405

    NASA Image and Video Library

    2000-03-25

    Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  14. KSC00pp0406

    NASA Image and Video Library

    2000-03-25

    Passing by a palm tree, the Space Shuttle Atlantis aboard the crawler-transporter makes its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  15. KSC00pp0405

    NASA Image and Video Library

    2000-03-25

    Just after departing the Vehicle Assembly Building, the Space Shuttle Atlantis aboard the crawler-transporter wends its way to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  16. KSC00pp0408

    NASA Image and Video Library

    2000-03-25

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  17. KSC-00pp0408

    NASA Image and Video Library

    2000-03-25

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39A. The crawler-transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda

  18. View of the Endeavour moving towards it launch pad

    NASA Image and Video Library

    1996-06-06

    STS077-S-044 (16 April 1996) --- The Space Shuttle Endeavour atop the Mobile Launcher Platform and Crawler-Transporter (MLP/CT) slowly lumbers past a tree alongside the crawlerway, at the Kennedy Space Center (KSC). The journey from the Vehicle Assembly Building (VAB) to Launch Pad 39B will take about five to six hours to complete. Once hard down at the pad, preparations will continue to ready Endeavour for its upcoming spaceflight on STS-77.

  19. 24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  20. 13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO SHOWING A PROTECTIVE BERM AT TOP LEFT, AND FIRING CONTROL BLOCKHOUSE 0545 AT TOP RIGHT. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  1. KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  2. KSC-08pd4106

    NASA Image and Video Library

    2008-12-19

    CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, one of the new lightning towers is under construction. The towers will hold catenary wires as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Pad 39B will be the site of the first Ares vehicle launch, including Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs

  3. STS-79 Commander Readdy and Pilot Wilcutt at slidewire

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Clad in their launch/entry suits, STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt test the fit of a slidewire basket on the emergency egress system at Launch Pad 39A. The six astronauts assigned to the fourth Shuttle-Mir docking flight are completing Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT includes emergency egress training at the launch pad and culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.

  4. Launch Pad Activities

    NASA Image and Video Library

    1959-09-08

    Big Joe Capsule Launch Pad Activities: This film covers both the Big Joe and a Little Joe Project Mercury flight test with a research and development version of the Mercury capsule. Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959. The lower half of the capsule was created at NASA Lewis. The scenes include coverage of the assembly and erection of the boosters, delivery of the capsules, mating of the capsules to the boosters, prelaunch views of the capsule and boosters on launchers, mission control, the launches, and recovery.

  5. KSC-2013-2689

    NASA Image and Video Library

    2013-06-12

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  6. KSC-2013-2610

    NASA Image and Video Library

    2013-06-10

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, workers are removing the flame trench deflector that sits below and between the left and right crawler track panels. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  7. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  8. STS-111/Endeavour/ISS UF2 Pre-Launch Activities: Launch with Playbacks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video of the preflight preparations for and launch of Space Shuttle Endeavour on STS-111 begins with a view of Endeavour on the launch pad. Additional launch pad views leading up to liftoff are interspersed with footage from the Firing Room at Kennedy Space Center, the crew's prelaunch activities, and inspection of the crew members in the White Room before boarding Endeavour. The crew is introduced by a narrator during the preflight banquet and suiting up, and a later clip shows them departing to the launch site. The crew consists of Commander Kenneth Cockrell, Pilot Paul Lockhart, Mission Specialists Philippe Perrin and Franklin Chang-Diaz, and the Expedition 5 crew of the International Space Station (ISS) (Commander Valery Korzun and Flight Engineers Peggy Whitsun and Sergei Treschev). The nozzles on Endeavour's Space Shuttle Main Engine (SSME) are swiveled before liftoff, and the launch is shown past the separation of the solid rocket boosters. After a brief clip from the Mission Control Center at Johnson Space Center, the following launch replays are shown: Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, and OTV-070.

  9. KSC-06pd1938

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  10. KSC-06pd1937

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  11. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank will be lifted and rotated for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  12. Woodpecker Preventative measures at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Technicians at Launch Pad 39B take steps to prevent further damage from woodpeckers to the Space Shuttle Discovery, set to lift off July 13 on Mission STS-70. Installing balloons with scary eyes, such as these two near the external tank, are just one of the measures being taken to keep woodpeckers away since Discovery's second rollout to Pad B. Discovery had to be rolled back once to the Vehicle Assembly Building to repair woodpecker holes made in the insulation covering the external tank.

  13. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    Progress continues on the new flame trench at Launch Pad 39B at NASA's Kennedy Space Center in Florida. Construction workers with J.P. Donovan of Rockledge, Florida, are on an elevated work stand to install new heat-resistant bricks on the north side of the flame trench. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  14. Water Deluge Test at Pad 39B

    NASA Image and Video Library

    2018-05-24

    About 450,000 gallons of water flow at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test on May 24, 2018, at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was performed by Exploration Ground Systems to confirm the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  15. Pad 39B Flame Trench Brick Work

    NASA Image and Video Library

    2016-10-26

    Construction workers with J.P. Donovan of Rockledge, Florida, cut new heat-resistant bricks to size for the concrete walls of the flame trench at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. New heat-resistant bricks are being attached with epoxy mortar to the flame trench walls. The Pad B flame trench is being refurbished to support the launch of NASA’s Space Launch System rocket. The Ground Systems Development and Operations (GSDO) Program at Kennedy is helping transform the space center into a multi-user spaceport and prepare for Exploration Mission 1, deep space missions, and NASA's Journey to Mars. For more information about GSDO, visit: http://www.nasa.gov/groundsystems.

  16. STS-26 crew during emergency egress exercise at LC 39 launch pad B

    NASA Image and Video Library

    1988-05-04

    S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).

  17. KSC-2009-1563

    NASA Image and Video Library

    2009-02-12

    CAPE CANAVERAL, Fla. – A lightning mast remains to be lifted atop the third and final lightning tower erected on Launch Pad 39B at NASA's Kennedy Space Center. Three towers surround the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller

  18. KSC-06pd1339

    NASA Image and Video Library

    2006-06-27

    KENNEDY SPACE CENTER, FLA. - This radar image shows the presence of large birds around Launch Pad 39B. The data is being relayed from the avian radars recently set up on the pad. The computer is one of two set up in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton

  19. The FUSE satellite is ready to move to the launch pad.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In Hangar AE, Cape Canaveral Air Station (CCAS), NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands ready to be moved to the launch pad. The black rectangle on top is the optical port; at the lower edge are the radiators. The total length of the instrument is approximately four meters. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. Launch is targeted for June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.

  20. KSC-02pd1293

    NASA Image and Video Library

    2002-09-10

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. Visible near the tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  1. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit.

  2. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, James; Tamasy, Gabor; Mueller, Rob; Townsend, Van; Sampson, Jeff; Lane, Mike

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit

  3. KSC-2010-5406

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media learn about the transformation of Launch Pad 39B from Jose Perez-Morales, NASA's Launch Pad 39B senior manager. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The transformation includes the removal of the rotating service structure (RSS) and fixed service structure (FSS), refurbishment of the liquid oxygen and liquid hydrogen tanks, and the upgrade of about 1.3 million feet of cable. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  4. KSC-08pd2116

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – This elevated view of Launch Pad 39A at NASA's Kennedy Space Center shows workers filling steel grid structures, welded to the wall of the flame trench, with a heat-resistant concrete called Fondue Fyre, developed during NASA's Apollo lunar program. At left are the pad's "rainbirds." These nozzles are part of the pad sound suppression system which protects the orbiter and its payloads from being damaged by acoustical energy reflected from the mobile launcher platform during liftoff. Damage to the trench occurred during the May 31 launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  5. ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis completes the trip to Launch Pad 39A from the Vehicle Assembly Building for the third time in the STS- 79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.

  6. KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  7. KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE (background) remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Additional workers (foreground) prepare the Delta payload attach fitting, from which SIRTF was demated, for further use. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers in NASA Spacecraft Hangar AE (background) remove sections of the transportation canister from around the Space Infrared Telescope Facility (SIRTF), which has been returned to the hangar from the launch pad. Additional workers (foreground) prepare the Delta payload attach fitting, from which SIRTF was demated, for further use. SIRTF will remain in the clean room until it returns to the pad in early August. One of NASA's largest infrared telescopes to be launched, SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.

  8. Launch - STS-6 - KSC

    NASA Image and Video Library

    1983-04-12

    S83-30222 (4 April 1983) --- The second reusable spacecraft in history successfully launches from Launch Pad 39A at 1:30:00:88 p.m. (EST) on April 4, 1983, and heads for its history making five-day mission in Earth orbit. The space shuttle Challenger, its two solid rocket boosters (SRB), and a new lightweight?external fuel tank were captured on film by an automatically-tripped camera in a protected station nearer to the launch pad than human beings are able to be at launch time. Onboard the spacecraft are astronauts Paul J. Wietz, Karol J. Bobko, Dr. Story Musgrave and Donald H. Peterson. Photo credit: NASA

  9. GOES-S Rollout to Pad

    NASA Image and Video Library

    2018-02-28

    A United Launch Alliance Atlas V rocket exits the Vertical Integration Facility on its way to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  10. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-30

    The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)

  11. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-30

    The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-18 spacecraft is rolled out by the train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 321, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit: (NASA/Carla Cioffi)

  12. KSC-07pd1307

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- The mobile service towers on Launch Pads 17-A (left) and 17-B (right) are silhouetted against the pre-dawn sky at Cape Canaveral Air Force Station. In the background are the launch gantries. Pad 17-B is the site for the launch of the Dawn spacecraft on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  13. KSC-04PD-2441

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 39A, a rescue force climbs into slidewire baskets on the Fixed Service Structure during an emergency egress scenario. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  14. KSC-2011-2561

    NASA Image and Video Library

    2011-03-30

    CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-2562

    NASA Image and Video Library

    2011-03-30

    CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett

  16. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    NASA Technical Reports Server (NTRS)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  17. Shuttle near-field environmental impacts - Conclusions and observations for launching at other locations

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Knott, W. M.

    1985-01-01

    Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.

  18. STS-57 Endeavour, Orbiter Vehicle (OV) 105, lifts off from KSC LC Pad 39B

    NASA Image and Video Library

    1993-06-21

    STS057-S-053 (21 June 1993) --- The Space Shuttle Endeavour lifts off Launch Pad 39B as captured on film by an audio-activated camera positioned at the 270-feet level on the Rotating Service Structure (RSS) at Launch Pad 39B. STS-57 launch occurred at 9:07:22 a.m. (EDT), June 21, 1993. The mission represents the first flight of the commercially developed SpaceHab laboratory module and also will feature a retrieval of the European Retrievable Carrier (EURECA). Onboard for Endeavour's fourth flight are a crew of six NASA astronauts; Ronald J. Grabe, mission commander; Brian Duffy, pilot; G. David Low, payload commander; and Nancy J. Sherlock, Peter J. K. (Jeff) Wisoff and Janice E. Voss, all mission specialists. An earlier launch attempt was scrubbed due to unacceptable weather conditions both at the Kennedy Space Center (KSC) and the overseas contingency landing sites.

  19. STS-100 crew take a group photo before walkou

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  20. Delta-90 Interplanetary Monitoring Platform-H (IMP-H) flash flight report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Delta-90 launch vehicle and the IMP-H spacecraft were successfully launched from Pad B, Complex 17, Cape Kennedy Air Force Station, Florida, at 2120:00.559 EDT on September 22, 1972. The countdown proceeded smoothly to liftoff with no major difficulties or unscheduled holds. The Delta-90/IMP-H were launched on a pad azimuth of 115 degrees, the vehicle ten rolled to 95 degrees from the north placing the spacecraft in a highly elliptical transfer orbit. Firing the spacecraft kickmotor at 1136 EDT, September 25, 1972, injected the spacecraft into its final desirable near-circular orbit approximately half way between the planet earth and its moon. Vehicle performance of all stages appeared nominal with all sequenced events occurring at the expected times. Data acquisition from all range stations was very good. Damage to the launch pad caused by liftoff was nominal.

  1. Kennedy Space Center (KSC) Launch Pad Avian Abatement Efforts Including Related KSC Road Kill Reduction Effort

    NASA Technical Reports Server (NTRS)

    Schlierf, Roland; Hight, Ron; Payne, Stephen J.; Shaffer, John P.; Missimer, Brad; Willis, Christopher

    2007-01-01

    While birds might seem harmless, there's a good reason for the concern. During the July 2005 launch of Discovery on mission STS-1 14, a vulture soaring around the launch pad impacted the shuttle's external tank just after liftoff. With a vulture's average weight ranging from 3 to 5 pounds. a strike at a critical point on the Shuttle -- like the nose or wing leading thermal protection panels -- could cause catastrophic damage to the vehicle. The foam chunk that fatefully struck Columbia's wing in 2003 weighed only 1.7 pounds. (Cheryl L. Mansfield "Bye Bye Birdies" 2006) To address this issue, NASA formed an "Avian Abatement Team". The team goal is to have safer Shuttle missions by reducing the vulture population at KSC near the pad area thereby reducing the probability of another vulture strike during a Shuttle launch.

  2. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  3. Orion Pad Abort 1 GN and C Design and Development

    NASA Technical Reports Server (NTRS)

    Medina, Edgar A.; Stachowiak, Susan J.

    2010-01-01

    The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.

  4. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  5. KSC-97PC1394

    NASA Image and Video Library

    1997-09-10

    Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  6. KSC-97PC1388

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  7. KSC-97PC1391

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  8. KSC-97PC1395

    NASA Image and Video Library

    1997-09-10

    Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  9. KSC-97PC1390

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  10. KSC-97PC1389

    NASA Image and Video Library

    1997-09-12

    Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  11. KSC-08pd3279

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida, a worker closely observes space shuttle Atlantis as it rolls in after leaving Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd3280

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida, space shuttle Atlantis comes to rest after its six-hour journey from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  13. Proposed space shuttle cargo handling criteria at the operational site (preliminary)

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1972-01-01

    The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.

  14. Apollo 14 crew arrive at White Room atop Pad A, Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The three Apollo 14 astronauts arrive at the White Room atop Pad A, Launch Complex 39, during the Apollo 14 prelaunch countdown. Note identifying red bands on the sleeve and leg of Shepard. Standing in the center background is Astronaut Thomas P. Stafford, Chief of the Manned Spacecraft Center Astronaut Office.

  15. KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  16. KSC-08pd2516

    NASA Image and Video Library

    2008-05-31

    CAPE CANAVERAL, Fla. – A new NASA helicopter circles space shuttle Discovery on Launch Pad 39A prior to launch on the STS-124 mission. To the left of the shuttle is the fixed service structure with the 80-foot lightning mast on top. The rotating service structure, normally closed around the shuttle, is open for liftoff. At right of the pad is the 300,000-gallon water tower that provides the water used for sound suppression on the pad during liftoff. In the background is the Atlantic Ocean. Discovery is making its 35th flight. The STS-124 mission is the 26th in the assembly of the space station. It is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory.

  17. STS-65 Columbia, OV-102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Columbia, Orbiter Vehicle (OV) 102, begins its roll maneuver after clearing the fixed service structure (FSS) tower as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. In the foreground of this horizontal scene is Florida brush and a waterway. Beyond the brush, the shuttle's exhaust cloud envelops the immediate launch pad area. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). The glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in the nearby waterway. Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).

  18. A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Overbey, Glenn; Roberts, Barry C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  19. STS-65 Columbia, OV-102, lifts off from KSC LC Pad 39A

    NASA Image and Video Library

    1994-07-08

    Columbia, Orbiter Vehicle (OV) 102, begins its roll maneuver after clearing the fixed service structure (FSS) tower as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. In the foreground of this horizontal scene is Florida brush and a waterway. Beyond the brush, the shuttle's exhaust cloud envelops the immediate launch pad area. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). The glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in the nearby waterway. Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).

  20. KSC-2009-1001

    NASA Image and Video Library

    2009-01-02

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Other towers are being constructed at left and behind the service structures on the pad. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder

  1. KSC-2009-1008

    NASA Image and Video Library

    2009-01-02

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-1006

    NASA Image and Video Library

    2009-01-02

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett

  3. Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Hulten, W. C.; Wornom, D. E.

    1974-01-01

    An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample.

  4. STS-84 Atlantis on Pad 39-A after RSS roll back

    NASA Technical Reports Server (NTRS)

    1997-01-01

    News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.

  5. KSC-2010-5868

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Launch Complex 39 is seen across brackish water as the sun rises at NASA's Kennedy Space Center in Florida. On the left is Launch Pad 39B, which is being restructured for future use. On the right is Launch Pad 39A, where space shuttle Discovery is being prepared for a tanking test. Kennedy coexists with the Merritt Island National Wildlife Refuge, habitat to more than 310 species of birds, 25 mammals, 117 fish and 65 amphibians and reptiles. Photo credit: NASA/Frank Michaux

  6. Expedition 23 Soyuz Rollout

    NASA Image and Video Library

    2010-03-31

    The flags of the United States, Russia and Kazakhstan are seen at the launch pad after the Soyuz TMA-18 spacecraft was rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March, 31, 2010. The launch of the Soyuz spacecraft with Expedition 23 Soyuz Commander Alexander Skvortsov of Russia, Flight Engineer Mikhail Kornienko of Russia, and NASA Flight Engineer Tracy Caldwell Dyson is scheduled for Friday, April 2, 2010 at 10:04 a.m. Kazakhstan time. Photo Credit (NASA/Bill Ingalls)

  7. STS-107 Columbia rollout to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  8. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    Security Officers with their dog watch as the Soyuz TMA-4 capsule and its booster rocket begin to roll to the launch pad at the Baikonur Cosmodrome on Saturday, April 17, 2004, in Baikonur, Kazakhstan in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station on April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  9. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  10. KSC-08pd1888

    NASA Image and Video Library

    2008-07-08

    CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd1889

    NASA Image and Video Library

    2008-07-08

    CAPE CANAVERAL, Fla. – Crews remove bricks from the damaged walls of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the STS-125 mission. Photo credit: NASA/Jack Pfaller

  12. KSC-2013-3619

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  13. Ground level view of Apollo 14 space vehicle leaving VAB for launch pad

    NASA Image and Video Library

    1970-11-09

    S70-54121 (9 Nov. 1970) --- A ground level view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle leaving the Vehicle Assembly Building (VAB). The Saturn V stack and its mobile launch tower, atop a huge crawler-transporter, were rolled out to Pad A. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  14. KSC-08pd2108

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – Workers weld a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  15. KSC-08pd2107

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – Workers weld a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  16. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  17. STS-79 CREW COMMANDER WILLIAM F. READDY PREPARES TO ENTER ATLANTIS AT PAD 39A FOR TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At Launch Pad 39A, the astronauts assigned to Space Shuttle Mission STS-79 are wrapping up Terminal Countdown Demonstration Test (TCDT) activities with participation in a simulated countdown. Shown here in the white room of the Orbiter Access Arm is Commander William F. Readdy. Besides the realistic launch day preparation, the TCDT also includes emergency egress training at the pad. The Space Shuttle Atlantis is undergoing preparations for liftoff on the fourth Shuttle-Mir docking flight no earlier than Sept. 12.

  18. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift the tank and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  19. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane will be used to lift and rotate the tank for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  20. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  1. Pre-flight views of orbiter Endeavour on way to launch pad for STS-77

    NASA Image and Video Library

    1996-05-01

    S96-07957 (16 April 1996) --- A road sign points to Launch Pad 39B, the final earthly destination for the Space Shuttle Endeavour and its final stepping stone into space. Endeavour began the slow journey from the Vehicle Assembly Building (VAB) at about 10:00a.m., April 16, 1996, perched atop the Mobile Launcher Platform and carried by the Crawler-Transporter. Upcoming activities at the pad to prepare Endeavour for flight on STS-77 include installation of the payloads in the Orbiter?s payload bay.

  2. STS-117 Rotating Service Structure move

    NASA Image and Video Library

    2007-01-30

    The rotating service structure on Launch Pad 39A has moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.

  3. STS-117 Rotating Service Structure move

    NASA Image and Video Library

    2007-01-30

    The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.

  4. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    The final brick was installed on the north side of the flame trench at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  5. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    Construction workers sign the final bricks after they were installed on the north side of the flame trench at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  6. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    A construction worker installs one of the final bricks on the north side of the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  7. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    Preparations are underway to install the final brick on the north side of the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  8. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    A construction worker installs the final brick on the north side of the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  9. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    Construction workers install the final bricks on the north side of the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The walls of the flame trench are being upgraded to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  10. Length of stain dosimeter

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.

    1994-04-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  11. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  12. KSC-08pd1505

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- Bathed in lights surrounding Launch Pad 39A and its structures at NASA's Kennedy Space Center, space shuttle Discovery is poised for launch on the STS-124 mission after rollback of the rotating service structure. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Behind the shuttle is the orange external tank and the two solid rocket boosters (only one seen here). Beneath the shuttle's starboard wing is one of two tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder

  13. GED® Collapse: Ohio Needs Launch Pads, Not Barricades. Executive Summary

    ERIC Educational Resources Information Center

    Halbert, Hannah

    2016-01-01

    The number of people attempting and passing the GED has plummeted. The Ohio economy is tough on low-wage workers with limited formal education. Without a high school diploma, it is virtually impossible to get a family-supporting job. But the GED has become a barricade, blocking Ohio workers from career goals, instead of a launching pad. Employers…

  14. GED® Collapse in Ohio: State Needs Launch Pads, Not Barricades. Workforce Development

    ERIC Educational Resources Information Center

    Halbert, Hannah

    2016-01-01

    The number of people attempting and passing the GED has plummeted. The Ohio economy is tough on low-wage workers with limited formal education. Without a high school diploma, it is virtually impossible to get a family-supporting job. But the GED has become a barricade, blocking Ohio workers from career goals, instead of a launching pad. Employers…

  15. STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.

  16. KSC-07pd3237

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, the payload canister atop its transporter rolls toward Launch Pad 39A. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-04pd1066

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released for launch just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  18. KSC-04PD-1063

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  19. KSC-04PD-1077

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- A crimson and gold sunrise over the Central Florida coast begins illuminating Launch Pad 39A, where a water sound suppression test is to take place. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiters three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  20. KSC-04PD-1064

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  1. KSC-04PD-1075

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Water recedes from the Mobile Launcher Platform (MLP) on Launch Pad 39A after the water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  2. KSC-04PD-1062

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  3. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery makes the climb to Launch Pad 39B aboard the mobile launcher platform and crawler transporter. The crawler is able to keep its cargo level during the move up the five percent grade, not varying from the vertical more than the diameter of a soccer ball. At right are the rotating and fixed service structures which will be used during prelaunch preparations at the pad. Earlier in the week, the Shuttle was rolled back to the VAB from the pad to repair hail damage on the external tank's foam insulation. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  4. KSC-04pd1063

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  5. KSC-04pd1065

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  6. KSC-04pd1075

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- Water recedes from the Mobile Launcher Platform (MLP) on Launch Pad 39A after the water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  7. KSC-04pd1064

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  8. KSC-04pd1077

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- A crimson and gold sunrise over the Central Florida coast begins illuminating Launch Pad 39A, where a water sound suppression test is to take place. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter’s three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  9. KSC-04pd1062

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  10. KSC-08pd3184

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – A videographer captures the dramatic sunset on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  11. KSC-08pd3183

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – Launch Pad 39A at NASA's Kennedy Space Center in Florida is silhouetted against a sunset sky. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  12. KSC-2009-1584

    NASA Image and Video Library

    2009-02-13

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 100-foot lightning mast has been raised to vertical. It will be lifted and installed on top of the third and final new lightning tower being erected around the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs

  13. KSC-2009-1007

    NASA Image and Video Library

    2009-01-02

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. At left of the service structures is another tower under construction. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett

  14. Hail Disrometer Array for Launch Systems Support

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Sharp, David W.; Kasparis, Takis C.; Doesken, Nolan J.

    2008-01-01

    Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the VAB, about three miles west of Pad 39A, as well as at several other locations around Kennedy Space Center. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred that day.

  15. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson deals cards during a traditional game that is played at the NASA Kennedy Space Center Operations and Checkout Building with the shuttle crew prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)

  16. KSC-08pd3277

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis rolls through the open doors of the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida after rolling back from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. The journey was expected to take about six hours. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  17. KSC-08pd3276

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - Space Space shuttle Atlantis rolls through the open doors of the Vehicle Assembly Building's high bay 3 at NASA's Kennedy Space Center in Florida after rolling back from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. The journey was expected to take about six hours. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd3275

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis rolls toward the open doors of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after rolling back from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. The journey was expected to take about six hours. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  19. KSC01pd1765

    NASA Image and Video Library

    2001-12-04

    KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for launch before heading to Launch Pad 39B and Space Shuttle Endeavour. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition 3 and Expedition 4 crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and the crew's completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Launch is scheduled for 5:45 p.m. EST Dec. 4, 2001, from Launch Pad 39B

  20. STS-95 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  1. STS-87 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this first day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk can be seen preforming pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  2. STS-88 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the "white room" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  3. KSC-2013-4177

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  4. KSC-2013-4172

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  5. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  6. KSC-2013-4181

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-4178

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  8. KSC-2013-4176

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. New crawler track panels will be installed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-4174

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. New crawler track panels will be installed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd3274

    NASA Image and Video Library

    2008-10-20

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis rolls via the crawlerway to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after rolling back from Launch Pad 39A. In the VAB, Atlantis will await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. First motion of Atlantis off the pad was at 6:48 a.m. EDT. The journey was expected to take about six hours. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Kim Shiflett

  11. STS-38 Atlantis, OV-104, lifts off from KSC LC Pad during night launch

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Atlantis, Orbiter Vehicle (OV) 104, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad at 6:48:15:0639 pm (Eastern Standard Time (EST)) for Department of Defense (DOD)-devoted mission. OV-104, atop the external tank (ET) and flanked by solid rocket boosters (SRBs), is almost clear of the launch tower which is lit up by the SRB and space shuttle main engine (SSME) firings. Spotlight equipment is silhouetted against the SRB/SSME glow in the foreground. The retracted rotating service structure (RSS) is highlighted against the evening darkness by the launch fireworks.

  12. KSC-06pd0903

    NASA Image and Video Library

    2006-05-19

    KENNEDY SPACE CENTER, FLA. -- Near Launch Pad 39B, wild pigs (at right) root for food near a stand of trees while Space Shuttle Discovery rolls out to the pad. The 4.2-mile journey from the Vehicle Assembly Building began at 12:45 p.m. EDT. The rollout is an important step before launch of Discovery on mission STS-121 to the International Space Station. Discovery's launch is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, Discovery's crew will test new hardware and techniques to improve shuttle safety, as well as deliver supplies and make repairs to the station. Photo credit: NASA/Ken Thornsley

  13. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  14. STS-101 crew poses for a photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During a break in Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew poses for a photo at Launch Pad 39A. They are at the 195-foot level of the Fixed Service Structure for emergency egress training. Standing, from left to right, are Mission Specialist James Voss, Commander James D. Halsell Jr., and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber and Yuri Usachev of Russia. Kneeling in front are Pilot Scott J. 'Doc' Horowitz and Mission Specialist Susan J. Helms. Behind them are the white solid rocket booster and orange external tank attached to Space Shuttle Atlantis. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  15. KSC-2011-4303

    NASA Image and Video Library

    2011-06-06

    Cape Canaveral, Fla. -- Workers using a large crane dismantle the final sections of the rotating service structure on Launch Pad 39B at NASA's Kennedy Space Center in Florida. A dragonfly passing across the camera lens (center) pays no attention to the pad's deconstruction in progress. In 2009, the pad was no longer needed for the shuttle program, so it is being restructured for future use. Its new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  16. KSC-2010-4758

    NASA Image and Video Library

    2010-09-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay large wooden mats on top of sand and reinforcing steel to protect the concrete under the rotating service structure (RSS) of Launch Pad 39B during deconstruction. In the background, space shuttle Discovery stands tall on Launch Pad 39A, awaiting its STS-133 mission to the International Space Station. Starting in 2009, the structure at Pad B was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-1943

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lowers the 80-foot lightning mast removed from the top of the fixed service structure (left) onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller

  18. KSC-2009-1945

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (behind it) is lowered onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller

  19. KSC-2009-1947

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (left) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller

  20. KSC-2009-1946

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (center) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller

  1. STS-101 crew talks with the media after TCDT activities at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-101 crew talk to the media. At the far left is George Diller, with NASA Public Affairs, who is moderating the event. At the microphone Commander James D. Halsell Jr. answers a question. Next to him, standing left to right, are Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James Voss, Susan J. Helms and Yuri Usachev of Russia. The TCDT includes emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  2. KSC-2009-2293

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 nears the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-2291

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 is moving to Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  4. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  5. Baykonur

    NASA Technical Reports Server (NTRS)

    Vladimirov, B. P.

    1978-01-01

    The 'Baykonur' cosmodrome, its functions, operations, and services are described in considerable detail. The launch complex, launching pads, launch structures, launchers with cable masts and propellant loading towers, are included. The sequence of all phases of rocket assembly and preparations for launch are depicted. Prelaunch procedures and the launch itself are described.

  6. Horizontal Launch: A Versatile Concept for Assured Space Access

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul; Wilhite, Alan W.; Schaffer, Mark; Voland, Randall T.; Huebner, Larry

    2011-01-01

    The vision of horizontal launch is the capability to provide a mobile launch pad that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and achieve precise placement for orbital intercept, rendezvous, or reconnaissance. Another compelling benefit of horizontal launch is that today s ground-based vertical launch pads are a single earthquake, hurricane, or terrorist attack away from disruption of critical U.S. launch capabilities. The study did not attempt to design a new system concept for horizontal launch, but rather focused on the refinement of many previously-studied horizontal launch concepts. Because of the large number of past horizontal launch studies, a process was developed to narrow the number of concepts through prescreening, screening, and evaluation of point designs. The refinement process was not intended to select the "best" concept, but rather to establish the feasibility of horizontal launch from a balanced assessment of figures of merit and to identify potential concepts that warrant further exploration.

  7. STS-29 Discovery, Orbiter Vehicle (OV) 103, roll out to KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the early morning hours, STS-29 Discovery, Orbiter Vehicle (OV) 103, mated to the external tank (ET) and solid rocket boosters (SRBs) is rolled out to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop the mobile launcher platform. Trees, shrubs, and a light mist surround the mobile launcher platform as it makes its way to LC Pad 39B. OV-103 will fly on Mission STS-29 scheduled for launch in mid-March. View provided by KSC with alternate KSC number KSC-89PC-50.

  8. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank has been lifted and rotated by crane and lowered back onto the flatbed truck for transport to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  9. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. Construction workers check lines as a crane is attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  10. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane has been attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  11. Performance Analysis and Design Synthesis (PADS) computer program. Volume 1: Formulation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program formulation for PADS computer program is presented. It can size launch vehicles in conjunction with calculus-of-variations optimal trajectories and can also be used as a general-purpose branched trajectory optimization program. In the former use, it has the Space Shuttle Synthesis Program as well as a simplified stage weight module for optimally sizing manned recoverable launch vehicles. For trajectory optimization alone or with sizing, PADS has two trajectory modules. The first trajectory module uses the method of steepest descent; the second employs the method of quasilinearization, which requires a starting solution from the first trajectory module.

  12. KSC-07pd2593

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, begins taking its cargo to Launch Pad 39A. At the pad, the canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  13. KSC-07pd0202

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  14. STS-117 Rotating Service Structure move

    NASA Image and Video Library

    2007-01-30

    The rotating service structure on Launch Pad 39A has been fully opened for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  15. KSC-07pd0204

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A has been fully opened for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  16. STS-117 Rotating Service Structure move

    NASA Image and Video Library

    2007-01-30

    Workers on Launch Pad 39A get ready to begin the movement of the rotating service structure above them. The RSS has not been rotated for more than a year during the maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.

  17. KSC-07pd0203

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A has moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  18. KSC-07pd0201

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- The rotating service structure on Launch Pad 39A is being moved for the first time in more than a year due to maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  19. KSC-2009-1300

    NASA Image and Video Library

    2009-01-22

    CAPE CANAVERAL, Fla. – A giant crane is used to add additional segments to the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett

  20. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    Alexander Zelenschikov, the Deputy Chief Designer of RSC-Energia, stands outside a processing facility at the Baikonur Cosmodrome as the Soyuz TMA-4 capsule and its booster rocket start the rollout to the launch pad on Saturday, April 17, 2004, in Baikonur, Kazakhstan, in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  1. KSC-97PC1363

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  2. KSC-97PC1392

    NASA Image and Video Library

    1997-09-10

    Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  3. KSC-97PC1393

    NASA Image and Video Library

    1997-09-10

    Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  4. KSC-97PC1360

    NASA Image and Video Library

    1997-09-08

    Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  5. KSC-97PC1362

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  6. KSC-97PC1361

    NASA Image and Video Library

    1997-09-08

    Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  7. KSC-2013-3620

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  8. KSC-2013-3621

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  9. KSC-2013-3615

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  10. KSC-2013-3618

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers inspect the brick walls of the flame trench area that is located below and between the left and right crawlerway tracks. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  11. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-43

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Station Mission STS-43. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank (ET) were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  12. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-40

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris, ice, Thermal Protection System (TPS) assessment and photographic analysis for Space Shuttle Mission STS-40 was conducted. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice and frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice and debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  13. JPSS-1 Spacecraft Transport to Pad and Lift and Mate

    NASA Image and Video Library

    2017-10-24

    At Vandenberg Air Force Base in California, the Joint Polar Satellite System-1, or JPSS-1, is transported to Space Launch Complex 2 packaged in a protective container. At the pad, JPSS-1 is lifted and mated atop a United Launch Alliance Delta II rocket. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg's Space Launch Complex.

  14. KSC-08pd2109

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – This elevated view shows workers on a platform welding a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  15. KSC-08pd2106

    NASA Image and Video Library

    2008-07-23

    CAPE CANAVERAL, Fla. – Workers prepare to weld a steel grid structure to the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center. Damage to the trench occurred during the launch of Discovery on the STS-124 mission. A 75- by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs are expected to be completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-1334

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  17. KSC-2009-1333

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  18. KSC-2009-1331

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  19. KSC-2009-1335

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast alongside the 500-foot tower where it will be installed. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  20. KSC-2009-1338

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-1332

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane holds a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  2. KSC-2009-1337

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  3. Final Flame Trench Brick Installation at Launch Pad 39B

    NASA Image and Video Library

    2017-05-09

    A view of the north side of the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The final brick was installed in the flame trench, completing about a year's worth of work to upgrade the walls to withstand the intense heat and fire at launch of NASA's Space Launch System rocket with Orion atop. About 96,000 heat-resistant bricks, in three different sizes, were secured to the walls using bonding mortar in combination with adhesive anchors. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to Pad 39B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1 and NASA’s journey to Mars.

  4. KSC-2013-4208

    NASA Image and Video Library

    2013-12-03

    CAPE CANAVERAL, Fla. -- A truck sprays water along the crawlerway to reduce dust ahead of crawler-transporter 1 as it continues its trek to Launch Pad 39A at NASA’s Kennedy Space Center in Florida. New jacking, equalizing and leveling, or JEL, hydraulic cylinders were installed on CT-1 and will be tested for increased load carrying capacity and reliability. The Ground Systems Development and Operations Program at Kennedy continues to upgrade the crawler-transporter as part of its general maintenance. CT-1 could be available to carry a variety of launch vehicles to the launch pad. Two crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  5. KSC-2013-4202

    NASA Image and Video Library

    2013-12-02

    CAPE CANAVERAL, Fla. -- A truck sprays water along the crawlerway to reduce dust ahead of crawler-transporter 1 as it begins its trek to Launch Pad 39A at NASA’s Kennedy Space Center in Florida. New jacking, equalizing and leveling, or JEL, hydraulic cylinders were installed on CT-1 and are being tested for increased load carrying capacity and reliability. The Ground Systems Development and Operations Program at Kennedy continues to upgrade the crawler-transporter as part of its general maintenance. CT-1 could be available to carry a variety of launch vehicles to the launch pad. Two crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Daniel Casper

  6. SKYLAB IV - LAUNCH

    NASA Image and Video Library

    1973-11-27

    S73-37285 (16 Nov. 1973) --- The Skylab 4/Saturn 1B space vehicle is launched from Pad B, Launch Complex 39, Kennedy Space Center, Florida, at 9:01:23 a.m. (EST), Friday, Nov. 16, 1973. Skylab 4 is the third and last of three scheduled manned Skylab missions. Aboard the Skylab 4 Command/Service Module were astronauts Gerald P. Carr, Edward G. Gibson and William R. Pogue. In addition to the CSM and its launch escape system, the Skylab 4 space vehicle consisted of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-IVB) stage. (The Skylab 1/Saturn V unmanned space vehicle with the space station payload was launched from Pad A on May 14, 1973). Photo credit: NASA

  7. SKYLAB IV - LAUNCH

    NASA Image and Video Library

    1973-11-27

    S73-37286 (16 Nov. 1973) --- The Skylab 4/Saturn 1B space vehicle is launched from Pad B, Launch Complex 39, Kennedy Space Center, Florida, at 9:01:23 a.m. (EST), Friday, Nov. 16, 1973. Skylab 4 is the third and last of three scheduled manned Skylab missions. Aboard the Skylab 4 Command/Service Module were astronauts Gerald P. Carr, Edward G. Gibson and William R. Pogue. In addition to the CSM and its launch escape system, the Skylab 4 space vehicle consisted of the Saturn 1B first (S-1B) stage and the Saturn 1B second (S-IVB) stage. (The Skylab 1/Saturn V unmanned space vehicle with the space station payload was launched from Pad A on May 14, 1973). Photo credit: NASA

  8. STS-32 crewmembers wave as they leave KSC O&C Bldg for launch pad

    NASA Image and Video Library

    1990-01-09

    STS032-S-056 (20 Jan 1990) --- STS-32 Columbia, Orbiter Vehicle (OV) 102, crewmembers depart the Kennedy Space Center (KSC) Operations and Checkout (O and C) Building enroute to KSC Launch Complex (LC) Pad 39A. Dubious weather at the return-to-launch site (RTLS) caused postponement of yesterday's planned launch. From left to right are Mission Specialist (MS) G. David Low, MS Marsha S. Ivins, MS Bonnie J. Dunbar, Pilot James D. Wetherbee, and Commander Daniel C. Brandenstein. All crewmembers are wearing launch and entry suits (LESs) and Low, Ivins, and Wetherbee wave to spectators as they head to the transportation van. Following the crew are astronaut Michael L. Coats (left) and NASA/JSC manager Donald R. Puddy.

  9. KSC-86PC-0310

    NASA Image and Video Library

    1986-10-09

    CAPE CANAVERAL, Fla. - Kennedy Space Center Director Lt. Gen. Forrest S. McCartney, far right, stands in front of the space shuttle Atlantis the morning after it is rolled out to Launch Pad 39B. Standing with McCartney is, from right to left, Bob Sieck, director of Shuttle Management and Operations, Bill Warren, pad site manager, and Gene Thomas, director of Launch and Landing Operations. Photo credit: NASA

  10. Expedition 23 preflight

    NASA Image and Video Library

    2010-03-31

    The launch pad at the Baikonur Cosmodrome in Kazakhstan is illuminated at sunrise in the Central Asian desert as it awaits the arrival of the Soyuz TMA-18 vehicle March 31, 2010 which was transported from its assembly hangar to the pad by railcar at dawn. Expedition 23 crewmates Alexander Skvortsov, Mikhail Kornienko and Tracy Caldwell Dyson will launch from Baikonur April 2 en route to the International Space Station.

  11. KENNEDY SPACE CENTER, FLA. - STS-81 Mission Specialist Jeff Wisoff prepares to enter the Space Shuttle Atlantis at Launch Pad 39B with help from White Room closeout crew members Danny Wyatt (center) and Al Rochford.

    NASA Image and Video Library

    1997-01-12

    KENNEDY SPACE CENTER, FLA. - STS-81 Mission Specialist Jeff Wisoff prepares to enter the Space Shuttle Atlantis at Launch Pad 39B with help from White Room closeout crew members Danny Wyatt (center) and Al Rochford.

  12. Day of Launch Profile Selection for Pad Abort Guidance

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.

    2010-01-01

    A day of launch selection approach that involves choosing from an array of pitch profiles of varying loft was analyzed with the purpose of reducing the risk of a land landing failure during a pad abort. It was determined that selecting from three pitch profiles can reduce the number of waterline abort performance requirement failures approximately in half without compromising other performance metrics.

  13. KSC-08pd1502

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center, the rotating service structure, or RSS, has rolled back on its axis to uncover space shuttle Discovery, lighted against the night sky, in preparation for launch on the STS-124 mission. Support for the outer end of the bridge is provided by two eight-wheel, motor-driven trucks (one is seen at bottom left) that move along circular twin rails installed flush with the pad surface. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Above the orange external tank is the oxygen vent hood, called the "beanie cap," at the end of the gaseous oxygen vent arm extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The White Room provides access into the shuttle. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder

  14. KSC-2009-3127

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – This photo taken from Launch Pad 39A at NASA's Kennedy Space Center in Florida shows one of two lightning strikes that occurred on May 11 around 11 p.m. within a third of a mile of space shuttle Endeavour on Launch Pad 39B. Engineers and safety personnel evaluated data and performed a walkdown of the pad and determined there is no damage to the vehicle or the pad. The images are from Kennedy's Operational Television cameras which can be used to triangulate the location of lightning strikes. Other detection systems include the Cloud-To-Ground Lightning Surveillance System, Strikenet/National Lightning Detection Network, Lightning Induced Voltage Instrumentation System and the Catenary Wire Lightning Instrumentation System. Endeavour is standing by on the pad, prepared for liftoff in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' STS-125 mission to service NASA's Hubble Space Telescope. Photo credit: NASA

  15. SpaceX Pad39A Event

    NASA Image and Video Library

    2017-02-17

    Members of the news media are at Launch Complex 39A for a briefing from Kennedy Space Center Director Bob Cabana; Gwynee Shotwell, president and chief operating officer of SpaceX; and Timothy Hughes, senior vice president and general counsel for SpaceX. On Feb. 18, a Falcon 9 rocket with a Dragon spacecraft atop is scheduled to lift off from the launch pad for the SpaceX CRS-10 mission. The historic site is where American astronauts first launched to the moon and was last used in 2011 for the final mission of the Space Shuttle Program. In April 2014, NASA officials signed a 20-year property agreement with SpaceX for use and operation of the launch pad for their Falcon 9 and Falcon 9 Heavy rockets. The SpaceX CRS-10 liftoff is another milestone further establishing Kennedy as a premier, multi-user spaceport. The Dragon spacecraft will deliver 5,000 pounds of supplies and research materials to the space station.

  16. SpaceX Pad39A Event

    NASA Image and Video Library

    2017-02-17

    Kennedy Space Center Director Bob Cabana speaks to members of the news media at Launch Complex 39A. At left is Gwynne Shotwell, president and chief operating officer of SpaceX. At right is Timothy Hughes, senior vice president and general counsel for SpaceX. On Feb. 18, a Falcon 9 rocket with a Dragon spacecraft atop is scheduled to lift off from the launch pad for the SpaceX CRS-10 mission. The historic site is where American astronauts first launched to the moon and was last used in 2011 for the final mission of the Space Shuttle Program. In April 2014, NASA officials signed a 20-year property agreement with SpaceX for use and operation of the launch pad for their Falcon 9 and Falcon 9 Heavy rockets. The SpaceX CRS-10 liftoff is another milestone further establishing Kennedy as a premier, multi-user spaceport. The Dragon spacecraft will deliver 5,000 pounds of supplies and research materials to the space station.

  17. SpaceX Pad39A Event

    NASA Image and Video Library

    2017-02-17

    Gwynne Shotwell, president and chief operating officer of SpaceX, speaks to members of the news media at Launch Complex 39A. At left is Kennedy Space Center Director Bob Cabana. At right is Timothy Hughes, senior vice president and general counsel for SpaceX. On Feb. 18, a Falcon 9 rocket with a Dragon spacecraft atop is scheduled to lift off from the launch pad for the SpaceX CRS-10 mission. The historic site is where American astronauts first launched to the moon and was last used in 2011 for the final mission of the Space Shuttle Program. In April 2014, NASA officials signed a 20-year property agreement with SpaceX for use and operation of the launch pad for their Falcon 9 and Falcon 9 Heavy rockets. The SpaceX CRS-10 liftoff is another milestone further establishing Kennedy as a premier, multi-user spaceport. The Dragon spacecraft will deliver 5,000 pounds of supplies and research materials to the space station.

  18. SpaceX Pad39A Event

    NASA Image and Video Library

    2017-02-17

    Timothy Hughes, senior vice president and general counsel for SpaceX speaks to members of the news media at Launch Complex 39A. Behind him, from left, are Kennedy Space Center Director Bob Cabana and Gwynne Shotwell, president and chief operating officer of SpaceX. On Feb. 18, a Falcon 9 rocket with a Dragon spacecraft atop is scheduled to lift off from the launch pad for the SpaceX CRS-10 mission. The historic site is where American astronauts first launched to the moon and was last used in 2011 for the final mission of the Space Shuttle Program. In April 2014, NASA officials signed a 20-year property agreement with SpaceX for use and operation of the launch pad for their Falcon 9 and Falcon 9 Heavy rockets. The SpaceX CRS-10 liftoff is another milestone further establishing Kennedy as a premier, multi-user spaceport. The Dragon spacecraft will deliver 5,000 pounds of supplies and research materials to the space station.

  19. KSC-98pc1044

    NASA Image and Video Library

    1998-08-06

    In this aerial view the Crawler Transporter Maintenance Building (center) sits between two crawler transporters. The KSC crawlers are the largest tracked vehicles known. Once used to move assembled Apollo/Saturn from the VAB to the launch pad, they are now used for transporting Shuttle vehicles. They move the Mobile Launcher Platform into the Vehicle Assembly Building and then to the Launch Pad with an assembled space vehicle. Maximum speed is 1.6 km (one mile) per hour loaded, about 3.2 km (2 miles) per hour unloaded. Launch Pad to VAB trip time with the Mobile Launch Platform is about 5 hours. The crawler burns 568 liters (150 gallons) of diesel oil per mile. KSC's two crawlers have accumulated 1,243 miles since 1977. Including the Apollo years, the transporters have racked up 2,526 miles, about the same distance as a one-way trip from KSC to Los Angeles by interstate highway or a round trip between KSC and New York City

  20. Aerial view of the KSC crawler transporters

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view the Crawler Transporter Maintenance Building (center) sits between two crawler transporters. The KSC crawlers are the largest tracked vehicles known. Once used to move assembled Apollo/Saturn from the VAB to the launch pad, they are now used for transporting Shuttle vehicles. They move the Mobile Launcher Platform into the Vehicle Assembly Building and then to the Launch Pad with an assembled space vehicle. Maximum speed is 1.6 km (one mile) per hour loaded, about 3.2 km (2 miles) per hour unloaded. Launch Pad to VAB trip time with the Mobile Launch Platform is about 5 hours. The crawler burns 568 liters (150 gallons) of diesel oil per mile. KSC's two crawlers have accumulated 1,243 miles since 1977. Including the Apollo years, the transporters have racked up 2,526 miles, about the same distance as a one-way trip from KSC to Los Angeles by interstate highway or a round trip between KSC and New York City.

  1. Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107

    NASA Technical Reports Server (NTRS)

    Overbey, B. G.; Roberts, B. C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  2. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at the safety design aspects for a launch pad escape system.

  3. KSC-2009-1997

    NASA Image and Video Library

    2009-03-09

    CAPE CANAVERAL, Fla. – Near Launch Pad 39B at NASA's Kennedy Space Center in Florida, Jose Perez-Morales explains use of the launch pad for the Ares rockets in the Constellation Program. Perez-Morales is Constellation senior pad project manager. Pad 39B will be used for the Ares I-X flight test, targeted for July 2009. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-1944

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, workers attach more cables to the 80-foot lightning mast removed from the top of the fixed service structure. The mast will be lowered to horizontal for transport from the pad. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller

  5. STS-102 Pilot Kelly talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Pilot James Kelly answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. STS-102 MS Richards talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Paul Richards answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  7. STS-102 MS Thomas talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Andrew Thomas answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  8. KSC-08pd2526

    NASA Image and Video Library

    2008-09-03

    CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller

  9. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Mission Commander James Wetherbee and cosmonaut Nikolai Budarin and astronaut Donald Pettit of the Expedition 6 crew. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  10. KSC-06pd1335

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-06pd1332

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Bird detection radar is set up near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  12. KSC-06pd1333

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Radar technicians set up bird detection radar near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  13. KSC-06pd1334

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-06pd1336

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-06pd1331

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Bird detection radar is delivered near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  16. KSC-06pd0820

    NASA Image and Video Library

    2006-05-12

    KENNEDY SPACE CENTER, FLA. - The orbiter Discovery, on top of an orbiter transporter, heads toward NASA's Vehicle Assembly Building (VAB) after leaving the Orbiter Processing Facility. The rollover to the VAB marks the start of the journey to the launch pad and, ultimately, launch. Once inside the VAB, Discovery will be raised to vertical and lifted up and over into high bay 3 for stacking with its redesigned external tank and twin solid rocket boosters. The rollout of Space Shuttle Discovery to Launch Pad 39B is expected in approximately a week. Launch of Discovery on mission STS-121 is scheduled to take place in a window extending July 1 to July 19. Photo credit: NASA/Jim Grossmann

  17. KSC-06pd0821

    NASA Image and Video Library

    2006-05-12

    KENNEDY SPACE CENTER, FLA. - The orbiter Discovery, on top of an orbiter transporter, rolls into NASA's Vehicle Assembly Building (VAB) after leaving the Orbiter Processing Facility. The rollover to the VAB marks the start of the journey to the launch pad and, ultimately, launch. Once inside the VAB, Discovery will be raised to vertical and lifted up and over into high bay 3 for stacking with its redesigned external tank and twin solid rocket boosters. The rollout of Space Shuttle Discovery to Launch Pad 39B is expected in approximately a week. Launch of Discovery on mission STS-121 is scheduled to take place in a window extending July 1 to July 19. Photo credit: NASA/Jim Grossmann

  18. STS-85 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this first day of the STS-85 mission, the flight crew, Cmdr. Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Cmdr. N. Jan Davis (Ph.D.), Mission Specialists Robert L. Curbeam, Jr., and Stephen K. Robinson (Ph.D.), and Payload Specialist Bjarni V. Tryggvason can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  19. STS-96 FD Highlights and Crew Activities Report: Flight Day 01

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this first day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  20. STS-89 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-89 mission, the flight crew, Cmdr. Terrence W. Wilcutt, Pilot Frank Edwards, and Mission Specialists Michael P. Anderson, James F. Reilly, Bonnie J. Dunbar, Salizhan Shakirovich Sharipov, David A. Wolf and Andrew S.W. Thomas, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  1. STS-86 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this first day of the STS-86 mission, the flight crew, Cmdr. James D. Wetherbee, Jr., Pilot Michael J. Bloomfield, Mission Specialists Scott E. Parazynski, Jean-Loup Chretien, Vladimir G. Titov, Wendy B. Lawrence and David A. Wolf can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  2. STS-91 Flight Day 1 Highlights and Crew Activities Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-91 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Franklin R. Chang-Diaz, Janet Lynn Kavandi, Wendy B. Lawrence, Valery Victorovitch Ryumin and Andrew S. W. Thomas, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  3. STS-83 Day 01

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this first day of the STS-83 mission, the flight crew, Cmdr. James D. Halsell Jr., Pilot Susan L. Still, Payload Cmdr. Janice E. Voss, Mission Specialists Michael L. Gernhardt and Donald A. Thomas, and Payload Specialists Gregory T. Linteris and Roger K. Crouch can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  4. STS-81 Flight Day 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This first day of the STS-81 mission begins with the flight crew, Cmdr. Michael A. Baker, Pilot Brent W. Jett, Mission Specialists, John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and Jerry M. Linenger, performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, and launch. The film ends with the separation of the Solid Rocket Boosters (SRB) from the shuttle.

  5. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  6. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  7. KSC-2013-4173

    NASA Image and Video Library

    2013-11-19

    CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. New crawler track panels will be installed. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett

  8. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Commander James D. Halsell Jr. waves as he stands with his wife Kathy during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  9. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber and her husband Jerome Elkind during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  10. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Vladimirovich Usachev, a Russian cosmonaut, and his wife Vera Sergeevna Usacheva during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  11. Wet Flow Test at Launch Complex 39B

    NASA Image and Video Library

    2017-12-20

    About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  12. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, a trainer (right) explains use of the slidewire basket, part of the emergency egress system, to Expedition 6 astronaut Donald Pettit (left) and STS-113 Mission Specialists Michael Lopez-Alegria (center) and John Herrington (right). . They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  13. KSC-08pd1109

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, dawn reveals the arrival of space shuttle Discovery, secured atop the mobile launch platform below, at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  14. KSC-08pd1106

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, space shuttle Discovery, secured atop the mobile launch platform below, arrives at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  15. KSC-08pd1105

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- This aerial view of NASA's Kennedy Space Center shows space shuttle Discovery, secured atop a mobile launch platform as it is moved into position at Launch Pad 39A to prepare for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  16. KSC-08pd1110

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, the sun rises upon the arrival of space shuttle Discovery, secured atop the mobile launch platform below, at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  17. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson, center, STS-135 Astronauts, Rex Walheim, left, and Commander Chris Ferguson are seen as the entire crew plays a traditional card game at the NASA Kennedy Space Center Operations and Checkout Building prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)

  18. STS-79 Atlantis arrives at LC39A

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis arrives at Launch Pad 39A at twilight. The second rollout to the pad brings Atlantis one step closer to a launch scheduled around September 12. Mission STS-79 will be highlighted by the fourth docking between the U.S. Space Shuttle and the Russian Space Station Mir, and the return to Earth of U.S. astronaut Shannon Lucid after a record-setting stay aboard the station

  19. Nighttime view of Apollo 9 space vehicle at Pad A, Launch Complex 39

    NASA Image and Video Library

    1969-02-23

    S69-25879 (23 Feb. 1969) --- Nighttime view of the 363-feet-high Apollo 9 space vehicle at Pad A, Launch Complex 39, Kennedy Space Center, during preparations for the scheduled 10-day Earth-orbital space mission. The crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space flight will be astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart.

  20. KSC-07pd3240

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is positioned under the payload changeout room, on the rotating service structure. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-07pd3241

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted off its transporter toward the payload changeout room. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-07pd3238

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, the payload canister atop its transporter rolls, under escort, toward Launch Pad 39A, seen at left.The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-05PD-0893

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During a walkdown of Launch Pad 39B, the STS-114 crew pauses for a photograph in the flame trench underneath the pad. The flame trench, built with concrete and refractory brick, bisects the pad at ground level. It is 490 feet long, 58 feet wide and 42 feet deep. The flame deflector system includes an inverted, V-shaped steel structure covered with a high-temperature concrete material five inches thick that extends across the center of the flame trench. One side of the V receives and deflects the flames from the Orbiter main engines; the opposite side deflects the flames from the Solid Rocket Boosters. There are also two movable deflectors at the top of the trench to provide additional protection to Shuttle hardware from the Solid Rocket Booster flames. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31. The crew is at KSC for Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad.

  4. Space Shuttle Discovery rolls out to Launch Pad 39A for Oct. 5 launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date.

  5. STS-113 Mission Specialist John Herrington at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. Upon launch, Herrington will become the first Native American in space. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  6. STS-87 Mission Specialist Chawla is assisted with her launch and entry spacesuit at LC 39B during TC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her orange launch and entry spacesuit by NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  7. KSC-04PD-1072

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (bottom right and left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) at the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  8. KSC-07pd1813

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  9. KSC-04PD-1074

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  10. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  11. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  12. KSC-04PD-1073

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  13. KSC-04PD-1076

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Some water remains on the surface of the Mobile Launcher Platform (MLP) on Launch Pad 39A after a water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  14. KSC-04pd1073

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  15. KSC-04pd1071

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) waiting for the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  16. KSC-04pd1074

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- Water is released onto the Mobile Launcher Platform (MLP) on Launch Pad 39A at the start of a water sound suppression test. Workers and the media (left) are on hand to witness the rare event. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  17. KSC-04pd1076

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- Some water remains on the surface of the Mobile Launcher Platform (MLP) on Launch Pad 39A after a water sound suppression test. Workers and the media (left) were on hand to witness the rare event. This test was conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  18. KSC-04pd1070

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) waiting for the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  19. KSC-04pd1072

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- From vantage points on the Fixed Service Structure (bottom right and left) on Launch Pad 39A, workers and the media look down upon the Mobile Launcher Platform (MLP) at the start of a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.

  20. KSC-2009-1299

    NASA Image and Video Library

    2009-01-22

    CAPE CANAVERAL, Fla. – Progress is being made on construction of the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. New sections are being added with the help of a giant crane. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd0200

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A get ready to begin the movement of the rotating service structure above them. The RSS has not been rotated for more than a year during the maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15. Photo credit: NASA/George Shelton

  2. KSC-07pd1200

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A after an early morning rollout. This is the second rollout for the shuttle. Seen on either side of the main engine exhaust hole on the launcher platform are the tail service masts. Their function is to provide umbilical connections for liquid oxygen and liquid hydrogen lines to fuel the external tank from storage tanks adjacent to the launch pad. Other umbilical lines carry helium and nitrogen, as well as ground electrical power and connections for vehicle data and communications. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder

  3. KSC-07pd3398

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- The space shuttle Atlantis STS-122 crew receives instruction on the emergency exit system on Launch Pad 39A. Inside the bunker at the foot of the pad, from left, Mission Specialist Leland Melvin; astronaut Frank De Winne of the European Space Agency, backup for Expedition 16 Flight Engineer Leopold Eyharts; Mission Specialist Stanley Love; and Commander Steve Frick listen intently to their trainer. Seven slidewire baskets are available to carry the crew from the level of the pad's Orbiter Access Arm to a safe landing site below, if needed. Each basket can hold up to three people. A braking system catch net and drag chain slow, and then halt, the baskets as they travel down the wire at approximately 55 miles per hour. The journey takes about half a minute. A bunker is located in the landing zone 1,200 feet west of the pad, with an M-113 armored personnel carrier stationed nearby. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization and a simulated launch countdown before launch. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3397

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- The space shuttle Atlantis STS-122 crew receives instruction on the emergency exit system on Launch Pad 39A. Inside the bunker at the foot of the pad, Mission Specialists Leopold Eyharts and Hans Schlegel, both with the European Space Agency, and Pilot Alan Poindexter give their full attention to their trainer. Seven slidewire baskets are available to carry the crew from the level of the pad's Orbiter Access Arm to a safe landing site below, if needed. Each basket can hold up to three people. A braking system catch net and drag chain slow, and then halt, the baskets as they travel down the wire at approximately 55 miles per hour. The journey takes about half a minute. A bunker is located in the landing zone 1,200 feet west of the pad, with an M-113 armored personnel carrier stationed nearby. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization and a simulated launch countdown before launch. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  5. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left, Suni Williams, Eric Boe, Bob Behnken and Doug Hurley take in the view from the top of Launch Complex 39A at Kennedy Space Center. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. Tower modifications included l removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  6. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left Doug Hurley, Eric Boe, Bob Behnken and Suni Williams, pose just outside Launch Complex 39A at NASA's Kennedy Space Center in Florida. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. The tower modifications included removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  7. KSC-97PC1347

    NASA Image and Video Library

    1997-09-07

    The Cassini spacecraft, with its attached Huygens probe, is lowered from Launch Pad 40 at Cape Canaveral Air Station for its return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan

  8. KSC-04pd0659

    NASA Image and Video Library

    2004-03-26

    CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered at the top by the Atlantic and a cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left is the Orbiter Processing Facility's Bay 3. In the foreground are OPF Bays 1 and 2. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. Photo credit: NASA

  9. KSC-05PD-0364

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  10. KSC-05PD-0366

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  11. KSC-05PD-0363

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Preparing for Return to Flight, workers at KSC walk the grounds around Launch Pad 39B looking for Foreign Object Debris, or FOD. The pad was recently refurbished and any possible debris left behind must be removed from the area prior to launch. Foreign objects that are alien to flight systems may cause material damage or may make the system or equipment inoperable, unsafe or less efficient. The Return to Flight mission STS-114 aboard Space Shuttle Discovery will carry supplies and equipment to the International Space Station. Discovery is scheduled for launch in a window from May 15 to June 3.

  12. KSC-07pd1659

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, NASA's Dawn spacecraft is hoisted up on the pad in preparation for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  13. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  14. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  15. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  16. Expedition 9 Soyuz Rollout

    NASA Image and Video Library

    2004-04-16

    The Engineer of the rollout locomotive waves hello as he prepares to back the train away from the launch pad leaving the Soyuz TMA-4 capsule and its booster rocket at the Baikonur Cosmodrome in Kazakhstan on on Saturday, April 17, 2004, in Baikonur, Kazakhstan in preparation for the launch of the Expedition 9 crew and a European researcher to the International Space Station on April 19. The Soyuz vehicle is transported to the launch pad horizontally on a railcar from its processing hangar in a process that takes about 2.5 hours to complete. Photo Credit: (NASA/Bill Ingalls)

  17. KSC-2013-3616

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Work will continue to repair or replace the bricks on the walls. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  18. KSC-2013-3617

    NASA Image and Video Library

    2013-09-19

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, a large bulldozer is used to remove the remaining portions of the flame trench deflector that was located below and between the left and right crawlerway tracks. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman

  19. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  20. KSC-08pd3185

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – The deep-red sunset sky puts Launch pad 39A in silhouette. Space shuttle Atlantis is on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

Top